10.17028/rd.lboro.2001258 Kelly Morrison Kelly Morrison Andrew Caruana Andrew Caruana Michael Cropper Michael Cropper Zhaoxia Zhou Zhaoxia Zhou Geoff West Geoff West Jake Zipfel Jake Zipfel Demonstration of polycrystalline thin film coatings on glass for spin Seebeck energy harvesting - dataset Loughborough University 2016 Magnetic materials thermoelectrics thin films spin Seebeck Applied Physics 2016-06-28 14:13:55 Dataset https://repository.lboro.ac.uk/articles/dataset/Demonstration_of_polycrystalline_thin_film_coatings_on_glass_for_spin_Seebeck_energy_harvesting_-_dataset/2001258 <div>Zip file with all raw XRD, XRR, transport data.</div>Origin project(s) containing raw and processed data for related publication.<div><br></div><div>Figure 1 was schematic only and not included here.</div><div>Figure 2 and Figure S2 are in the same origin project (simple and extended TEM data).</div><div><br></div><div>Figure captions:</div><div><p></p><p>Figure 2 TEM analysis of SSE5a. a) & b) STEM/BF and HAADF images of the thin film, respectively. c) Conventional HREM of the PM Pt layer. d) EDX line-scan performed perpendicular to the interfaces of the layers.</p><p></p><p>Figure 3 Summary of the magnetic, electric and thermal properties. a) Spin Seebeck voltage, <i>V<sub>ISHE</sub></i> (symbols), as a function of applied magnetic field plotted alongside magnetic data (line). b) Resistivity of the devices as a function of <i>t<sub>PM</sub></i>. c) Normalised spin Seebeck voltage, <i>S<sub>SSE</sub></i>, as a function of <i>t<sub>PM</sub></i>, plotted alongside simulated <i>S<sub>SSE</sub></i> (<i>θ<sub>SH</sub></i> = 0.1, <i>λ<sub>SD</sub></i> = 2 nm, <i>M<sub>s</sub></i> = 90 Am<sup>2</sup>/kg, D = 71x10<sup>41</sup> Jm<sup>2</sup>[19], <i>g<sub>r</sub></i> = 1,3 & 5x10<sup>18</sup> m<sup>-2</sup>[20]). d) Definition of the parameters used to describe heat flow, (e) & (f) Change in <i>ΔT<sub>2</sub></i>, and <i>S<sub>SSE</sub></i> with substrate's thermal conductivity, <i>κ<sub>3</sub></i>.</p><p>Figure S1 Characterisation of the Fe<sub>3</sub>O<sub>4</sub> film. a) SQUID magnetometry above and below the Verwey transition, <i>T<sub>V</sub></i>. b) Resistivity as a function of temperature. c) XRD of a set of 4 separately prepared Fe<sub>3</sub>O<sub>4</sub> films. The inset shows a close-up of the (311), (222) peaks. d) Example XRR data (symbols) and fit (solid line), indicating thickness = 79 nm, roughness = 1.5 nm.</p><p></p><p>Figure S2 TEM analysis of SSE5a. a) & b) STEM/BF and HAADF images of the thin film, respectively. c) Conventional HREM of the PM Pt layer. d) & e) STEM/BF image of the thin film stack and corresponding EDX line-scan performed perpendicular to the interfaces of the layers, respectively, and f) schematic of the grain growth described in the text.</p><p></p><p>Figure S3 Characteristics of the bilayer film. a) XRD of SSE5a (2.5 nm Pt) and SSE20a (7.3 nm Pt). Inset shows a close-up of the Pt peak. b)  XRR fit of SSE5a; Pt thickness = 2.5 nm, roughness = 2 nm.</p><p></p><p>Figure S4 Example spin Seebeck measurement for SSE7a (<i>t<sub>PM</sub></i> = 3.2 nm) measured in fixed field as a function of temperature difference. Note that the sign convention for measurements, defined in Fig 1(a) of the main manuscript follows from Uchida <i>et al.</i>[6].</p></div>