Loughborough University
Browse
3d Printing with Moondust - RPJ - Accepted Version 22052015 - Goulas A - Friel R J.pdf (949.43 kB)

3D printing with moondust

Download (949.43 kB)
journal contribution
posted on 2015-07-17, 11:00 authored by Athanasios Goulas, Ross Friel
Purpose – The purpose of this paper is to investigate the effect of the main process parameters of Laser Melting (LM) type Additive Manufacturing (AM) on multi layered structures manufactured from JSC-1A Lunar regolith (Moondust) simulant powder. Design/methodology/approach – Laser diffraction technology was used to analyse and confirm the simulant powder material particle sizes and distribution. Geometrical shapes were then manufactured on a Realizer SLM™ 100 using the simulant powder. The laser-processed samples were analysed via Scanning Electron Microscopy (SEM) to evaluate surface and internal morphologies, Energy-dispersive X-ray Spectroscopy (EDS) to analyse the chemical composition after processing and the samples were mechanically investigated via Vickers micro-hardness testing. Findings – A combination of process parameters resulting in an energy density value of 1.011 J/mm2 allowed the successful production of components directly from Lunar regolith simulant. An internal relative porosity of 40.8 %, material hardness of 670 ± 11 HV and a dimensional accuracy of 99.8 % were observed in the fabricated samples. Originality/value – This research paper is investigating the novel application of a Powder Bed Fusion AM process category as a potential on-site manufacturing approach for manufacturing structures/components out of Lunar regolith (Moondust). It was shown that this AM process category has the capability to directly manufacture multi-layered parts out of Lunar regolith, which has potential applicability to future moon colonization.

History

School

  • Mechanical, Electrical and Manufacturing Engineering

Published in

Rapid Prototyping Journal

Volume

22

Issue

6

Pages

864-870

Citation

GOULAS, A. and FRIEL, R.J., 2016. 3D printing with moondust. Rapid Prototyping Journal, 22(6), pp.864-870.

Publisher

© Emerald Group Publishing Ltd.

Version

  • AM (Accepted Manuscript)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Acceptance date

2016-02-15

Publication date

2016-10-17

Copyright date

2016

Notes

This paper was accepted for publication in the journal Rapid Prototyping Journal and the definitive published version is available at http://dx.doi.org/10.1108/RPJ-02-2015-0022

Language

  • en

Location

United Kingdom

Usage metrics

    Loughborough Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC