Supplementary Information files for "Characterisation of particle-surface interactions via anharmonic acoustic transduction" Carlos Da-Silva-Granja Niklas Sandström Igor Efimov Victor P. Ostanin Wouter van der Wijngaart David Klenerman Sourav Ghosh 10.17028/rd.lboro.7376333.v1 https://repository.lboro.ac.uk/articles/dataset/Supplementary_Information_files_for_Characterisation_of_particle-surface_interactions_via_anharmonic_acoustic_transduction_/7376333 These are the SI files for the article "Characterisation of particle-surface interactions via anharmonic acoustic transduction".<div><br></div><div>Abstract:</div><div>Most transduction methods for measuring particle-surface interactions are unable to differentiate the strength of interaction and largely reliant on extensive washing to reduce the ubiquitous non-specific background. Label-based methods, in particular, are limited in wide applicability due to their inherent operational complexity. On the other hand, label-free force-spectroscopic methods that can differentiate particle-surface interaction strength are skill-demanding and time-consuming. Here, we present a label-free anharmonic (nonlinear) acoustic transduction method employing the quartz crystal resonator that reads out ligand-receptor binding based on the interaction strength. We show that while stronger specific interactions are transduced more strongly, and in linear proportionality to the ligand concentration on microparticles, non-specific interactions are significantly attenuated. This allows ligand quantification with high specificity and sensitivity in realtime under flow without separate washing steps. Constructing an analytical model of a quartz resonator, we can relate the number and type (specific vs. non-specific) of ligand-receptor interactions with the change in characteristic nonlinearity coefficient of the resonator. The entirely-electronic and microfluidic-integrable transduction method could potentially allow a simple, fast and reliable way for characterising particle-surface interactions with economy of scale.</div> 2018-11-22 16:02:36 Quartz crystal microbalance Nonlinear acoustic transduction Label-free biosensor Realtime immunosensor Cell-surface profiling Immunophenotyping Medical and Health Sciences not elsewhere classified