Coates, Tim Page, Gary J. CFD based study of unconventional aeroengine exhaust systems The effect of upstream duct curvature on the exhaust plume of a jet engine is cur- rently undocumented. Here, three different upstream curvatures are simulated using CFD to investigate the effect of upstream duct curvature on the over-expanded exhaust plume emanating from a rectangular nozzle of aspect ratio 5.8:1 at a nozzle pressure ratio of 2.5 and Reynolds number of 7.61 × 105. Due to the lack of available experimental data for curved ducts connected to high speed jets, the initial work was to validate the methodol- ogy for separate S-bend and rectangular nozzle high speed jet cases. These showed that RANS methods were poor for predicting secondary flows in the S-bend and for predicting mixing and potential core length in the rectangular jet. However, LES did show signifi- cant improvements for the rectangular jet and correctly predicts the shear layer mixing. Calculations were carried out using an unstructured, median-dual CFD solver with pre- dominantly hexahedral elements containing approximately 65.5−67.5 million nodes. For the combined S-bend and nozzle cases it was seen that increasing upstream duct curvature re- duces the potential core length and increases losses in the upstream duct. Transverse total pressure gradients were also observed at the nozzle exit plane in both k-ǫ and WALE LES turbulence models, however to a significantly smaller degree in the latter. The upstream duct curvature was also seen to have an impact on the shock cell development, altering both number and location. untagged;Engineering not elsewhere classified 2012-08-30
    https://repository.lboro.ac.uk/articles/conference_contribution/CFD_based_study_of_unconventional_aeroengine_exhaust_systems/9220865