2134/14486 Jane Horner Jane Horner Stephen Walsh Stephen Walsh Prediction of the spatial characteristics of higher mode sound transmission through a periodic slit screen Loughborough University 2014 Aperture Higher-mode Slit screen Sound transmission Mechanical Engineering Engineering not elsewhere classified 2014-04-15 12:20:32 Journal contribution https://repository.lboro.ac.uk/articles/journal_contribution/Prediction_of_the_spatial_characteristics_of_higher_mode_sound_transmission_through_a_periodic_slit_screen/9224141 Periodic slit screens are often installed in rectangular apertures either to mask the opening or to reduce transmitted noise. This investigation considers the higher-order scattered and transmitted sound from a point source through a periodic screen mounted in a rigid baffle. In particular, this paper considers the spatial characteristics, or directivity, of the scattered field for a particular higher order mode. Uncoupled higher-order mode analysis is used to estimate the scattered and transmitted sound fields for the selected mode of the aperture without the presence of the screen. Transmission coefficients for the screens are then calculated using the well established equivalent mass layer effect and applied to the calculated higher-order mode scattered and transmitted sound pressures. Using an anechoic chamber, measurements were made over a small arc of the scattered sound field through a range of screens of different aspect ratios but the same porosity. The screens consisted of equally spaced open slits and solid laths and the number of slits was reduced to change the aspect ratio. In each case the point source was positioned on the impinging side of the aperture so as to drive one particular scattered higher-order aperture mode at or near cut-on. Comparison of the measured and predicted sound pressures indicate that good estimates of the sound field can be obtained through the approach of applying simple corrections for the presence of the screens to the estimates for the open aperture established using uncoupled calculations for the higher-order modes. It is also shown that the results for a specific mode excited at one particular frequency are applicable at other excitation frequencies provided that the correct non-dimensionalisation is applied.