Su, Jialin Garmory, Andrew Carrotte, Jon On the acoustic response of a generic gas turbine fuel injector passage A current trend in the design of modern aero engines is the transition towards leaner combustion as a solution to satisfy increasingly stringent emission regulations. Lean combustion systems are often more susceptible to thermoacoustic instability and the fuel injector can play a critical role. This paper presents an analytical study on the unsteady air flow through a generic injector passage in response to incident acoustic waves. The injector passage is represented by a simplified geometry which comprises the main geometrical passage features. The unsteady flow through the passage is obtained by combining the elemental solutions for different parts of the passage. This enables the transfer impedance of the injector passage to be determined and the effects of different design parameters on the sensitivity of the air flow to acoustic perturbations to be examined. The convective wave associated with the unsteady swirl vane wakes is also visited and compared with the results from the numerical simulations obtained in previous works. In addition to helping derive design practices for injector passages from the perspective of thermoacoustic instability, the current analysis can also be applied as a preliminary design tool to assess the acoustic characteristics for an injector passage of the axial swirler type. Fuel injector;Thermoacoustic instability;Acoustic wave;Transfer impedance;Swirl vane wake;Engineering not elsewhere classified 2019-01-31
    https://repository.lboro.ac.uk/articles/journal_contribution/On_the_acoustic_response_of_a_generic_gas_turbine_fuel_injector_passage/9229574