Effect of strontium inclusion on the bioactivity of phosphate-based glasses Jamieson Christie Nora H. de Leeuw 2134/24923 https://repository.lboro.ac.uk/articles/journal_contribution/Effect_of_strontium_inclusion_on_the_bioactivity_of_phosphate-based_glasses/9235535 We have conducted first-principles and classical molecular dynamics simulations of various compositions of strontium-containing phosphate glasses, to understand how strontium incorporation will change the glasses’ activity when implanted into the body (bioactivity). To perform the classical simulations, we have developed a new interatomic potential, which takes account of the polarizability of the oxygen ions. The Sr-O bond length is ∼ 2.44 − 2.49Å, and the coordination number is 7.5 – 7.8. The Qn distribution and network connectivity were roughly constant for these compositions. Sr bonds to a similar number of phosphate chains as Ca does; based on our previous work [J. K. Christie et al., J. Phys. Chem. B 117, 10652 (2013)], this implies that SrO ↔ CaO substitution will barely change the dissolution rate of these glasses, and that the bioactivity will remain essentially constant. Strontium could therefore be incorporated into phosphate glass for biomedical applications. 2017-05-11 12:37:22 untagged Materials Engineering not elsewhere classified