2134/10288 Steve Faulkner Steve Faulkner Richard Ferguson Richard Ferguson Nicola Gerrett Nicola Gerrett Maarten Hupperets Maarten Hupperets Simon Hodder Simon Hodder George Havenith George Havenith Reducing muscle temperature drop post warm-up improves sprint cycling performance Loughborough University 2012 Muscle temperature Power output Performance Insulation Clothing Medical and Health Sciences not elsewhere classified 2012-09-06 08:43:16 Journal contribution https://repository.lboro.ac.uk/articles/journal_contribution/Reducing_muscle_temperature_drop_post_warm-up_improves_sprint_cycling_performance/9348899 PURPOSE: This study aimed to determine the effect of passive insulation versus external heating during recovery following a sprint specific warm up on thigh muscle temperature and subsequent maximal sprint performance. METHODS: On three separate occasions, 11 male cyclists (age 24.7 ± 4.2 years, height 1.82 ± 0.72m, body mass 77.9 ± 9.8 kg; mean ± S.D.) completed a standardized 15 min intermittent warm up on a cycle ergometer, followed by a 30 min passive recovery period before completing a 30 sec maximal sprint test. Muscle temperature was measured in the vastus lateralis at 1, 2 and 3 cm depth prior to and following the warm up and immediately before the sprint test. Absolute and relative peak power output was determined and blood lactate concentration was measured immediately post-exercise. During the recovery period participants wore a tracksuit top and either i) standard tracksuit pants (CONT); ii) insulated athletic pants (INS) or; iii) insulated athletic pants with integrated electric heating elements (HEAT). RESULTS: Warm up increased Tm by approximately 2.5°C at all depths, with no differences between conditions. During recovery, Tm remained elevated in HEAT compared to INS and CONT at all depths (p<0.001). Both peak and relative power output were elevated by 9.6% and 9.1% respectively in HEAT compared to CONT (both p<0.05). The increase in blood lactate concentration was greater (p<0.05) post sprint in HEAT (6.3 ± 1.8 mmol/L) but not INS (4.0 ± 1.8 mmol/L) vs. CONT (4.1 ± 1.9 mmol/L). CONCLUSION: Passive heating of the thighs between warm up completion and performance execution using pants incorporating electrically heated pads can attenuate the decline in Tm and improve sprint cycling performance.