Archer, Andrew Walters, Morgan C. Thiele, Uwe Knobloch, Edgar Generation of defects and disorder from deeply quenching a liquid to form a solid We show how deeply quenching a liquid to temperatures where it is linearly unstable and the crystal is the equilibrium phase often produces crystalline structures with defects and disorder. As the solid phase advances into the liquid phase, the modulations in the density distribution created behind the advancing solidification front do not necessarily have a wavelength that is the same as the equilibrium crystal lattice spacing. This is because in a deep enough quench the front propagation is governed by linear processes, but the crystal lattice spacing is determined by nonlinear terms. The wavelength mismatch can result in significant disorder behind the front that may or may not persist in the latter stage dynamics. We support these observations by presenting results from dynamical density functional theory calculations for simple one- and two-component two-dimensional systems of soft core particles. untagged;Mathematical Sciences not elsewhere classified 2015-08-07
    https://repository.lboro.ac.uk/articles/chapter/Generation_of_defects_and_disorder_from_deeply_quenching_a_liquid_to_form_a_solid/9377450