Free surface flow under gravity and surface tension due to an Applied Pressure Distribution II bond number less then one-third
Montri Maleewong
Roger Grimshaw
Jack Asavanant
2134/239
https://repository.lboro.ac.uk/articles/Free_surface_flow_under_gravity_and_surface_tension_due_to_an_Applied_Pressure_Distribution_II_bond_number_less_then_one-third/9383108
We consider steady free surface two-dimensional flow due to a localized applied
pressure distribution under the effects of both gravity and surface tension in water of
a constant depth, and in the presence of a uniform stream. The fluid is assumed to be
inviscid and incompressible, and the flow is irrotational. The behaviour of the forced
nonlinear waves is characterized by three parameters: the Froude number, F, the
Bond number, τ < 1/3, and the magnitude and sign of the pressure forcing term ǫ.
The fully nonlinear wave problem is solved numerically by using a boundary integral
method. For small amplitude waves and F < Fm < 1 where Fm is a certain critical
value where the phase and group velocities for linearized waves coincide, linear
theory gives a good prediction for the numerical solution of the nonlinear problem
in the case of a bifurcation from the uniform flow. As F approaches Fm, however,
some nonlinear terms need to be taken in the problem. In this case the forced
nonlinear Schr¨odinger equation is found to be an appropriate model to describe
bifurcations from an unforced envelope solitary wave. In general, it is found that
for given values of F < Fm and τ < 1/3, there exist both elevation and depression
waves.
2005-07-22 09:53:48
Depression wave
Elevation wave
Trapped bubble
NLS
Gravity-capillary