Toth, Gyula Zarifi, Mojdeh Kvamme, Bjorn Phase-field theory of multicomponent incompressible Cahn-Hilliard liquids In this paper a generalization of the Cahn-Hilliard theory of binary liquids is presented for multi-component incompressible liquid mixtures. First, a thermodynamically consistent convection-diffusion type dynamics is derived on the basis of the Lagrange multiplier formalism. Next, a generalization of the binary Cahn-Hilliard free energy functional is presented for arbitrary number of components, offering the utilization of independent pairwise equilibrium interfacial properties. We show that the equilibrium two-component interfaces minimize the functional, and demonstrate, that the energy penalization for multi-component states increases strictly monotonously as a function of the number of components being present. We validate the model via equilibrium contact angle calculations in ternary and quaternary (4-component) systems. Simulations addressing liquid flow assisted spinodal decomposition in these systems are also presented. untagged;Mathematical Sciences not elsewhere classified 2017-11-03
    https://repository.lboro.ac.uk/articles/journal_contribution/Phase-field_theory_of_multicomponent_incompressible_Cahn-Hilliard_liquids/9386672