%0 Journal Article %A Uberuaga, B.P. %A Jiang, C. %A Stanek, C.R. %A Sickafus, K.E. %A Scott, Chris %A Smith, Roger %D 2015 %T Prediction of irradiation spectrum effects in pyrochlores %U https://repository.lboro.ac.uk/articles/journal_contribution/Prediction_of_irradiation_spectrum_effects_in_pyrochlores/9387482 %2 https://repository.lboro.ac.uk/ndownloader/files/17000693 %K untagged %K Mathematical Sciences not elsewhere classified %K Mechanical Engineering %X The formation energy of cation antisites in pyrochlores (A2B2O7) has been correlated with the susceptibility to amorphize under irradiation, and thus, density functional theory calculations of antisite energetics can provide insights into the radiation tolerance of pyrochlores. Here, we show that the formation energy of antisite pairs in titanate pyrochlores, as opposed to other families of pyrochlores (B = Zr, Hf, or Sn), exhibits a strong dependence on the separation distance between the antisites. Classical molecular dynamics simulations of collision cascades in Er2Ti2O7 show that the average separation of antisite pairs is a function of the primary knock-on atom energy that creates the collision cascades. Together, these results suggest that the radiation tolerance of titanate pyrochlores may be sensitive to the irradiation conditions and might be controllable via the appropriate selection of ion beam parameters. %I Loughborough University