Ordered Ag nanocluster structures by vapor deposition on pre-patterned SiO2 NumazawaSatoshi RanjanMukesh HeinigKarl-Heinz FacskoStefan SmithRoger 2015 Highly ordered Ag nanocluster structures have been grown on pre-patterned amorphous SiO2 surfaces by oblique angle physical vapor deposition at room temperature. Despite the small undulation of the rippled surface, the stripe-like Ag nanoclusters are very pronounced, reproducible and well separated. Computer modeling of the growth has been performed with a lattice-based kinetic Monte Carlo (KMC) method using a combination of a simplified inter-atomic potential and experimental transition barriers taken from the literature. An effective transition event classification method is introduced which allows a boost factor of several thousand compared to a traditional KMC approach, thus allowing experimental time scales to be modeled. The simulation predicts a low sticking probability for the arriving atoms, millisecond order lifetimes for single Ag adatoms and ≈1 nm square surface migration ranges of Ag adatoms. It is also shown that metal nucleations can trigger even on defect free surfaces. The simulations give excellent reproduction of the experimentally observed nanocluster growth patterns.