%0 Journal Article %A Hu, Cheng %A Sedghi, Saeid %A Silvestre-Albero, Ana %A Andersson, Gunther G. %A Sharma, Anirudh %A Pendleton, Phillip %A Rodriguez-Reinoso, Francisco %A Kaneko, Katsumi %A Biggs, Mark %D 2015 %T Raman spectroscopy study of the transformation of the carbonaceous skeleton of a polymer-based nanoporous carbon along the thermal annealing pathway %U https://repository.lboro.ac.uk/articles/journal_contribution/Raman_spectroscopy_study_of_the_transformation_of_the_carbonaceous_skeleton_of_a_polymer-based_nanoporous_carbon_along_the_thermal_annealing_pathway/9393020 %2 https://repository.lboro.ac.uk/ndownloader/files/17007077 %K untagged %K Chemical Sciences not elsewhere classified %X We report a multi-wavelength Raman spectroscopy study of the structural changes along the thermal annealing pathway of a poly(furfuryl alcohol) (PFA) derived nanoporous carbon (NPC). The Raman spectra were deconvoluted utilizing G, D, D′, A and TPA bands. The appropriateness of these deconvolutions was confirmed via recovery of the correct dispersive behaviours of these bands. It is proposed that the ID/IG ratio is composed of two parts: one associated with the extent of graphitic crystallites (the Tuinstra–Koenig relationship), and a second related to the inter-defect distance. This model was used to successfully determine the variation of the in-plane size and intra-plane defect density along the annealing pathway. It is proposed that the NPC skeleton evolves along the annealing pathway in two stages: below 1600 °C it was dominated by a reduction of in-plane defects with a minor crystallite growth, and above this temperature growth of the crystallites accelerates as the in-plane defect density approaches zero. A significant amount of transpolyacetylene (TPA)-like structures was found to be remaining even at 2400 °C. These may be responsible for resistance to further graphitization of the PFA-based carbon at higher temperatures. %I Loughborough University