2134/34072 Sandie Dann Sandie Dann Klaus-Ulrich Neumann Klaus-Ulrich Neumann Jose F. Marco Jose F. Marco Mössbauer characterisation of synthetic analogues of the helvite minerals Fe4M4[BeSiO4]6X2, (M=Fe, Mn, Zn; X=S, Se) Loughborough University 2018 Danalite Helvite Mossbauer spectroscopy Magnetic properties Chemical Sciences not elsewhere classified Condensed Matter Physics 2018-07-23 12:02:58 Journal contribution https://repository.lboro.ac.uk/articles/journal_contribution/M_ssbauer_characterisation_of_synthetic_analogues_of_the_helvite_minerals_Fe4M4_BeSiO4_6X2_M_Fe_Mn_Zn_X_S_Se_/9394751 We report on this paper on the Mossbauer characterisation of the family of synthetic helvite analogues, Fe4M4[BeSiO4]6X2 (M = Fe, Mn, Zn; X = S, Se). The data show iron to be present as high spin Fe(II) in tetrahedral coordination. The room temperature Mossbauer spectra are composed either by singlets or doublets with small quadrupole splitting values suggesting a small valence contribution at that temperature. From the dependence of the quadrupole splitting with temperature the separation Δ between the two eg orbitals has been estimated. The values of Δ range from 46.3 cm− 1 for the material Fe8[BeSiO4]6S2 to 58.2 cm1 for the material Fe4Zn4[BeSiO4]6S2. The lack of long-range magnetic order observed in the Mossbauer spectra was confirmed by neutron diffraction data which suggests that the M4X units are largely magnetically isolated within their cages leading to a frustrated magnet with no long range interaction for the sulfide species.