Modelling curved-layered printing paths for fabricating large-scale construction components Sungwoo Lim Richard Buswell Philip J. Valentine Daniel Piker Simon Austin Xavier De Kestelier 2134/21980 https://repository.lboro.ac.uk/articles/journal_contribution/Modelling_curved-layered_printing_paths_for_fabricating_large-scale_construction_components/9450128 In this paper, a non-conventional way of additive manufacturing, curved-layered printing, has been applied to large-scale construction process. Despite the number of research works on Curved Layered Fused Deposition Modelling (CLFDM) over the last decade, few practical applications have been reported. An alternative method adopting the CLFDM principle, that generates a curved-layered printing path, was developed using a single scripting environment called Grasshopper – a plugin of Rhinoceros® . The method was evaluated with the 3D Concrete Printing process developed at Loughborough University. The evaluation of the method including the results of simulation and printing revealed three principal benefits compared with existing flat-layered printing paths, which are particularly beneficial to large-scale AM techniques: (i) better surface quality, (ii) shorter printing time and (iii) higher surface strengths. 2016-07-15 09:21:11 untagged Built Environment and Design not elsewhere classified