A framework to support semantic interoperability in product design and manufacture ChungooraNitishal 2010 It has been recognised that the ability to communicate the meaning of concepts and their intent within and across system boundaries, for supporting key decisions in product design and manufacture, is impaired by the semantic interoperability issues that are presently encountered. This work contributes to the field of semantic interoperability in product design and manufacture. An attribution is made to the understanding and application of relevant concepts coming from the computer science world, notably ontology-based approaches, to help resolve semantic interoperability problems. A novel ontological approach, identified as the Semantic Manufacturing Interoperability Framework (SMIF), has been proposed following an exploration of the important requirements to be satisfied. The framework, built on top of a Common Logic-based ontological formalism, consists of a manufacturing foundation to capture the semantics of core feature-based design and manufacture concepts, over which the specialisation of domain models can take place. Furthermore, the framework supports the mechanisms for allowing the reconciliation of semantics, thereby improving the knowledge sharing capability between heterogeneous domains that need to interoperate and have been based on the same manufacturing foundation. This work also analyses a number of test case scenarios, where the framework has been deployed for fostering knowledge representation and reconciliation of models involving products with standard hole features and their related machining process sequences. The test cases have shown that the Semantic Manufacturing Interoperability Framework (SMIF) provides effective support towards achieving semantic interoperability in product design and manufacture. Proposed extensions to the framework are additionally identified so as to provide a view on imminent future work.