2134/5242 Felipe Iza Felipe Iza James L. Walsh James L. Walsh Michael G. Kong Michael G. Kong From submicrosecond-to nanosecond-pulsed atmospheric-pressure plasmas Loughborough University 2009 Atmospheric pressure Nanosecond Pulsed plasma Simulation Mechanical Engineering not elsewhere classified 2009-08-28 10:13:45 Journal contribution https://repository.lboro.ac.uk/articles/journal_contribution/From_submicrosecond-to_nanosecond-pulsed_atmospheric-pressure_plasmas/9560162 We have developed a time-hybrid computational model to study pulsed atmospheric-pressure discharges and compared simulation results with experimental data. Experimental and computational results indicate that increasing the applied voltage results in faster ignition of the discharge and an increase in the mean electron energy, opening the door to tunable plasma chemistry by means of pulse shaping. Above a critical electric field of ~2 kV/mmfor ~1-mm discharges, pulsed plasmas ignite right after the application of an externally applied voltage pulse. Despite the large pd value (30–300 torr · cm) and the high applied electric field, the discharges are found to be streamer free in a desirable glowlike mode. The comparison of the time evolution of the mean electron kinetic energy as a function of the pulse rise time suggests that a fast rise time is not necessarily the best way of achieving high mean electron energy.