2134/20419 Iain Hannah Iain Hannah Andy Harland Andy Harland Daniel S. Price Daniel S. Price Heiko Schlarb Heiko Schlarb Tim Lucas Tim Lucas Evaluation of a kinematically driven finite element footstrike model Loughborough University 2016 Finite element analysis Athletic footwear Running Kinematics Ground reaction Mechanical Engineering not elsewhere classified Mechanical Engineering 2016-02-29 09:27:05 Journal contribution https://repository.lboro.ac.uk/articles/journal_contribution/Evaluation_of_a_kinematically_driven_finite_element_footstrike_model/9561758 A dynamic finite element model of a shod running footstrike was developed and driven with six degree of freedom foot segment kinematics determined from a motion capture running trial. Quadratic tetrahedral elements were used to mesh the footwear components with material models determined from appropriate mechanical tests. Model outputs were compared to experimental high speed video (HSV) footage, vertical ground reaction force (GRF) and centre of pressure (COP) excursion to determine whether such an approach is appropriate for the development of athletic footwear. Although unquantified, good visual agreement to the HSV footage was observed but significant discrepancies were found between the model and experimental GRF and COP readings (9% and 61% of model readings outside of the mean experimental reading ± 2 standard deviations respectively). Model output was also found to be highly sensitive to input kinematics with a 120% increase in maximum GRF observed when translating the force platform 2 mm vertically. Whilst representing an alternative approach to existing dynamic finite elements footstrike models, loading highly representative of an experimental trial was not found to be achievable when employing exclusively kinematic boundary conditions. This significantly limits the usefulness of employing such an approach in the footwear development process.