2134/24999 Khalid Alblalaihid Khalid Alblalaihid J.K. Overton J.K. Overton Simon Lawes Simon Lawes Peter Kinnell Peter Kinnell A 3D-printed polymer micro-gripper with self-defined electrical tracks and thermal actuator Loughborough University 2017 3D-Printed Micro-gripper Thermal actuator Mechanical Engineering not elsewhere classified 2017-05-15 13:39:24 Journal contribution https://repository.lboro.ac.uk/articles/journal_contribution/A_3D-printed_polymer_micro-gripper_with_self-defined_electrical_tracks_and_thermal_actuator/9564782 This paper presents a simple fabrication process that allows for isolated metal tracks to be easily defined on the surface of 3D printed micro-scale polymer components. The process makes use of a standard low cost conformal sputter coating system to quickly deposit thin film metal layers on to the surface of 3D printed polymer micro parts. The key novelty lies in the inclusion of inbuilt masking features, on the surface of the polymer parts, to ensure that the conformal metal layer can be effectively broken to create electrically isolated metal features. The presented process is extremely flexible, and it is envisage that it may be applied to a wide range of sensor and actuator applications. To demonstrate the process a polymer micro-scale gripper with an inbuilt thermal actuator is designed and fabricated. In this work the design methodology for creating the micro-gripper is presented, illustrating how the rapid and flexible manufacturing process allows for fast cycle time design iterations to be performed. In addition the compatibility of this approach with traditional design and analysis techniques such as basic finite element simulation is also demonstrated with simulation results in reasonable agreement with experimental performance data for the micro-gripper.