Hu, Luoke Liu, Ying Lohse, Niels Tang, Renzhong Lv, Jingxiang Peng, Chen Evans, Steve Sequencing the features to minimise the non-cutting energy consumption in machining considering the change of spindle rotation speed A considerable amount of energy consumed by machine tools is attributable to non-cutting operations, including tool path, tool change, and change of spindle rotation speed. The non-cutting energy consumption of the machine tool (NCE) is affected by the processing sequence of the features of a specific part (PFS), because the plans of non-cutting operations will vary based on the different PFS. This article aims to understand the NCE between processing a specific feature and its pre or post feature, especially the energy consumed during the speed change of the spindle rotation. Based on the developed model, a single objective optimisation problem is introduced that minimises the NCE. Then, Ant Colony Optimisation (ACO) is employed to search for the optimal PFS. A case study is developed to validate the effectiveness of the proposed approach. Two parts with 12 and 15 features are processed on a machining centre. The simulation experiment results show that the optimal or nearoptimal PFS can be found. Consequently, 8.70% and 30.42% reductions in NCE are achieved for part A and part B, respectively. Further, the performance of ACO for our specific optimisation problem is discussed and validated based on comparisons with other algorithms. Non-cutting energy consumption;Sustainable manufacturing;Spindle rotation;Feature sequencing;Ant colony optimisation;Mechanical Engineering not elsewhere classified;Mechanical Engineering 2017-08-22
    https://repository.lboro.ac.uk/articles/journal_contribution/Sequencing_the_features_to_minimise_the_non-cutting_energy_consumption_in_machining_considering_the_change_of_spindle_rotation_speed/9576929