2134/28346 Richard Ferguson Richard Ferguson Julie E.A. Hunt Julie E.A. Hunt Mark Lewis Mark Lewis Neil Martin Neil Martin Darren J. Player Darren J. Player Carolin Stangier Carolin Stangier Conor W. Taylor Conor W. Taylor Mark Turner Mark Turner The acute angiogenic signalling response to low-load resistance exercise with blood flow restriction Loughborough University 2018 BFR Capillaries Hypoxia Kaatsu Resistance training Mechanical Engineering Medical and Health Sciences not elsewhere classified 2018-02-01 14:23:10 Journal contribution https://repository.lboro.ac.uk/articles/journal_contribution/The_acute_angiogenic_signalling_response_to_low-load_resistance_exercise_with_blood_flow_restriction/9617153 This study investigated protein kinase activation and gene expression of angiogenic factors in response to low-load resistance exercise with or without blood flow restriction (BFR). In a repeated measures cross-over design, six males performed four sets of bilateral knee extension exercise at 20% 1RM (reps per set = 30:15:15:continued to fatigue) with BFR (110 mmHg) and without (CON). Muscle biopsies were obtained from the vastus lateralis before, 2 and 4 h post-exercise. mRNA expression was determined using real-time RT-PCR. Protein phosphorylation/expression was determined using Western blot. p38MAPK phosphorylation was greater (p = 0.05) at 2 h following BFR (1.3 ± 0.8) compared to CON (0.4 ± 0.3). AMPK phosphorylation remained unchanged. PGC-1α mRNA expression increased at 2 h (5.9 ± 1.3 vs. 2.1 ± 0.8; p = 0.03) and 4 h (3.2 ± 0.8 vs. 1.5 ± 0.4; p = 0.03) following BFR exercise with no change in CON. PGC-1α protein expression did not change following either exercise. BFR exercise enhanced mRNA expression of vascular endothelial growth factor (VEGF) at 2 h (5.2 ± 2.8 vs 1.7 ± 1.1; p = .02) and 4 h (6.8 ± 4.9 vs. 2.5 ± 2.7; p = .01) compared to CON. mRNA expression of VEGF-R2 and hypoxia-inducible factor 1α increased following BFR exercise but only eNOS were enhanced relative to CON. Matrix metalloproteinase-9 mRNA expression was not altered in response to either exercise. Acute low-load resistance exercise with BFR provides a targeted angiogenic response potentially mediated through enhanced ischaemic and shear stress stimuli.