

This item was submitted to Loughborough’s Institutional Repository
(https://dspace.lboro.ac.uk/) by the author and is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

Received Date: 7/23/2012, Revised Date: 3/4/2013

A Brief History of Models and Model Based Systems

Engineering and the Case for Relational Orientation

Charles E. Dickerson, Member, IEEE Dimitri Mavris, Member, IEEE

Abstract – Models are at the heart of science and engineering.

Model based approaches to software development and systems

engineering use technologies to include graphical modeling

languages such as the Systems Modeling Language (SysML) that

support system design and analysis through machine readable

models. This paper traces key historical contributions of software

and systems engineers over the past five decades beginning with

Yourdon and Wymore to show a coherent concept of models and

how they can be used for software and systems engineering.

Recent model based systems engineering (MBSE) methodologies

supported by commercially available modeling tools are also

summarized. Relational Orientation is seen to be the underlying

viewpoint that expresses and binds these approaches. Relational

Orientation for Systems Engineering (ROSE) is then specified

using a general systems methodology. Systems are seen to access

each other’s models in ROSE much like classes in Object

Orientation access each other’s objects. Object oriented frames

for software engineering are extended to relational frames to

specify an innovative framework for system design and analysis.

This generalizes the axiomatic design approach of N.P. Suh. A

repeatable procedure supporting greater concurrency between

design and verification is also demonstrated for searching the

solution space in linear axiomatic design.

Index Terms: Model, graphical modeling languages, model based

systems engineering, software engineering, model driven

architecture, first order models, relational structures,

homomorphism, linear optimization, relational frames, OOSEM.

I. INTRODUCTION

ODEL BASED APPROACHES to systems are well

understood and practiced in science and mathematics

based on the foundation provided by mathematical logic. In

order to make models more visual and intuitive, software and

systems engineers have developed various graphical modeling

languages. The result has been the development of machine

readable languages by the Object Management Group (OMG),

which are commercially supported and provide a critical

technology for model based software and systems approaches.

A. Models in Science and Mathematics

A model of a system is generally regarded as a representation

of the system. Models are also abstractions that suppress

details not of interest. In science, mathematical models of a

Manuscript received 29 December 2011; revised 4 March 2013. This

work was supported in part by the Royal Academy of Engineering and the

Engineering and Physical Sciences Research Council, UK.

C.E. Dickerson is with Loughborough University, Leicestershire, LE11

3TU, UK

D. Mavris is with the Georgia Institute of Technology, Atlanta, GA 30332

USA

Digital Object Identifier….

system bring precision that can be used to predict properties

and behaviors of systems. Hawking, for example in [1],

attributes a good model in physics to be:

 Simple

 Mathematically correct

 Experimentally verifiable

In this viewpoint, mathematics becomes the modeling

language of physics.

The language of mathematics is the Predicate Calculus of

logic. The term model in mathematical logic has a specific and

formal meaning. Specifically, a model of a sentence is a

relational structure for which an interpretation of the sentence

expressed in the Predicate Calculus is valid (true) within that

structure. A relational structure is a collection of

mathematical relations on a defined set. A mathematical

relation is a collection of relationships between the elements

of the set, e.g. RO = {(m, n) | m < n} is an ordering relation on

the system of counting numbers and each pair (m, n) is a

relationship. Thus, relationships are instances of relations.

Interpretations in mathematical logic are one-to-one mappings

of sentences in Predicate Calculus into relational structures.

This concept of a model in logic is made clear by the

example of interpretation of the sentences in an axiom system

for an elementary geometry. An axiom system is comprised of

a collection of key words that remain undefined (to avoid

circularity) and sentences, called axioms that establish

relations between the key words. An axiom system for an

elementary geometry might include the terms point and line as

key undefined words; and the axioms for the geometry might

include the following three sentences about the key words:

 (i) Every line is comprised of at least two points.

 (ii) There exists a line passing through each point.

 (iii) Every pair of lines intersects in at most one point.

The meaning of the key words is determined by: (a)

relations between the words established by the axioms and (b)

interpretation of the axioms into specific models (relational

structures). This suggests that there are two types of models

needed for every system. One type is for the intrinsic meaning

of the sentences (axioms) expressed as relations between the

key words. The other type is for interpretation of the key

words that contributes new meaning to the sentences. Fig. 1

illustrates two interpretations of the elementary geometry

M

axiom system. The first is a planar geometry in which the

interpretation of all three the sentences is true. This then is a

valid model of the axiom system. The second interpretation is

a spherical geometry in which the interpretation of a line is

that of a great circle on a sphere. In this case, the third

sentence is false because great circles intersect at two points.

The interpretation as a spherical geometry is therefore not a

valid model of the axiom system.

Fig. 1. Two Interpretations of an Elementary Geometry System

B. Comparison with System Specification

The concept of a model offered by mathematical logic and

this simple example can give significant insight into system

description and specification, which are subject to the same

rule of logic that geometry is. Typically a system specification

is a collection of sentences, much like an axiom system. A

design then becomes a model of the system that is an

interpretation of the system specification. The model should be

simple, mathematically correct and experimentally verifiable.

However, as with the geometry system, it should be expected

that there can be multiple interpretations of a given

specification, some of which may not be valid. Thus, some

interpretations of the specification will be valid models of the

system and others will not. The precision with which the

interpretations are made is the subject of transformation

between models which is first introduced in Section IV.

C. Graphical Modeling Languages for Systems

Graphical modeling languages for software development

have been used for system description and specification from

the early years of computer systems. These types of language

are useful for visualizing concepts. Graphical models generally

represent the entities of a system as nodes in a graph and

relationships as arcs. The sentences carry the key words and

the semantics of the association between the key word. The

syntax and semantics provided by graphical models helps to

capture the meaning of natural language sentences. However

to capture the full meaning of the sentences requires

interpretation of the graphical models into a machine readable

language such as XML/XMI. Three graphical languages are

reviewed: Entity-Relationship (E-R) Diagrams, the Unified

Modeling Language (UML), and the Systems Modeling

Language (SysML). E-R Diagrams were an early approach to

data modeling. The UML specifies a language for object

modeling and software development. SysML is a general-

purpose graphical modeling language for specifying,

analyzing, designing, and verifying systems. Open

specifications for UML and SysML have been adopted by the

Object Management Group (OMG).

1) Entity-Relationship Diagrams: The E-R Diagram is a

data modeling approach introduced by Peter Chen in 1976 [2].

E-R is a high level data modeling notation that integrates the

concepts of semantic modeling and Object Oriented modeling.

Semantic modeling is used by linguists to represent the

meaning of words and by artificial intelligence researchers for

knowledge representation. The core concepts and terminology

of E-R have much in common with those of UML. This is to

be expected, as E-R, UML, and other graphical modeling

approaches have their roots in mathematical logic.

Fig. 2 Basic Elements of E-R Notation

In the graphical notation of E-R, the three basic elements of

a diagram are: entities depicted by rectangles, relations

represented by diamonds, and attributes depicted by circles. In

each case, the name of the entity, attribute, or relationship is

annotated inside the node. The nodes are connected by lines,

which can be regarded as associations between the three types

of elements. Fig. 2 depicts the E-R notation applied to the

second axiom of the Elementary Geometry System. The

relation depicted in the figure is a binary relation, i.e. two

entities are associated with each other by the relation.

Multiplicities can also be included as in Fig. 2: ‘1’ is

associated with the entity Point and ‘1 … *’ is associated with

Line. The multiplicity specifies how many instances of an

entity participate in an instance of the relation. Each instance

of a relation is one of the relationships that comprise the

relation. Note that this usage of the terms relation, relationship,

and instance is precisely the same as the mathematical

definition given in Subsection A.

2) Unified Modeling Language (UML): This language is the

de facto standard for software development. It is a graphical

language that provides semantics and notation for object-

oriented problem solving. Models are important to software

development for both engineering and communication, just

like how blueprints drawn by architects are used in the

construction of buildings. The more complicated the building,

the more critical the communication between architect and

builder, and the architect and the customer. There are many

excellent references on UML and the OMG has an open

website for tutorials: http://www.uml.org/#Links-Tutorials.

Fig. 3 Basic Elements of UML Use Case Diagram

The basic artifacts of UML can be used in systems

engineering. These include the Use Case Diagram, Class

Diagram, Package Diagram, Sequence Diagram, and State

http://www.uml.org/#Links-Tutorials

Transition Diagram. Holt [3], among others, offers an

overview of using UML in systems engineering organized

around this core body of artifacts.

The Use Case Diagram is an external view of a system in

which the interactions of actors with the system represent

functional requirements graphically as illustrated in Fig. 3. The

graphical elements of the diagram are the actor(s) (typically

represented by named stick figures), the system (a box with the

system name inside), the interaction(s) (denoted by

communication line(s) between the actor and system), and the

function(s) the system is used for by the actor (denoted by

named oval(s) inside the box). Note that an interaction is a

type of relation. The external viewpoint of the diagram also

makes it part of the definition of the system boundary (as

denoted by the box), i.e. the actors are identified as entities

associated with the system that do not belong to it.

UML Classes are abstractions of the entities of the system.

In software development, UML Classes become Objects when

instantiated. A class has attributes and methods, which are

called out within the diagram. Methods in the notation are

distinguished from attributes by the parenthesis that follows

the name of the method. Class Diagrams model relations

between classes with a notation similar to the E-R Diagram.

Fig. 4 represents the relations described by the sentences in

Axioms (i) – (iii) using three UML Class Diagrams. The

diamond symbol in the diagram for Axiom (i) is ‘aggregation’,

and indicates that class Line is comprised of the class Point.

When these three graphical models are instantiated over a set

(such as the Cartesian plane) they become a structure that

interprets the relations described in the three axioms.

Fig. 4 UML Class Diagrams for Axiom System

While the UML Class Diagram has a similar content and

form as E-R, there are minor differences. These are easily seen

in the Axiom (ii) Class Diagram depicted in Fig.4, which is the

UML equivalent of the E-R diagram in Fig. 2. In the Class

Diagram, relations are the lines connecting the classes and text

that defines the relation is placed directly on the line. The

corresponding diagram in E-R has two lines; one for each of

the entities (classes) associated with the relation (E-R symbol

diamond), and the text identifying the relation is found inside

the symbol. Also, the reference to the attribute in the Class

Diagram is done within the Class notation whereas E-R uses a

separate symbol (the circle).

States in physical systems are the values taken on by the

system attributes over time. However, UML classes also have

methods (operations executed and services accessed) in

addition to attributes. Therefore ‘state values’ in Object

Oriented modeling must also include the ‘value’ of the

method, i.e. is it idle or active.

A system model represented by classes can be organized

using UML Packages, which gather uniquely named model

elements and diagrams into groups. A UML Package provides

an encapsulated name space. Packages and groups of packages

become system components in the model. The UML Package

Diagram exhibits the individual packages and their

dependencies as client-server relations. Modeling system

components and dependencies this way provides a model of

the system structure which can be used as part of the

specification of the system architecture.

Components can be organized by specifying architectural

domains, which are groups of packages defined by a common

property, affinity, or governance. In both software and systems

engineering, architectural domains should relate to system

components and their organization. In model driven software

development, e.g. in [4], the system architecture can be

organized around four domains (groups of packages): the

application specification, services accessed, the software

architecture, and the implementation specification.

3) Systems Modeling Language (SysML): This is a graphical

modeling language that extends UML for use in model based

systems engineering (MBSE). It provides semantics and

notation for systems engineering to support the specification,

analysis, design, verification and validation of systems that

include hardware, software, data, parametrics, personnel,

procedures, and facilities. SysML supports interchange of

models and data via XMI and AP233. It has been implemented

in tools provided by a variety of vendors. Friedenthal [5]

provides a good introduction to SysML and its use in MBSE.

Fig. 5. SysML Artifact Hierarchy and Relationship to UML

Fig. 5 illustrates the types of diagrams used by SysML;

there are three primary types of diagrams at the highest level

of the hierarchy: behavior, structure, and requirements. The

requirements diagram is new and not part of UML. At the next

level down, SysML makes specialized modifications to UML

activity diagrams and it has made significant modifications to

UML class diagrams, as extended by UML composite

structures, to create what are called block diagrams. A

completely new type of diagram called the parametric diagram

has been introduced, which shows mathematical relationships

among the pieces of the system being designed and more

specifically combines mathematical formulas for analysis of

critical system parameters. Parametric diagrams have a key

role in system modeling.

II. HISTORY OF MODELING FOR SOFTWARE AND SYSTEMS

This section provides a brief history of some of the key

historical contributions to modeling for software and systems

over the past half century. The mathematical concept that a

system can be regarded as a nonempty set upon which

relations are defined can be traced back as early as Tarski [6].

More generally a system has also been regarded as a

collection of objects with attributes and relations between the

objects as well as relations between the attributes. Lin

compiled an extensive survey of the mathematical concepts

and literature in [7]. Lin and Ma [8] defined a general system

to be an ordered pair (M, R) where M is a set and R is a

collection of relations on M, i.e. a relational structure. This

definition is a formalization of the concept that a system is a

“whole” consisting of interacting “parts”, which was

expressed by von Bertalanffy [9] as early as 1967 and later by

INCOSE [10].

A. Tarski Model Theory

First-order model theory is concerned with the relationships

between system descriptions made in a first-order formal

language (such as the Predicate Calculus of mathematical

logic) and the structures that satisfy these descriptions. Central

to first-order models is Tarski’s model theoretic definition of

truth [6]. Specifically, given a relational structure (M, R), a

sentence in the formal language is defined to be true if there is

an interpretation of the sentence into the structure for which

the sentence becomes true in the structure. The interpretation

in this approach is an isomorphism, i.e. the symbols of the

sentence are in one-to-one correspondence with the symbols in

the image under interpretation into the structure. Instantiation

in the sense of Object Orientation can be regarded as this type

of interpretation. In Tarski Model Theory the relational

structure is said to be a model of the sentence.

The geometric examples in Fig. 1 can be written as first

order models of the axiom system (sentences) for the

elementary geometry of Section I. For example, the planar

geometry model can be defined by taking M to be the

Cartesian plane and R to be the collection of all (straight) lines

in the plane. Specifically, a line l is defined to be a unary

relation Rl on a subset of points (x1, x2) in the plane which are

related by the equation x2 = ml x1 + bl where ml and bl are the

geometric characteristics (i.e. attributes) associated with the

line l. The three axioms can be interpreted rigorously into the

Cartesian plane using the UML graphical models of the three

sentences given in Fig. 4. The truth of the interpretation of

each statement is then easily inferred from simple algebraic

calculations.

B. Yourdon Structured Analysis and Design

Yourdon [11] introduced a model based approach for

software development from a behavioral viewpoint. He also

introduced a graphical modeling language called Data Flow

Diagrams to support his approach. Structured Design was

based on a principle that systems should be comprised of

modules, each of which is highly cohesive but collectively are

loosely coupled. The strongest forms of cohesion are based on

functionality and communication. Cohesion in modules

minimizes interactions between elements not in the same

module, thus minimizing the number of connections and

amount of coupling between modules. Yourdon also

considered that the solution should reflect the inherent

structure of the problem.

Yourdon also introduced the concept of Structured

Analysis, which is based on a principle that the specification

of the problem should be separate that of the solution. He

proposed that separation be accomplished by using two types

of models: the Essential Model, which is an implementation-

free representation of the system, and the Implementation

Model, which is a behavior specific representation. These two

types of models are consistent with the concepts of the axiom

system which identified the need for two types of system

models, one for description or specification and the other for

interpretation or implementation. Structured Analysis requires

that the concerns of the two types of models be separated.

C. Wymore MBSE

A. Wayne Wymore [12] was one of the early engineering

pioneers in the domain of model based systems engineering.

He had a behavioral viewpoint on system in which the model

of behavior is comprised of the name of the system, its states,

the inputs and outputs of those states, and next state

transitions. The model also contained a readout function

which provided the output of the state transitions. Wymore

advocated that system design is the development of a model

on the basis of which a real system can be built, developed, or

deployed that will specify all the requirements using a

mathematically based system design language.

Wymore also had a concept of homomorphism between

system models as a mapping of the states of the systems, to

include their inputs and outputs, in such a way that the two

models exhibit the same behavior under the mapping.

Homomorphism between functional and implementation

system design models assures intended system behavior. This

is similar to Yourdon’s concept of Structured Design that the

solution should reflect the inherent structure of the problem.

The Wymore modeling approach to system design was

based on the ‘tricotyledon’. In a ‘garden’ for system

development, cotyledons are the ‘seed leaves’ from which

systems will eventually ‘flower’. Wymore envisioned three

types of cotyledons for system design: Functionality;

Buildability; Implementability.

Systems analyses are performed using the cotyledons.

These include trade-offs between figures of merit such as

performance and cost, testing and acceptance of the design

and implementation, and how well the design satisfies

requirements throughout the life cycle.

D. Klir and Lin General Systems Methodologies

Wymore’s concept of homomorphism was generalized by

Lin [7] in his concept of a general system by using an

algebraic definition of homomorphism. Specifically, given two

general system models, S1 = (M1, R1) and S2 = (M2, R2) a

mapping h: S1  S2 is a (relational) homomorphism if for

each relation r  R1, h(r)  R2. It should be noted that in

abstract algebra that mapping h is a function and is not

permitted to make multi-valued assignments into S2.

Klir [13] complemented the concept of a general system

with a general systems methodology. Simply stated, he

regarded problem solving in general to rest upon a principle of

alternatively using abstraction and interpretation to solve a

problem. He considered that his methodology could be used

both for system inquiry (i.e. the modeling of an aspect of

reality) and for system design (i.e. the modeling of purposeful

man-made objects). Klir’s system inquiry can also be regarded

as system description.

E. N.P. Suh Axiomatic Design

During the 1990’s, N.P. Suh published an extensive body of

literature on what he called Axiomatic Design. [14] offers a

concise introduction to his approach to include examples.

There are two Design Axioms: (i) maximize functional

independence by decoupling functional elements and (ii)

minimize the information content of the design. The first

axiom reflects the principle of structured design prescribed by

Yourdon. Axiomatic design uses a flow diagram to concisely

represent the system design. A hierarchy of three domains of

parameters was core to Suh’s approach: functional

requirements (FR), design parameters (DP), and process

variables (PV). The three domains were linked by two

matrices A and B, referred to as the design matrix and the

process matrix, respectively. In a linear model using matrix

multiplication this gives:

 [FR] = A [DP] and [DP] = B [PV]

The functional requirements in this case are expressed as

linear combinations of the design parameters with coefficients

that could be functions. The Design Equation is then given by

ri = j Aij pj, where the ri are the specified requirements

variables, the pj are the design variables, and [Aij] is the

Design Matrix. The solutions for Aij and pj are derived from

analysis and applying the Design Axioms. Similarly the design

parameters are expressed in terms of the process variables.

Modules in the structured design are regarded as rows of

the Design Matrix. Independence of the system functions (the

first axiom) requires that the design matrix A must be

triangular. If A is also diagonal, then each FR can be satisfied

independently by one DP, in which case the design is called

uncoupled. Otherwise DPs must be changed in proper

sequence, in which case the design is called decoupled.

Coupled designs consist of all other cases (i.e. not uncoupled

or decoupled). Coupled designs violate the Axiom of

Independence.

F. Historical Summary

During the past half century key historical contributions

have been made to establish model based approaches for

systems description, analysis and design. Generally a system

has been regarded as a collection of objects (entities) with

attributes and relations between the objects as well as relations

between the attributes. The mathematical formalization of

system modeling has consistently been sought and in principle

can be accomplished using the first order model theory of

Tarski and the homomorphism of relational structures

prescribed by Klir and Yin. But in practice a less formal and

more intuitive approach has been followed in software and

systems engineering using graphical modeling languages.

The organization of system entities into components which

are cohesive modules is a pervasive theme that can be traced

from Yourdon to Suh and will be seen to be carried forward

into the model based methodologies of the past decade. This is

the principle of Structured Design. Equally traceable is the

principle of Structured Analysis which states that the

specification of the problem should be separate that of the

solution. Each of the model based approaches has also

incorporated some form of model transformation that

preserves structure and behavior. Yourdon sought to preserve

the structure of the problem being solved in the structure of

the solution. Wymore and Klir sought homomorphic

preservation of relations in the flow of events, functions, and

states. And the Axiomatic Design of Suh used the Design

Matrix to mathematically transform between functional

requirements and design parameters and process variables.

III. MODEL BASED METHODOLOGIES

Starting with the INCOSE survey of MBSE methodologies

[15], this section provides a summary of the MBSE

methodologies and supporting commercial modeling tools that

have been developed over the past two decades. These provide

a starting point for an overview of the INCOSE MBSE

Initiative, which has been ongoing since 2007.

A. IBM MBSE Methodologies

Among the IBM methodologies for MBSE are Harmony

and the Rational Unified Process (RUP) for Systems

Engineering. Harmony is used for integrated systems &

software development. Its process elements include:

Requirements Analysis, System Functional Analysis, and

Architectural Design. The Rational Unified Process for

Systems Engineering extends the IBM RUP for software

development to systems. Its elements include: Roles, Work

Products, and Tasks. Modeling is supported at the level of:

Context, Analysis, Design, and Implementation. This

methodology is supported by the IBM Rational Suite.

B. INCOSE OOSEM

The Object-Oriented Systems Engineering Methodology

(OOSEM), developed in the 1990s by the Chesapeake Chapter

of INCOSE with significant aerospace involvement, is a top

down hybrid approach that leverages object-oriented software

and system techniques. It is model-based and can be

implemented in SysML. The core tenet is integrated product

development using a recursive Systems Engineering Vee

approach. Key system development activities in the

methodology include: Analysis of Stakeholder Needs,

Definition of System Requirements, Definition of the Logical

Architecture, Synthesis of Candidate Allocated Architectures,

and Optimization and Evaluation of Alternatives. OOSEM is

supported by any of a number of tools that have been

commercially developed for SysML.

C. Vitech MBSE Methodology

Based on concurrent systems engineering activities that

reflect the Systems Engineering Vee, the activities of the

Vitech MBSE Methodology are: Source Requirements

Analysis, Functional Behavior Analysis, Architecture

Synthesis, and Design Validation and Verification. The

methodology uses a layered approach to system design (the

‘Onion Model’) and a common System Design Repository. It

specifies a System Definition Language based on entities,

relationships, and attributes. It is commercially supported by

the Vitech CORE product suite.

D. JPL State Analysis

The State Analysis of Methodology was developed by the

California Institute of Technology Jet Propulsion Laboratory

(JPL) with deep space missions in mind. Using Goal-directed

Operations Engineering the methodology leverages model- and

state-based control architecture. States describe the ‘condition’

of an evolving system, such as a spacecraft over possibly long

periods of a mission. This is an iterative process for state

discovery and modeling. Models are used to describe system

evolution. Core tenants include state-based behavioral

modeling and state-based software design. The methodology

seeks to reduce gaps in software implementation of systems

engineering requirements. The JPL State Analysis can

augment the Vitech CORE functional analysis schema to

synthesize functional and state analysis

E. Dori Object-Process Methodology (OPM)

The Dori OPM is based on the premise that everything is

either an object or a process. Objects exist or have the

potential for existence. Processes are patterns for the

transformation of objects. States are situations that objects can

be in. OPM combines formal Object-Process Diagrams

(OPDs) with Object-Process Language (OPL). OPD constructs

have semantically equivalent OPL sentences. OPL is oriented

towards humans as well as machines. System structural links

(relations) and procedural links (behavior). Structural links are

similar to UML class relationships (e.g. generalization). Three

mechanisms are used for modeling: (i) unfolding/folding

which refines/abstracts structural hierarchy, (ii) zooming

out/zooming in which exposes/hides details of an object or

process, and (iii) expressing/suppressing: exposes/hides details

of a state.

F. INCOSE MBSE Initiative

As the systems modeling language SysML was maturing to

the level of a formally adopted OMG specification, an MBSE

Initiative was organized by INCOSE in 2007 for the purpose

of establishing MBSE methodologies and integrating them

into existing systems engineering practice [16]. A key focus of

the initiative is the shift from document centric processes to

systems engineering to a model centric processes. Specifically

in this initiative, MBSE is envisioned as the formalized

application of modeling to support systems engineering

beginning in the conceptual design phase and continuing

throughout development and later life cycle phases. The

MBSE Initiative is currently researching five main themes: (i)

modeling and simulation interoperability and how models

interact with each other throughout the system lifecycle, (ii)

modeling for Space systems, (iii) telescope modeling for the

active phasing experiment, (iv) Biomedical device reference

architecture, and (v) Global Earth Observation System of

Systems (GEOSS) to provide information for decision support

tools for a wide variety of users worldwide [17].

G. Model Driven Architecture (MDA)

Among the numerous standards and specifications of the

Object Management Group (OMG) are UML, SysML, the

Meta Object Facility (MOF), and the Model Driven

Architecture (MDA
TM

); which come together in MDA
TM

.

MOF, for example, is a standard for model-driven engineering

and is the mandatory modeling foundation for MDA
TM

.

MDA
TM

 is a significant paradigm shift in software

engineering in which the OMG made a dramatic move from

their Object Management Architecture to models. Initiated in

late 2000 and public since 2001, it is a trademarked term from

the OMG. Its standards along with a large body of reference

material can be found on OMG open websites such as [18].

MDA
TM

 provides an open, vendor neutral approach to the

challenge of business and technology change. It separates

business and application logic from underlying platform

technology; and seeks to insulate the core of the application.

This separation of concerns is an example of Structured

Design. The MDA
TM

 specified by OMG accomplishes the

separation by specifying UML models of the system and

transformations between those models. The OMG MDA
TM

 is

currently entering its second generation of specification.

H. ISO/IEC Standard 42010

ISO [21] has been conceptualized System architecture

through relationships: System Architecture is the fundamental

conception of a system in its environment embodied in

elements, their relationships to each other and to the

environment, and principles guiding system design and

evolution. The specification of models associated with a

system from a relational viewpoint therefore has a natural

compliance with the ISO specification of system architecture.

IV. RELATIONAL ORIENTATION

Relational oriented system engineering (ROSE) as

introduced in [19] is a general systems methodology that

employs a principle of model specification and relational

transformation for the purpose of system specification,

analysis, and design. It is similar to but more formal than the

methodology of Klir [13] which rests upon a principle of

alternatively using abstraction and interpretation for problem

solving. The ROSE methodology generalizes the functional

and hierarchical viewpoint of legacy systems engineering

which rests upon a principle of definition and decomposition

for system specification. Furthermore, ROSE extends the

concept of relational homomorphism for general system

models used by Lin [7] to a multi-valued bidirectional

relational transformation that is algebraically computable.

A. Specification of Models in Relational Orientation

From the relational viewpoint, the specification of a model

associated with a system is the specification of:

 Entities associated with the system

 Sentences (declarations) about the entities

 Modeling elements to instantiate the sentences

 A semantic structure on the modeling elements

 Interpretations of the sentences into the

semantic structure

The entities of the system can include attributes, classes and

components of the system. There can also be entities

associated with the system which are not part of it, such as the

environment. The sentences are the basis for system

specification. They should be complete in that they determine

all intended relations or associations between the entities, and

also be consistent. The sentences are instantiated by the

modeling elements of the specified semantic structure. The

model is valid when the interpretation of each sentence is true

within the structure. Relational orientation is primarily

concerned with two types of semantic structures: relational

structures and graphical models. Relational frames will be

defined in Subsection C and used to specify semantic

structures for organizing knowledge about the system.

Modeling elements can have four types of relational

association: (i) relation by belonging to a defined subset of

elements (collection of the model elements), (ii) n-ary

mathematical relation, (iii) hierarchical association

(decomposition of individual model elements), and (iv)

association with elements of another model by transformation.

The first three types correspond to the internal structure of the

model. The associated relational frames will be referred to

simply as frames. The fourth type of association is external to

the model; this will be referred to as a transformational frame.

When the frames of two models of a system are associated

by a transformational frame, the collective three frames will be

referred to as a framework. In relational orientation, systems

are modeled using multiple frameworks which represent the

various knowledge domains and components of the system.

Frameworks are integrated into a framework structure by

sharing common frames or by transformational associations

between frames.

The specification of frames for the models and

transformational frames between the models is complete when

they form a framework structure that is adequate for system

specification, analysis and design. This resultant framework

structure provides a metamodel of the system, i.e. an abstract

model with rules for specifying the models of the system.

B. Semantic Structures

Semantic structure is a concept which seeks to formalize the

intended meaning of natural language through some type of

organization. This could be as elementary as the ‘verb-noun-

object’ structure of the English language, as prescriptive as the

Hyper-Text Markup Language (HTML), or as mathematically

precise as a relational structure on a set. Formalization of

semantics includes creating a list or dictionary of terms, rules

for grammar, and a schema for organization. While semantic

structures are a subject of on-going research and definition,

they are central to the specification of models from the

relational viewpoint. Without semantic structures only the

syntax of a model and its association with a system could be

specified with precision.

The concern of ROSE primarily with relational structures

and graphical models for formalizing semantics is due to the

relational viewpoint. Each of these two types of structure

organizes the knowledge of the system around specified

relations. This is made clear by the Elementary Geometry

System (in Section I), the meaning of which is understood

through the relations of the key words in the axiom system to

each other and through their interpretation into a meaningful

model. As depicted in Fig. 4, the axioms admit modeling

through the graphical language of UML Class Diagrams that

capture the relations in the axioms (sentences). These diagrams

are a type of semantic structure that brings precision to

modeling the relations in the axioms without changing their

meaning. A mathematically defined relational structure (e.g.

lines in the Cartesian plane) is another type of semantic

structure. It brings meaning through interpretation of the

axioms.

C. Relational Frames

The concept of a relational frame will be defined in support

of the semantic structures needed for model specification.

Relational frames provide a static structure for organizing

knowledge about the system captured by the model using

specified relations that reflect the structure of the semantic

knowledge captured by the sentences and their interpretation

into the relational structure. This is a generalization of the

concept of object oriented frames used in software engineering

as in [20], which are primarily templates that provide

structural slots or placeholders for entity descriptions such as

the allocation of attributes or methods to a class.

ROSE is concerned primarily with two types of models for

system specification, analysis, and design. The first is required

for the interpretation of specification (sentences) into a design

(model). The other is associated with the intrinsic meaning of

the system specification derived exclusively from the relations

intended by the sentences comprising the specification. In this

case, additional meaning contributed from interpretation is not

desirable. Relational frames support the semantic structures

needed for each type of these models.

 Given a collection M of modeling elements and a type of

semantic structure R for organizing the relations on the

elements, a relational frame M is defined to be the ordered pair

(M, R). If M is a collection of mathematical objects, such as

numbers or sets, and R = {R} is a relational structure on M,

then the frame (M, R) becomes Lin’s general system model.

The notation (N, S) for frames will be reserved for models

of the system that interpret the sentences W = {W} used for

specification. In this case the key words in the sentences are

assigned to designated elements or relations in the modeling

frame (N, S) and the implications of the assignment must be

inferred. The specification of a model associated with the

design of a system of will then be denoted as N = (N, S; W).

 When the semantics of the sentences are modeled using a

graphical language for the purpose of capturing only the

intended relations without introducing (design) interpretation,

the modeling elements will become nodes in the graphs and

will be denoted as G. The semantic structure will be denoted

as H = {H}. If the elements of G are taken to be UML classes,

the semantic structure H is given by Class Diagrams, as

illustrated in the graphical models in Fig.4. When the

sentences W = {W} are written in a language L (e.g. English,

Predicate Calculus), it is possible to define a relational frame

(L, W) in the same way. In this case, the modeling elements

are the key words from the sentences and the relations between

the key words are determined by the direct semantic

associations in the sentences. The key words in L should be

the same as the graphical modeling elements that would be

used as nodes of G.

All of these types of frames share a common syntax and

semantic style that lends itself to matrix representation. Each

type specifies modeling elements and a semantic structure for

those elements. The modeling elements can be used as the

headers of the rows and columns of a square matrix. The

semantic structure can be used to fill in the cells of the matrix

according to whether two elements are directly associated by

the structure or not. In the event that they are the entry to the

cell can be a symbol or notation for the semantic of the

association of the elements. Matrix representations of frames

will be important to formalizing relational transformation.

D. Syntax and Semantics of Relations and Relationships

Mathematical relations and relationships as introduced in

Section 1 have a precise syntax that is given by unary (i.e.

subset) and n-ary associations. The syntax of n-ary association

is the ‘n-tuple’. Strictly speaking these associations can be

regarded as mathematical relationships. However, the

interpretation of a relationship into a model (relational

structure) is intended to give meaning to the syntax. The term

semantic relationship will be applied an n-ary association that

has been given meaning through interpretation into a semantic

structure. Mathematical relations are collections of n-ary

associations, i.e. the syntax is the unary relation of subset.

Semantic relations are then subsets of semantic relationships.

Figure 6: Syntax and Semantics of Relations in Practice

In engineering practice, however, semantic relations are

frequently built up from a list of entities in a different but still

systematic way [22, chapter 24], as illustrated in Fig. 6. The

initial list is an unassociated collection of entities whose only

specified association is that they are in some way related to the

system of interest. This list can be generated by formal review

processes or by informal ‘brainstorming’.

The entities can be grouped according to ‘affinity’, i.e.

subsets of the entities that have a semantic in common (besides

the system). The syntax is that of unary association (subsets).

For example, if the system were an aircraft; performance,

operational effectiveness, and economics can be used as

semantics to group some of the entities associated with the

system. The performance grouping would include the

attributes of range, speed, fuel capacity, and payload weight.

The initial list of entities can also be grouped into n-ary

associations by paring the entities using an Interrelationship

Diagraph as indicated at the middle top of Fig. 6. When these

n-ary associations are integrated into the semantic groupings of

the Affinity Diagram, the result is a version of the affinity

groupings in which the entities related to the semantics are

organized into subsets of associated entities. In the

performance grouping of the aircraft system, for example;

aircraft range, speed, fuel capacity, and payload weight would

be associated into a 4-tuple, which as yet has no semantic

between the four attributes but does have the semantic of the

grouping (‘performance’). Simple semantics such as the

decrease of range with increased speed and payload or detailed

semantics such as the Breguet range equation must ultimately

be included. This final step, which is indicated in the upper

right corner of Fig. 6 results in the original affinity groupings

becoming semantic relations, i.e. meaningful collections

(subsets) of semantic relationships.

E. Syntax of Relational Transformation

Relational transformations admit a syntax that can be used

for calculation of the transformation of relationships. This

section summarizes the calculation of binary and unary

relational transformations. Further details can be found in [22].

1) Binary Relational Transformation: Given a model M, with

elements in the set M, a mathematical binary relation R on M

is a collection of pairs of elements yi, yj  M that are

associated by R as an ordered pair, i.e. (yi, yj)  R. The

equivalent notation yi Ryj is also used.

Let N be another model, with elements in N, and a binary

relation S on N. A binary transformational association Q

between M and N is a collection of ordered pairs of elements

taken from M and N, i.e. (yi, xk)  Q. The element yi  M is

said to be associated with the element xk  N by Q. The

equivalent notation yiQxk is also used. Transformational

association can be multi-valued, i.e. each yi can be associated

with multiple xk, and is also bi-directional, i.e. the association

(yi, xk)  Q is also an association of the element xk  N with

the element yi  M.

The calculation of the transformation of binary relationships

is straight forward:

(yi, yj)  R with (yi, xk), (yj, xl)  Q implies (xk, xl)  RQ.

If RQ is a subset of one of the relations on N, e.g. RQ is a

subset of S, then Q is said to induce a relational

transformation M  N. In the special case when Q is

determined by a function, q: M  N (i.e. not just a

transformational association), then the equation above means

for (yi, yj)  R then (q (yi), q (yj))  S, since RQ is a subset

of S. Thus, q is a relational homomorphism in the sense of the

general systems theory of Lin [7]. This demonstrates that

relational transformation is a generalization of the relational

homomorphism used by Lin.

Relational transformations have a broad range of

applications, one of which is to bring precision to the

interpretation of the sentences used for system specification.

Let N = (N, S; W) be a model associated with a system of

interest that has been specified from the relational viewpoint.

The semantic structure S of a proposed design, although not

specified independently of the specification W, is not a direct

interpretation of W. Rather W must be interpreted into S. (This

is just like the interpretation of the elementary geometry axiom

system into the semantic structure of the planar geometry.)

Precision can be added to the interpretation of W into S by

using graphical models and relational transformations. First let

(G, H) be the frame that graphically models the relations of the

sentences W. The semantic structure H = {H} could, for

example, be a collection of UML Class Diagrams (as was the

case with the elementary geometry axiom system). Let Q be

the binary transformational association that associates each

graphical modeling element gi  G (e.g. a UML Class) with an

element xk  N. The binary transformation G  N results in a

relational structure HQ = {HQ} on N that can now be

compared rigorously to relational structure S for validity.

2) Unary Relational Transformation: Finally, of special

interest are unary transformations, which associate subsets

between domains. If Q associates M with N and if Ris a

subset of M, define RQ = {x  N: yQx for some y  R}.This

is the subset of N that Q has associated with the subset R of M

and will be referred to as the unary transformation of R by Q.

Unary transformation is based on the mathematically natural

binary relation defined by subset relationship. Unary

transformations are useful for association of data in tables.

F. Types of Relations Transformed

There are many ways that the elements or parameters of a

model can relate to or depend upon each other. The types of

relationship can range from logical to metric. These include

precedence order, client-server dependencies, and sensitivities

derived from simulation and analytics. Statistical correlation

is another type of relationship that admits transformation.

There are both analytical and numerical methods for

computing the transformation of correlation and other

statistical quantities. Relational frames are well suited to

capture dependencies in a style similar to but more general

than design structure matrices.

V. RELATIONAL VIEWPOINT ON DESIGN AND VERIFICATION

In the practice of engineering development, Design and

Verification can be substantially separated. In the legacy

Systems Engineering V, for example, System Level Design

can be separated from System Level Verification by two levels

of specification plus testing. In a model driven approach, the

focus is shifted from verification of designs by physical testing

to verification of the design models.

The model driven approach of Relational Orientation will

inherently add a benefit of greater concurrency of verification

with design. The same models used for design can also be re-

used for verification. This will be demonstrated by applying

Relational Orientation to the N.P Suh approach for Axiomatic

Design. The approach from the relational viewpoint begins

with an engineer seeking to improve an existing design who

uses the Geometry System to perform design and analysis (as

illustrated in the Use Case in Fig.3) to accomplish this task.

The engineer will use a model of the Geometry System to

apply a local optimization algorithm to explore the Design

Space. This is representative of how the engineer in a model

driven environment would behave in general, i.e. to improve

the design of any system component; the engineer would

access a model of the component. Thus, Relational Orientation

supports access to the models of a system in much the same

way as UML Classes access each other’s software objects.

A. Applying Relational Orientation to Axiomatic Design

A relational orientated local optimization algorithm for

design improvement will be specified for linear Axiomatic

Design problem and demonstrated in three dimensions. The

conventional solution is to solve the design equation subject to

an objective value for each requirement. Unlike the

conventional solution the algorithm will seek acceptable

ranges of values to meet the requirements. Furthermore, in

Axiomatic Design the variables in each vector are intended to

be independent of each other, but in practice constraints will

create dependencies between design variables. The algorithm

must also account for these dependencies.

In relational orientation, the components of the vector [FR]

become the entities of a relational frame F for the

Requirements Space. The components of [DP] become the

entities of a relational frame D for Design Space. For

Axiomatic Design, the conventional problem is to solve the

design equation: [FR] = A [DP], where A is the design matrix.

In Relational Orientation, the transformational frame will be a

matrix QA of the sensitivities of the requirements parameters to

the design variables. The three frames F, D, and QA comprise a

relational framework for the design problem. Fig. 7 illustrates

a full framework structure for the design and process problems

of Axiomatic Design.

Figure 7: Framework Structure for Axiomatic Design

B. Achieving Concurrency in Design and Verification

The framework structure for linear Axiomatic Design

(FSLAD) and the design equation can be used for design and

for verification, respectively. The design framework and the

design equation are just different views of the same

information. The design matrix A in general contains the

equations yi = fi (x1, … , xn), which are the response surfaces

used to test the system response for specific values of the

design parameters against requirements specifications such as

yi > Yi . In conventional design approaches, requirements are

allocated to a system function or component. The design

engineer then proposes a solution (x1
*
, … , xn

*
) and tests the

response yi
*
 against the requirement Yi using the response

surface yi = fi (x1, … , xn). The performance margin is given by

Yi - yi
*
, which is a measure of robustness.

In relational orientation, a framework such as F-QA-D in

FSLAD can be used to search the Design Space for

improvements in functionality or robustness. The metric

sensitivities QA and D are used to navigate the solution space.

Specifically, the differentials of the response surface guide the

way to improvement in the Design Space:

If the design parameters xk are independent then there is no

summation in the above expression. However, if there are any

joint constraints on the design parameters then the partial

derivatives between the parameters will contribute more than

one term to the summation. The search algorithm in the next

subsection is developed around the above expression. It is

similar to a Steepest Descent Method but not the same due to

the effects of joint constraints. It also shares similarities with

but is distinct from the linear programming Simplex Method.

The style and notation should support further research into

more advanced methods. In this approach no candidate designs

are considered that are not already solutions. The design

matrix response surfaces are only used to test robustness.

l

k
n

k k

i

l

i

x

x

x

f

dx

dy










1

C. Searching the Solution Space in FSLAD

We shall assume that the Design Space is a convex region

constrained by (linear) equations on the design parameters.

The system designer explores the space for robust solutions

that satisfy specified requirements. Because the space is

convex, a preferred set of paths can be used for the search.

These are the edges of the convex hull of the space. In an N-

dimensional solution space, an edge is a line formed by the

intersection of N-1 linearly independent constraint surfaces.

Each edge has only two possible directions of change. Each

vertex is the intersection of N linearly independent surfaces.

The procedure for local search for design improvement

against one specified requirement y is as follows:

1. Begin with an initial solution s0 that lies on one of the

edges. If the solution is on a vertex then go to step 4.

2. Navigate the edge in the direction of improvement to a

vertex by: (i) computing the directional derivative dy/du

along the edge, where u is the unit vector defining the

edge, and (ii) choosing the direction u0 of improvement

(+u or – u) indicated by the directional derivative.

3. Solve for the vertex by: (i) extending the unit vector u0 to

a ray r = s0 + uo to intersect any possible constraint

surface not comprising the edge and (ii) choosing the

closest surface that intersects the ray. This intersection

point (formed from N equations) is the vertex which is

the next candidate for solution improvement.

4. Find all edges that intersect the vertex by: (i) evaluating

the equation of each remaining constraint surface (i.e. not

one of the N equations that produced the vertex) at the

vertex and (ii) for each intersecting surface, form new

edges by deleting one of the previous surfaces and

replacing it with the new surface. In the case of multiple

surfaces, multiple replacements are admissible.

5. Find and navigate the direction of greatest improvement

by: (i) computing directional derivatives along each new

edge and (ii) repeating step 3 to generate the next vertex.

6. The procedure is over when the requirement is met

robustly or no further improvement can be achieved.

The constraint surfaces in Fig.8 will be used to illustrate the

algorithm and procedure.

Fig.8. Constraint Surfaces for a 3-dimensional Design Space

In the relational viewpoint, the Requirements Model is one-

dimensional with one relation: dy > 0. The Design Model has a

structure of five relations given by the constraints in Fig. 8 and

be represented by:

 x1 > 0 (S1)

 x2 > 0 (S2)

 x3 > 0 (S3)

 b11x1 + b13x3 < C1 (S4)

 b22x2 + b23x3 < C2 (S5)

D. Using Sensitivities to Find the Solution

The feasible region of the Design Model is convex because

the coefficients b11, b13, b22, and b23 are positive. It can be

derived from the two surfaces in Fig.8 and represented by a

four sided pyramid as illustrated on the left in Fig.9.

Navigation occurs along one of the eight edges of the pyramid.

On the right of Fig. 9 is a 2-dimensional view of the surfaces

of the pyramid in the x2-x3 plane within the feasibility region.

Fig.9. 3-dimensional Feasibility Region

The feasibility region is determined by E constraints. Any

given solution so that lies on an edge within the region must

satisfy: (i) all (E) constraint inequalities and (ii) ‘N-1’

constraint equalities (N is the number of dimensions). In this

case N=3, therefore edges are formed from pairs of the (E = 5)

equalities.

From the position so, navigate the edge in the direction of

improvement by computing the directional derivative dy/du,

where u is the unit vector for the direction of the edge; thus uo

is to be ± u depending on which one corresponds to dy > 0.

Extend the vector r = so + λu0 and calculate r by extending

the ray to the intersection with the other constraint surfaces

and then substituting r into the equation of the surface and

solving for λ. By convexity, r will belong to the feasible

region only for the closest surface. This corresponds to the

minimum value of λ over all possible intersections. This value

will be denoted as λmin. The calculation of λmin determines the

vertex:

si = r = so + λmin u0

Legend

(), () pairs of

equations

There may be multiple surfaces Sn1,…, Sn* that each have λ

= λmin. To find all edges that intersect the vertex; each new

edge can be formed by replacing a previous edge surface with

a new surface (e.g. S1, S2 is a new edge formed from S1, S5).

This replaces one design variable with a new design variable.

If λ = 0 or ∞ (i.e. r is unconstrained on the edge) the edge is

not navigable (λ = 0) or feasible (λ = ∞). Otherwise λ obtains

a value that is within the feasibility region, and the algorithm

can navigate the feasible edges to the next vertex (or vertices).

If dy < 0 in all possible new edge directions, at any time

during the search process, then the search must be stopped, as

the vertex is globally optimal. All of the edges need not be

navigated if each of the surfaces (E number of equations) is

discarded after its first use. For design verification of a

solution s* (yielding the response y* ≥ Y), only the design

margin Y –y* must be checked for robustness, which is done

with a local edge analysis.

VIII. SUMMARY AND CONCLUSION

Rooted in the first-order model theory of mathematics and

practiced extensively in science, the concepts and methods for

model based approaches to software and systems engineering

have evolved over the past five decades to a level of maturity

that is now commercially supported. The fundamental

principles of Structured Design and Analysis developed in the

early years of software engineering still apply today and are

evident in MDA. The emergence of SysML and MBSE

methodologies offer the promise executable behavioral models

which are critical to system design and analysis. Machine

readable SysML and UML models are envisioned to ultimately

support services for systems engineering processes.

The ROSE formalism and methodology integrates and

extends the legacy work of Yi Lin and George Klir on the use

of relational structures and homomorphism to model systems.

Hierarchical paradigms such as ‘definition and decomposition’

can be expressed more precisely by the ROSE principle of

‘model specification and relational transformation.’ The

mathematical foundation for ROSE supports the rigorous

development of structures for the design of systems and the

assemblage of systems of systems and extends the methods of

N.P. Suh on axiomatic design theory. Relational Orientation

offers a coherent mathematical foundation for ROSE.

The relational approach in this paper is currently being used

in a research council sponsored project on open architecture

for aviation SoS and is also foundational to a new five year

program in the UK for advanced manufacturing.

REFERENCES

[1] S. Hawking, A Brief History of Time. Bantam Books, 1988.

[2] P. Chen, “the entity-relationship model – toward a unified view of

data”, ACM Transactions on Database Systems1: 1: 9-36, 1976.

[3] J. Holt, UML for System Engineering, 2nd edition, The Institute of

Electrical Engineers, London, 2007.

[4] C. Raistrick et al, Model Driven Architecture with Executable UML,

Cambridge University Press, Cambridge, 2004.

[5] S. Friedenthal, A Practical Guide to SysML, Morgan Kaufmann OMG

Press, Amsterdam, 2008.

[6] A. Tarski, “Contributions to the theory of models I, II, II,” Nederl. Aka.

 Wetensch. Proc. Ser. A., Vol 57, pp. 572-581, 582-588, Vol 58, pp.

 56- 64, 1954, 1955.

[7] Y. Lin, General Systems Theory: A Mathematical Approach, Kluwer

Academic/Plenum Publishers, New York, 1999.

[8] Y. Lin and Y.-H. Ma, “Remarks on analogy between systems,” Int. J.

 General Systems, Vol 13, pp. 135-141, 1987.

[9] L. von Bertalanffy, “General systems theory: Application to

 psychology, social science,” Infor. Sci. Soc., Vol 6, pp. 125-136, 1967.

[10] International Council on Systems Engineering, INCOSE Systems

Engineering Handbook, v.3.2, 2010.

[11] E. Yourdon, Modern Structured Analysis, Yourdon Press, Upper

Saddle River, New Jersey, 1989.

[12] A. Wymore, Model-Based Systems Engineering, CRC Press, 1993.

[13] G. Klir, Facets of Systems Science, Plenum Press, New York, 1991.

[14] N.P. Suh, “Axiomatic Design Theory for Systems”, Research in

Engineering Design, Vol 10, pp. 189-209, Springer-Verlag, 1998.

[15] J. Estefan, INCOSE Survey of MBSE Methodologies, INCOSE TD

2007-003-02, Seattle, 23 May 2008.

[16] S. Friedenthal, R. Griego, and M. Sampson, “INCOSE Model Based

Systems Engineering (MBSE) Initiative”, presentation to the INCOSE

International Symposium 2007, San Diego.

[17] http://www.omgwiki.org/MBSE/doku.php

[18] http://www.omg.org/mda/

[19] C. Dickerson and D. Mavris, “Relational Oriented Systems

Engineering (ROSE): Preliminary report,” Proc. IEEE SoSE ‘11,

Albuquerque, 2011.

[20] D. Kirk, M. Roper and M. Wood, “Identifying and Addressing

problems in object-oriented framework reuse”, Empirical Software

Engineering, No3 Vol.12, June 2007.

[21] International Organization of Standards (ISO), “Architecture

Description”, ISO/IEC Standard 42010 JTC1/SC7/WG42, 2010.

[22] C.E. Dickerson and D. N. Mavris, “Architecture and Principles of

Systems Engineering”, CRC Press Auerbach Publications, Boca Raton

Florida, 2009.

[23] M. Danilovic and B. Sandkull, “The use of dependence structure

matrix and domain mapping matrix in managing uncertainty in

multiple project situations,” International Journal of Project

Management, Vol. 23, No. 3, pp. 193-203, 2005.

Charles Dickerson (M’06) received the Ph.D. from

Purdue University, West Lafayette, IN, in 1980.

 He is the Royal Academy of Engineering Chair of

Systems Engineering at Loughborough University in the

U.K. His research is focused on model driven architecture

and systems engineering. He has authored numerous

papers as well as a graduate level textbook with the

Georgia Institute of Technology on systems engineering

and architecture. He has also co-authored an

internationally recognized book on military systems architecture as well as

key government reports. As a member of the IEEE, the Chair of the INCOSE

Architecture Working Group, and Chair of the Mathematical Formalisms

Group at the OMG, he works with the systems engineering community on

systems architecture practice and standards.

Before joining Loughborough University, he was a Technical Fellow at

BAE Systems, providing corporate leadership for architecture-based and

system of systems engineering. He has also served as Aegis Systems Engineer

for the U.S. Navy Ballistic Missile Defense Program and later as the Director

of Architecture for the Chief Engineer of the U.S. Navy. Previously, as a

member of MIT Lincoln Laboratory, he conducted research and tests on

electromagnetic scattering. His aerospace experience includes air vehicle

survivability and design at the Lockheed Skunk Works and at Northrop

Advanced Systems, and operations analysis at the Center for Naval Analyses.

http://www.omg.org/mda/

