File(s) not publicly available

Reason: This item is currently closed access.

A conducting nano-filament (CNF) network as a precursor to the origin of superconductivity in electron-doped copper oxides

journal contribution
posted on 08.02.2018 by Heshan Yu, G. He, Ziquan Lin, Anna F. Kusmartseva, J. Yuan, Beiyi Zhu, Yi-Feng Yang, Tao Xiang, Liang (Wuhan National High Magnetic Field Center) Li, Junfeng Wang, Feodor Kusmartsev, K. Jin
Emergency of superconductivity at the instabilities of antiferromagnetism has been widely recognized in unconventional superconductors. In copper-oxide superconductors, spin fluctuations play a predominant role in electron pairing with electron dopants yet composite orders veil the nature of superconductivity for hole-doped family. However, in electron-doped copper oxide superconductors (cuprates) the AFM critical end point is still in controversy for different probes, demonstrating high sensitivity to oxygen content. Here, by carefully tuning the oxygen content, a systematic study of the Hall signal and magnetoresistivity up to 58 Tesla on LCCO thin films identifies two characteristic temperatures. The former is quite robust, whereas the latter becomes flexible with increasing magnetic field, thereby linking respectively to two- and three-dimensional AFM, evident from the multidimensional phase diagram as a function of oxygen and Ce dopants. A rigorous theoretical analysis of the presented data suggest the existence of conductive nano-filamentary structures that effectively corroborate all previously reported field studies. The new findings provide a uniquely consistent alternative picture in understanding the interactions between AFM and superconductivity in electron-doped cuprates and offer a consolidating interpretation to the pioneering scaling law in cuprates recently established by Bozovic et al. (Nature, 2016)

Funding

This research was supported by the National Key Basic Research Program of China (2015CB921000), the National Natural Science Foundation of China Grant (11474338), and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (XDB07020100).

History

School

  • Science

Department

  • Physics

Published in

Nature Communications

Citation

YU, H. ...et al., 2018. A conducting nano-filament (CNF) network as a precursor to the origin of superconductivity in electron-doped copper oxides. Nature Communications, In Press.

Publisher

© the Authors. Published by the Nature Publishing Group

Version

SMUR (Submitted Manuscript Under Review)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution 4.0 International (CC BY 4.0) licence. Full details of this licence are available at: http://creativecommons.org/licenses/ by/4.0/

Publication date

2018

Notes

This paper is in closed access until it is published.

ISSN

2041-1723

Language

en

Licence

Exports

Logo branding

Keyword(s)

Licence

Exports