‘ Loughborough
1 ] . . ‘ Um\gersny 5
University Library

.......................................................

Class Mark ....ccorvvrvneeneee, L e
. Please note that fines are charged on ALL
b overdue items.
I
0403694744

M

T






A Configurable Vector Processor for Accelerating

Speech Coding Algorithms

By

Konstantia Koutsomyti, MSc, BEng (Hons)

A Doctoral Thesis submitted in partial fulfilment of the requirements for the
award of Doctor of Philosophy of Loughborough University

September 2007



FIIm Leashhoroueh
et Undversity

Pitkington Library

o 1folos

——___
Class |

o 67T 4|




To my family



ABSTRACT

The growing demand for voice-over-packer (VoIP) services and multimedia-rich
applications has made increasingly important the efficient, real-time implementation of
low-bit rates speech coders on embedded VLSI platforms. Such speech coders are
designed to substantially reduce the bandwidth requirements thus enabling dense multi-
channel gateways in small form factor. This however comes at a high computational cost

which mandates the use of very high performance embedded processors;

This thesis investigates the potential acceleration of two major ITU-T speech coding
algorithms, namely G.729A and G.723.1, through their efficient implementation on a
configurable extensible vector embedded CPU architecture. New scalar and vector ISAs
were introduced which resulted in up to 80% reduction in the dynamic instruction count
of both workloads. These instructions were subsequently encapsulated into a parametric,
hybrid SISD (scalar processor)-SIMD (vector) processor. This work presents the research
and implementation of the vector datapath of this vector coprocessor which is tightly-
coupled to a Sparc-V8 compliant CPU, the optimization and simulation methodologies
employed and the use of Electronic System Level (ESL) techniques to rapidly design
SIMD datapaths.



ACKNOWLEDGEMENTS

I would like to thank my supervisors Dr. Sekharjit Datta and especially Dr. Vassilios A.
Chouliaras for the continuous guidance and support throughout all the stages of this work.

Their advice has been invaluable.

I would deeply like to thank a very special person in my life, Vasilis, for his continuous
support and understanding through all these years. He drove me away from my little
home in Rafina and gave me the greatest opportunity of all, to open my mind, to learn and

believe in myself. Without him none of these would have happened.

I would like to express my deep gratitude and love to my family for always standing by
me and supporting me to follow my dreams and especially my beloved mother who

taught me to always aim high.

I acknowledge all my colleagues in Loughborough University and especially Tom Jacobs
for their support and companionship throughout these years. All the wonderful people I
met during my years in Loughborough and have become good friends have contributed

even without knowing to this work by making these years special.

Finally, I would like to express my gratitude to the EPSRC for providing me with

financial support during the course of this thesis.

i



TABLE OF CONTENTS

List of Figures ) ¢
List of Tables xiii
List of Abbreviations..... - XV
Chapter 1 INtrOdUCHION .ivceisersreenssnsssssesssssrsrnssansessasesnorsanssassssss sassasorssnosassse 1
1.1 Problem Formulation.......cecceceseeeieecnruvisesemesescmnaressassessesssessesassessssenessssssessnens 1
L2 VOIP .ot sss st st st eese st e s e eas sobessesmas st essesass s o ses e e sen s seatesseenanssanss 4
1.2.1 Description of the VoIP process.......cocevvcevvvnnnnniininccninennsnsennes 5
1.2.2 VOIP APPHCALIONS. ...t vitiiiierirceerrenerisisiierreresessaststsossnesaseseesessssenmmssesenne 8
1.2.3 Current state 0f the art......cccvveveeecrecreerennrennrreecesreessssersee e ssseresssssseranns 8

1.3 Programmable ArchifeCtUICS.......cveiniiesriceriennnenesssrseescoreeressesssneseesessnsresns 9
1.3.1 General Purpose PIOCESSOIS .uuvuinmieceirceniissinnesisneisiesssssssasiesessensoseneas 9
1.3.2 DSP PrOCESSOLS v..veeeeirerrveeeessseriararacsnsasansssnnmesnasssssessssssssssnsnassessssassses 10
1.3.3 ASIC (Embedded) proCessors.........ccocerrerrenerseenrserseesnsscraesaseserssssssenes 10
1.3.3.1 Configurable ProCESSOTS....ccovererrreerrerrerserrarrnsanssansssssssssessessasssnns 10

1.3.3.2 Reconfigurable PrOCESSOrS ......cvviieerreereriiritinseereeessenssersescesveane 11

1.3.3.3 FiXed ProCeSSOrS. .coccnrierirvrsvesisecsssserseiasiessessssmssssssssssesansasessssssoses 12

1.4 Hardwired Archit€CtUres .. .ccovvueeecereesrirreernncenresiaresreseeseesneenessasssssesasersnerans 12
1.5 Research contribution and OVEIVIEW ......ccceereesrnnierisseeiennensrnenseesssssessesnes 13
1,6 Thesis QULLNE ..covivvirecrreeseeeenrircerese e ssstsssnrserrsees s seesreseesassesassssessarsnsnsn 16
1.7 REMEIEnCes c.vveecece et cstere b et b e s s saeese s s bsramsns s s ennebens 18
Chapter 2 Speech Coding Theory......ccceercenrenisnnne 22
20 6413 (o Ta LD Tod 3o ) o Ao USRS 22
2.2 Speech Coding Objectives and Requirements ..........ceeveeceencescerrersenaneens 22
2.3 Speech production SYStEIM.....iiiiremienresirnnieneieeeresnsissssseressassessasssesssaees 24
2.4 CodINg SITALEZIES ..eveireeereeireeriierereinesieerseereneressensrsnesssessraerssssssssssanassssasssees 26

11



Table of Contents . . iv

2.4.1 Waveform COdErS .......cviurieeerneirerenrrinesiseaseesseesessessressses seressrsssssnns 26
2.4.2 Voice Coders (VOCOAEIS) .....ccccvervvrervererenineseecnessessssinsennssseensessessessesses 27
2.4.3 Hybrid COAErS .....uveivrcriirrniriniineneercscrsssssesssssesessossnsassssosesesaaeses 28
2.4.3.1 ANalysis DY SYNINESIS. ...ccocerrerrrererericreeeeseeeeeseeesssesre seresserses seres 29

2.5 G.729A Speech Coding Standard .........ccccvcevreerueeerrrrcecrnserereeissesrnsessnnsons 31
2.6 G.723.1 Speech Coding Standard ..........ccecceerveerneeereiseecennccrennnseennersennnees 33
2.7 SUIMATY ...ocvriiiiiiiticrecevsresressst st s te st sennssnsessessasantesetessesasssessseesaensassnnes 36
2.8 REFEIENCES ..ccvvirieeerieererrirteieses e s sese e st eesansseesenssssereneseessessassssannsssnsensossenns 37
Chapter 3 Software and Hardware Parallelism 38
3.1 Overview of ParalleliSm........c.coveveiniiiceece e 38
3.2 Data Dependences ... errnrereeesstisinismerereseeseesssseseesscosessssssessessrssssassessns 39
3.2.1 Name DepPendeniCes. ... .couiiiiiiererierinereserienersieseseesssessesssssesssssssnssssseses 40
3.2.2 Control DePendences ........cccvivnieicrnenieieneneeeseesverssesesessesssssensssssesssssnns 40
3.3 Types of ParalleliSI.......vciieieivirermmecsineenssesiesesnessasssssessssnsessesssnesassansss 41
3.3.1 Instruction Level Parallelism ......ccocuveviervinnirermnseeessssersersessensmmrnnseenseeses 42
3.3.1.1 Superscalar PIOCESSOIS.....coevtiernerrercrrvsrerseseeserereersnssssesnraensenanes 44
3.3.1.2 VLIW PIOCESSOTS .ecvecuiereicerenrerinicstencneeansssessersessserassssssnnsrssessessseas 46
3.3.2 Data Level Parallelism .........cocovrivverenienrccnicinsiosinercrereeuseeseesensnsesensens 48
3.3.2.1 Advantages of vector architectures ..........coocvevveeeererirecevnneseneenens 48
3.3.2.2 VeCtOr PrOCESSOIS ucenereiirissinsrtinseenteesirsressssstseneceesrssnnesssesnsnaness 50
3.3.3 Thread Level Parallelism .....ccocceeceriennsricieneeecesrersssessserssessesssessnses 52
3.3.3.1 Shared-Memory ATChiteCture....cccovvieerecirecereeceeteceeeceeecreerenravenes 53
3.3.3.2 Distributed-Memory ArchiteCture...........cceevrieernemrrrseernvrreereesneses 54
3.3.3.3 Multithreading Architecture........ccceveererccicieereceeceeeee e veers s 55
3.3.4 Hybrid Approaches and Research..........coovvvvveeieeceecrnnnninenieriennneeneeene 56
3.4 SUMIMAIY .oueeteriieeeenieetreer e ctseeseeeesessss s s e sas e s sesteses e s s essebmaebsesssaneanan 57
.5 REfEIENCES ..ottt ettt st re e s e s b e s st e s se s e sass e resabessesnnean 58
Chapter 4 Methodology and Architectural Results .....cveceeseenssssscnssuone 62

A1 I OQIECHON s1verreererereireesissrernessessasnssessssssssssessessssnsnssentestsssremsnsessasesssessessssnnse 62



Table of Contents v

4.2 Simulation Infrastriuctire.......oueecerceieircccrnieeneneniieererere s cnsverssssesseessessres 62
4.2.1 SimpleScalar TOOISEL.......c..ccrrrireorerminmrnererrssessesrissssaenersnssssneseesesassnons 66
4.2.2 Customizing the SimpleScalar TOOISet .....c.ccovviiereienecniverirnnernieersenens 68

4.3 Workload OptimIZation.......cccvreeeeeetseecenmerenenenrssresssessesesssenesecsmssssssssessnsess 69
4.3.1 PrOfiliNg..cvorvieerieeneereerinreensssttcsneneneeseeesanessssasssnsesessessensnssssessassesansnesae 69
4.3.2 Vector ISA Development and Experimentation Methodology ............ 74
4.3.3 Identification of Data Parallel LOOPS .....ccccovecrrermvnrrerineriereseneesensiens 78
4.3.4 Implementation of vector loop using custom ISA ........ccccevvrrrcvernes 80
4.3.5 Scalar OptiMIZation. ...cce.eeeuestierrreerrererserseecerestsneresereseesesasssasasasenes 83
4.3.6 Validation TestS.....uuumrieenisiesonissssessssssnrreasssssssssrsssssssssreesnasmssases 84
4.3.7 The extended ISA (Scalar and Vector EXtensions)......cccvvenereresvenrenne 86
4.3.8 Inline ASSEMDBY......cccovvirereieriiiiieceneerencrnrreaesesresesesessessssassnssessnssesreses 87

4.4 Architectural RESUIS .....cocomiieiiie et esn s sanabe s 88

4.5 SUIIMIATY ...uveiriirisiireeerecesrssertesssnssasessomsatsesassasessessussssssassarsasensessesssssnsasasans 102

4.0 REfEIENICES ...ttt sttt st e nssn s ssa s 104

Chapter 5 Vector Processor Architecture 107

5.1 Vector Architectural State......c.ceeuereeennicennccnnrennie e seseenssesnrasnes 107

5.2 Programmers MOEL.........couveercceiisiivinerenreenireesesesstsasesssesesessssssesessssaes 109

5.3 Vector Processor Instruction Set Architecture.........oveeeeeeeeveerennnecnevennne 110
531 VECtor ISA..o it csveosiissinieseestenre s e restostssssnsernentsssessessessns 111

5.3.1.1 Load/Store INStIUCHIONS v...ceererceervrrarsesseserneassssnersesassassssssnesnnsssens 111
5.3.1.2 Move INStIUCHONS. ...ccceeeerrerrereersessrectsesene st ssssesssessnsseasneras 112
5.3.1.3 Arithmetic INStrICHIONS. ... coveceereectnrrrrriieeriiesmeesaessssrerssssssennres 113
5.3.1.4 Shift INSIUCHIONS «..covereererrrterreceereeeree st e et sessenssnennes 116
5.3.1.5 Miscellaneous INSHUCHONS. .......ccuvrrreriererereccersasasreesesnsaraessnenns 117
5.3.28calar ISA ... bbb 118
5.3.2.1 Load/Store INStriuctionS .c.coveeerercinereieereeenassesesssessesesesassssserones 118
5.3.2.2 Move INStUCHONS. .....veereecrrreere e sene et sresse s sae 118
5.3.2.3 Arithmetic InStUCHIONS. .ovververerrercertrieereereenrresesessese e eeseseseessessnas 119



Table of Contents vi

5.3.2.5 Miscellaneous INStructions........ccceevvenssresrisscseesseecensnnsnsereessaesses 120

5.4 Le0n3 CPU...coriiniieereninissuenmrisssssssmsssssssssiissssmsnnssasassssisssssssssssmssasssssssssens 120
5.5 Overall System ATCHItECHITE ......evverrverresersresesesssssssssessesseessssssssenssssssens 124
5.5.1 Processor-coprocessor programmable Unit ........ccoveevereevennsececnennnnee 125
5.5.2 DMA ADS c.vucvruerinreecmrureserarsssssesenssicscssnsesessssnsssssossonseseassessesssssssssosess 125
5.5 3 PCIL/F aeieeeeetictrtee s s ses s e e s e ssssenesasnesbesssses e esmnnesse sesssaesasesen 125
5.5.4 External Memory Controller.......ccooerrverveneesversesreeraerrraeeesssersssssenes 125
5.5.5 APB SUDSYSIEIM..ccicveieriieeeceereenrrrennesneeesesesnseessessesssasssessessessssnesssasnes 126
5.6 SUMIMALY ...ccorisriirieerieteeemrcrnrraesssssstssacmeeresasessssensassestotsonesasssesssesessersassnsans 126
5.7 REfEIENCES .veveriinieeeecrenrresiecaias st esrasaeaessabassasesersreerers asassrassnnnas 127
Chapter 6 Vector Processor Implementation .......coceceesrsnsennsasssncssssnsae 128
6.1 OVEIVIEW ...eeciiriereeeireniocratsinenesesstsienaresteressssssessesnsessmesnessossassssasassessanssrvas 128
6.2 Vector Decode Stage (VDEC) ....oviiiciminircrenenereneticcsreen e aseseesssenas 130
6.3 Vector Registers Stage (VREG)...ccccevvrerverrnreniensnressenseessoreessorsasssnssessens 133
6.3.1 Reverse Data ProCess .....ccvieerereccmenrecrmeerinisenseriossssosssssssssssees 134
6.3.2 Splat Data Process.....cccceoiiieiiiienesincneerreaenre s seereree v esssesseeses 135
6.3.3 Masking PrOCESS......ccercvicrimrrrrereeririernee e esse s st e e e snes nesssenerens 135
0.3.4 BYPASS PIOCESS teveeeermrercereriessrsssrssrreeeeesoreesasssssessstssoneseessassassesessaserane 137
6.3.5 Operands Selection.........cccccerveriernernentnrenrr e e rean e 139
6.3.6 Register enable ... iccccececereereeerineieeeieeeerrsessesesneressaeseaessesseesesne 139
6.3.7 Vector Register File (gxx_vreg_file) ...covevvrieeeennciiieenecs 140
6.3.7.1 ParameteriSation ......cuvecerrerrseereereninene e ses e sassesse s snesnssevens 140
6.3.7.2 The vector register file implementation ........ccoeerereereversisnecuerene 140
6.3.8 Scalar Register File (gxx_sreg file)......coovvmeecevernreevnrierireerese s 143
6.3.8.1 ParameteriSation ....cuverieecereerienrnierresssesmessssnssessvssesosssnsssnssserenns 143
6.3.8.2 Scalar register file implementation ...........ceereeencnnnniserererinenes 143
6.3.9 VIEN TEEISIET ..ttt cressvssas st e e se s s mnessa s brnane 145
6.3.10 Overflow and Pred Flags......c.ccvoveieircicecrce e 146
6.4 Vector Load/Store Unit (ZXX_VISU)...c..occirreirciieencrceeeeeeeeeeeera v 146

6.5 Vector Datapath Stage (VDP) .....occvivemiveinnniecierneirsnesenenesesssssesssenens 149



Table of Contents vii

6.5.1 Vector Adder Unit (gxx_vadd_dp) .....ccecceeerrmrrecenrecneerreceeensnnnns 152
6.5.2 Vector Multiplier Unit (gxx_vmult_dp)......c.cceerrccrccrerernvernresnnnes 153
6.5.3 Vector Shifter Unit (gxx_vshift dp).....cocccecerrmrniroeeercerercccrnriennerennne 155
6.5.4 Vector Miscellaneous Unit (gxX_vmisc_dp).......ceoeevevrrerseveneerinnsninns 158
6.5.5 Reverse Data LOZIC ...ccceerrevcicrrnrrarreesersvssessnersnesesssssssssossosssnsesessenns 158
6.5.6 Masking PrOCESS LOIC ..v.vvvveeeseseeerererssssscssssessesssesssessssssseesssssessssnnnns 159
6.5.7 Bypassing network of the first VDP stage..........cccecveceereeceerrrmnrinnrnnns 160
6.5.8 Register Enable for the input VDP2 registers.......ccceevrveerevreecereerrenenen. 160
6.5.9 Second stage adder.......ucvicecrernnienenisie e e s snerees 160
6.5.10 Vector Accumulator File (ZXX_VACCS) .cccervererreesresceceracnsssenninrssrorens 161
6.5.10.1 ParameteriSation........cceverersenerereraensesenreseensessnsssseenssiesseravans 162
6.5.10.2 The vector accumulator implementation.......ccvoeereermeereerersresee 163
6.5.11 Vector Adder Tree (gxx_adder_tree) .......cccivverceerivecrercrmvensernneenns 164
6.5.12 VLSU unit interface with VDP2.....ccviceieeenecnrerennnernermenereereneens 165
6.5.13 Overflow and Predicate FIags ........cvvevviinruecinrirrerresesssisseenssssecnees 165
6.5.14 Bypassing network of the second stage..........cocceeeerceevinnnrensioeassirens 166
6.5.15 WIItE BACK....c ettt rcrceereree s s sevs e seses s rensassanesarenesanveren 166
6.6 Output Register BUNCh......coeevecoririnininiesienrreeescsess e sreresee e sesesssesenas 166
0.7 LEONS ...t ririreneeeescreae s see st sessesassssasssesnssssesnessenssesanaasesassoraassbesss 166
6.7.1 DeCode Stage....ccuevereereeerereeccrsitesierensiessssesssessessesenssnesessnssssesssssassns 167
6.7.2 Register ACCESS SLAZE...c.cvvvereercrerrerresrervennrniranssseressressssssssansasnsesseraes 167
0.7.3 EXECULE SEAZE ..cvveeeeerierieerree e irvranstesseeesessnaessrasssesssaesssnenssnaressssnsens 168
6.7.4 MEIMOTY SAZE ..ceerereerrsrrerinresseiecriessnsrsassessnsessasssssntrsassasssnsssssasasnses 168
6.7.5 EXCEPHION StAZE....ccroeereeerieerce e rreesee s ssnsreseseesssessassessasssbessbosses 168
0.8 SUMIMATY .vovvoriniiriiiirneiieiasireesserssessestersesnssessossssssssssssssssssesssssmiesmsssssssssns 170
0.9 REfETENCES ....oreererreeerirereciricriee e cere st sstte e ctesvesstsssuesenassesesnsssennrossaassssans 171
Chapter 7 Vector Processor VLSI Implementation........ccccersseccnsanes 172
7.1 Design VerifiCatION .couuuecvvercereeeeenseersnstisiesenscesessersasssssnessssnsssssnsessosssssnas 172
7.2 Synthesis and Place & Route Design Flow.........oconvveveeveerecrrercvereesennn. 174

7.2.1 Design Compiler Stage (Logical Synthesis) .......ccccoveveervernrenieneennnnna. 175



Table of Contents vifi

7.2.2 SoC Encounter script Stage (Place and Route}......cccecceveveeenecnnneennene 176
7.2.3 Statistical Power Analysis Stage (Design Compiler).....vnvurviccnnnnanns 176

7.3 Implementation Campaign for Vector Datapath........ccecmvevccrvmreenennnenen. 177
7.4 Implementation Campaign for Vector Coprocessor......cccovvverevivesververnanes 179
7.5 VLST LayoUL..couiiieeceriirarriereencesetsiresesrtrssesnestssseessssesssessssssesssasssnssnsoses 182
7.5.1 Vector Datapath Layout for VLMAX 16......cieveevrircereercreccrenes 182
7.5.2 Vector Datapath Layout for VLMAX 32.......irererrreeeccrvreesvens 184
7.5.3 Vector Processor Layout for VLMAX 16.........ovvivmvciniveeccnseenenen. 185

7.6 ESL IMPIEMENtAtION ....cevvriveserecreeesersernsssssensssssnsassnersssassessssnsassasensensenses 187
7.6.1 SS_SPARC Platform......coocccirerireercen et ernse s sae 187
7.6.2 ESL MethOdOIOZY c..covvueueeeeeeeriirarreeeseeersssee e sesesessnssessssnssssssessennenns 191
7.6.3 Micro-Architecture RESUNS ....ccceveeveererrrieeeeirie e ceenereeene e cnenas e sesnesees 191

7.7 SUMIMIATY c.veveecrririsassiosssnmreesernsinsstosssasseesesssasesssnsssssessesssssansssessssasasanssssanes 194
7.8 RELEICNCES 1.veeeviiieieccetvrnnriseentecsseesesssresbaessae s sresseesbessensbasverasnessensnsenses 195
Chapter 8 CONCHISIONS .vervrrcancrssnssessencssasassosssssassssssrsssssasssssssssnssnsonsreenes 196
8.1 Contribution of this thesis ....uuuueericeciniriicrniierenerrereessseeesresseseesseenns 196
8.2 Suggestions for futtre research......ccevceecrineecinnenniinerieseeseneserasessesnesnennes 198
8.3 REfBIONCES ..cvvviriiitien ettt et e st s e e e san e vancene s 200
Appendix A Vector and Scalar ISA...ciinnnsnnnnniisisssicmssnissnssens wee 201
Appendix B Signal Description ..cicicreisessesssnssmscsnnsssissssssssssssosssessanssssssasasss w244
Appendix C G.729A and G.723.1 Function Results...... seresasnsssenasennes . 246

Author’s Publications ......ccceceneen. resarersunsessaseaes roserasssenanesensnssisssesesasessasens .260




LIST OF FIGURES

Figure 1-1: Traditional voice and data networks (a) and VoIP network (b).......cceemmmisimiscrierarsasenens 1
Figure 1-2: The architecture of H.323 protocol StaCK.......cuveiiessinsrscarinessesessssssssssessssnssssssssssnsasssss 2
Figure ]-3: Simplified representation of possible IP telephony network connections .........coweseeeser 5
Figure 1-4: VoIP signalling and transport flow between endpoints ........cocemmmmrerneaecveseremesersesassssns 6
Figure 1-5: Cpen Systems Interconnection (OST) and network protocols.. ..o ceeceeccereeeceeeeiaeses 7

Figure 2-1: Diagram of the human organs involved in speech production and the Spectral Range of

ODEE N et rrrrcreae e s st ve s ere s e aresase e bR sk e rae R ae et aa e e S a LA et ve e R e naa s beansraResestee 24
Figure 2-2: General speech production model ......oeceereereeesiiresseiennisesesresssesermssensssassesesessssssnsansas 25
Figure 2-3: Analysis by Synthesis Code ....ccveviriiriiinmmecnccmncnniinnenscsmmerras sressesesssnsesses 30
Figure 2-4: G.720A ENCOGET c.ccuecvirerrrrrerrasrenssasiosseinistrererssssastasssssasssssas serssessasstssensas sesnssensrssnssnrers 32
Figure 2-5: G.729A DECOUEE ... .ccisiarerinsrrssrersrssssassssasssisisssnsmnsersssstssssassosmsocsesessasssasa sssssasansnsisnsses 33
Figure 2-6: G.723.1 BRCOUET.......c.inrrrrreenssssssesrieaesessesasasaresnsssess sissassssnsessessarssansssssssstasssssasesesosases 35
Figure 2-7: G.723.1 DECOQET. ...cuecieriiecceeceireecscerrssestsstssssesssssssssssssssisassssessnsasensensnsesessanssssesssasssnsans 35
Figure 3-1: Code snippet that shows the data dependences.........cevvcvierreeeseneiernres s sesersnnsens 39
Figure 3-2: Multiple-issuing of instructions in an ILP architeCture .........cocereeuereeerereessesesesssesnsuenss 43
Figure 3-3: Dynamic Instrnction SChe@UINg .....cceerurvecceenereseemrnnrnrnsnisienemeneseessssereressssssssssassssssseses 45
Figure 3-4: Static Instruction SChedulng.........coiriiiniiissnrnenesesesesessitne s seree s seseassssssssssassnses 46
Figure 3.5: Basic Vector Processor ATChItECHIrE ...cceiverireeceersierieessnssenssesrssenssnssssssssserasssssesessssraas 52
Figure 3-6: The basic architecture of a centralised shared-memory multiprocessor system........... 53
Figure 3-7: The bagic architecture of a distributed-memory multiprocessor SYStem.......ovveuirsrvensess 54
Figure 4-1: SimpleScalar INfTastiuciare .....c.ccccecesrrerccsrcssersee e ierrsaesesssessessesasesassessressassessnsasses 67
Figure 4-2: Machine instruction count for the BASOP.C finctions.......cceereenisimssniecsinmrmnrersnersesssses 71
Figure 4-3: Experimentation Methodology .......ocevemriiriri et seereeiesss s resssssesssarssssssassesesaresesasasens 75
Figure 4-4: The extended processor state as defined in the configuration file vstate h..........coeeeee. 76
Figure 4-5: Example of 2 C macro Instruction Definition...........uvvvemrreceresscessrnsesimseresssrmsesseesnsasees 77
Figure 4-6: Example of a non-vectorizable loop as the statement S5 depends on a previous result

of the S5 execution. The same dependency appears to the statement S%......coeceevevcrcnriens 79
Figure 4-7: Example of a vectorizable loop with statements S2 and 83 being independent from

Previous results OF their eXECUTION. .uu.eeriereesesrenessrerermrrresesessssesnssemsssseressasesssssssssessssaseseasenes 79
Figure 4-8: Example of loop with DLP within the original C €0de .......ccceoimreveeeverenreceecneenernreens 80
Figure 4-9: Assign pointers and load the v1en I I8EIStET....ccveeeeecrerreeseseecesesensse s e ee e e ver e neeses 81
Figure 4-10: Main VeCtOr I00P. ..o iemiiiiresininisesesese e ssrseressssssasssasaseoseseresssssasassas st ssamtansssmmnvasressses 81
Figure 4-11: Strip mining 00D . ceecieiieciininiesrresssseseesestsssesase b reserstsbsssesssstasassmmmseesessonsarssassen 82

X



List of Figures x

Figure 4-12: Scalar optimization example.........veisreniiirrrrmmrnisssssssesssessssssnersssssssassssessssssnsssserts 84
Figure 4-13; Instruction Definition in Vector.def......ccccvereerreecerereniecsiscneserenerrecsarsssssseassesseseseves 86
Figure 4-14: Inline Assembly Instruction Definition .....cccverceeeerereresesessessisnesesnsnsssessssessrssssssesnses 87
Figure 4-15; G.729A Encoder (Vector Only) Results....c.oeecicieccrmrsiessrrerssscsmssessessnssssasssssssanses 39
Figure 4-16: G.729A Decoder (Vector Only) ReSUMS......oeeeiecvetvrereeseserncensenssssssssssmesnesessesessnsansas 90
Figure 4-17: G.729A Encoder (Full Optimization) ReSUMS .........cvvrrisirrseesmscesernennerimsssssssessssssiesas o0
Figure 4-18: G.729A Decoder (Full Optimization} ReSUHS ....cveeveireensecresssscerermsrsirressssnererassssssass 91
Figure 4-19: G.723.1 Encoder Vector Optimization ReSUNS........ccccvuveeeerermrsesrmssesserivsessnsresssassees 92
Figure 4-20: G.723.1 Decoder Vector Optimization ReSults ......ccccovvcreenrmeneersmsevecvnssnsssesssssenees 92
Figure 4-21: G.723.1 Encoder Full Optimization RESUIS........cccceverrererrmrerimermsimereseerereresssmsasseseeses 93
Figure 4-22: G.723.1 Decoder Full Optimization Results.........cceiveesresreesscereressessmsnassresssssssesaesesares 03
Figure 4-23: Cor_h_x (Full Optimization) RESUMS .....ccceierrerrirssiieessessnesssesasessmssmsnrsersressssrssssssaneses 94
Figure 4-24: Syn_filt (Full Optimization) RESUIS.......ccovveervrrerurrenrsmiresssssssssssssrerersesirressssssrerasssaresas 95
Figure 4-25: Pitch_ol_fast (Full Optimization) ReSUIS ........coverrreerersvmssesseesceresserversessessssessssssssses 96
Figure 4-26: Residu (Full Optimization) RESUILS ......vveevrerseesrserssssrssesessensessessssesssssssssnesscesssmssnesens 96
Figure 4-27: Autocorr (Full Optimization) RESUIS ...eveeereereriseesisesneserrensssrmsasssssssssasassessesasssssesans 97
Figure 4-28: I.sp pre_select (Full Optimization) RESUILS .........ccoceveiererveerenensesnrerssensesneseresesseesses 98
Figure 4-29: Agc (Full Optimization) RESBHS ... .evrcrmeerreecaesrermermarrersssssrencorsresssssesnsseasasnssrsassssessnes 98
Figure 4-30: Find Best (Full Optimization) ResultS ... ..ccciicceceieeenrvseerrernnmsessessnsrsesnssnsesmnsssseses 99
Figure 4-31: Estim Pitch (Full Optimization) RESUMS........ccoiceccrrnreeerereeces e e ens s sesenses 100
Figure 4-32: Comp _Lpc (Full Optimization) RESUS .......oceeieeemiiecieiiesmreniesssinsessnessssssssresanesens 101
Figure 4-33: Decod Acbk (Full Optimization) RESUMS .......cccec.eevenrrmsvecermsernesseseseeermsrnssnsnsssssssaes 101
Figure 4-34: Comp Pw (Full Optimization) ReSuItS.....ueeeiereeereinmericiemresonssnensissanssnssaemmsmersevasses 102

Figure 5-1: Example of an operation that is performed in two vector registers with vector length
64-bits. Each functional unit is driven by the pair of the corresponding slices (vector

elements) of the source vector registers. The produced results are stored back to the

corresponding slices (vector elements) of the destination Vector register, . ..ouvueererrereriaess 108
Figure 5-2: Vector and Scalar coprocessor programmer’s model.........coeveeeececrerctssisasmernssnsnsennes 109
Figure 5-3: Vector Short AQdIEION ....ceverrecseencescnsmreeretssnrecssneesianintrsseseressssasssessessssassms ressesasaresesass 114
Figure 5-4: Vector Short Multiplication for even/odd elements.........cccovueeurvrerrerrersemsessensessessenes 114
Figure 5-5; Vector muliply-add/sub .......ciireiiesiinmnnecsnennesssmmcsssrssrssssssssssssssmsassessssrenes 115
Figure 5-6: Instruction Formats of Leon3 ... occvervcrmessemninsrencnsareseorsasessresesusressssessssessssses 122
Figure 5-7: Unimplemented INStUCHON «..c.oeeereecersrermeseneesessnesmssisiesssssssesesssess e nesssnsssssssasesssasese 122

Figure 5-8: Overall systemn architeChure ........ccevrverermrnresmsensassesmnsnsessasssesresessssesssnssesesssssassassasasaras 124



List of Figures xi

Figure 6-1: The vector speech coprocessor microarchitecture with the four-stage pipeline; Vector
Decode Stage (VDEC), Vector Register Access Stage (VREG) and two stages for the Vector

Datapath Stage (VDP1 and VDP2)....civiiriincinsessver i enssrnsssessssss s sens s snssssssssesassasasss 129
Figure 6-2: The electrical interface of the VDEC Stage.....cccceivecirnrrvssersrscsssessssssnsasssmsesnnssesssans 131
Figure 6-3: The Unimplemented instruction format of the Sparc V8 architecture........c.oureereerseans 131
Figure 6-4: Different types of instruction formats of the vector processor ISA........uveerevsssererans 132
Figure 6-5: Vector Register Access Stage (VREG) microarchiteCture ....ocorvrenserernersesssssssessrsans 134
Figure 6-6: Reverse Data PrOCESS... .o evcreresneerseserersseseeessssssmssesseresnsasesssssssasassssssassnreranssnssasss 134
Figure 6-7: Splat Data PIOCESS ..ccioicermie s secemisamtsesnrsse s assessessiasss sassasssssteassasesssssasssnrasisnsssesassons 135
Figure 6-8: Mask width fUNCHOM ......cccoererrersrirmeesmeerssesmrasrersesssrassssssssenssearsrmesassrssssssionsessessesrmasnrens 136
Figure 6-9: Mask extract fUnCHON .......cciiiirerrcrrcccseenntsstirrrasssrmreseessasesssessresrsorasrmsonssnssssssssssnsans 136
Figure 6-10: Vector bypass process_for gne of the vector source operands and the intermediate

result of one of the two VDP Stages......cccuicvirmrreirsscssnincstsriersissassassssissis sasnssssassessasasasases 138
Figure 6-11: Scalar bypass process for the selection of one of the scalar operands (first) ............ 138
Figure 6-12: Electrical Interface of Vector Register File ....cvevirrcnercacrerronsnssencsaressasimssasrarvavens 141

Figure 6-13: Detailed microarchitecture of the Vector Register File with R/W conflict aveidance

Figure 6-14: Electrical Interface of Scalar REZISIET File .vuivvrererariiirersrineriserseississrssiessecssisnessmrsnas 143

Figure 6-15: Detailed microarchitecture of the Scalar Register File with R/W conflict avoidance

............................................................................................................................................. 144
Figure 6-16: VLSU Electrical INEITRCE ..ovvvrrriecrarsissrarecersusssssssnsesssemsssesssesssasseresssssssnareressasesassns 147
Figure 6-17: Parallel TAG/DATA configuration and Cascade TAG/DATA configuration caches

............................................................................................................................................. 148
Figure 6-18: Microarchitecture of VLSU in cascade TAG/DATA configuration.......c.cceeeeesveneens 149
Figure 6-19: Microarchitecture of the VIDP Stage ......c.cccvecrivemninmniniissssissssssinsnssrensscsrssssasasssenans 150
Figure 6-20: Electrical interface of the vector adder Nnit.. ... veniiniccrceeinnnss e cseserssseneaans 152
Figure 6-21: Microarchitecture of a functional unit of the vector adder ......ccoceeveeecrecnecrceerneseeennns 153
Figure 6-22: Electrical interface of the vector multiplier UNit......occevceeecrcrnrrecesnasessssceessnsesceenns 154
Figure 6-23: Microarchitecture of a functional unit of the vector multiplier.....cccoereievrvivisnreenns 155
Figure 6-24: Electrical interface of the vector Shifter Uhit............cveeeeseseserrrrssmrrsesssemsesesiesesens 156
Figure 6-25: Two Barrel Shifters connected in series for short or long shift operations............... 156
Figure 6-26: Microarchitecture of a functional unit of the vector Shifter ....ocovieveersnsrernnas creesereeesens 157
Figure 6-27: Electrical interface of the vector miscellaneous UNQt ........cmveeerecrereseremsasnereeseresaasees 158

Figure 6-28: Masking process logic for low (vif opr2 r="1") or high (vrf opr2 r="0"} deposit for

the even elements of the input vectors 10 the acCUMUIALOT c...vivececrererecrereerrrresserrsesearasnene 159

Figure 6-29: Electrical interface of the second VDP stage vector adder v vemevnneiveciresissiennen. 161




List of Figures xii

Figure 6-30: Electrical Interface of Vector Accumulator File.........oueeeverncennnieniseesesesesesnacesons 162
Figure 6-31: Write data and write-enable selection logic for the vector accumulator file ........... 163
Figure 6-32: Adder tree configuration for VEMAX 16.....cccccreeevurrerrmesserrsrrsssrnassessessronsssnsssessess 164
Figure 6-33: Leon3 integer unit and vector coprocessor datapath diagram...........urvecermeeserserereranns 169
Figure 6-34: Leon3 processor core block diagram ......covvevienrvnreieccsisicercsreseessesens s s sensesmsresnsens 170
Figure 7-1: Example of recording the inputs and the outputs of the I._mult operation C macro ..172
Figure 7-2: Test bench for the vector mult unit of the vector datapath .......ccceerenrreenrevnecrereanne 173
Figure 7-3: Vector coprocessor testbench configuration........cveveessssseassesemsesesseressess msssrssesssnenss 174
Figure 7-4: Script in a pseudocode for the design flow of the vector COPrOCESSOL.....ccvvuereerenrrns 175
Figure 7-5: Statistical power results of vector datapath for different vector lengths...........cccrvrunne 177
Figure 7-6: Statistical area results of vector datapath for different vector lengths ....cccecvecveereenees 178
Figure 7-7; Frequency results of vector datapath for different vector lengths.......cccceeeveerecrernnnene 179
Figure 7-8: Statistical power results of vector coprocessor for different vector lengths ............... 180
Figure 7-9: Statistical area results of vector coprocessor for different vector lengths................... 181
Figure 7-10: Frequency results of vector coprocessor for different vector lengths.........cccceuevenene 182
Figure 7-11: Vector Datapath macrocell for VIMAX 16......cvvvcirririiieereceseineesrmssessimsssssssssene 183
Figure 7-12: Vector Datapath macrocell for VIMAX 32 .....ccirire e nsessassresessis e ssaie 185
Figure 7-13: Layout for the whole vector processor (vector datapath and VLSU unit) ................ 186
Figure 7-14: High level view of a 3-instance 8S_SPARC KEINE] ......cocvecieeciminsimrrrsrrrmsisrsessrssensens 187
Figure 7-15: Superscalar SMT pipeline orgamisation..........vecccvsnessssesssssersssesessmsssesisessssesesssses 138
Figure 7-16: Scalar core {SCORE) pipeling orgamiZation .......civeeeveresessssencsssssrarsssrsssnrassassesnncases 189
Figure 7-17: Dual-pipeline vector umit OTEANIZARON ....cccvcvemrreversmsresesssssasssscesevessmssessssnssrsssenssassnens 190
Figure 7-18: ITU VCore POWET RESUIS ....ccccveerervnrerererserssressseseressssassssasssssssssssesesssmsessessensssssssnnsas 192
Figure 7-19: ITU VCore Area-Delay Results.......oceurrmmmeimsrcarrereressnessnseseesssssscrssesesensssressssssasnsss 193

Figure 7-20: Two-context, 256-bit ITU VECIOT ENGITIE ..evverrerrersnaseeresseessessessrsssassesaassamssssesssssssssess 193



LIST OF TABLES

Table 1-1: ITU Standards for Voice COmMPIESSION ...eecvrvrvrrsrirersessrssssissesessisnesarsessessssasssssasssssssassrsenes 4
Table 4-1: SimpleScalar baseline simlator MOJEIS....vvvrvniesimieinierrsrecsreresessiressrssssisssssssamsassessns 67
Table 4-2: Relative amount of time spent outside the basic INSIUCHONS vvvrvrererrrrerimsssssessssessessenss 70

Table 4-3: Relative number of total instructions executed outside the DSP emulation instructions

............................................................................................................................................... 70
Table 4-4: G.723.1 Unmodified Workloads Instruction Coumt ............cccererereemrrenssriansesssnsssssssrssnnes 72
Table 4-5: G.729A Unmodified Workloads Fnstruction Count .......ceeceesreressrsessacaresesisssssssssesanses 72
Table 4-6: Profiling the G.729A functions by using the speech workload..........ccvvmreseeeseierereenes 73
Table 4-7: Profiling the G.723.1 functions by using the 6.3kbits/s workload ........c.cceeeeeevvemerervraren- 74
Table 4-8: G729 Encoder TeSt VECOTS ...cveeceeseressisrrrrenresetrnscessasassvssnsasseressnssesassassssnnssns sesnssmsssnsssns 84
Table 4-9: G729 Decoder Test VECIOIS . uuuiiiisieeeaerenrseresssesessssasasesssssssssssssesssesnasasssasassessssssemsssssses 85
Table 4-10: G.723.1 Encoder and Decoder Test VECIOTS ...cuc.vcieeeeaereesnrssssssmsrssessserssssesssseninessses 85
Table 5-1: Vector Load/Store INStIUCHONS «.u.vuveucceccncrerssesearrenaresesesesasssssssssessssssamssssesnssess s sssssasesee 112
Table 5-2: Vector Move INStUICHONS ...c..eeerreerreeceresesresssemeresssiassesssassssassssssesssesarsssssansans sssessaseasns 113
Table 5-3: Arithmetic INSIUCHONS 1oevrvuvreererreesesiasssiniecrirrserseressesssnsssssesstsseacrrsansesessesaessssssessasnats 116
Table 5-4: Vector Shift INStuctions.....vecveevenermreeseerereeesserns et bt 117
Table 5-5: Vector Miscellaneous INSIIUCHONIS ....cvuseesesitsrecrrrerrssenssrmssssssessssersaresrassssessnsenssssnesssass 117
Table 5-6: Scalar L.oad/Store INSITUCHONS ....veeeesscsissnieirierrasssernsssssssessssssbiccsssssssrsrsrasssssasssssresontt 118
Table 5-7: Scalar Move INStIUCHONS .....everveveesesscaeesmsnssnraranssrsasesssssesssssssssocmssmssssererassssssssassssressast 118
Table 5-8: Scalar Arithmetic INSIUCHION ...ccc.vvverreevecerererserssnaereesrnrestsesaseemrosessssesesrnsssssasssessssrases 119
Table 5-9: Scalar Shift INSHUCHONS ..evveevererireimrersrsraresneresrssessrersenssssssasssesessssressssssasensensssransresasns 120
Table 5-10: Scalar miscellaneous NSHUCHONS cccovrvrerrmrminesisieieieseenressiassarsrsissssssssssessssrseserssrentas 120
Table 5-11: Enhanced op2 Encoding (FOIMAE 2) ...coovrveierreeresansesesuereassererassessssssssesssssssssnsanssssanens 123
Table 6-1: Compile-time vector processor parameters for its architectural and microarchitectural

state that are contained in gxx_cONfig. vhd file ... rcmsr e s s 130
Table 6-2: The allowed silicon technologies that are used for synthesis and place and route

contained in gxx_cONfIZ VA FIle ..cvvceeeecereriencirene e ee s e rere s e re e vmsns e se sbnresssanssanases 130

Table 6-3: Compile-time vector register file parameters for its architectural and microarchitectural
state that are contained in eXX_ CONfIEVRA FILE c.vvivieeieceeeree et st satseee s saessamee e 140

Tabte 6-4: Compile-time vector accumulator file parameters for its architectural and

microarchitectural state that are contained in gxx _config. vhd file ...c.ocerrereveirrrerverreencrennes 163
Table 7-1: VLSI Layout physical parameters for VDP with VIMAX 16 ....cceiieeceesieeresnsnvsensnes 183
Table 7-2: VLSI Layout physical parameters for VDP with VLMAX 32 ......cccovnvecmrevvrerarersens 184

xiii



List of Tables

Xiv

Table 7-3: VLSI Lavout physical parameters for VCOP with VLMAX 16

.................................



LIST OF ABBREVIATIONS

Abbreviation Expansion

ABI Application Binary Interface

AbS Analysis by Synthesis

ADL Architecture Description Language

ADM Adaptive Delta Modulation

ADPCM Adaptive Differential Pulse Code Modulation

AHB Advanced High-speed Bus

ALU Arithmetic Logic Unit

AMBA Advanced Microprocessor Bus Architecture

APB Advanced Peripheral Bus

ASIC Application Specific Integrated Circuit

ATC Adaptive Transform Coding

ATM Asynchronous Transfer Mode

BASOP Basic Operations

CAS Cycle Accurate Simulators

CATV Cable TV

CCITT International Telephone and Telegraph Consultative
Committee

CELP Code Excited Linear Prediction

CisC Complex Instruction Set Architecture

CLB Configurable Logic Block

CMP Chip Multi-Processing

CNG Comfort Generation Noise

CPI Cycles per Instruction

CPU Central Processing Unit

CS-ACELP Conjugate-Structure Algebraic Code Excited Linear
Prediction

DLP Data Level Parallelism

DMA Direct Memory Access

XV



List of Abbreviations

Abbreviation Expansion

DSVD Digital Simultaneous Voice and Data
DSL Digital Subscriber Line

DSM Distributed Shared Memory

DSP Digital Signal Processing

EDA Electronic Design Automation

EPIC Explicitly Parallel Instruction Computing
ESL Electronic System Level

FEC Forward Error Correction

FLI Foreign Language Interface

FLOPS FLoating point Operations Per Second
FPGA Field Programmable Gate Array

FTTH Fibre to the Home

ILP Instruction Level Parallelism

IP Internet Protocol

ISA Instruction Set Architecture

ISDL Instruction Set Description Language
ISPS Instructions Set Processor Specification
ISS Instruction-accurate Simulator

ITU International Telecommunication Union
LAN Local Area Network

LISA Language for Instruction Set Architecture
LPC Linear Predictive Coding

LSP Line Spectral Pair

MAC Multiply and Accumnulate

MBEN Multi-Band Excited Vocoder

MELP Multi-pulse Excited Linear Prediction
MIMD Multiple Instruction Multiple Data
MIPS Million Instruction Per Second

MISD Multiple Instruction Single Data

MOS Mean Opinion Score

MPEG Moving Picture Experts Group
MP-MLQ Multi-Pulse Maximum Likelihood Quantization




List of Abbreviations

xvit

Abbreviation Expansion

NUMA Non Uniform Memory Access

08 Operating System

OSI Open Systems Interconnection

PCI Peripheral Component Interconnect
PISA Portable Instruction Set Architecture
PCM Pulse Code Modulation

PSVQ Predictive Split Vector Quantizer
QoS Quality of Service

RAS Registration/Admission/Status channel
RAM Random Access Memory

RISC Reduced Instruction Set Computer
PCM Pulse Code Modulation

PSTN Public Switched Telephone Network
RELP Residual Excited Linear Prediction
RTL Register Transfer Level

RTP Real Time Protocol

RTCP RTP Control Protocol

SBC Sub-Band Coding

SDRAM Synchronous Dynamic RAM

SISD Single Instruction Single Data
SIMD Single Instruction Multiple Data
SIp Session Initiation Protocol

SMT Simultaneous Multi-Threading
SMP Symmetric Multi-Processing

SoC System on Chip

SPARC Scalable Processor Architecture
SRAM Static RAM

SREGS Scalar Registers

SRF Scalar Register File

TSMC Taiwan Semiconductor

TCP Transport Control Protocol

TLP Thread Level Parallelism




List of Abbreviations xviii

Abbreviation Expansion

UART Universal Asynchronous Receiver Transmitter
UDL/I Unified Design Language for Integrated circuit
UDP User Datagram Protocol

ULIW Ultralong Instruction Word

UMA Uniform Memory Access

VACC Vector Accumulator

VDEC Vector Decode Stage

VDP Vector Datapath Stage

VHDL Very high speed integrated circuit HDL
VLIW Very Long Instruction Word

VLMAX Vector Length MAXimum

VLSU Vector Load/Store Unit

VoIP Voice over Packet Internet

VREG Vector Register access Stage

VREGS Vector Registers

VRF Vector Register File

WAN Wide Area Network

Wi Fi Wireless Fidelity

XST Xilinx Synthesis Technology




CHAPTER 1
INTRODUCTION

1.1 Problem Formulation

Ever-advancing technologies have enabled the worldwide convergence of voice and data
communications in a single network infrastructure. This is the domain of packet-switched
networks such as the Internet Protocol (IP) which lead to significant savings in cost and
infrastructure deployment as well as to bandwidth efficiency [1]. Voice over Internet
Protocol (VoIP) is such an example which uses IP to send digitised voice/data as a
reliable alternative to traditional circuit-switched communication. In VoIP, the voice
network is integrated into the Local Area Network (LAN) and is connected to the
traditional Public Switched Telephone Network (PSTN) through a gateway. The gateway
is a special piece of equipment which handles the translation of signals from the PSTN
into IP packets, required for the transmission across the Internet and vice versa [2]. Figure
1-1 depicts the general model of traditional voice and data networks that are separated (a)

and a VoIP network that encompasses both in the same infrastructure.

) PO
Workstation

Laptop computer

a: Traditional voice and data networks b: VolP Network

Figure 1-1: Traditional veoice and data netwerks (a) and VoIP network (b)

The transition from circuit-switched to packet-switched networks enables applications
that go beyond simple voice transmission, embracing other forms of data and allowing

them to all travel over the same infrastructure [2]. Packet-switched networks such as



1. Introduction 2

Internet, Intranets, LANs and WANs encode the message and transmit it in the form of
packets that are blocks of data with added header and trailer information. Packet networks
don’t need a dedicated link between transmitter and receiver hence there is lower cost per
communication session as most interconnection charges are avoided. Additionally, the
required infrastructure is minimal because all the real-time applications use the existing
network. Consolidation of the different networks in one simplifies the equipment,
protocols, software and hence enables better service to be provided at low cost and with
more efficient use of the resources. In the last few years, there has been a shift in large
corporations migrating their communications into a single network infrastructure. The
Japanese government decided in 2002 to establish an environment for the widespread use
of IP telephony services. This decision initiated the development of key technologies for
IP telephony [3]. BT began, since November 2006, to replace its existing telephone
network with one based entirely on the Internet Protocol (IP). When this is completed, the

telephone system and the internet will share the very same network infrastructure [4].

Since the early days of VoIP it became clear the need for the creation of a common
protocol stack in order to enable the development and spreading of the former. In 1996
the H.323 [5] recommendation was issued by the International Telecommunication Union
(ITU) and revised in 1998 at which time the framework of an IP network was defined.
H.323 was the basis for the first widely used VoIP systems. It specifies a number of
protocols for speech coding, call setup, signalling, data transport and other areas [6]. The

architecture of the H.323 protocol stack is depicted in Figure 1-2.

Audio Video
Codecs Codecs

RAS

(H2250) 8 . B (H.255.0) |
Control

RTP/RTCP




1. Introduction 3

The H.323 standard incorporates the following ITU protocols:

» Audio Codecs: G.7xx Series

»  Video Codecs: H.26x Series

= RTP: Real Time Transport Protocol

=  RTCP: RTP Control Protocol

» RAS (H.225): Registration/Admission/Status channel controlled by the
H.225 gatekeeper protocol

= H.245: Call (connection) Control, selects the compression algorithms, bit
rate etc

*  Q.931 (H.255): Call signalling

=  UDP: User Datagram Protocol

»  TCP: Transport Control Protocol

H.323 provides a complete protocol stack for real-time multimedia, conferencing (voice
and video) and data transfer [2]. It played a key role in the widespread use of VoIP
services as H.323 gateways are the interface betweenl the PSTN and packet-switched
networks [7]. These gateways employ speech coding algorithms that encode the audio
signal prior to transmission and decode it during reception. VoIP specifies a significantly
smaller voice bandwidth than a traditional PSTN that operates at a constant 64kbits/sec
rate. Speech coding is the process of digitally encoding speech in order to reduce the bit
rate of its representation during digital transmission, while maintaining an acceptable
speech quality. Speech coding or compression algorithms provide good quality
communication over packet based networks and reduce network bandwidth requirements.
Hence efficient coding of the human speech is of paramount importance. The H.323
multimedia standard supports a number of common ITU codecs such as G.711 [8], G.726
[9], G.728 [10], G.729A [11] and G.723.1 [12] for interoperability reasons. These codecs
have different bit rates, implementation complexity coding delay and voice quality. G.711
is a compulsory recommendation that specifies a simple A/p-law codec that produces toll
quality speech with low compﬁtation complexity, typically of IMIPS, but requires up to
64kbits/s bandwidth. G.729A and G.723.1 are the most popular for bandwidth limited
transmission channels. G.729A was designed for simultancous voice and data

applications while G.723.1 was indented for low-bit rate videophones [13]. These speech



1. Introduction 4

coding algorithms are very computationally intensive and consist of a number of sections
of code executing in tight loops and processing arrays of data. More details about these
codecs and speech coding theory are given in Chapter 2. Table 1-1 shows the
characteristics of the aforementioned codecs that are widely employed in VoIP services.
With the growing demand for VoIP services, it has become increasingly important to
implement efficiently these algorithms. Codec optimization minimizes the processor
loading and enables the system to support more voice channels per silicon area, while

maintaining low power consumption [7][14].

Table 1-1: ITU Standards for Veice Compression

ITU Specification Transmission Rate Computation Mean
(kbits/s) Complexity Opinion
{MIPS} Score
G.711 56/64 1 4.1
G.723.1 5.3/6.3 16 3.65/3.9
G.726 32 2 3.85
G.728 16 30 3.61
G.729/G.729A 8 20/11 3.92/3.7

This research presents the design and implementation of a high performance custom
vector processor to accelerate these speech coding algorithms that are used typically for
voice compression at the gateway of a VoIP network or for multimedia applications.
More specifically, a controlling CPU (Leon3) and a closely-coupled, configurable,
extensible vector coprocessor was researched and developed as SoC components [15]. A
vector processor was selected as it is generally accepted that for multimedia processing,
SIMD execution units with wide datapaths are able to achieve significant speedups
compared to existing scalar architectures without much of complexity cost [16]. The
vector coprocessor is a hybrid SISD (scalar processor)-SIMD (vector processor), The idea
of vector coprocessors to be closely coupled to a superscalar CPU has been expressed in
the late 80°s [17]. This combined scalar/vector architecture can lead to an order of
magnitude improvement in workload performance and result in reduced area/power/cost

per voice channel compared to the existing solutions.
1.2 VoIP

VolIP supports near-real-time, multidirectional voice exchanges by employing the Internet

Protocol as transport technology. VoIP is an exciting technology that has changed the



1. Introduction £l

way that people communicate and its power and versatility make it increasingly pervasive
in embedded applications [18]. By merging the two traditional network infrastructures;
Data (LAN) and voice (PSTN) the required equipment and expertise for their
maintenance is simplified. Figure 1-3 shows possible IP telephony network connections

and components of a typical VoIP system.

Mobile Aoy

Phone Gateway @
- B _an
i S Analogy
( PSTN } Pho
Analogy y
Pm!e -t Pl = &

Gateway
e &
Phone Gateway -
@ IP Phone
5 f é
P Pffne | Switch __...""—-*.w.
s o e
( e =
\ =0 o
vi GGy W
R

Mobile
Phi'le -
Figure 1-3: Simplified representation of possible IP telephony network connections

1.2.1 Description of the VolP process

Traditional voice networks such as PSTN employ digital switching technology to
establish a dedicated link (circuit) between nodes and terminals for communication [2].
Each such dedicated circuit cannot be used by other callers even if it is not active until it
is released and a new call is set up. On the other hand, in packet switched networks, the
digital information is encapsulated in packets that are routed between nodes over data
links shared with other packet traffic. In each network node, packets are queued or
buffered resulting in variable delay whereas in circuit switching there is constant delay
and transmission bit rate between the nodes. Packet switching is categorized into
datagram (connectionless) such as Ethernet and IP networks and virtual circuit switching

(connection orientated) such as Asynchronous Transfer Mode (ATM), X.25 etc [19].



1. Introduction (4]

The connection stages between two endpoints in a VoIP system are illustrated in Figure
1-4. These stages incorporate the following functions: signalling process,
encoding/decoding, the transport mechanism, and the switching gateway. In the
beginning the signalling process takes place and establishes the communication between

the handset and the phone network.

— — — Signalling

Data Flow
Figure 1-4: VolP signalling and transport flow between endpoints

The signalling process is responsible for maintaining and terminating the connection
between the nodes and hence it is active for the whole duration of the communication. As
VoIP transmission is packet-based the data/voice message that is sent during the
communication is digitized and separated to frames which are encoded by the chosen
speech coder to reduce bandwidth requirements. The resulting bitstream is then
packetized and is inserted into the IP network where it follows one or more transport
protocols. Afterwards, it goes through a number of switches and eventually reaches the
receiving gateway. The switching gateway ensures the packet set’s interoperability with a
different destination IP-based system or a PSTN system. At the receiving end, the
bitstream set is de-packetized, decoded and converted back to an audio signal, after going

through the equivalent speech decoder [2].

The communication protocols enable interoperability of the system and are part of H.323

or SIP protocol stacks. SIP or Session Initiation Protocol is an alternative to the large,



1. Introduction 7

complex and inflexible H.323. It was developed specifically for IP telephony and other
Internet services but is simpler than H.323 and can adapt more easily to future
applications. There are several types of signalling protocols running concurrently at
various levels. The various levels of protocol are categorised according to their function
in a standardised seven layer model that is called Open Systems Interconnection (OSI)

and is depicted in Figure 1-5 [20].

OSlI Model  TCP/IP Model TCPI/IP Protocols

-: 0 Systems Interconnection (OSI) and network protocols

Figure

The three upper layers (Application, Presentation and Session) support users’ applications
which are moving through network to be defined in an abstract higher-level way in order
to be exchanged between different users. The four lower layers (Physical, Data link,
Network and Transport) are used for formatting, encoding and transmission of the data
over the network. An IP network operates in the first three layers and the transport layer
passes the data from above to the network layer. The transport layer isolates the upper
layers from changes of the hardware and controls the movement of the packets, performs
error checking etc [6]. Voice and video for real-time communications use UDP (User
Datagram Protocol) packet transport instead of TCP (Transmission Control Protocol) as
the shortest delivery time is more critical than packet loss. However, the media delivery
using UDP is sensitive to packet delay and loss hence QoS (Quality of Service) for
multimedia communications is very important [21]. More specifically, the level of
intrinsic QoS (latency, jitter, dropped packet rate) for the packet-switched services must

be determined in order to assure the adequate perceived QoS [18].



1. Introduction 8

1.2.2 VoIP Applications

Even though VoIP is a technology for transferring voice over IP packets it is not
restricted only to that. Broadband IP networks using xDSL (Digital Subscriber Line),
FTTH (Fibre-to-the-home), and CATV (Cable TV) lines have incfeascd the available
bandwidth and hence the voice quality in VoIP has improved while making additional
concurrent visual communication possible [3]. The VoIP infrastructure facilitates an
entirely new set of networked real-time applications, such as: videoconferencing, remote
video surveillance, analog telephone adapters, Multicasting, Instant messaging, Gaming,
Electronic whiteboards etc. Other features added from IP services are automatic rerouting
of phone calls on the PSTN to a user’s VolP phone connected to a network node. In this
way a global-enabled cellphone network is enabled without roaming charges as the user’s
location is seen as just another network connection point. IEEE 802.11 enabled VoIP

handsets to allow conversation in worldwide WiFi hotspots without compatibility issues

[2].
1.2.3 Current state of the art

VolP implementation depends heavily on the evolution of hardware and software
technology. Much effort has focused on developing techniques to meet the QoS
requirements and ensuring the performance and reliability of PSTN networks at
significantly lower cost. Many protocols and standards have emerged in the last year and
made the VoIP feasible. At the same time, many factors need to be balanced to produce a

cost effective product with toll quality voice [19].

In a VoIP ASIC, processor selection is very important as this has a direct consequence on
the allocation of time critical (speech coding, voice activity detection, echo cancellation)
and non-critical (signalling protocols, operating system, user interface) tasks. In addition,
it affects significantly the ASIC cost as the core CPU system is typically the most
expensive piece of silicon IP. The processor is usually a stand-alone 32-bit RISC engine
with a) custom instruction extensions b) large capacity DSP on board processing and ¢) a
loosely-coupled external DSP/coprocessor. The custom instruction extensions or the

DSP/coprocessor perform the voice processing operations while the RISC processor



1. Introduction 9

handles only the control functions enabling this way the main processor to support more

than one channels.

A popular architecture in VoIP gateways is the dual core processor organization {c) that
integrates both RISC and DSP cores within a single package. The software development,
debugging and the management of inter-processor communication for this solution is
complicated and time consuming. Anocther popular solution is the RISC/DSP (b) dual
execution units but a single instruction set architecture. In this way, there is no need for
inter-processor communication and hence smaller overhead and better voice quality [19].
A targeted architecture therefore that can perform efficiently the mathematically intensive
operations, has zero-overhead loops, barrel shiﬁe}'s, modulo addressing can improve the
system performance dramatically. Dedicated on-chip DSP/coprocessor memories keep
the algorithm coefficients and voice sample data on-board, maintaining the processing
throughput. Additionally, an integrated solution simplifies the overall complexity and

reduces time to market [22].
1.3 Programmable Architectures

1.3.1 General Purpose Processors

In the past, general-purpose processor design was driven mostly for non-real-time, stand-
alone applications which were largely nonnumeric with little inherent parallelism. The
proliferation of multimedia-rich applications that involve significant real-time processing
of continuous media data streams has forced profound changes in computer architecture.
Since there are no limitations in the semiconductor technology, general-purpose
processors can significantly accelerate media-intensive processing with relatively simple
architectural support and the addition of instruction set extensions [16]. Over the last
years the major vendors of general-purpose processors have announced the addition of
instruction extensions in their ISAs to increase the performance of the multimedia
applications. These instruction extensions are based on a subword execution model. This
model uses the whole width of the processor datapath by processing smaller data types,
typically found in signal processing (8- or 16-bits) in parallel by executing common
multimedia operations [23]. Examples of general-purpose processors with added
multimedia extensions are Intel’s x86 with MMX [24] and SSE [25] extensions, Sun’s



1. Introduction 10

UltraSparc enhanced with VIS [26], PowerPC with Altivec [27], Silicon Graphics’ MIPS
V with MDMX [28], Compaq’s Alpha with MV, and Hewlett-Packard’s PARISC with
MAX2 [29] extensions.

1.3.2 DSP Processors

The software implementation of speech codecs on DSP processors is a popular choice as
these processors are more “tuned” to signal processing algorithms better than general-
purpose processors. This is due to the advances in DSP architecture that effectively
execute the repetitive computations on data streams present in these algorithms through
multiple functional units that operate in parallel and SIMD operations. These techniques
are performed using mechanisms with lower complexity than general-purpose processors
and speed up significantly the execution of these applications while keeping power
consumption low [30]. Several projects [31] [32] [33] employ the Texas Instruments
DSPs to implement G.723.1 in real time after applying some iterative refinement and
optimization on the reference C code. Motorola implements the G.729A on the StarCore
SC140 [34] after optimizing the C reference code of the algorithm and Samsung with its
SSP1820 DSP implements the G.723.1 [35]. Another optimized solution is integrating
conventional general-purpose RISC processors and DSP cores with dedicated
functionality into a single, unified architecture such as the Hitachi SHx-DSP [36] and the
Infineon TriCore [37].

1.3.3 ASIC (Embedded) processors

In general, application specific hardware design is the most popular candidate to meet
cost, performance and power demands for VoIP applications. ASIC implementations can

be divided in to the following three categories:

1.3.3.1 Configurable processors

In high-speed communication system design the simplest and most common architecture
use embedded 32-bit processors such as (ARM, MIPS, PowerPC etc) or DSPs in either
discrete or integrated form. Though this provides a lot of flexibility and general
applicability, the processing of some software-based algorithms limits the system

performance to a great extent. In addition, DSPs may not be as attractive in



1. Introduction : 11

computationally expensive operations such as error correction algorithms or filters where
hardware implementations tend to be more efficient. On the other hand, ASICs achieve
very high performance but require significant design cost and effort and offer no
flexibility [38, 39]. An alternative architecture that promises high performance,
extendibility, flexibility, code size and power dissipation reduction and also lower cost is
the configurable processor. Conﬁgﬁrable processors can be modified and their ISAs
extended to target a specific application domain by changing the processor’s feature set in
order to accelerate the critical parts of the algorithm. A processdr can be configured in

three general ways:

* By altering the processor’s predefined architectural framework such as cache
size, number of registers, multipliers or barrei shifters etc.

* By adding custom, high-performance interfaces and streaming memories

= By adding custom instruction extensions to optimally map to the target

application

Configurable processors are typically delivered as synthesizable RTL ready to be
synthesized and integrated into an FPGA or SoC design. They usually come with vendor
tools, EDA synthesis scripts and verification environments to verify the correct operation
on a target system [40]. Examples of configurable processors employed for audio
processing apart from the vector processor of the current work are the Tensilica’a Xtensa
[41] 32-bit microprocessor that has the ability to run any C or C++ programs and add
execution units for the implementation of the instruction extensions to speed the target
application. A pioneer in this field is ARC International with its ARC 700 family [42]
architecture with 128-bit SIMD configuration. Other vendors include Silicon Hive [43]
with UltraLong Instruction Word (ULIW) architecture and so on.

1.3.3.2 Reconfigurable Processors

Reconfigurable processors adapt dynamically their microarchitecture to address the
application requirements. This type of processor utilizes microcode and custom
configured hardware to improve performance. The microcode is utilized to perform both
the reconfiguration process and the execution of the code and its frequently used parts are

located permanently in a fixed part of on-chip storage [44]. In the past reconfigurable



1. Introduction 12

architectures referred exclusively to the gate level (fine-grain) with every computation
being built up from the Boolean gates. An example of such a device which functions at
this level is the FPGA device. An architecture can also be reconfigured on
microarchitecture or architecture level. These levels of computational hierarchy are
implemented by coarser basic computational units that are incorporated in FPGA devices.
The FPGA can contain hard (e.g. multipliers) or soft (e.g. components of a standard
library) macros to customize its functionality. The hard macro is a fixed ASIC core
embedded into the fabric of the FPGA while the soft macro is a sequence of computations
.implemented as fixed entities on the FPGA fabric [45]. Examples of reconfigurable
architectures used for multimedia applications at the microarchitecture level are the
PipeRench [46] and RaPiD [47] processors whereas examples at the architecture level are
the RAW project {48] and Pleiades of Berkeley University [49]. Reconfigurable
architectures offer flexibility, functional efficiency of hardware and software
programmability, logic capacity of programmable devices and advanced automated

design techniques.

1.3.3.3 Fixed Processors

This category incorporates fixed architecture processors typically integrated in an ASIC
infrastructure (buses, local memories, coprocessors). In order to achieve high
performance modifications are usually performed on either the C code or the assembly of
the application in order to take full advantage of the processor architecture. Examples of
fixed ASIC processor that realise speech codecs are the ARM9 which implements the
G.723.1A/G.729AB codecs [50] or the G.729E codec [51] by using optimized ARM
assembly code. Another example is a low power DSP core that implements G.723.1
codec within the H.324 standard [52].

1.4 Hardwired Architectures

There are very few instances of research projects focused on the acceleration of the
G.723.1 and G.729 standards using configurable, extensible, vector architectures as
proposed in this work. A suggested architecture for the hardware implementation of parts
of both codecs was proposed by Olausson and Liu [14]. Their paper briefly discusses

three hardware structures to accelerate conditional moves and branches before or after the



1. Introduction 13

calculation of the 32-bit absolute value (L_abs) of the 6.3kbits/s G.723.1. Another more
focused approach was the hardware/software co-design of the G.723.1 by Mishra et al
[7]. In that work parts of the codec (pitch estimator, formant perceptual weighting filter
and harmonic noise shaper) were implemented in hardware using a single MAC unit that
operates in parallel to a DSP processor which executes the rest of the algorithm.

Additionally the normalisation operation is implemented in hardware.

The hardware implementation of the speech codecs is not a common practice as the C
reference codes have to be ported to VHDL and this is a quite tedious and time
consuming task. Another problem is that the arithmetic logic and especially the
multipliers are very complex and their implementation in an FPGA will require many
CLBs (160 CLBs on a XILINX Virtex FPGA per multiplier approximately). Since the
codecs are typical DSP codes, their execution on DSP processors generally leads to much
better performance. On the other hand, ASICs seem a better solution for multi-channel
codec implementation but the integration of several DSP cores on an ASIC to offer

multiple-channel capabilities is a more effective and appealing solution [53].

1.5 Research contribution and overview

The main objective of this work was to research and develop a configurable, extensible
vector embedded CPU architecture for accelerating speech coding algorithms employed
in VoIP networks. This research was funded by the Engineering and Physical Sciences
Research Council (EPSRC) under grant GR/S44976/01. The contributions of this project

are outlined in this section.

At the beginning of this research and in order to investigate the potential acceleration,
both C reference codes were profiled to identify the computation workload distribution.
This is described in section 4.3.1 of this thesis. The results showed that the most CPU-
intensive parts of the code were in the DSP emulation functions of the reference
implementation. Further studying of the code revealed that a significant number of the
basic operations appear in data-parallel loops. It was apparent that the creation of vector
instructions that closely match these basic operations could lead to high performance.

This is a major contribution of this work,



1. Introduction 14

The next task was to define the custom vector instructions and the data-level-parallel
architecture of the vector coprocessor. Parallel exploitation is essential for the efficient
execution of DSP codes. However, the reference implementations have to be fully
vectorized in order to benefit from data-parallel processing which is the primary
capability of the proposed vector architecture. The custom vector instructions were
represented by C macros and were introduced into the C reference codes to implement the
data-level-parallel inner loops. As speech coding algorithms consist of small loops or
kernels that dominate overall processing time it was important to perform manual vector
assembly coding and hand optimization of such tight loops [16]. In order to check the
correct opération of the vectorized speech codecs after the vectorization of every loop the
codes were verified against the ITU test vectors by comparing the output bitstream of the
optimized code with the original one. The vectorization methodology is described in
sections 4.3.2 -4,3.4 and the full vectorization of both the G.723.1 and G.729A speech

coders and decoders is another major contribution.

The remainder of the code that consists of the non-vectorizable loops and other parts of
the code which contain basic DSP operations was optimized through the addition of
custom scalar instructions. Again algorithmic equivalence between the optimized and the
original (reference) code was established. The scalar optimization and the verification are
presented in sections 4.3.5 and 4.3.6 respectively. In addition, both vector and scalar
instructions are described in Chapter 5 and are listed in more detail in Appendix A. The
joint scalar optimization and vectorization of the reference ITU-T codes is a third
contribution of this work.

The next step was to evaluate the performance of the vector architecture before it is
implemented in hardware. For this purpose, the SimpleScalar toolset was used to evaluate
the coprocessor architecture under study. The simulator was modified and extended to
include the added state (coprocessor scalar and vector state) and the scalar and vector
extensions. The extended instructions that were represented in C macros were replaced
with inline assembly and executed on the simulator. The modifications of the
SimpleScalar simulator are described in sections 4.3.7 and 4.3.8. Simulations were run for
all ITU-T input vectors and for vector lengths of up to 128 16-bit elements. Results, in the
form of relative dynamic instruction count, were taken for the vector only and for full

optimization (scalar and vector) of both speech coding algorithms. These results show the



1. Introduction 15

performance metric improvement which the instruction-accurate model of the vector
coprocessor achieves. The results are presented on section 44 and Appendix C.
Methodologies for the introduction of scalar and vector state and addition of instructions

in the SimpleScalar infrastructure are another contribution of this work.

Another task of this project was the modelling in SystemC of the vector instruction set
extensions and its subsequent synthesis to low-level RTL in order to be introduced to the
multi-parallel, configurable SS_SPARC processor. This work was undertaken to study
faster routes to silicon of the SIMD extensions, compared to the established RTL flow
and is presented in paper [54] and is discussed in section 7.8. The SystemC model is the
behavioural description of the same vector instructions that were introduced in the speech
codecs. The “packing” of the SIMD ISA was verified by using the ITU test vectors to
validate their functionality. The obtained results from the statistical power analysis results
for both the SystemC-accelerator and the RTL-accelerator synthesis are presented in
section 7.8.3, This is a major contribution of this work as it compares the benefits of
synthesizing a configurable, extensible SIMD datapath with that of a highly optimized
RTL-based implementation.

The main author’s contribution to the research project was the full design and
implementation of the proposed vector datapath of the vector processor. The vector
datapath was verified by using an FLI-based testbench and this process is described in
section 7.1. The vector processor was attached to the fifth stage (memory stage) of the
main Leon3 scalar processor. Modifications were made to the pipeline of the scalar core
and extra decode logic was added fo accomodate the vector unit. The microarchitecture of
the vector datapath and its interfacing to the Leon3 is explained in Chapter 6. Finally,
statistical power analysis was performed for the vector datapath and the wvector
coprocessor as a whole for different configurations (VLMAX, frequency) in order to
explore their effects on area/power/frequency results. These results along with the layouts
of the vector datapath and vector processor are presented in sections 7.4 to 7.7, This is the

final and major contribution of this work.



1. Introduction 16

1.6 Thesis OQutline

The remainder of this thesis is organized as follows. In Chapter 2 a background section in
speech coding is given describing the general models of speech representation, coding
schemes and types of speech coders that exist. In addition, the characteristics and
principles of the two ITU standards that are used in this project namely, the G.729A and
G.723.1 standards are presented. Chapter 3 gives an overview of parallelism including the
limitations imposed from dependences and description of their types. Additionally the
three different types of parallelism are introduced along with the appropriate processor
architectures for their efficient exploitation. Emphasis is given to DLP which is the
primary form of parallelism addressed in this project. This form of parallelism is most
effectively exploited with vector architectures. Chapter 4 discusses the optimization
methodology and the performance improvement achieved with the introduction of custom
scalar and vector ISA extensions in both speech coding standards. Following that it
presents the modifications made to the SimpleScalar instruction-set simulator to
incorporate a large number of scalar and vector instruction extensions. Finally this
chapter presents the performance benefits achieved via the introduction of the
aforementioned instructions for different vector lengths and workloads. In Chapter 5 the
vector coprocessor architectural state and programmer’s model are presented followed by
the introduction of the Leon processor and the overall system architecture. Chapter 6
gives a detailed description of the pipeline organization and its constituent components.
This is followed by a brief description of the VLSU which is part of another research
work. The modifications to the Leon3 pipeline are then presented to enable the tight-
coupling of the vector coprocessor. Chapter 7 deals with the verification, synthesis and
back-end flow of the vector datapath and vector processor as a whole. This is followed by
the SystemC modelling and the parametric ESL implementation of the vector datapath.
The latter was then inserted in the exposed vector engine of the SS_SPARC processor.
The Chapter 7 also includes a detailed description of the SS§_SPARC ASIC processor.
Finally this chapter presents the statistical power analysis results for both the SystemC
and RTL-designed vector datapaths. The Conclusions chapter discusses suggestions for
further research, potential applications and additions to this work. Appendix A includes
the details of the vector processor instruction set. Each instruction is presented

individually with its format, a short description of the instruction’s operation and a



1. Introduction 17

software example. Appendix B includes the internal control and data signals and their
combinations as used in the vector pipeline. Finally, the performance improvement results
at function level of both speech codecs obtained from the first year’s work are presented

in Appendix C.



1. Introduction 18

1.7 References

[1
[2]
(3]
(4]
(5]
(6]

[71

[8]
9]
[10]
{11]
[12]

[13]

[14]

[15]

[16]

[17]

Todd Wynia, " Laying the foundation for VolP: A perspective on platforms,
protocols and technologies," in Embedded Computing Design, Spring 2001.

Jim Doherty and Neil Anderson, Internet Phone Services Simplified (VolP):
Cisco Press, 2006.

M. Mineo, A. Niimura, H, Ooboshi, et al., "IP Telephony Terminal Solutions for
Broadband Networks," Hitachi Review, vol. 51, June 2002.

Steven Cherry, "Nothing but Net," in IJEEE Spectrum. vol. 44, January 2007, pp.

18-21.

ITU-T Recommendation H.323, "Packet-based Multimedia communication
systems," 1998.

Andrew 8. Tanenbaum, Computer Networks, 4th ed.; Pearson Education
International, pp. 685-691, 2003.

S. M. Mishra and A. Balaram, "Efficient hardware-software co-design for the
G.723.1 algorithmtargeted at VoIP applications," in JEEE International
Conference on Multimedia and Expo, 2000, pp. 1379-1382.

ITU-T Recommendation G.711, "General Aspects of Digital Transmission
Systems," 1989.

ITU-T Recommendation G.726, "40, 32, 24, 16 kbit/s Adaptive Differential Pulse
Code Modulation (ADPCM)."

ITU-T Recommendation G.728, "Coding of Speech at 16 kbit/s using Low-Delay
Code Excited Linear Prediction.”

ITU-T Recommendation G.729A, "Coding of speech at 8 kbit/s using conjugate-
structure algebraic-code-excited linear-prediction (CS-ACELP)," 3/96.

ITU-T Recommendation G.723.1, "Dual Rate Speech coder for multimedia
communications transmitting at 5.3 and 6.3 kbit/s," 3/96.

R. V. Cox and P. Kroon, "Low bit-rate speech coders for multimedia
communication," in JEEE Communications Magazine. vol. 34, December 1996,
pp. 34-41.

M. Olausson and D. Liu, "Instruction and hardware accelerations in
G.723.1(6.3/5.3) and G.729," in the I1st IEEE International Symposium on Signal
Processing and Information Technology, 2001, pp. 34-39.

V. A. Chouliaras, "Vector Coprocessor for Speech Coding: Case of Support,”
Engineering and Physical Sciences Research Council (EPSRC) — GR/S44976/01,
Loughborough University 2002.

K. Diefendorff and P. Dubey, "How Multimedia Workloads Will Change
Processor Design," in IEEE Computer. vol. 30, September 1997, pp. 43-45.

Francisca Quintana, Roger Espasa, and Mateo Valero, "A Case for Merging the
ILP and DLP Paradigms," in 6th Euromicro Workshop on Parallel and
Distributed Processing, Madrid, Spain, 1998, pp. 217-224.



1. Introduction 19

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]
[29]

[30]

[31]

[32]

[33]

William C, Hardy, VoIP Service Quality: Measuring and Evaluating Packet-
Switched Voice: McGraw-Hill Networking, 2003.

J. Dionne and B. Davis, "Embedded VoIP implementations using SIP," in EE
Times Asia, 16 September 2004,
www.eetasia.com/ART 8800346844 499491 TA-e55¢1221.HTM.

Andy Bateman, Digital Communications: Design for the real world: Addison-
Wesley, 1999.

Henry Sinnreich and Alan B, Johston, /nternet Communications Using SIP:
Delivering VoIP and Multimedia Services with Session Initiation Protocol,
Second ed.: Wiley, 2006.

A. M. Kondoz, "Digital Speech: Coding for Low Bit Rate Communications
Systems,” John Wiley & sons, 1994, pp. 117-123.

T. M. Conte, P. K. Dubey, M. D. Jennings, et al., "Challenges to Combining
General-Purpose and Multimedia Processors," in JEEE Computer. vol. 30,
December 1997, pp. 33-37.

A. Peleg and U. Weiser, "MMX Technology Extension to the Intel Architecture,”
in IEEE Micro. vol. 16, August 1996, pp. 42-50.

K. Diefendorff, "Pentium III = Pentium IT + SSE: Internet SSE Architecture
Boosts Multimedia Performance," in Microprocessor Report. vol. 13, March
1999,

Marc Tremblay, J. Michael O'Connor, Venkatesh Narayanan, et al., "VIS Speeds
New Media Processing,” in IEEE Micro. vol. 16, August 1996, pp. 10-20.

K. Diefendorff, P. K. Dubey, R. Hochsprung, et al., "AltiVec Extension to
PowerPC Accelerates Media Processing," in IEEE Micro. vol. 20, March 2000,
pp. 85-95.

"MIPS Digital Media Extension," Instruction Set Architecture Specification,
http://www.mips/MDMXspec.pc, October 1997.

R. B. Lee, "Subword Parallelism with MAX-2," in IEEE Micro. vol. 16, August
1996, pp. 51-59.

J. H. Moreno, V. Zyuban, U. Shvadron, et al., "An innovative low-power high-
performance programmable signal processor for digital communications," IBM
Journal of Research and Development, vol. 47, pp. 299-326, 2003,

A.ZR. Langi, "Rapid development of a real-time speech coder on a
TMS320C54x DSP," in Proceedings of the IEEE Canadian Conference on
Electrical and Computer Engineering, 2002, pp. 1045-1048.

Y. Choi, C. Ahn, and T. Kang, "Implementation of a Multi-channel G.723.1
Annex A using DSP," in International Conference on Consumer Electronics
(ICCE), 2002, pp. 320-321.

Y. Huang, Y. Juan, S. Zhang, et al., "Implementation of ITU-T G.723.1 Dual
Rate Speech Codec based on TMS320C601 DSP," in the Proceedings of the 5th
International Conference on Signal Processing (ICSP), Beijing, China, August
2005.



1. Introduction 20

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]
[43]

[44]

[45]

[46]

[47]

[48]

R. Ungureanu, B. Costinescu, and C. llas, "ITU-T G.729A Implementation on
StarCore SC140," Application Note, Motorola 2001.

S. Lee, S. Park, and Y. Jang, "Cost-effective implementation of ITU-T G.723.1
on a DSP chip,” in Proceedings of 1997 IEEE International Symposium on
Consumer Electronics, December 1997, pp. 31-34,

M. Schlett, "The RISC challenge in signal processing," in Proceedings of the 3d
of the IEEE International Conference onElectronics, Circuits, and Systems,
October 1996, pp. 550-553.

H. Shi, "RISC+SIMD=DSP," in Proceedings of the IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), June 2000,
pp. 3211-3214.

A. Wang, E. Killian, D. Maydan, et al., "Hardware/software instruction set
configurability for system-on-chip processors," in Proceedings of the 38th IEEE
conference on Design automation, Las Vegas, United States, 2001, pp. 184-188.

S. Leibson and J. Kim, "Configurable processors: a new era in chip design,” in
IEEE Computer. vol. 38, July 2005, pp. 51-59.

David Fritz, "Configurable Processors: Ready for Prime Time," in RTC,
http://www.rtcmagazine.com/home/article php?id=100066, January 2004.

R. E Gonzalez, "Xtensa: A configurable and extensible processor," in JEEE
MTicro, March/April 2000, pp. 60-70.

"ARC Cores Ltd, www.arc.com/subsystems."

Tom R. Halfhill, "Silicon Hive breaks out," in Microprocessor Report, December
2003.

G. Kuzmanov, G. Gaydadjiev, and S, Vassiliadis, "The MOLEN processor
prototype," in Proceedings of the 12th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines, 2004, pp. 296-299.

R. Kastner, A. Kaplan, S. Ogrenci Memik, et al., "Instruction Generation for
Hybrid Reconfigurable Systems," ACM Transactions on Design Automation of
Electronics Systems, vol. 7, pp. 605-627, October 2002.

Y. Chou, P. Pillai, H. Schmit, et al., "PipeRench Implementation of the
Instruction Path Coprocessor," in Proceedings of the 33rd annual ACM/IEEE

international symposium on Microarchitecture, Monterey, California, 2000, pp.
147-158.

C. Ebeling, D, C. Cronquist, and P, Franklin, "RaPiD-reconfigurable pipelined
datapath," in Proceedings of the 6th International Workshop on Field-
Programmable Logic, Smart Applications, New Paradigms and Compilers, 1996,
pp- 126-135.

M. B. Taylor, J. Kim, J. Miller, et al., "The Raw Microprocessor: A
Computational Fabric for Software Circuits and General-Purpose Programs,” in
IEEE Micro. vol. 22, March 2002, pp. 25-35.



1. Introduction 27

[49]

[50]

[51]

[52]

(53]

[54]

M. Wan, H. Zhang, V. George, et al., "Design Methodology of a Low-Energy
Reconfigurable Single-Chip DSP System," Journal of VLSI Signal Processing
Systems, vol. 28, pp. 47-61, May 2001.

Y. Choi and G. Lee, "Real-time implementation of G.723.1A/G.729AB on a
RISC processor for personal IP telephony devices," in Proceedings of the 9th
International Symposium on Consumer Electronics(ISCE), South Korea, 2005,
pp. 20-24.

A. Tripathi, S. Verma, and D. D. Gajski, "G.729E Algorithm Optimization for
ARMOI26EJ-S Processor," University of California, Irvine 2003.

H. Okuhata, M. H. Miki, T. Onoye, et al., "A low-power DSP core architecture
for low bitrate speech codec,” in Proceedings of the IEEE International

Conference on Acoustics, Speech and Signal Processing, Seattle, USA, May
1998, pp. 3121-3124.

C. Plessl and S. Maurer, "Hardware/Software Codesign in speech compression
applications,” in Institut fur Technische Informatik und Kommunikationsnetze
Zurich: Eidgenossische Technische Hochschule, February 2000.

V. A. Chouliaras, K. Koutsomyti, T. Jacobs, et al., "SystemC-defined SIMD
instructions for high performance SoC architectures," in 13th IEEE International

Conference on Electronics, Circuits and Systems, Nice, France, December 2006,
pp. 822-825.



CHAPTER 2
SPEECH CODING THEORY

2.1 Introduction

As already identified there is a major trend toward integrating voice-related applications
in the context of multimedia applications such as VoIP networks, simultaneous voice and
data (DSVD) applications, speech recognition, videoconferencing and so on [1]. This is
- consistent with the growing demand for wireless and satellite communications which
require enhanced privacy and high bandwidth. To meet these needs the speech signal is
transformed to digital format in order to be processed, stored and transmitted efficiently
under software control. Digital speech exhibits flexibility, ability for
encryption/decryption and error correction, however requires high transmission
bandwidth and storage capacity. To reduce these requirements, speech coding or speech
compression has emerged on the research field concerned with efficient digital
representations of voice signals for high-quality speech at low data rates [2]. Even though
the sampling rate cannot be lower than twice the bandwidth of analog speech, the past
decades several methods have been proposed to represent the sampled waveform with a
minimum number of bits while preserving its perceptual quality. These methods have
been adopted in a number of speech coders standards that are based on an optimum
tradeoff between efficient low-bit transmission, perceptual quality for the available
bandwidth and a combination of other objectives according to the requirements of every
application [2] [1]. In the next sections, a brief description of the speech coding
objectives and requirements will be given along with the speech production system. In
addition, the main coding strategies will be introduced and the two ITU standards used in

this research will be presented.
2.2 Speech Coding Objectives and Requirements

There are several objectives and requirements that a speech coder must meet for specific

target applications. These requirements define the basic bitrate, speech perceptual quality,

22



2. Speech Coding Theory 23

algorithmic complexity, cost and system delay of the selected speech codec. Therefore,
these influencing factors require careful consideration in order to converge towards an
optimum compromise between these often conflicting objectives. Speech quality and bit
rate are two factors that directly conflict with each other. The lower the bit rate of the
speech coder the higher the signal compression and the more the speech quality
degradation. Public Switched Telephone Network (PSTN) and associated systems such as
CCITT require high quality of encoding usually referred to as ‘toll quality’. For private
commercial networks and military systems, the quality factor may be reduced to lower
processing and bandwidth requirements. Although absolute quality is often specified,
sometimes it is compromised for a lower standard if other factors are allocated a higher
overall rating. In general, in a mobile radio system it is the overall average quality that is
the deciding factor and takes into account both good and bad transmission conditions.
Other important factors for the choice of a speech coding algorithm is the coding delay,

the immunity to error, the algorithm complexity and the implementation cost [3].

Coding delay includes algorithmic (the buffering of speech for analysis), computational
(time taken to process the stored speech samples) and transmission contributions. Only
the first two concern the speech coding subsystem though sometimes the transmission can
be initiated before the algorithm has completed processing all the information in the
analysis frame. In this case, the encoder starts transmission of the spectral parameters as
soon as they become available. Low delay is essential if the major issue of echo is to be
minimised. For mobile system applications and satellite communication systems echo
cancellation is already included as substantial propagation delays exist. In PSTN, where
the delay is very small, extra echo cancellers will be required if coders with long delays
are introduced [3]. The other problem with the delay is the subjective annoyance factor.
Therefore, all the standardised speech coders have specific requirements for the delay. As
it is known [4], the speech coding bandwidth occupies only a small fraction of the total
channel capacity, the rest is used for Forward Error Correction (FEC) and signalling, For
mobile connections which suffer from both random and burst errors, a coding scheme’s
built-in tolerance to channel errors is essential for acceptable communication quality, By
utilising built-in robustness, less FEC can be used resulting in higher source coding
capacity. This trade-off between quality and robustness is a difficult task and it is

considered from the beginning of the speech coding algorithm design. In order to achieve



2. Speech Codine Theory 24

a good average overall performance more sophisticated algorithms are created with
increased computational complexity. Therefore, the real-time implementation of such
algorithms under the additional constraints of size and power consumption is a major
issue and several techniques are employed to minimize multiple conflicting objectives
[4]. Before we describe the basic model of a vocoder and the various methods that exist,

we need to describe the principles of the speech production model.
2.3 Speech production system

The diagram of the main organs of the human anatomy involved in the speech production
mechanism is shown in Figure 2-1. The compressed air forced from the lungs to the vocal
apparatus pushes apart the vocal cords and creates an opening known as the glottis. When
the air passes through the glottis the pressure decreases and the opening closes. The
repetition of this process causes the vibration of the vocal cords and a high-energy quasi-
periodic speech waveform is produced and sent into the mouth and nose cavities. The
excitation of the vocal cords is filtered through the vocal apparatus which operates like a
spectral shaping filter with a transfer function that represents the spectral shaping action
of the glottis, vocal tract (pharynx and mouth cavity), lip radiation characteristics and so
forth [4] [5].

Hz
- 8192 ]
Upper tip 4096
LToﬂguIe 2048 | Typical
ower lip spechal
1024 Soprano range of
512 Tenor
1 ] | o
256 . wvocal cord
1 l ERE
128 Contralto l duning
64 J
32

Figure 2-1: Diagram of the human organs involved in speech production and the Spectral

Range of Speech

The excitation of the vocal apparatus with glottal vibrations generates voiced sounds and
the vibration fundamental frequency is known as pitch frequency. The unvoiced sounds,

such as whisper or aspirate, are lower-energy signals as the vocal cords do not participate



2. Speech Coding Theory 25

and the excitation behaves like noise generator. These sounds are produced by the
deliberately constricted air flow through the mouth. Constrictions can be produced by the
tongue, the position of the velum, the coupling of the vocal tract with the nasal cavity, the

teeth and the lips [4] [5].

Speech can be classified as voiced (e.g. /a/, /k/, etc), unvoiced (e.g. /sh/, /h/ etc) or mixed.
As mentioned above, voiced speech is quasi-periodic in the time-domain while unvoiced
speech is random-like. The pitch period that is identified by the positions of the largest
peaks of the quasi-periodic segments of the voiced signals, consists of approximately 80
samples [2]. Pitch frequency that is used alternatively with the term pitch period, typically
ranges for male speakers between 40-120Hz whereas for female speakers is much higher
and ranges between 300-400Hz [3]. In the frequency-domain the voiced speech is
harmonically structured and its spectrum is characterized by its fine and formant
structure. The fine harmonic structure, also known as long-term correlation, is attributed
to the vibrating vocal cords. The formant structure or spectral envelope or short-term
correlation is attributed to the interaction of the excitation and the vocal tract and is
characterized by a set of widened but distinctive spectral needles (peaks) that are multiple
of the pitch period and are called formants. Typically for an average vocal tract, three to
five spectral envelope peaks can be observed which appear usually around 500Hz,
1500Hz and 2700Hz and represent the resonances of the vocal tract. The amplitudes and
locations of the first three formants are vital for the speech synthesis and perception [2].
In contrast, the unvoiced speech does not have a formant structure and exhibits a more
high-pass nature with peak around 2500Hz. In addition the energy of unvoiced speech is

generally lower than that of voiced speech [4].

Excitation model Spectral shaping Radiation model | SPeech S(2)
E(z) filter H(z)

Figure 2-2: General speech production model

The speech reproduction is based on the extraction of the key information of the speech
signals [5]. The model of the speech production process is based on digital techniques and
a simplified block diagram is shown in Figure 2-2. In this model, the input is the

excitation signal which is generally approximated by an impulse sequence for voiced



2. Speech Coding Theory 26

speech or random noise for unvoiced speech. The excitation signal denoted by Efz)} is
filtered through a time-varying linear digital filter that represents the combined spectral
contributions of the glottis, vocal tract and lip radiation characteristics. The filter has a
transfer function H(z) that can be approximated by an all-pole model and whose
coefficients directly depend on the time varying geometry of the vocal apparatus. This
speech production model can produce high quality synthetic speech if the underlying
model parameters, speech power spectral envelope and the excitation model are
appropriateiy chosen [3] [5]. Even though the process of speech production is known, the
perception of the speech by the human auditory system remains a puzzle, It is still
unexplained how the recognition between voiced and unvoiced sounds takes place, the
ability to locate the position of a sound source (binaural hearing) or to separate a specific
voice from a noisy background (cocktail party effect) [2]. Hence there is ongoing

research in all these areas.
2.4 Coding strategies

Speech coding schemes can be broadly divided into three main categories: Waveform
coders, Hybrid coders and Vocoders. The general operations that these coding schemes
perform are to analyse the signal, remove the redundancy and efficiently code its non-
redundant parts in order to preserve its perceptual quality. These-coding schemes are
classified based on their encoding methodology and each has optimal operation within a

certain bitrate region [3].
2.4.1 Waveform Coders

Waveform coders are signal independent as they don’t exploit any specific properties of
speech. They are designed to work with any input signal that is appropriately limited in
amplitude and bandwidth. This has the advantage that waveform coders can also encode
other types of information such as signalling tones, voice-band data, or even music. By
preserving this generality, their coding efficiency is quite modest and limited to rates
above 16kbit/s [4]. However, they are still popular due to their simplicity and ease of
implementation. Waveform coders are further divided into time-domain and frequency-
domain. The most well known representative for the time-domain is the first speech
encoding standard 64kbit/s Pulse Code Modulation (PCM), the 32kbit/s Adaptive



2. Speech Coding Theory 27

Differential PCM (ADPCM) that has been standardised by the ITU Recommendation in
G.721 and the Adaptive Delta Modulation (ADM) [3]. Time-domain coders utilise the
redundancy in the speech waveform by exploiting the correlations between adjacent
samples and encode only the difference between them. In addition, they use predictors at
the receiver end to reduce the variance of the encoded signal and consequently the
number of bits needed to represent it. Frequency-domain waveform coders exploit the
redundancy of the signal in the transform domain. The signal is split into a number of
sub-bands and each sub-band is encoded by using a different number of bits. The various
methods differ in the way they represent the short-time power spectrum of speech and
also in the perceptual properties of the human ear. The most well known frequency-
domain coders are the Sub-Band Coding (SBC) and the Adaptive Transform Coding
(ATC) [4].

2.4.2 Voice Coders (Vocoders)

Vocoders lie at the opposite end of waveform coders. They deal with speech-specific
signals and in particular the physical principles behind speech and as such they do not
attempt to reproduce the input waveform [2]. Hence, the performance of vocoders
degrades significantly for nonspeech signals. The design and implementation of a
vocoder is based on the speech production model that described in section 2.3. This
model represents the human speech production mechanism and s;;eciﬁes the basic
parameters needed to be extracted from the input speech signal in order to reproduce it as
faithfully as possible [4]. Vocoders traditionally operate at rates below 4.8kbits/s which is

their main advantage however the produced speech sounds often crude and synthetic.

The preservation of the speech power spectral envelope and the preservation of the
voicing information are the two factors that vocoder engineers use when designing speech
codecs. These can then be used to re-synthesise speech sounds [3]. A vocoder consists of
two parts: analysis and synthesis. The analysis takes place in the encoder where the
parameters that describe the vocal excitation and the vocal transmission are extracted
from the speech signal. At the decoder the received mformation is utilised to synthesize
the signal that sounds like the original speech. The concepts that are associated with the
vocoders were introduced as early as 1939. These concepts incorporate the two-state

excitation (pulse/noise), voicing and pitch detection, and filter-bank representation. The



2. Speech Coding Theory 28

simple excitation model is related to very low bit-rates but at the same time it is
responsible for the synthetic quality of speech that is one of the main disadvantages of
vocoders. In addition, the estimation parameters that describe the spectral envelope need
reliable envelope estimators. Estimators based on linear prediction and homomorphic
signal processing were developed around 1960 and this challenging area provoked further
research and spawned the development of several methods with improved guality and
increased complexity. Channel vocoder is one of the first vocoding systems. It uses a
bank of band-pass filters (typically 16 channels) to represent the speech spectrum. The
two-stage excitation is utilised and if it is voiced the fine structure is represented using
pitch-periodic pulse-like waves while if it is unvoiced it is reproduced using noise-like
excitation. Even though the resulting speech is intelligible, the quality is quite synthetic.
The Formant vocoders use a similar method to the channel vocoders but the
representation of the spectrum needs only the frequencies and the spectral amplitudes of
the formants. As a result, they achieve further band savings. Another category is the
Homomorphic vocoders that are based on the idea that convolution of the vocal tract
impulse response and the vocal excitation can represent the speech log-magnitude
spectrum. The output speech has good quality and by applying predictive encoding the
fransmission rate can be reduced to 4kbit/s. In general, frequency-domain vocoders are
more robust to channel errors and background noise but with low, synthetic speech
quality. Time-domain vocoders however such as the Linear-Predictive vocoders produce
highly intelligible speech making them one of the most popular techniques for speech

coding but they are very sensitive to channel errors and noise [2].
2.4.3 Hybrid Coders

Hybrid coders fill the gap for coding rates between 4.8-16kbit/s by incorporating the
advantages of both vocoders and waveform coders in order to provide acceptable and
natural speech at lower bit rates [4]. These codecs model the spectral properties of speech
and exploit the perceptual properties of the ear for the minimal representation of the voice
signal like the vocoders. Hybrid codecs produce more faithful waveform representation

and as a result, more robust and better quality speech as the waveform coders [2].

Hybrid coders are broadly divided into two main categories: frequency domain and time

domain. The frequency domain coders divide the speech spectrum into frequency bands



2. Speech Coding Theory 29

or components by using a filter bank or block transform respectively. These coders are
based on the assumption that the signal is slowly time-varying. Hence the short-time
segment of the input signal can be modelled with a short-time spectrum. The most
commonly known coding schemes in this category are Sub-band Coding (SBC) and the
Adaptive Transform Coding (ATC) that operate at bit rates between 9.6 to 16kbits/s.
Another frequency-domain codec is the Multi-band Excited Vocoder (MBEV). This
codec with effective pitch modelling can produce good quality speech for bit rates as low
as 4.8kbits/s. A lower bit rate can be achieved by using a modified version of MBEV that
represents the harmonic magnitudes by an LPC filter [3],

Time domain hybrids coder are very similar to the Linear-Predictive coders with a portion
of the original signal to be transmitted instead of pitch and voicing information. They
employ the speech source model described in section 2.3 in which the excitation is
represented by a linear time-varying filter with a periodic pulse-train for voiced speech or
a random noise for unvoiced speech. Though there are several forms of time domain
hybrid coders, the most successful and commonly used are time-domain Analysis-by-
Synthesis (AbS) codecs. Examples of AbS codecs are the Residual Excited Linear
Prediction (RELP), the Code-Excited Linear Prediction (CELP), the Voice Excited Linear
Prediction (VELP) and the Multipulse Excited Linear Prediction (MELP) coders [3].

2.4.3.1 Analysis by Synthesis

Analysis-by-Synthesis speech coders have been widely adopted as they produce good
quality speech while maintaining a low bit-rate (between 4.8-16kbit/s) at the cost of high
computational complexity [4]. In the AbS approach, the encoder (analysis) incorporates
the decoder (synthesis) to determine the excitation signal and uses linear prediction
techniques to calculate the coefficients of the speech synthesis filter. The basic structure
of an AbS-LPC coding system is depicted in Figure 2-3. There are three main sub-blocks
in the model that are used to obtain a good synthesised speech signal [3].

»  Time-varying filter (synthesis filter)
»  Excitation generator

= Perceptually based mintmisation procedure



2. Speech Coding Theory 30

In the analysis procedure, the input speech is partitioned into blocks of samples (frames)
whose length and update rate determines the bit rate of the coding scheme [4]. The
decoded speech is produced by filtering the signal produced by the excitation generator
through both a long-term (Pitch synthesis) filter and a short-term (LPC synthesis) filter.
The excitation signal is found by minimising the mean-squared error over a block of
samples. The error signal is the difference between the original and decoded signals and it
is perceptually weighted by a weighting filter. In the end, the quantized filter parameters
and the vector quantized excitation are transmitted to the decoder. As shown in Figure 2-3
the decoder uses an identical structure with the encoder, where the synthesized speech is
generated by filtering the decoded excitation signal through the synthesis filter. The long-
term predictor filter models the long-term correlation (spectral fine structure) in the
speech signal and its coefficients are adapted at rates varying from 100-200 times/s. An
alternative structure for the pitch filter is the adaptive codebook in which the filter is
replaced by a codebook that contains the previous excitation at different delays. The
resulting vectors are searched and the one that best matches is selected and scaled with an
optimal scaling factor. The short-term synthesis filter models the short-term correlation
(spectral envelope) in the speech signal. This is an all-pole filter with an order between 8
and 16 and its coefficients are determined using linear prediction techniques for each

frame.

Input Speech
ls(n)
n
Excitadon un) | Synthesis sn) o el
Generaton - Filter ,.U
Error . E.Jn) Error
Minimisation Weighting
Encoder
Excitation uln) Synhesis 3tn) Reproduced
Generation Flter [ Speech
Decoder

Figure 2-3: Analysis by Synthesis Code



2. Speech Coding Theory 31

The synthetic speech is generated in the encoder and decoder in order that both ends
contain identical conditions in their filter memories. In this way, all the parts of the codec
remain synchronised without the need for the memory parameters transmission.
Preserving the identical conditions in both ends is one of the biggest challenges as this
type of codec is very sensitive to channel errors [3]. Another important factor is the
representation of the excitation signal of the time-varying filter. Three main excitation
models for Analysis-by-Synthesis Linear Predictive Coding (AbS-LPC) are the multi-
pulse model, the regular pulse excitation model and the vector or code excitation model

[2].

The International Telecommunication Union (ITU) has created a number of speech
coding standards for different voices qualities and bandwidth requirements. All current
low-rate speech coders are based on AbS-LPC coding. In the following sections the two
ITU standards, G.729A and G.723.1, studied in this research will be presented.

2.5 G.729A Speech Coding Standard

The G.729A [6] speech coding standard is a reduced complexity version of Conjugate-
Structure Algebraic-Code-Excited Linear-Prediction (CS-ACELP) coder of the ITU
(G.729 recommendation [7]. It is designed for multimedia digital simultaneous voice and
data (DSVD) applications though its use is not limited to these areas. G.729A grew from
the need for low complexity (around 10 MIPS) speech codecs with speech quality
equivalent to G.726 at 32kbits/s and operation bitrate of 11.4kbits/s and lower, in 1995.
G.729A produces high quality speech (almost toll quality), in most conditions equivalent
to G.726 at 32kbits/s, at a low bit rate of 8kbit/s. The complexity of this algorithm is
typically 11 MIPS that is 50% less complex than G.729 (22 MIPS) with a small
degradation in performance in the case of three tandems and in the presence of
background noise [4]. The G.729A has a 5ms look-ahead, 10 ms processing delay, 10 ms
transmission delay and the overall one-way system delay is 35ms. The amount of RAM
that required is 3000 words [8]. This coder belongs to the time-domain Analysis-by-
Synthesis class of speech coders. The encoder and the decoder dataflows of G.729A are
depicted in Figure 2-4 and Figure 2-5 respectively [9].



2. Speech Coding Theory 32

(i
sm:-::‘hﬁ’{ Preprocessing
|
Quantization —g——

Fixed
Codehook

Transmitted
L — — - Bitstream

Figure 2-4: G.729A Encoder

The excitation for the synthesis filter is obtained by combining the outputs of two
codebooks based on the analysis-by-synthesis search procedure. An adaptive codebook is
used to model the long-term periodicities which represent the pitch (fine) structure of
voiced speech and a fixed codebook that models the random noise-like unvoiced sounds
such as nasal or plosive utterances. The excitation signal is then applied to a tenth-order
synthesis filter whose transfer function models the human vocal tract. The residual error
between the reconstructed speech produced by the synthesis filter and the original input
speech is processed by a perceptual weighting filter in order to produce the perceptually
weighted error. The minimization of this error determines the adaptive codebook index
and gain for the optimum excitation sequence. The closed-loop search of the fixed
codebook is implemented by using an algebraic codebook that simplifies the
determination of the codebook parameters and makes real-time operation possible. The
index and gains for both codebooks are assembled together with the synthesis filter
coefficients to form the bitstream transmitted to the decoder. This entire process is

repeated for every 10ms frame of the speech signal [7].



2. Speech Coding Theory 33

Shart-lem i Post. ! Spaech Qutput

Filter Procassing

[ '
1 1

Figure 2-5: G.729A Decoder

At the decoder the received bitstream is used to extract and decode the encoder
parameters corresponding to a 10 ms speech frame. These parameters give the synthesis
filter coefficients and select the entries for the adaptive and fixed codebooks to represent
the excitation to this filter. The excitation is constructed by adding the adaptive and fixed-
codebook vectors scaled by their respective gains. The excitation is filtered afterwards by
the synthesis filter and the speech is reconstructed. Additional post-processing of the

reconstructed speech signal is performed to enhance its perceptual quality [7] [10].

Most of the G.729A codec is identical to G.729 with changes to the following parts of the

codec in order to reduce complexity:

= The perceptual weighting filter uses a more traditional error weighting filter.

* The open-loop search for the pitch delay uses for the calculation of the
autocorrelation function only the even samples of the weighted input.

= The closed-loop pitch search is achieved by maximizing a simpler
(approximated) term than in G.729 that causes some degradation as the chosen
adaptive codebook delay differs by 1/3 from the chosen in G.729.

* The algebraic codebook search is simplified by searching only 640 codebook
entries per frame compared to 2880 codebook entries in G.729, using a depth-
first tree search method.

*  The decoder post-processing is simplified by using only integer delays and thus
the complexity is reduced to 1 MIPS compared to 2.5 MIPS of G.729 [6].

2.6 G.723.1 Speech Coding Standard

ITU Recommendation G.723.1 [11] was designed for low-bit rate videophone, internet

phone and particularly as part of the H.324 multimedia standard. The G.723.1 has two



2. Speech Coding Theory 34

transmitting bit rates at 5.3 and 6.3kbit/s. The higher bit rate has greater quality while the
lower bit rate gives good quality and offers more design flexibility. It is possible to switch
between the two rates at any 30ms frame boundary. The G.723.1 dual-rate codec was
mnitially referred to as G.723. However, because under this name coexisted the older
ADPCM-based G.723 standard, this scheme was renamed G.723.1 in order to avoid
confusion. The G.723.1 is based on Linear Prediction Analysis-by-Synthesis coding
carried out for 30 ms or 240-sample speech segments with a look-ahead of 7.5ms, giving
a total delay of 37.5 ms [4]. This codec employs Algebraic-Code-Excited Linear-
Prediction (ACELP) for its 5.3kbit/s rate and it has algorithmic complexity of 14.6MIPS.
For its 6.3kbits/s mode of operation uses Multi-Pulse Maximum Likelihood Quantization
(MP-MLQ) excitation and it has complexity of 16 MIPS. Both modes of operation use
2200 words of RAM [8]. Its dual-rate principle is very useful for intelligent multimode
transceivers which are reconfigured at each speech frame boundary to provide more
robust but lower speech quality or higher speech quality with less immunity to error. In
addition, the G.723.1 utilises voice-activity controlled transmission (higher rate for active
speech and lower rate for background) and comfort noise generation (CNG) for passive

speech intervals [4].

The G.723.1 encoder operates on blocks of 30 ms [11]. Each block is first high-pass
filtered to remove the DC components and then divided into 4 subframes of 60 samples
each. For every subframe, the coefficients of the 10th order Linear Prediction Coding
(LPC) filter are determined. The LP coefficients of the last subframe are converted to
Line Spectral Pair (LSP) and quantized using a Predictive Split Vector Quantizer
(PSVQ). The other subframes are used to construct the short-term perceptual weighting
filter in order to obtain the perceptually weighted speech signal that is used for the open
loop pitch period computation. The estimated open loop pitch period is used to construct
a harmonic noise shaping filter. Then the combination of the LPC synthesis filter, the
formant perceptual weighting filter, and the harmonic shaping filter produces the impulse
response. An initial pitch period estimation is derived from the formant-weighted speech
signal in an open-loop search. The impulse response along with the pitch period
estimation is used for a more accurate closed-loop search which takes place in the fifth-
order pitch predictor. Consecutively, the pitch period is calculated as a small differential

value around the open loop pitch estimate and the effect of the refined pitch predictor is



2. Speech Coding Theory 35

removed from the speech signal. Depending on the operation mode, the resultant residual
signal is subjected to either MP-MLQ for 6.3kbits/s rate or ACELP for 5.3kbits/s. Finally,
the pitch period and the differential value along with the LPC coefficients are transmitted
to the decoder [11]. The detailed block diagram of the G.723.1 encoder is depicted in
Figure 2-6.

Figure 2-6: G.723.1 Encoder

At the decoder, the quantized LPC indices are decoded and used to construct the LPC
synthesis filter. The adaptive codebook excitation and fixed codebook excitation are
decoded for every subframe and feed the synthesis filter.

|

:

Figure 2-7: G.723.1 Decoder



2. Speech Coding Theory 36

The excitation signal input the pitch postfilter in order to improve the quality of the
synthesized signal and the output of the postfilter feeds the synthesis filter consequently.
The output of the synthesis filter feed the formant postfilter whose energy level is
maintained by the gain scaling unit. The block diagram of the G.723.1 decoder is shown
in Figure 2-7.

2.7 Summary

In this chapter a brief introduction of speech coding was given by discussing the coding
objectives and requirements and presenting the basic speech source models.
. Consequently, the basic principles of the main coding techniques were introduced with
more emphasis placed on the' analysis-by-synthesis hybrid codecs as this type is
employed in low bit-rate speech coders for multimedia applications. Finally, the
characteristics and the basic operation of both ITU standards, G.729A and G.723.1,

employed in this research were discussed.



2. Speech Coding Theory

37

2.8 References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

(8]

(9]

[10]

[11]

K. Diefendorff and P. Dubey, "How Multimedia Workloads Will Change
Processor Design," in IEEE Computer. vol. 30, September 1997, pp. 43-45.

A. 8. Spanias, "Speech Coding: A tutorial review," Proceedings of the IEEE, vol.
82, pp. 1541-1582, October 1994.

A. M. Kondoz, "Digital Speech: Coding for Low Bit Rate Communications
Systems," John Wiley & sons, 1994, pp. 117-123.

L. Hanzo, C. Somerville, and J. Woodard, "Voice Compression and
Communications: Principles and Applications for Fixed and Wireless Charnels,”
Wiley-Interscience, 2001, pp. 3-10, 65-67, 269-274.

R. M. Nickel, "Automatic speech character identification,” in JEEE Circuits and
Systems. vol. 4, Fourth Quarter 2006, pp. 10-31.

ITU-T Recommendation G.729A, "Annex A: Reduced complexity 8 kbits/s CS-

"ACELP speech codec," 11/96.

ITU-T Recommendation G.729, "Coding of speech at 8 kbit/s using conjugate-
structure algebraic-code-excited linear-prediction (CS-ACELP)," 3/96.

R. V. Cox and P. Kroon, "Low bit-rate speech coders for muitimedia
communication," in IEEE Communications Magazine. vol. 34, December 1996,
pp. 34-41.

ITU-T Recommendation G.729A, "Coding of speech at 8 kbit/s using conjugate-
structure algebraic-code-excited linear-prediction (CS-ACELP)," 3/96.

K. Koutsomyti, S. R. Parr, V. A. Chouliaras, et al., "Scalar and parametric vector
accelerators for the G.729A speech coding standard," in Proceedings of
IEE/ACM SoC Design, Test and Technology Postgraduate Seminar,
Loughborough University, September 2004, pp. 53-57.

ITU-T Recommendation G.723.1, "Dual Rate Speech coder for multimedia
communications transmitting at 5.3 and 6.3 kbit/s," 3/96.



CHAPTER 3
SOFTWARE AND HARDWARE PARALLELISM

3.1 Overview of Parallelism

The proliferation of dynamic multimedia applications such as videoconferencing,
image/speech processing and compression, 3D graphics, animation, Virtual Reality
Modelling Language, encryption etc has changed the processing workloads of embedded
processors significantly [1]. In order to run these multimedia codes efficiently and in real
time there is need for high-performance application-specific processors. One approach to
improve processor performance is to increase the clock speed. Though this may seem
easy at first, the increase of a circuit’s clock speed is a direct function of the chosen
implementation technology. More importantly, this causes a high increase in the dynamic
(switching) power dissipation rendering high-frequency designs unusable for power-
constrained consumer applications. An alternative approach to improving processor
performance is to increase the number of operations executed per clock cycle [2]. This
approach yields very high performance and it is independent of the underlying circuit
technology. In order to achieve this, multiple operations must be scheduled to execute in
parallel in the extra functional units or processors. To make this, various techniques have
been employed to exploit the inherit parallelism in modem applications and speed up
their execution. The key to achieving high performance in current and emerging
workloads is parallelism. The performance limit is set by the available parallelism in the
application and the amount of the adaptation needed on the source code in order to allow

the processor to exploit it [3].

The idea of parallelism to increase processor performance has been introduced as early
as 1961 with the pipelining technique introduced by Stretch, the IBM 7030 processor [4].
Pipelining is a micro-architectural technique to exploit the parallelism that exists among
the actions (steps) needed to complete the execution of an instruction. In this way,
different parts of multiple instructions in a sequential instruction stream are overlapped in
execution and thus, their completion time decreases [5]. Pipelining is the first form of the

Instruction Level Parallelism (ILP) even though it is considered nowadays a low-level

38



3. Software and Hardware Parallelism 39

parallelism mechanism. Another form of parallelism (DLP, TLP) was exploited in 1964
with the Control Data Corporation (CDC) 6600 CPU [6]. This processor used ten
functional units that could operate in parallel and could perform ten unrelated operations
per cycle introducing with this way the concept of Data Level Parallelism (DLP) and ILP.
In addition, it had ten identical peripheral processors that operated independently and
simultaneously and could execute up to ten programs at the time introducing the idea of
Thread Level Parallelism (TLP). Conclusively addressing all forms of parallelism
however is a recent achievement enabled by advances in silicon technology and
EDA/tools/compilers. In the following sections an overview of the three main techniques
of -parallelism: ILP, DLP and TLP will be given with more emphasis in DLP as it forms
the basic target of this research. Limitations in parallelism exploitation are imposed from
dependences that are found in every code sequence. These dependences can cause
structural stalls, data hazard stalls or control stalls thus reducing the performance [2].
There are three different types of dependences: data dependences, name dependences, and

control dependences [2].
3.2 Data Dependences

An instruction is data dependent on another instruction if its execution uses as input a
value created by a previous execution of the latter [7]. The data dependence implies the
two instructions cannot execute in parallel or be overlapped as it will affect the
correctness of the program [5]. An example of this type of dependence, also known as

true data dependence, is illustrated in Figure 3-1.

Sl Loop: 14 rl, f[a0]; load array element a

52 add rd, rl, r2; add array element to r2
53 st rd, [c, r0]; store result to array b
54 add rQ, r0, #1; increment counter

55 bnez r0, Loop: branch to loop if r0!=0

Figure 3-1: Code snippet that shows the data dependences

The data hazards caused from data dependence are known as RAW (Read after Write),

referring to the order in which instructions are presented in the pipeline. This type of data



3. Software and Hardware Parallelism 40

hazard occurs when one instruction reads one register operand before that operand is
produced from an earlier instruction, resulting in the use of the wrong register operand.
Dependences are detected and data hazards are avoided within a processor with pipeline
interlocks that force execution stall. In VLIW architectures a compiler performs the
instruction scheduling and hides such data dependences rendering the use of interlock

logic unnecessary [5].
3.2.1 Name Dependences

There are two types of name dependence: antidependence and the output dependence. An
antidependence occurs when an instruction reads from the same register or memory
location that another instruction writes. This gives rise to WAR (Write after Read) data
hazards as an instruction writes in a destination before this is read from another
instruction resulting in the latter reading the new (incorrect) value. This violates program

semantics [5].

An output dependence occurs when two instructions write to the same register or memory
location. This type of dependence causes a WAW (Write after Write) data hazard which
occurs when the value written in the destination was written from the wrong instruction.
Apgain the order is important as the final value must be from the first (in chronological
order) instruction. Both types of dependences are not true data dependences and the
involved instructions can execute simultaneously or even be reordered as long as the
common register name or the memory location are renamed statically by a compiler or

dynamically by the hardware [3].
3.2.2 Control Dependences

Control dependence determines the ordering of an instruction with respect to a branch in
order for the instruction to execute the cotrect program order [5]. Hence an instruction
that is control dependent on a branch (e.g. in the THEN statement of an IF conditional)
cannot be moved before the branch so its execution is no longer controlled by this. In
addition, an instruction that is not control-dependent on a branch (e.g. before an IF
conditional) cannot be moved after the branch and its execution become controlled by the

branch. Therefore, branches limit the ways that code can be re-arranged for optimum



3. Software and Hardware Parallelism 41

execution performance. According to Intel, 20-30% of the processor performance is left
un-tapped due to branch mispredictions [8]. Branch prediction and predication are some
of the methods to increase the parallelism without causing any exceptions or changing the
data flow [5].

3.3 Types of Parallelism

As mentioned above the objective behind exploiting parallelism at multiple levels is to
maximise the execution performance of an application. Several architectural techniques
have been employed to exploit effectively these forms of parallelism. Flynn’s taxonomy
(1986) [9] categorised computer architectures into four categories according to the

parallelism in the instruction and data streams that they can handle:

¢ Single instruction single data (SISD)

» Multiple instruction single data (MISD)

¢ Single instruction multiple data (SIMD)

¢ Multiple instruction multiple data (MIMD)

According to Flynn's taxonomy a scalar uni-processor is classified as a SISD system as
only one instruction is issued per cycle and that instruction operates on a single piece of
data. MISD category hasn’t been implemented in any commercial multiprocessor as it
does not improve the performance of a system. However, it is expected to have
application in fault-tolerant architectures for aerospace. Since it allows a degree of
redundancy (it issues multiple instructions on the same dataset) it can be introduced in
safety-critical systems. The other two categories correspond to the three different forms
of parallelism: Data-Level Parallelism (DLP) is the case of SIMD where identical
operations are applied in arrays of data. This form of parallelism is found typically within
loops where the same transformations apply to arrays of data, Vector architectures are the
most efficient means for exploiting this type of parallelism. Instruction-Level Parallelism
(ILP) is a case of MIMD since it issues multiple instructions that operates in multiple
data, This can be in the form of a number of microarchitectures differentiated by their
instruction scheduling techniques and dispatch width. Finally, Thread-level parallelism
{TLP) which is a different aspect of MIMD is regarded as one of the most profound forms

of parallelism since it involves multiple processors operating in parallel. Within the TLP



3. Software and Hardware Parallelism 42

domain, separate instruction streams execute on separate functional units (processor

contexts) on separate (multi-programming) or the same (multi-threading) datasets.

Flynn’s taxonomy does not apply precisely on today’s architectures as modern embedded
processors typically belong to more than one category in Flynn’s taxonomy. It is a useful
framework however in the processor design space. In the following sections an overview
of the three different types of parallelism will be given along with the architectural

techniques required to exploit these forms effectively.
3.3.1 Instruction Level Parallelism

Instruction-level parallelism (ILP) is the architectural technique that exploits the available
parallelism at the instruction {operation) level and executes multiple such operations
concurrently [2], [10]. This overlap in the execution of instructions is achieved by
extracting independent instructions from a program sequence [11]. The idea of ILP
appeared as early as 1960’s in the IBM Stretch 7030 (1961) [4] and the Control Data
6600 (1964) [6]. Even though Stretch was a commercial failure, it introduced ideas such
as pipelining and dynamic instruction issue mechanism based on Tomasulo’s algorithm
[12] that are in use even today [4]. Pipelining is a primitive form of ILP as it allows the
execution of multiple instructions in different stages of the processor simultaneously.
Thus, different multicycle operations may share the same hardware by using different
parts of it in different cycles. Nowadays pipelining is considered a low-level mechanism
that has contributed significantly to the performance of modern computers and since 1985
it is part of every processor architecture [5], [13]. Seymour Cray’s CDC 6600 removed
the instructions handling the memory and the /O from the main CPU and implemented
them in a set of peripheral processors. Additionally, it included ten functional units that
performed arithmetical-logical instructions at the same time. In this way, the main CPU
(arithmetical-logical instructions) and the peripheral processors (memory and L/O
instructions) could operate in parallel improving considerably the performance and
making it the world’s fastest computer until 1969 [6]. In the following years there was a
wide range of techniques that extended the idea of ILP and increased the amount of

parallelism exploited among instructions.



3. Software and Hardware Parallelism 43

A processor that employs ILP is typically called multiple-issue and follows a similar
execution model as a normal RISC machine [10]. Resources operate in parallel and there
may be a multiplicity of functional units that implement the same datapath functions in
order to enable more parallelism. Thus, ILP involves two extra factors to accelerate
programs: multiple issue and extra functional units. More than one operation can be
issued in a given cycle and executed by using replicated or different functional units. ILP
is dependent on developments in hardware technology such as circuit speed and power
optimization [10] [14]. Since ILP is an architectural technique for achieving higher
performance by executing multiple low level operations (such as adds, multiplies, loads
etc) at the same time it requires special logic in the fetch stage of the processor [10]. This
additional logic unrolls the program sequence and reschedules the order of the
instructions in order to arrange multiple operations in a parallel manner before execution
and avoid or reduce the stalls caused from data dependences while maintaining the

program data flow [5].

b L
] » i N B

118

. i

Instructions width= 4

g 7
'\’ \'\/;
- IR .
& @ & &
-

/ /-'
Functional Units

T

Figure 3-2: Multiple-issuing of instructions in an ILP architecture

These instructions are subsequently issued to the functional units that operate in parallel
[15]. The number of the instructions that can be issued and executed each cycle
determines the width of the processor. Figure 3-2 shows multiple-issue in a 4-wide ILP

architecture. Special logic detects dependences, reorders the instruction sequence,



3. Software and Hardware Parallelism 44

unrolling loops, and ensures that instructions are committed in order to maintain a
precise-exception environment to software [10]. This is achieved using either dynamic or
static scheduling [2]. The dynamic scheduling approach uses special logic to identify data
dependences and rearrange the instructions dynamically in order to reduce stalls while
maintaining the exception and data flow behaviour [2]. The disadvantage of this method
is a large amount of extra hardware and thus, extra power consumption compared to an
in-order processor. This approach is used in the superscalar and data flow processors [10].
On the other hand, static scheduling uses the compiler instead of dedicated hardware to
exploit the available parallelism and keep busy as many functional units as possible.
Advances in compiler technology can achieve a similar result thus disposing with all
these hardware structures. Very Long Instruction Word (VLIW) [15] [16] processors
employ such static, compiler-intensive scheduling. A compiler’s ability to perform static
scheduling depends on the amount of the available ILP in the program, the latencies of

the functional units in the pipeline and the number of registers (storage) in the processors.

3.3.1.1 Superscalar Processors

Superscalar processors are either statically scheduled (using compiler techniques) with in-
order execution or dynamically scheduled (using techniques based on Tomasulo’s
algorithm) with out-of-order execution [2]. Superscalar processors began to appear in the
mid-to-late 1980s and for many years they were viewed as the logical next step in RISC
movement [14]. There is a wide range of superscalar implementations with different
degree of complexity ranging from the DEC Alpha [17] which has a strictly RISC ISA to
the Intel X86 [18] that is considered a CISC ISA [14]. The first commercial single-chip
superscalar microprocessors were the Intel i1960CA (1988) [19] and the AMD 29000-
series 29050 (1990) [20].

The statically scheduled approach was used in the early superscalar processors in which
instructions were issued in order and all the types of hazards were checked at the issue
time [2]. The pipeline control logic -detects data or structural hazard only across the
instruction packet currently at the decode stage. This type of superscalar processor
employs hardware to perform the instruction issuing and hazard detection but scheduling
uses software techniques. Sun UltraSPARC II/ITI are statically scheduled superscalar

Processors.



3. Software and Hardware Parallelism 45

cPU

B4

e — i T

Functional Units
Figure 3-3: Dynamic Instruction Scheduling

Dynamically scheduled superscalar processors employ hardware to rearrange the
instruction execution to reduce stalls and simultaneously dispatch multiple instructions
per cycle to multiple functional units [14] [2]. This technique handles data dependences
unknown at compile time (e.g. a memory reference) simplifying the compiler at the
expense of hardware complexity. Additionally, it can reschedule an already compiled
code to run on a different pipeline to increase the processor performance [2]. Figure 3-3
depicts the dynamic instruction scheduling of a superscalar processor. Dynamically-
scheduled superscalar processors don’t require any re-compilation of the source code as
they adapt their execution behaviour dynamically according to the application binary.
Such processors exhibit limited scalability due to their complexity. Superscalar
processors employ speculative execution to overcome the limitation of control
dependences caused by branches. Branch prediction is not sufficient in ILP case as, for a
wide issue processor, one or more branches may execute in every cycle. Speculative
execution combines dynamic branch prediction to select the instruction stream that will
be fetched. There are hardware resources dedicated to undoing the effects of a
misprediction and/or dynamic scheduling [2]. The dynamic scheduling approach
dominates the desktop and server markets and it is used in many successful processors

such as Pentium III and IV, MIPS R10000/12000, AMD Athlon, PowerPC etc [2].



3. Software and Hardware Parallelism 46

3.3.1.2 VLIW Processors

The alternative to the superscalar approach is to employ compiler technology to check for
dependences across the instructions of a program sequence, reorder them to minimize the
potential hazard stalls and group them into fixed-length packets that will be issued to the
processor. Each fixed-length packet resembles a very long instruction that contains
multiple independent operations that can execute in parallel and for this reason this type
of architecture was named Very Long Instruction Word (VLIW) [2]. Figure 3-4 illustrates

static instruction scheduling of a VLIW processor.

v
/

Functional Units

Figure 3-4: Static Instruction Scheduling

An early form of VLIW was processors using horizontal microcode, originally designed
for signal processing applications [10]. An example of this type of processor designed to
accelerate floating-point computations was the Floating Point Systems [21] FPS-164 and
FPS-264 CPUs. These processors were very fast but limited in programmability and
application area due to their complexity. The term VLIW was introduced by J. Fisher
who developed a compiler that relied on trace scheduling in order to generate horizontal
microcode (LIWs) for ordinary programs [22]. Trace scheduling is an optimizing

compiler technology that performs loop unrolling and static branch prediction and allows



3. Software and Hardware Parallelism 47

the processor to exploit the available parallelism beyond basic blocks [22], [2].
Additionally Fisher suggested the co-design of the compiler and the VLIW processor in
order to simplify the scheduling algorithms. In 1980’s they were three general-purpose
VLIWs with varying degrees of parallelism [10]; TRACE from Multiflow Computers Inc
[23], Cydra 5 from Cydrome [24] and the Culler-7 from Culler Scientific Systems. These
processors, though not commercially successful, developed methods and technologies
that influenced the VLIW design philosophy. Current examples of contemporary VLIW
CPUs include the TriMedia media processors [25] by NXP (formerly Philips
Semiconductors), the SHARC DSP by Analog Devices [26], the C6000 DSP family by
Texas Instruments [27], and the STMicroelectronics ST200 [28] family based on the Lx
architecture. These contemporary VLIW CPUs are primarily successful as embedded
media processors for consumer electronic devices. In addition, the new Intel 1A-64 [29]
architecture utilizes VLIW techniques to create a scalable instruction-level parallel

processor family.

Because of the nature of VLIW processor instructions, they are generally statically
scheduled by a compiler removing the need for a complicated scheduling logic. In
addition they are highly scalable but require the source code re-compilation across
implementations [2]. VLIW is more effective as the number of issues per cycle becomes
larger [2]. In the case that they are not enough independent instructions to execute in
parallel the fixed-length packet includes NOP instructions which can lead to oversized
code. There are several solutions for this problem; Sun MAJC and Tensilica's Xtensa
LX2 [30] processor for example utilise variable-length packets to issue per cycle,
Tnmedia TM3270 compress the code stream in memory and un-compress them when

they are loaded in the instruction code and so on.

An advanced form of VLIW that is not used in embedded processors and embodies new
principles is the Explicitly Parallel Instruction Computing (EPIC) processors [2][16].
EPIC is a design philosophy that enhances instruction level parallelism and supports
explicit parallelism. Explicit parallelism is supported by large parallel execution resources
and large register files. EPIC architectures use the compiler to perform full specutative
execution and instruction predication to increase parallelism in a program sequence.
Speculation is a technique that reduces the effects of memory latency by performing

speculative loading. Predication allows conditional execution without branches implying



3. Software and Hardware Parallelism 48

larger basic blocks [31]. Furthermore, this type of architecture allows some degree of
scalability in issue-width implementation to accommeodate the resource limits in various
applications [16]. The ISA that implements the ideas embodied in EPIC is the IA-64; the

first implementation of that ISA was the Merced processor.
3.3.2 Data Level Parallelism

Data Level Parallelism (DLP) is a very important leverage in high performance
computing. This paradigm uses vectorization techniques to operate in a large amount of
independent data by executing a single instruction {vector instruction) stmultaneously on
arrays of elements [5]. Multimedia-rich applications involve real-time processing of
continuous data streams in the form of vectors of packet 8- 16- and 32-bits integers and
floating point numbers and undergo identical processing such as filtering, transformation
etc. The microarchitectures capable of extracting this fine-grained data-parallelism are
different than those used in fine-grained instruction-level parallelism. The most efficient
method to exploit this fype of data is by employing machines with SIMD hardware units
that can execute whole loops in parallel [1]. These machines are known as vector
processors and their advantages over the other architectures are explained in the

following sections.

3.3.2.1 Advantages of vector architectures

The exploitation of DLP by the use of vector instruction architectures has many
advantages compared to a classic scalar system. First, a vector instruction performs a
number of individual operations in parallel thus it contains higher semantic content.
Hence the vector program exhibits better code density compared to an equivalent scalar
program and therefore smaller instruction fetch overhead. Higher code density implies
less instruction fetch bandwidth and thus reduced pressure in the instruction fetch engine.
The smaller overhead is due to fewer address computations and loop counter increments
as well as branch computations. In addition, relatively simple control can dispatch a large
number of operations every time and can better utilize the wide datapath [32]. Examples
of the application kernels and the vectorization techniques employed in this work are
described in more detail in Chapter 4. Another benefit that DLP machines deliver is

better memory system performance than superscalar processors. Despite out-of-order



3. Software and Hardware Parallelism ‘ 49

execution, non blocking caches and pre-fetching mechanisms, the prediétive model for
the caches is inefficient. This happens because the retrieved data from the previous level
in the cache are not necessarily needed. Furthermore, since load/store instructions are
mixed with computation and/or conditional execution, possible dependences and resource
constraints prevent a memory operation to be performed on every cycle. Therefore the
superscalar CPU cannot utilise efficiently the data cache subsystem in vectorized kernels.
These problems are avoided in vector memory operations as the requested data usually
have stride 1 of the memory pattern. By requesting an array of data with a single memory
address a DLP machine uses effectively the available memory bandwidth without
requiring extra issue slots and complex decode hardware. Thus by sending a simple
address it can achieve a bandwidth of approximately N words per cycle. Finally, the
datapath control remains simple as a vector engine can be easily scaled to higher levels of
parallelism by replicating the functional units and adding wider paths from the vector
registers to the functional units [32]. DLP however, is the least flexible form of
parallelism compared to the ILP and TLP. It is also interesting to note that the available
DLP in an application can also be exploited from non-DLP architectures by scheduling
multiple independent instructions to execute in parallel in a superscalar architecture (ILP)
or by computing the elements in parallel instruction streams in a multiprocessor system
(TLP) [3]. This inflexibility though makes DLP the easiest form of parallelism that can be
exploited with vector machines. These machines are easily scalable to exploit varying
amounts of DLP in whole application domains. This is one of the greatest advantages of
DLP over ILP since ILP architectures can’t scale easily due to dependences between
instructions which increase quadratically with the number of the parallel instructions
loaded-up; TLP also requires duplicated instruction management logic for each
instruction stream, duplicated processor state and suffers overheads from inter-thread
synchronization and communication [3]. In addition, superscalar processors with wider
issue (>4} exhibit diminishing performance and require large arca dedicated to control
rather than to datapath. Research has shown that vector processors are able to execute
some highly parallel, integer based applications 1.5-7.3 times faster than superscalar
processors [33]. Therefore vector processors with wide datapaths could lead to significant
performance without increasing the hardware complexity of architectures that exploit the

other forms of parallelism.



3. Software and Hardware Parallelism 50

3.3.2.2 Vector Processors

In this section, the fundamental concepts of vector architectures are provided as this
research is based on this processing paradigm. Vector processor architectures made their
appearance in the late 1960s and early 1970s to support massive vector and matrix
calculations. The first successful implementations of vector processors were the Control
Data Corporation (CDC) STAR-100 [34] and the Texas Instruments Advanced Scientific
Computer (TI ASC) [35] in 1964, These architectures were memory-to-memory with
high bandwidth memory systems centred on a vector processing unit. However, they were
not commercially successful due to the long start up overhead of vector instructions and
the deep pipelining [36]. They did however presented several innovative ideas that
influenced the design of vector supercomputers over the next years. A vector architecture
with a different philosophy than the aforementioned was CRAY-1 computer system [37]
.which introduced in 1976 and it was the first commercially successful vector
supercomputer. This machine was centred on scalar processing but it was using vector-
register architecture and thus it had significantly lower overhead and less memory
bandwidth requirements. CRAY-1 was the fastest processor of its time and its successors
CRAY-2 and CRAY X-MP developed by two different groups of Cray Research were
amongst the most successful vector machines until 1991. At the same period, CDC
continued the development of memory-to-memory vector processors with the Cyber 200
series that was using the same basic architecture as the CDC STAR but offered better
performance and wider vector datapaths. Still their performance could not compete with
the CRAY machines since they had long memory latencies and could not handle
efficiently non-unit strides {36] [38]. In 1980s, CDC created a group called ETA that built
the supercomputer ETA-10 that again was based on the same memory-to-memory
architecture of Cyber 200 series and had a configuration of up to 10 processors, This
processor achieved a performance of 10 GFLOPS but its scalar performance was not as
good and in 1989 its production stopped completely. In the 1980s smaller-scale vector
processors appeared with the most successful designed by Convex and Alliant. At this
time Japanese supercomputers made their appearance starting with the Fujitsu VP100,
Hitachi S810 and the NEC SX/2 that were vector-register architectures with similar
performance to the CRAY X-MP [36]. These computers continued to evolve with NEC
SX/5 which was the fastest vector supercomputer in 2001 with a 16 processors

configuration clocking at 312 MHz and Fuijitsu VPP5000 with a 128 processors



3. Software and Hardware Parallelism 51

configuration clocking at 300 MHz. Historically, the fastest supercomputer was the
CRAY-4 with 64 processors running at 1 GHz but it was never completed as the company
went bankrupt in 1995 [36]. After the appearance of superscalar architectures in the early
nineties research was concentrated on superscalar and VLIW architectures as there was
the prevailing belief that vector processing would be redundant [3]. Multimedia-rich
applications becoming the dominant application domain however has changed the
computer architecture and microprocessor design and the interest for vector processing

has been revived [1].

Vector architectures can be either memory-to-memory or register-to-register based with
the latter being the most dominant type. A typical vector processor consists of pipelined
scalar and vector units, The scalar unit handles memory addressing and control where as
the vector unit performs the actual processing. Vector architectures are similar to RISC
architectures with instruction sets that include arithmetic and memory instructions but
instead of processing scalar values they execute the same operation simultaneously on
arrays of elements. In other words, a single opcode defines a large number of identical yet
independent, operations on the elements of one or more arrays. The arrays of operands
are stored in a vector register file in a similar way with the operands in RISC architecture.
However the vector register file is a two-dimensional storage array where each row
contains all the elements of a single vector [36]. The number of the elements per register
is defined by the vector processor ISA/programmer model. A general vector processor
architecture is depicted in Figure 3-5. It consists of a number of functional units that
operate in parallel. Each unit is fully pipelined and can start a new operation every clock
cycle. The vector functional units generate interim results that are used immediately
without the time-costly memory references that slowed down the first vector computers
[37]. This takes place in combination with the scalar unit which detects structural and

data hazards and handles memory accesses.



3. Software and Hardware Parallelism 52

Main memory

A

Vector P FUs add/subtract I
Load-Store

: FUs multiply -

Y
< FUs divide !

Vector >
Registers > FUs divide >
> Integer Ly
Scalar ] Logical S
Registers

Figure 3-5: Basic Vector Processor Architecture

Each vector register has at least two read ports and one write port in order to allow RISC-
like 3-operand execution. Another important component of a vector processor is the load-
store unit responsible for loading vectors from and store to memory and it is fully
pipelined [39] [36]. A more detailed description of the vector processor architecture and

microarchitecture developed in this work is given in Chapter 5 and 6.
3.3.3 Thread Level Parallelism

Another approach to achieve high execution performance is by .exploiting the available
parallelism at the thread/process level. Architectures that exploit this form of parallelism
belongs to the MIMD category [2]. Such architectures consist of a collection of
interconnected single-thread processors, with each processor executing independent
instructions streams operating on multiple data items., When the processors run
independent tasks (programs) this is the case of a multiprogrammed environment. When
the multiple processors execute different parts of the same program and share most of
their address space this is known as multithreading. The independent parts or processes of
the program are called threads. These threads execute concurrently and define another
type of parallelism that is known as Thread-Level Parallelism or TLP [2]. TLP is a

coarse-grained type of parallelism since each processor works on a specific process and



3. Software and Hardware Parallelism 53

communicates with the other processors only if necessary. The theoretical performance
improvement on n-wide TLP processor is n-fold compared to a single processor where n

is the number of the processors that comprise the multiprocessor.

There are two classes of MIMD multiprocessors depending on the number of the
processors, the memory organization, and the type of their interconnection: The

centralised shared-memory architecture and the distributed-memory architecture [2].

3.3.3.1 Shared-Memory Architecture

Shared-memory architectures consist of a number of processors that share the same
memory and are connected via some interconnect scheme typically a bus. When the
single main memory has similar (symmetric) access time from all processors this is the

case of Symmetric Multiprocessing (SMP) or Uniform Memory Access (UMA) [2].

Processor Processor Processor

1 2 n

Interconnection network

Main /o]
Memory System

Figure 3-6: The basic architecture of a centralised shared-memory multiprocessor system

In shared-memory architectures it is easier to balance the processor workload efficiently.
This class is the most popular organization with a reasonably simple programming model
and it is used in tightly-coupled architectures [40]. Support for SMP must be built into the
operating system in order to take advantage of the additional processors. SMP was first
implemented on the Burroughs B5500 in 1961 and by 2006 has dominated the server and
workstation market. With the introduction of dual-core devices, it became prevalent in

most new desktops and laptops such as Intel’s Xeon and Core Duo, AMD’s Athlon64 X2



3. Software and Hardware Parallelism 54

.

and Opteron etc that use the x86 instruction set; other non-x86 architectures are Sun
Microsystems UltraSPARC, Intel Itanium, Hewlett Packard PA-RISC etc and are used
primarily in the server domain. An alternative architecture is the Asymmetric
Multiprocessing or ASMP in which only specific locations in memory and specific tasks
are allocated for each processor. An example of this architecture can be found in the high-

performance 3D chips in modern videocards.

3.3.3.2 Distributed-Memory Architecture

The second class is known as Distributed-Memory architectures in which the memory is
physically distributed among a number of processors. This approach can more easily
support the bandwidth demands of the individual processors as there is no need to access

a centralised resource as the shared memory.

Processor Processor | __ _ . . | Processor
1 2 n
Private Private Private
Memory 1 Memory2 | = = = = | Memory n

Interconnection network

Figure 3-7: The basic architecture of a distributed-memory multiprocessor system

The interconnection between processors and memory can be direct (direct interconnection
networks) using for example switches or indirect using typically multidimensional
meshes [2]. The distributed-memory architecture can be implemented by using two
different approaches for communicating data among processors. In the first approach the
communication takes place through a shared address space. This happens by addressing
the physical separate memories as one logically shared address space. The
multiprocessors that are using this approach are called Distributed Shared-Memory
(DSM) multiprocessors. DSM multiprocessors are also known as Non-Uniform Memory

Access (NUMA) since the access time depends on the data word location in memory. An



3. Software and Hardware Parallelism 55

alternative approach is when the address space of the processors consists of multiple and
logically disjoint address spaces and the same physical address corresponds to two
different locations of two different processors memories. Each processor-memory module
is a separate computer and this type of architecture is called a multicomputer.
Additionally, a multicomputer can consist of separate computers connected in a local area
network, known as a cluster. This approach is very cost effective when little or no

communication is required [2].

3.3.3.3 Multithreading Architecture

Multi-threaded processors are based on a hybrid approach that combines ILP and TLP
and improve performance by exploiting the pipeline parallelism available through
multiplexing independent threads. In this case, multiple threads execute concurrently and
share the functional units of a single, wide processor. Each thread has a separate register
file, program counter and memory page table that are duplicated in the processor
{processor contexts). Multi-threaded processors hide the operation latency by switching
threads at appropriate times or by interleaving operations from multiple threads at the
same time using superscalar techniques. Apart from successfully hiding operation
latency, multi-threaded processors improve processor utilization by keeping active many
functional units on every cycle. There is special hardware to switch between different
threads [2]. When one thread runs until it is blocked by an event that would cause a long
latency stall such as level-2 cache miss {need to access an off-chip memory) execution
switches to another thread that was ready to run. This technique is called blocked or
coarse-grained multithreading [41]. This is the simplest type of multithreading that issues
instructions from only a single thread per cycle and it is effective on high-cost stalls [41]
[2]. Another alternative is when the switching between threads takes place on every
instruction in order for the execution of multiple threads to be interleaved. This is called
interleaved or fine-grained multithreading {41). This type of switching occurs each clock
cycle and eliminates control and data dependence stalls from the execution pipeline since
threads are relatively independent from each other. In this technique the processor skips
any threads that are stalled at that time and it has a very simple and fast pipeline.
Similarly with the blocked multithreading, this type also issues from a single thread.
When instructions can be issued from multiple threads per cycle this is the case of
Simultaneous Multithreading (SMT). SMT is the most advanced type of multithreading



3. Software and Hardware Parallelism 56

and it is a variation of the fine-grained multithreading that applies to superscalar
processors to exploit the available ILP and TLP across multiple threads [2]. Simultaneous
multithreading improves utilization by sharing many of the resources within the processor
and can enhance the performance of a superscalar when the available ILP is not enough
[41]. This technique was first researched by IBM in 1968 and the first commercial CPU
was the DEC 21464 [42]. In another architectural extreme lies the Chip Multiprocessing
(CMP). CMP enables multiple cores to share chip resources such as the memory
controller, off-chip bandwidth and the L2 cache improving this way the utilisation of
these resources [43]. It is an integrated form of Symmetric Multiprocessing and in this
configuration, instead of having separate processing units in the computing system, the

individual processors (CPU cores) are integrated in a single high performance chip.
3.3.4 Hybrid Approaches and Research

The various forms of machine parallelism are not clearly separated and they can be
combined to increase even further the computer performance. For example, the NEC SX-
4 vector supercomputer is a pipelined superscalar vector microprocessor architecture
which can exploit ILP, DLP, and TLP [3]. Simultaneous multithreading processors
employ TLP and ILP in the same time [44]. Another example that combines all the
parallelism techniques is the SS_SPARC [45] which is a configurable, extensible,
simultaneous multithreaded vector processor, More details of this processor are given in
Chapter 7. There has also been a great amount of interest in the addition of extensions in
existing instruction sets to accomodate vector processing. Examples of general-purpose
microprocessors with vector extensions are Intel’'s MMX [46], PowerPC’s Altivec [47],
Sun UltraSparc’s VIS [48] and Tarantula [49] that adds to Alpha (EV8) a vector unit.
Another interesting combination is the merge of ILP and DLP paradigms in a single
architecture [32] and the SMV architecture that combines simultaneous multithreading
and DLP [50]. Rescarch is currently underway into the potential performance benefit
obtainable through the combination of different forms of parallelism within a single

system-on-chip architecture.



3. Software and Hardware Parallelism 57

3.4 Summary

This chapter presented an overview of parallelism and the performance advantages of
exploiting it within given architectures. The limitations and the hazards caused by
dependences across instructions in the application binary were also presented along with
their main types. In addition, the three basic forms of parallelism were introduced and the
processor architectures that exploit them together with their advantages and

disadvantages.



3. Software and Hardware Parallelism 38

3.5 References

(1]

(2]

[3]
[4]
[5]
[6]

7

[8]

[9]

[10]

(11]

[12]
[13]

[14]

[15]

[16]

K. Diefendorff and P. Dubey, "How Multimedia Workloads Will Change
Processor Design," in IEEE Computer. vol. 30, September 1997, pp. 43-45.

Kevin W. Rudd, "VLIW Processors: Efficiently Exploiting Instruction-Level
Parallelism," in Electrical Engineering: PhD Thesis, Stanford University,
December 1999.

K. Asanovic, "Vector Microprocessors,” PhD Thesis, University of California at
Berkeley, May 1998.

W. Buchholz, Planning a computer system: Project Stretch: McGraw-Hill Inc,
1962.

John L. Hennessy and David A. Patterson, "Computer Architecture: A
Quantitative Approach," 3 ed: Morgan Kaufmann, 2003.

J.E. Thornton, "Paralle] Operation in the Control Data 6600," in Proceedings of
the 26th AFIPS Conference, 1964, pp. 34-40.

R. Allen and K. Kennedy, "Automatic translation of FORTRAN programs to
vector form," ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 9, pp. 491 - 542, October 1987,

John Crawford and Jerry Huck, "Motivations and Design Approach for the 1A-64
64-Bit Instruction Set Architecture,” in Microprocessor Forum, San Jose,
California, October 1997,

M. J. Flynn, "Some Computer Organisations and Their Effectiveness," JEEE
Transactions on Computers, vol. 21, pp. 948-960, 1972.

Joseph A. Fisher and Ramakrishna Rau, "Instruction-level Parallet Processing,"
Science, vol. 253, pp. 1233-1241, September 13 1991.

Roger Espasa and Mateo Valero, "Simultaneous Multithreaded Vector
Architectures Merging ILP and DLP for High Performance,” in the Proceedings
of the Fourth International Conference on High-Performance Computing,
December 1997, pp. 350-357.

R. M. Tomasulo, "An Efficient Algorithm for Exploiting Multiple Arithmetic
Units," IBM Journal of Research and Development, pp. 25-33, January 1967.

Ralph Duncan, "A Survey of Parallel Computer Architectures,” in JEEE
Computer, February 1990, pp. 5-16.

James E. Smith and Gurindar S. Sohi, "The Microarchitecture of Superscalar
Processors," in Proceedings of the IEEE. vol. 83, December 1995, pp. 1609-
1624,

Alexandru Nicolau and Joseph A. Fisher, "Measuring the Parallelism Available
for Very Long Instruction Word Architectures," IEEE Transactions on
Computers, vol. 33, pp. 968-976, November 1984.

J. A. Fisher, P. Faraboschi, and C. Young, "Embedded Computing: A VLIW
Approach to Architecture, Compilers, and Tools," Morgan Kaufmann, 2005.



3_Software and Hardware Parallelism 59

[17]

[18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

(28]

[29]
[30]

[31]

[32]

R. L. Sites, "Alpha AXP Architecture," in Communications of the ACM. vol. 36,
February 1993, pp. 33-44,

K. Diefendorff, "Pentium III = Pentium II + SSE: Internet SSE Architecture
Boosts Multimedia Performance," in Microprocessor Report. vol. 13, March
1999.

Steve McGeady, "Inside Intel's i960CA superscalar processor," in
Microprocessors and Microsystems. vol. 14, July 1990, pp. 385-396.

Daniel Mann, "Evaluating and Programming the 29K RISC Family," Advanced
Micro Devices (AMD), 3d edition 1995.

A. E. Charlesworth, "An Approach to Scientific Array Processing: The
Architectural Design of the AP-120B/FPS-164 Family," in JEEE Computer. vol.
14, 1981, pp. 18-27.

Joseph A. Fisher, "Very Long Instruction Word architectures and the ELI-512,"
in Proceedings of the 10th annual international symposium on Computer
architecture, Stockholm, Sweden, 1983, pp. 140-150.

R. P. Colwell, R. P. Nix, J. J. ODonnell, et al,, "A VLIW architecture for a trace
scheduling compiler,” in ACM SIGARCH Computer Architecture News. vol. 15,
October 1987, pp. 180-192.

G.R.Beck, D. W.L. Yen, and T. L. Anderson., "The Cydra 5
minisupercomputer: Architecture and implementation," The Journal of
Supercomputing, vol. 7, pp. 143-180, May 1993.

J. W. Van de Waerdt, S. Vassiliadis, D. Sanjeev, et al., "The TM3270 media-
processor,” in MICRO 05: Proceedings of the 38th International Symposium on
Microarchitecture, November 2005, pp. 331-342.

Analog Devices, www.analog.com/processors/sharc/.

"Processor Comparison: Texas Instruments C6000 DSP and Motorola G4
PowerPC," http://www.pentek.com/dspcentral/powerpc/articles.cfm.

Benoit Dupont de Dinechin, "From Machine Scheduling to VLIW Instruction
Scheduling," ST Journal of Research Processor Architecture and Compilation for
Embedded Systems vol. 1, September 2004.

Martin Hopkins, "A Critical Look at IA-64: Massive Resources, Massive ILP,
But Can It Deliver?,"” in Microprocessor Report, February 2000.

R. E Gonzalez, "Xtensa: A configurable and extensible processor,” in JEEE
Mlicro, March/April 2000, pp. 60-70.

R. Arnold, R. Bhatia, and D. Soltis, "Reducing the Physical Cost of Large
Register Files in EPIC Architectures with Stacked Register Aliasing,” in
Proceedings of the Workshop on EPIC Architectures and Compiler Techniques,
Istanbul, Turkey, November 2002.

Francisca Quintana, Roger Espasa, and Mateo Valero, "A Case for Merging the
ILP and DLP Paradigms," in 6th Euromicro Workshop on Parallel and
Distributed Processing, Madrid, Spain, 1998, pp. 217-224.



3. Software and Hardware Parallelism 60

[33]

[34]

[35]

[36]
[37]

[38]
[39]

[40]

[41]

[“42]

[43]
[44]
[45]

[46]

[47]

C. G. Lee and D. J. DeVries, "Initial Results on the Performanc and Cost of
Vector Microprocessors,” in the Proceedings of the 30th Annual International
Symposium on Microarchitecture, 171-182, December 1997.

R. G. Hinz and D. P. Tate, "Control data STAR-100 processor design,” in [EEE
COMPCON, September 1972.

W. Watson, "The TI-ASC, A highly modular and flexible super computer

architecture," in American Federation of Information Processing Societies
AFIPS, 1972, pp. 221-228.

John L. Hennessy and David J. Patterson, Computer Architecture: A Quantitative
Approach 2nd ed.: Morgan Kaufman, 1996.

Richard M. Russell, "The CRAY-1 computer system," Communications of the
ACM vol. 21, pp. 63-72, 1978.

R. Espasa, M. Valero, and J. E. Smith, "Vector architectures: past, present and
future," i Proceedings of the 12th international conference on Supercomputing,
Melbourne, Australia, 1998, pp. 425-432,

C. Kozyrakis, "A Media-Enhanced Vector Architecture for Embedded Memory
Systems,” Technical Report: CSD-99-1059, University of California at Berkeley
1999.

Rajkumar Buyya, High Performance Cluster Computing: Architectures and
Systems vol. 1, 1999,

T. Ungerer, B. Robic, and J. Silc, "A Survey of Processors with Explicit
Multithreading," in ACM Computing Surveys (CSUR). vol. 35, March 2003, pp.
29-63.

M. Meswani and P. J. Teller, "Evaluating the Performance Impact of Hardware
Thread Priorities in Simultaneous Multithreaded Processors using SPEC
CPU2000," in 2nd International Workshop on Operating Systems Interference In
High Performance Applications, Seattle, WA, September 2006.

L. Spracklen and S. G. Abraham, "Chip Multithreading: Opportunities and
Challenges," in Proceedings of the 11th Intel Symposium on High-Performance
Computer Architecture, 2005.

S. J. Eggers, 1. 8. Emer, H. M. Levy, et al,, "Simultanecous Multithreading: A
Platform for Next-Generation Processors " in IEEE Micro. vol. 17, October 1997,
pp. 12-19,

V. A, Chouliaras, K. Koutsomyti, T. Jacobs, et al., "SystemC-defined SIMD
instructions for high performance SoC architectures," in 13th IEEE International

Conference on Electronics, Circuits and Systems, Nice, France, December 2006,
pp. 822-825.

A. Peleg and U. Weiser, "MMX Technology Extension to the Intel Architecture,”
in IEEE Micro. vol. 16, August 1996, pp. 42-50.

K. Diefendorff, P. K. Dubey, R. Hochsprung, et al., "AltiVec Extension to
PowerPC Accelerates Media Processing,” in IEEE Micro. vol. 20, March 2000,
pp. 85-95.



3. Seftware and Hardware Parallelism 61

[48] Marc Tremblay, J. Michael O'Connor, Venkatesh Narayanan, et al., "VIS Speeds
New Media Processing," in IJEEE Micro. vol. 16, August 1996, pp. 10-20.

[49] R Espasa, F. Ardanaz, J. Gago, et al., "Tarantula: A Vector Extension to the
Alpha Architecture " in the Proceedings of the 29th Annual International
Symposium on Computer Architecture (ISCA'02) Anchorage, Alaska, 2002, pp.
281-292,

[50] R.Espasaand M. Valero, "Exploiting Instruction- and Data-Level Parallelism,"
in IEEE Micro. vol. 17, September 1997, pp. 20-27.



CHAPTER 4
METHODOLOGY AND ARCHITECTURAL RESULTS

4.1 Introduction

This chapter presents the optimization methodology and the architectural exploration of
the ITU G.729A and G.723.1 speech coders for a data parallel processor. The
methodology addresses target-independent optimizations of both reference codes. Thus,
these workload optimizations presented here can be utilised on any DSP code with data-
parallel infrastructure for acceleration. As instruction level simulation was the base for
the adopted experimentation methodology, the description of the software tools and their
development to suit the purpose of this research is given in the following sections along
with a briefly survey of computer systems simulators. Both speech coding algorithms
were benchmarked using the SimpleScalar toolset [1], before and after the data-
parallelization and optimization to obtain the instruction count (also called dynamic
instruction count). The instruction count is the total number of instructions executed by
an ideal scalar processor when running the codes. Using this information, the
vectorization of the speech algorithms was performed and performance improvement
recorded after every new vector instruction was introduced. Finally, the architecture of

the coprocessor was defined.

4.2 Simulation Infrastructure

There is a growing need for efficient techniques to predict the performance of future
computer systems and evaluate candidate, novel microarchitectures in the research phase
of a new computer before implementing them in hardware [2]. Simulation has been
essential for the research and design of processors, compilers or any hardware that
comprises a computer system or platform. It accelerates the hardware development
process by employing software models for the proposed hardware. Simulation can reveal
the dynamic characteristics of the hardware model and the software system that executes

on it and allows for rapid design space exploration. Such models can be implemented in

62



4. Methodology and Architectural Results 63

traditional programming language such as C/C++ or hardware description language such
as Verilog and VHDL and then, exercised with appropriate workloads to validate the
performance and correctness of the proposed hardware at very early stage. In addition,
computer system models allow the developing and testing of the software before the
hardware is available [3], [4], [5]. Typically, such software models are substantially
slower than the equivalent hardware; however they can be built in very short time [1].
The implementation of the software model can vary in the following quality

features/requirements:

Performance: The performance depends on the amount of the workload that can be
exercised. The greater the number of workloads that can exercise the model, the more
thorough the model study and verification can be, ensuring this way increased probability
of correct-by-construction _design. Performance has to do also with the speed (simulated
MIPS) of the actual simulation model and therefore with the speed of each of the

component that comprise the latter.

Detail: The detail or simulation model accuracy determines the level of abstraction of the
implemented model’s components. It can describe the simulated system from a purely
functional processor state level all the way to cycle-accurate timing including memory
wait states and interrupt latency of all its components. Different levels of abstraction
provide complementary amounts of information to the system designer however, at

increased execution time.

Flexibility: Flexibility indicates how well structured is the simulator to easily modify or
add design variants of the simulated system in order to re-use it for slightly or completely

different models.

There is a trade-off between these three aspects of the computer system simulators. A
highly detailed model can faithfully simulate all aspects of the system’s operation but
does so at low execution speeds and has reduced flexibility. On the other hand, a simpler
model is less accurate but faster and certainly more flexible., Thus, there are several
different simulator implementation models that meet different requirements in terms of
performance, detail and flexibility. There is ongoing research in this area as researchers

strive to achieve a reasonable trade-off [1, 6].



4. Methodology and Architectural Results 64

Certain types of simulators are described with an Architecture Description Language
(ADL) [7], [8]. ADLs are computer languages designed specifically for representing and
analysing system’s microarchitecture. Such formal descriptions of architecture and
microarchitecture have been the subject of research for years [9] and several models and
techniques have been proposed on this front in an effort to facilitate architecture and
microarchitecture description and space exploration. ADL-based simulators belong
primarily to one of the two categories depending on whether the ADL captures the
behaviour (instruction-set) or the structure (microarchitecture)} of the system [10].
Recently, a third category has emerged which combines effectively both, behaviour and
microarchitecture [7]. Behaviour-centric [7] also known as instruction set [10], [11]
simulators describe instruction functionality but don’t allow detailed pipeline and control-
path specification, They are primarily used during the development phase of architecture
(before the actual hardware specification is written and implementation begins) providing
an execution model of the system and thus, writing the first programs and testing the
compiler code generation [11]. Such ADLs are good for regular architectures and provide
programmer’s mode] but they are tedious for irregular architectures [8]. This type of
simulators is simple, relatively fast (low MHz range) and can be easily retargeted to
various ISAs. Examples of ADLs generated behaviour-centric simulators are nML [12],
ISDL [13], ISPS [14]. nML is based on the concept that the majority of instructions share
common properties. By exploiting these common properties, a hierarchy scheme is
developed to describe instruction sets. The instructions are the topmost elements in the
hierarchy and partial instructions are the intermediate elements. Each instruction
definition in nML can be in the form of an AND-OR tree of intermediate elements that
has a few attributes [10], [12]. The Instruction Set Description Language (ISDL) [13] was
developed at MIT in order to express parallelism with explicit specification and it targets
mainly VLIW processors [10]. The Instruction Set Processor Specification (ISPS) [14]
appeared in the early 1970’s and has been the basis for many design tools [15]. ISPS was
used to model the architecture of processors and analyse their performance rather than to
describe a complete computer system [15], [10]. On the other hand, structure-centric [7]
also known as cycle-accurate [11] simulators simulate the microarchitecture of a system
and provide performance metrics such as cycle counts, cache hit ratios and resource
utilization statistics amongst others. Examples of structure-centric simulators are
MIMOLA and UDL/I. MIMOLA [10] describes application programs with a Pascal-like



4. Methodology and Architectural Results 65

syntax while the processor model has the form of a component netlist. UDL/I [16] stands
for the Unified Design Language for Integrated circuit. It is a Register Transfer level
description language for simulation and logic synthesis. The techniques that are used in
this ADL category to describe in detail the computer microarchitectures are very
complex, quite slow and sometimes architecture specific [11]. Mixed type of simulators
such as LISA and EXPRESSION capture both the structure and behaviour of the
architecture. The Language for Instruction Set Architecture (LISA) [17] explicitly models
both the datapath and control that are necessary for cycle accurate simulation. This
description comprises two types of declaration: resources and operations. Resources
refers to hardware structures such as registers, pipelines and memory systems whereas
operations are the basic objects that represent the programmer’s view of the behaviour,
structure and the instruction set of the architecture. EXPRESSION [8] describes a
processor as a netlist of functional units and storage elements and automatically generates
Reservation Tables (RT) based on that netlist. Thus netlist representation is at a higher

level of abstraction, similar to a block-diagram level description.

Simulators are also classified depending on whether they are trace driven [5] or execution
driven [2],[15]. Trace-based simulation is a2 more traditional simulation technique that
uses a stream of pre-recorded instructions to drive a hardware timing model. It employs a
variety of techniques, both hardware and software, in order to obtain the instruction
traces. Such techniques include hardware monitoring, binary instrumentation that inserts
probe functions at various location in the to-be-traced code in order to collect event traces
or trace synthesis [1]. Trace-based is faster than execution driven simulation but requires
large amount for storage of traces and incurs large time overheads as traces can contain
billions of references. In addition, it can be less accurate because of the difficulty in
characterizing the behaviour of real programs stochastically meaning that it can capture
only a part of processor behaviour e.g. cache misses. Since a trace is obtained from
logical execution paths of a workload it can’t model speculative execution such as branch
directions or load addresses [2]. On the other hand, execution-driven simulation permits
greater accuracy as the execution of the program and the simulation of the architecture -
are closely related and interleaved. It can reproduce a device’s internal operation by
replicating the execution of instructions on the simulated machine. In this way it provides

all the data produced or consumed inside all microarchitecture components. The typical



4. Methodology and Architectural Results 66

output of this type of simulation is a large number of statistics that can help to understand
how the components of the simulated system behave and a precisely-estimated execution
time. Execution-based simulation can be also employed for dynamic power analysis as it
can precisely record the change in the inputs of microarchitecture blocks and calculate
relative dynamic power metrics accordingly. The drawbacks of the execution driven
simulation are the high model complexity and the difficulty in reproducing experiments
[1). There is ongoing research to overcome these issues such as retargetable instruction
set simulators [18], where the goal is to generate a simulator automatically from a
machine description language. Additionally, traces can record the precise system state

and can help to recreate the record-of-execution [1].

Finally, simulators can be classified depending on the amount of detail that they employ
for system representation from Instruction-accurate simulators (ISS) [4], [18], [1] to
Cycle-accurate simulators (CAS}) [6], [19]. ISS imitates the behaviour of 2 mainframe or
microprocessor by “executing” instructions and maintaining internal variables which
represent the processor’s registers. The ISS represents the system at a higher level of
abstraction allowing the development of this simulator in short time. It is preferred from
the cycle-accurate simulators in the early stages of a project to model fast the
architectural features of the system but it can be also used in later stages to validate the
functionality of the system since it can rapidly run the complete benchmark. The ISS
however can’t be used for performance analysis as they don’t contain pipeline detail or
timing issues [4], [18]. The Cycle-accurate simulators on the other hand, can perform
timing (CPI) analysis and give quite accurate performance estimates. They are more
complex to develop because of the great amount of detail and thus more time-consuming |
and lower speed than the ISS. Additionally, different CAS need to be developed for any
new implementation of an architecture whereas the ISS undergo only minor changes

between implementations of the same architecture [19].
4.2.1 SimpleScalar Toolset

The primary architecture exploitation was carried out on the Version 3.0 of the
SimpleScalar tool set that is publicly available. Since its release in the Opensource (1995)
SimpleScalar has been widely used for research in the computer architecture community

[18]. The toolset provides an infrastructure for simulation and architectural modelling that



4. Methodology and Architectural Results 67

simplifies the implementation of hardware models for simulation of complete
applications [1], [18]. It can perform program performance analysis, measure the dynamic
characteristics of the hardware model and contribute to the software-hardware co-
verification and co-optimization. It comprises of a compiler, assembler, linker and
simulation tools for a range of modern processors architectures. SimpleScalar comprises
several simulator models ranging from a simple functional instruction emulator (sim-safe)
to a detailed microarchitectural model with dynamic scheduling (sim-outorder). Table 4-1
lists the seven simulators at different level of microarchitectural abstraction that are
contained in the current release (version 3.0) of SimpleScalar. These simulator models are
Instruction Set Simulators (ISS), also called functional, apart from the sim-outorder

which is full cycle-accurate simulator and provides detailed microarchitectural timing [1].

Table 4-1: SimpleScalar baseline simulator models

Simulator Description Code Lines | Typical Speed
sim-safe Simple functional simulator 320 6 MIPS
sim-fast Speed-optimized functional simulator 780 7 MIPS
sim-profile Dynamic program analyser 1,300 4 MIPS
sim-bpred Branch predictor simulator 1,200 5 MIPS
sim-cache Multilevel cache memory simulator 1,400 4 MIPS
sim-fuzz Random instruction generator and tester | 2,300 2 MIPS
sim-outorder | Detailed microarchitectural timing model | 3,900 0.3 MIPS

Figure 4-1 illustrates the SimpleScalar infrastructure and its main components. The
behaviour of the simulator depends on the processor model that is defined at three levels:
ISA, ABI (Application Binary Interface) and microarchitecture [13].

Microarchitecture

3&:’Toois :

{ Sceduer | [ Memory ]

feSOUrSE | redictor -
_ g

Figure 4-1: SimpleScalar Infrastructure



4. Methodology and Architectural Results 68

Only two ISA’s are supported m the current release, the Portable Instruction Set
Architecture (PISA) and the Alpha instruction set architecture. The instructions have a
specific format that comprises the assembly format, binary opcode, register source and
destinations, execution unit, instruction class and enum opcode that are assigned from the
infrastructure [13]. Each instruction is associated with a semantic action statement that
provides a comprehensive mechanism for describing how the instructions modify the
state of the registers and memory. The OS handles only the trap instructions with the help
of the system call simulation. The Application Binary Interface (ABI) establishes the
communication between the simulated system and the external I/O. The instructions are
loaded on a binary file format of the machine code after they are linked and relocated
statically as no dynamic linking is supported. SimpleScalar uses the provided COFF
binary file loader or the GNU’s binary file descriptor library [13]. Since the SimpleScalar
toolset is an execution-driven simulator, there is no need for instruction trace files as all
the instructions are generated dynamically [1]. It models several microarchitectural
components such as cache, memory, functional unit resource, scheduler and branch
predictor. Its microarchitectural modelling ability can be extended easily due to its simple

design that allows the addition of more components [13].
4.2.2 Customizing the SimpleScalar Toolset

For this research the SimpleScalar PISA instruction set was used. This is an extension of
Hermessy and Patterson’s DLX instruction set [20] that it also includes a number of
instructions and addressing modes from the MIPS-IV [21] and RS/6000 (IBM pSeries). It
utilizes a 64-bit instruction encoding to provide an easily extensible, research
environment for instruction-set and system design. This extended encoding can support
modification or addition of instructions, variation of the number of the program used
registers etc [22]. The simulation tool utilised was the sim-fast that is a speed-optimized
functional simulator that provides instruction accurate simulation but no timing, It
executes all the instructions serially without assuming the existence of a cache. Based on
this simulation tool, sim-vector was created that incorporates apart from the existing
PISA, a file with the proposed vector ISA (vector.def). The vector. def file contains
the definition of all the instruction extensions (scalar and vector) of the proposed

coprocessor. The development of the coprocessor ISA and its introduction in the



4. Methodology and Architectural Results 69

vector.def file are described in more details in section 4.3.7. The specific two target
workloads (G.729A and G.723.1) run on the model using execution-driven simulation.
They use the statistical package which tracks updates to statistical counters and produces
a detailed report. Sim-system is another tool based on the sim-fast that was created to
model a shared memory multiprocessor environment, The sim-system simulator also
called a PRAM model (Parallel RAM), is multithreaded and allows the execution of
shared-memory applications. Sim-system was not utilised in this research as sim-vector
provided the entire infrastructure in terms of single processor and the ability to add
scalar-vector extensions. It has however been part of another closely linked research
project in which the identified scalar-vector extensions were implemented in SystemC
and attached to the vector unit of a high performance configurable extensible processor

[23]. This research project and its results are detailed in Chapter 7.
4.3 Workload Optimization
4.3.1 Profiling

As mentioned previously, ITU-T provides reference C code for a number of speech
coders. Every such reference implementation defines a set of universal, basic arithmetic
operations (functions), essential for the implementation of speech coding algorithms. For
the purpose of this research and in order to investigate the potential acceleration, the ITU
G.729A reference code was profiled initially in native mode (Intel X86) in order to
identify the computation workload distribution in these basic functions [24]. This was
achieved by compiling the code with the compile flag -pg (for embedding profile
instrumentation in the resulting binary) and running it with one of the ITU-T supplied test
vectors, to produce a single profile data file. Subsequently, this was processed by the
gprof Linux utility. Profiling revealed that the average relative amount of time spent
outside the basic-op functions in reference code was 30.4% and 26.9% for the G.729A
coder and decoder respectively as it shown in Table 4-2 [24]. The same profiling was also
performed for the ITU G.723.1 reference code and the resulis are depicted also in Table
42,



4. Methodology and Architectural Results 70

Table 4-2: Relative amount of time spent outside the basic instructions

Algorithm Relative CPU Time (%) in Native Mode
G.729A Coder 30.4
G.729A Decoder 269
G.723.1 Coder 313
(.723.1 Decoder 228

As general applicability and consistency of the profiling data were desirable, the
workloads were profiled again in the SimpleScalar environment which is our simulation
infrastructure. Table 4-3 depicts the highest percentage of the dynamic instruction count
spent outside the basic operations of both the application codes, for encoding and
decoding [25].

Table 4-3: Relative number of total instructions executed outside the DSP emulation

instructions

Algorithm Relative Instructions(%, simulated)
G.729A Coder 34.2

G.729A Decoder 37.2

G.723.1 Coder 34.5

G.723.1 Decoder 333

Even though two fundamentally different instruction set architectures and profiling
collection/execution environment were used, both respective profiling metrics of the
codecs were within 5% of one another. Therefore the experiments were continued by
using the simulated infrastructure as the produced results are reasonably independent of
the sampling issues of profiling in native mode and closer to real implementations of
RISC/DSP processing kernels for multimedia applications [25]. The profiling results, as it
was expected, revealed that the workloads spend a significant amount of time/instructions
executing the basic emulation functions. Table 4-3 reveals that a 66.7% of the total
machine instructions executed is inside the set of basic functions. A further, very
important observation relates to parallelism exploitation within the right DSP loops
utilising these basic operations. In general, visual inspection of the code suggests a
significant number of the basic operations appear in data-parallel loops [24]. It was
apparent that efficient implementation of the basic operations via a configurable

microprocessor with a targeted, data-parallel architecture, that closely matches these basic



4. Methodology and Architectural Results 71

operations, could lead to high performance. These basic instructions are listed in the chart
of Figure 4-2 along with the number of the executed machine instructions that they need.
Therefore the creation of vector instructions was based primarily on the profiling

information selecting the most machine instruction consuming.

L_shr |

R R e T

Figure 4-2: Machine instruction count for the BASOP.C functions

Additional acceleration of these computationally expensive operations can be achieved by
taking advantage of the Data Level Parallelism (DLP) to create vector operations, based
on the DSP emulation instructions, into a data parallel form. As it was explained in the
previous chapter vector instructions are a simple yet, very powerful mechanism to
significantly improve the performance of the system [26]. The unmodified speech coders
G.729A and G.723.1 were profiled once more using the SimpleScalar toolset for all ITU-
T test vectors. The results of the comprehensive profiling for both codecs are shown in
Table 4-5 and Table 4-4 respectively.



4. Methodology and Architectural Results

72

Table 4-4; G.723.1 Unmodified Workloads Instruction Count

Workloads Instruction Count  Frames
Encoder
Dtx63.tin 10,159,684,865 864
Dtx53mix. tin 925,852,798 120
{rs53)
Dtx53mix.tin 1,062,686,614 120
{mixed)
Decoder
Dtx63.rco 680,066,056 864
Dtx53.rco 90,359,083 120
Dtxmix.rco 90,305,154 120
Dtx63e.tco 925,852,811 120
Dtx63b.tco 9,093,395 11

scalar and vector ISA in order to precisely quantify the benefit.

These results were used as a baseline during the research and optimization phases of the

Table 4-5: G.729A Unmodified Workloads Instruction Count

Workloads Instruction Count Frames
Encoder
Algthm 62,613,638 34
Fixed 213,961,855 119
Lsp 3,977,183,269 2231
Pitch 3,253,175,283 1834
Tame 230,917,008 127
Test 311,692,276 175
Speech 6,656,624,952 3749
Decoder
Algthm 13,456,279 34
Fixed 45,865,491 119
Lsp 865,256,672 2231
Pitch 706,161,011 1834
Tame 49,456,050 127
Speech 1,440,402,972 3749
Erasure 114,722,597 299
Overflow 148,851,504 383
Parity 115,390,78 288




4. Methodology and Architectural Results 73

Table 4-6 depicts the top ten most computationally intensive functions of the G.729A
speech coder. As it can be seen the most demanding function is the cor_h_x that

computes the correlation of the input response with the target vector.

Table 4-6: Proﬂl.ing the G.729A functions by using the speech workload

Dynamic
Function No of call DLF Description
Instruction Count
. Compute correlation of
Cor h x 15,000 247,349,024 High
- target vector
30,000 236,497,500 High Linear Prediction
i > A s 1
Syn_filt ¢ synthesis filter
Algebraic codebook with
D4aid0 17 fast 7,500 217,172,751 Low
- 4 nonzero pulses
i Compute the open pitch
Pitch ol fast 3,750 213,394,987 High I
_ol_ ag
] Find autocorrelations of
Autocorr 3,750 203,658,564 ngh . . .
signal with windowing
7,500 199,979,638 High First stage quantizer
3 > s 1
Lsp_pre_select & using LSP codebook
. Compute the LPC
Residu 7,500 58,402,500 High .
residual
7.500 43.319.433 L Find Pitch period and
i i 3 2 17y : ow
pit_pst_filt perform Postfiltering
Copy input to output
Copy 63,755 41,693,130 High Py P P
vector
. Scale postfilter output by
Agc 7,500 25,141,988 High

automatic control

The next function, Syn_£ilt, implements the synthesis filtering [27]. Visual inspection
of these functions identified the amount of the Data Level Parallelism (DLP) that can be
effectively exploited and this is also shown in Table 4-6. Table 4-7 shows the top ten
most computationally intense functions of the G.723.1 for the 6.3kbits/s workload. In this
case, the most demanding function is the Find_Best that performs the fixed codebook
search for the high rate encoder [28]. It contains a significant DLP and thus has high

vectorization potential. The next function in the list, Find_Acbk, computes the adaptive



4. Methodology and Architectural Results 74

codebook contribution in the closed-loop around the open-loop pitch lag. This function
unfortunately does not posses sufficient DLP [28].

Table 4-7: Profiling the G.723.1 functions by using the 6.3kbits/s workload

No of call Dynamie DLP )

i oofca -

Function Instruction Count Description

Find_Best 4,408 1,370,009,644 High Fixed Codebook Search

Find Acbk 2,772 915,225,959 Low Adaptive Codebook

- Calculation
Estim pitch 1,728 430,602,013 High Open-loop pitch
- estimation
Lep_Svg 926 141,876,220 Medium ~ Search for the LSP
- indices
Comp_Lpc 264 126,386,784 High Computes the LPC filter
- cocfficients
Upd_Ring 3,456 98,506,368 Medium  Update memory of the
- filters

Computes the zero-input

Sub_Ring 2,772 78,871,716 Low response and target
speech vector
Computes the combined

Comp_TIr 2,772 78,048,432 Low impulse response from
the filters
Implements the formant

Error_Wght 864 66,604,896 Low perceptual weighting
filter

Decod_Acbk 6,228 31,267,516 High Computes the adaptive

codebook contribution

This functional profiling in conjunction with visuval inspection indicates that a vector
implementation of the basic operations can lead to a high performance processing
platform for these workloads. This is the basic premise around which a vector ISA and

microarchitecture have been defined in this work.
4.3.2 Vector ISA Development and Experimentation Methodology

This section describes the optimization methodology adopted for both ITU G.729A and
G.723.1 reference codes on the vector coprocessor software model. The main steps of the
software optimization process are depicted in Figure 4-3, The selection of the kernels for
optimization was based primarily on the profiling information for both ITU speech

coding algorithms and focused on the most time/instruction-critical fimctions.



4. Methodology and Architectural Results

7S

Profile Algorithm

Architecture
Specification

Vector and Scalar
Extensions

Vectorize Data
Parallel Loops

Run Tests
( X86 Mode )

< Tests OK?

\//

Scalar optimization |
of non-
vectorizable
section

Run Tests
( X86 Mode )

Tests 0.K? ———

l

Instructions in
Inline Assembly

Run Tests
( SS Mode )

" Tests 0.K? >

N

Simulation
Archtectural
Results

Figure 4-3: Experimentation Methodology

The architectural state of the proposed vector accelerator was defined in the architectural

configuration file vstate.h. That file precisely describes the extended processor state,

on top of the existing one (SimpleScalar specified processor state). Figure 4-4 illustrates

the contents of the vstate.h that relates to the extended vector state (vstateT

structure). The #define directives specify the number of the vector and scalar registers,

the vector accumulators and the predication and overflow flag bits. As the coprocessor is

uniquely parametric, parameter VLMAX is defined at the beginning of the file and



4. Methodology and Architectural Resulis 76

determines the maximum vector length of the vector components. In this particular case
VLMAX is equal to 8. This means that a vector register will include 8x16-bit elements
and a vector accumulator will have (8/2)x32-bit elements respectively. The structure
vstateT encapsulates the total vector coprocessor state. It includes the definition of all
the above mentioned programmer-visible registers as two dimensional arrays apart from

the overflow flag that is a single dimension array.

//*****************

#define VLMAX 8§

//*****************

typedef signed short int VECTOR[VILMAX];

#define VECTOR_REGS 16
#define VACCUMULATORS 2
#define PRED_REGS 1

#define SCALAR_REGS 16

typedef struct

{
// Vector length register
int VLEN;
// Vector register file
signed short int VRF[VECTOR_REGS] [VLMAX];
// Vector accumulators
signed int VACC[VACCUMULATORS] [VLMAX/2];
// Predicate registers
unsigned short int PRED[PRED_REGS] [VILMAX];
// Scalar registers
signed int SRF{SCALAR_REGS];
// Vector overflow
unsigned short int V16 [VLMAX];

} vstateT;

Figure 4-4: The extended processor state as defined in the configuration file vstate.h

Subsequently, vector instruction extensions were developed that match the basic
operations of the speech coding algorithms as these were proved to be the most critical. In
order to check the coprocessor at the functionality level without the need to specify any
underlying technology, C macros were created to represent the vector instruction
extensions. This resulted in a new codebase which included these new instructions and
thus can benefit from the power of the vector hardware. With this method, the instruction-
accurate model of the coprocessor was verified with the help of the test vectors by
mapping directly the output of the modelled coprocessor with that of the original scalar

one.



4. Methodology and Architectural Results 77

In order to be able to run the algorithm in vector mode, it was essential to re-write the
data level parallel loops of the code in vector assembly in such a manner that no semantic
difference exists between the vectorized and the original code, At this point, it must make
clear that the architecture specification and the ISA development are interlocked and both
evolved during the vectorization of the workloads. The remaining (non-vectorizable part)
of the code was also optimized by re-writing it in scalar assembly by using Scalar
Instruction Set extensions. Initially, all the created instructions modelled in C and were
included in the x86_visa.h header file located in the source directory of the ITU
codecs. This step allowed for at-speed validation, in native mode, of the custom
instructions with the original instructions replaced by the instruction extensions. An

example of such instruction, as defined in the x86_visa.h file, is shown in Figure 4-5.

#ifdef X86
//Vector register shift right

extern vstateT vstate;\
int index;\
stats_start;\
update_stats("vshri");\
for {(index = 0; index < vstate.VLEN ; index ++)\
N
putwvy
if (vrE!=0)\

vstate . VRF[vril [index]=shr_simple{index,vstate.VRF[vrf]
{index], (Wordl6)amount) ;\
orv;\
N
regv;\
stats_end;\
1)
Figure 4-5: Example of a C macro Instruction Definition

The pre-processor directive #1fdef x86 at the beginning of the instruction is used as a
switch to enable or disable the C macros when executing Linux x86. The vshri
instruction performs an arithmetic shift right of the source vector register, vrf, by as
many positions as the variable amount defines. It calls the shr_simple function for each
vector element, to perform the shift right operation. The result is stored in the destination

register vrf. The shift is performed within a loop of vlen iterations, which is the



4. Methodology and Architectural Results 78

dynamic number of elements (16-bits each) that comprise the operand vector (vr£). This
number is specified in the vlen_r register. A similar format was followed for all the
instructions. The only main difference between the scalar and vector instructions is that
the former does not contain a loop as the length of the scalar operands is constant while
the length of the vector operands is parametric (run-time). After all the identified DLP
loops were replaced with vector assembly the optimized workloads were validated by
running the test vectors to ensure that there is no semantic difference between the
vectorized and the original code. The remaining of the code was optimised by using
scalar assembly and again it was verified by running the same ITU test vectors. When the
optimization of the workloads was complete the vector and scalar instructions re-written
in inline assembly and inserted in the SimpleScalar simulation infrastructure to extend its
functionality and thus, the architectural simulation results. The steps that are mentioned

above are described in more details in the following sections of this chapter.
4.3.3 Identification of Data Parallel Loops

As it already discussed, parts of both C reference codes had to be re-written in vector
assembly in order to run efficiently on the vector accelerator. The replacement of scalar
operations by vector extensions is called vectorization. Vectorization takes place in
functions that can exhibit Data Level Parallelism (DLP). Such functions typically operate
iteratively on blocks of data without the presence of data dependences (loop-carried
dependences). By carefully examining the code it became apparent that the main area of
interest is the loops as, in their overwhelming majority, perform DSP-type operations on
arrays of data. These loops were therefore targeted and their bodies were replaced with
vector operations semantically equivalent to the original code. Any mismatch in the
output bitstreams between the original (ITU-T) and vectorized (as above) codes is
attributed to loop-carried dependences which can’t be eliminated [29]. In chapter 3 were
described all the types of data dependences that can be detected in a program. In this case
only the true dependences between statements in a loop were considered. More
specifically, every loop was examined to determine whether a statement depends upon
itself (loop-carried dependences) or if a statement that writes a memory location precedes
a statement that uses that memory location as an input [29]. Figure 4-6 and Figure 4-7

illustrate the case of data dependent loop (non-vectorizable) and a data independent loop



4. Methodology and Architectural Results 79

(vectorizable) respectively. In Figure 4-6 the loop calculates the Line Spectral Pair (LSP)
coefficients in G.729A encoder and shows interstatement (iteration-carried) dependences.
This loop can’t be vectorized. As it can be seen statements S5 and S9 depend upon input

values that were created by previous execution (iteration) of 85 and S9 respectively.

for (i = 0; i< NC; i++)

{
52 t0 = I_mult(al[i+l], 8192); /*x=(afi+l]+a[M-i])>>1*/
83 t0 = L_mac(t0, a[M-1],8192); /*-> From Ql1l to Ql0*/
54 x = extract_h(t0);

S5 f1[i+1] = sub(x, f1[1i]); /*flli+l]=ali+l]+a[M-1]1-£1[i]*/

S6 t0 = L_mult{ali+l], 8192); /* x = (al[i+l]l-a[M-i])} >> 1 */
s7 t0 = L_msu(t0, a{M-i],8192); /*-> From Q11 to Q10 =*/
58 X = extract_h(t0):

59 £2[1i+1] = add{x, f2[i]); /*£2[i+l)=ali+l] -a[M-1i1+£2[1]*/
}

Figure 4-6: Example of a non-vectorizable loop as the statement S5 depends on a previous

result of the S5 execution. The same dependency appears to the statement S9.

Figure 4-7 presents a loop that subtracts the unquantized LSP frequencies for the current
frame in order to compute the VQ weighting vectors. It selects the frequencies that are
closer in value with each other in order to produce weights of greater precision. As
shown, this loop is vectorizable as both statements (S2 and S3) are independent from
previous results of their execution (producer/consumer iteration indexes are linear
combination of one another and independent). The inputs of these statements are arrays of

the currents frequencies that can be loaded from assigned pointers to the vector registers.

for (i =1 ; i < ILpcOrder-1 ; 1 ++ )

{
52 Tp0d = sub( CurrLspli+l1l], CurrlLspli] ) ;
83 Tmpl = sub{ Currlsp[i], CurrLspli-1] } ;
54 if { Tmp0 > Tmpl )
g5 Wvect[i] = Tmpl ;
56 else
s7 Wvect[i] = Tmp0 ;

}

Figure 4-7: Example of a vectorizable loop with statements 52 and 83 being independent

from previous results of their execution.

The same methodology was followed for all the loops in both C reference codes for both

encoder and decoder, whenever iteration-carried data dependences didn’t arise between



4. Methodology and Architectural Results 80

loop statements, loops were re-written in vector assembly as described in the following

section.
4.3.4 Implementation of vector loop using custom ISA

Figure 4-8 shows a loop that quantizes the difference between the computed and
predicted coefficients at the first-stage vector quantizer in the LP analysis of the G.729A
encoder. This vectorizable loop has M iterations (value is specified at compile time) that
performs subtraction {sub) of two arrays, multiply the subtraction result with itself and
adds the'product to the accumulator (L_mac), for the entire current frame M. As it can be
seen these two operations are data independent as the iterated statements are not using
values computed in some previous iterations. Therefore they can safely be replaced and
directly converted to vector form. The pre-processor directive #ifded ORIGINAL selects
the conditional compilation of the code to run this non-optimized part when the original

meode is selected in the compile.h header file.

/***********'k******LOOPl*******************/

#ifdef ORIGINAL
for ( 1 =0 ; J <M ; j++ }
{
tmp = sub{rbuf{j], lspcbl[i][jl);
L_tmp = L mac({ L_tmp, tmp, tmp };
}
Figure 4-8: Example of loop with DLP within the original C cede

Figure 4-9 depicts the first part of the transformed loop with the introduction of vector
assembly. Having identified that the loop is vectorizable, it is necessary to identify the
inputs and outputs of the loop that have to be loaded or stored in vectors. By associating
these /O vectors with 16-bit or 32-bit pointers, this allows the data to be represented
using the 16-bit elements of the vector registers or the 32-bit elements of the vector
accumulators respectively. The newly created pointers point to the first values in both
data arrays (inputs). All the intermediate values are stored temporarily into the vector
registers or accumulators, depending on the instruction. When the pointers are set the
vector length register (vlen_r) needs to be loaded with the maximum vector length
(VLMAX). The last instruction vsplatacci{..) in this code snippet loads the value

zero to the vector accumulator zero in order to clear it before any calculations take place.



4. Methodologv and Architectural Results 81

#else

{
//Set Pointers
signed short int *froml=rbuf;
signed short int *from2=&lspcbl[i][0];

//Locad VLMAX into vlen_r register
ldvlen_r (VLMAX} ;

//Clear accumulator
vsplatacci(0,0);

Figure 4-9: Assign pointers and load the vlen_r register

Figure 4-10 illustrates the main vectorized loop (modulus part). This is true while
executing the loop since the loop only deals with whole vector lengths. In the figure the
original loop range is decreased by dividing the initial iteration number by the maximum
number of vector elements available, vLMAX. Doing this, in combination with
incrementing the vector pointers, froml and £rom2 by VLMAX, allows for each iteration
of the loop the pointers to point to new set of vector data. This part of the code will be

performed as many times as the quotient of this division.

//Modulus Part
for (i=0; i < M/VLMAX; i++)

{

//Load vector register from rbuf
sl v1ldw(l, froml);

//Load vector register from &lspcbl
52 vlidw(2, from2) ;

//Perform subtraction to vrl, vr2
S3 vitu_sub r(3,1,2);

//Multiply even word and add to VACCO
sS4 vmace(0,3,3);

//Multiply odd word and add to VACCO
35 vmaco(0,3,3);

//Increase address.pointers
56 froml += VLMAX;
87 from2 += VLMAX;

Figure 4-10: Main vector loop

Within this loop five custom vector instructions are executed. The first two (statements
S1, 52) are vector loads which load the data from the pointer addresses froml and
from2 and deposit them in the vector registers 1 and 2 respectively. The next three
instructions (S3, S4, S5) perform the main functionality of the loop, that is vector

subtraction and multiply-accumulate operations. First the subtraction is executed on



4. Methodology and Architectural Results 82

vector source registers 1 and 2 and the result is stored into vector register 3. The multiply-
accumulate calculation is performed as a pair of instructions, for the even and odd
elements respectively. Each of these instructions multiplies the register 3 with itself and
adds the product to the corresponding even or odd elements of accumulator 0. The last
two instructions increment the pointers by VLMAX to prepare the data for the next loop

iteration.

Since the original loop parameter, in this case M, may not be exactly divisible by viMax
a remainder section (loop strip mining code) is required to ensure that all the original data
is processed. Strip mining is the process of running the loop with a number of iterations
that does not divide exactly the VLMAX architecture constant. This code is only
executed if there is a remainder from the modulus operation, M$VLMAX. If this is the case,
the v1en register (dynamic vector length) is loaded with the new vector length M¥VLMAX
in order to indicate in which elements the vector instructions will be performed during the
strip mined section. This loop is executed only once, for the specified vector elements and

thus, only a subset of the vector datapath is achieved during this section.

/ /Remainder Part
if (M % VLMAX)

{
s1 ldvlen_r{M % VLMAX);
//Load vector register from rbuf
82 vlidw(l, froml);
//Load vector register from &lspebl
s3 vldw(2, from2) ;
//Perform subtraction to wvrl, vr2
54 vitu_sub_r{3,1,2);
//Multiply even word and add to VACCO
55 vmace{0,3,3};
//Multiply odd word and add to VACCO
86 vmaco{0,3,3);
}

87 ldvlen_r{(VLMAX) ;
// Do ADD reduction of VACCO
s8 vaccaddreduce (0} ;
//8tore accumulator value in element 0 to L_tmp
59 vstacc (0,0, &L_tmp) ;
}
#endif

Figure 4-11: Strip mining loop



4, Methodology and Architectural Results 83

The last section of the code snippet in Figure 4-11 restores the dynamic vector length
register to the maximum vector length for the vector accumulator to perform an add-
reduce operation in all its elements and produce a final 32-bits scalar result. This result is
deposited in the lowest element (element 0} of accumulator 0 and it is stored into memory
at the pointer’s address L_tmp with statement S9. In the vectorized code the arithmetic
instructions calculating the displacement from the index base are reduced by
(VLMAX+1) times as the number of iterations is divided with VLMAX plus the modulus

calculation for loop strip mining.
4.3.5 Scalar Optimization

All the data-parallel loops constructs that didn't exhibit any data (iteration-carried)
dependences were re-written in vector assembly, using vector instruction extensions and
the techniques discussed previously. The remaining of the code that comprises non-
vectorizable loops and parts that contain BASOP instructions was optimized through the
addition of custom scalar instructions, Figure 4-12 depicts an example of scalar assembly
that replaces part of the original code, This loop transforms back the LPC from the LSP
coefficients. As it can been seen this loop presents data dependency as both statements of
the original code depend upon input values that were created by previous
execution/iteration (£1{i-1] and £2[i-1]). Therefore this loop is not vectorizable and
can be only optimized by replacing the BASOP operations with scalar instructions. The
pre-processor directive #ifdef METHOD2 is used at compile time to allow this scalar-
optimized part of the reference code to run and it is activated by the METHOD2 switch in
the compile.h header file. In a similar manner with the vector-optimized loops, the
operands are loaded to the coprocessor scalar registers. The difference is that these
registers are scalar and the loop iteration is the same as the original one. The next
instructions perform long addition (L_add) and long subtraction (L_sub) to the scalar

registers and results are stored back to the memory.



4. Methodology and Architectural Results 84

for (i = 5; i > 0; i--)
{

JEERKKRIKKRK AR I KR RRES METHODD *ArF A AR Ak hk R x kA XXk k* ok [
#ifdef METHOD2

//Load variable f£1[i] in register[l]
m2s1d32(1,£11[1));

//Load variable £1[i-1] in register[2]
m2s1d32 (2, £1[i~-1]1};

//Load variable £2[i] in register[3]
m2s1d32(3,£2[i]);

//Load variable f£2[i-1] in register{4]
m2s1d32(4,£f2[i-1]1);

//Perform L_add

mZsladd{1,1,2);

//Perform L_sub

m2slsub(3,3,4);

//Store to f1[i]

m2sst32(1,£1[1i]);

//Store to f£2[1]

m2sst32(3,£2[1]);

felse //ORIGINAL CODE

£111]
£2[1]

L_add(fi[i), £1(i-11); /* E1[i] += £1([i-11; */
L_sub(f2[i], £2([i-11); /* £2[1i} -= £2[i-1]; */

#endif

Figure 4-12: Scalar optimization example

4.3.6 Validation Tests

Every time a vector or scalar assembly instruction was added in one of the C reference
codes, tests were run, using the test vectors provided by the ITU-T. This was to verify the
full algorithmic equivalence between the optimized and the original (reference) codes.

The test vectors employed for both algorithms are listed in Table 4-8 below.

Table 4-8: G729 Encoder Test Vectors

Input vector ITU Reference output Description

Algthm.in Algthmbit Conditional parts of the algorithm
Fixed.in Fixed.bit Fixed codebook search

Lsp.in Lsp.bit Lsp quantization

Pitch.in Pitch.bit Pitch search

Speech.in Speech.bit Generic speech file




4. Methodology and Architectural Results 85

It is important to note that these vectors are not exhaustive and thus can only be part of a

more comprehensive validation suite.

Table 4-2: G729 Decoder Test Vectors

Input vector ITU Reference output Description

Algthm,bit Algthm pst Conditional parts of the algorithm
Fixed.bit Fixed.pst Fixed codebook search

Lsp.bit Lsp.pst ' Lsp quantization

Pitch.bit Pitch.pst Pitch search

Speech.bit Speech.pst Generic speech file

Tame bit Tame.pst Taming procedure

Erasure.bit Erasure.pst Frame erasure recovery
Overflow.bit Overflow.pst Overflow detection in synthesizer
Parity.bit Parity.pst Parity test

Passing these vectors can be considered a minimum requirement, and is not a guarantee

that the implementation is correct for every possible input signal.

Table 4-10: G.723.1 Encoder and Decoder Test Vectors

Input vector ITU Reference output Description

Encoder
dtx63.tin dtx63.rco Encoder input / 6.3 rate
dtx53mix.tin dtx53.1co Encoder input / 5.3 and mixed rate
dtx53mix.tin / dtxmix.rco Encoder rate input
dtxmix.rat

Drecoder
dix63.1co dtx63.10u Decoder input / rate 6.3
dix53.rco dtx53.rou Decoder input / rate 5.3
dtxmix.rco dtxmix.rou Decoder input / mixed rate
dix63e.tco/ dtx63e.rou Decoder input / rate 6.3 with Cyclic
dtx63e.crc Redundancy Check (CRC} input
dtx63b.tco dtx63b.rou Decoder input / rate 6.3

For the purpose of this research these ITU supplied test vectors were used to ensure

compliance of the reference speech coders throughout the optimization phase. The



4. Methodology and Architectural Results 86

compiler used to compile the vectorized reference code was gee 3.3.2 (linux x86) [30]

and the gee 2.7.3 [30] cross-compiler for the SimpleScalar ISA.
4.3.7 The extended ISA (Scalar and Vector Extensions)

This section, describes the modifications that took place in the core SimpleScalar toolset
in order to emulate the coprocessor architecture under study. The sim-vector tool that was
used is an extended simulator based on the sim-fast simulator but modified with added
state (coprocessor scalar and vector state) and instructions (coprocessor scalar and vector
instructions). This code includes the extra processor state and the instructions that operate
on that extended state. The extended state specifies the additional registers on top of the
existing architectural state (SimpleScalar processor state). The vector.def file includes
the definition of all the existing instructions of the SimpleScalar along with the extended
instruction set architecture. The vector.def file contains the PISA.def which includes

C macro implementations of all the basecase SimpleScalar instructions.

Vector.def example

switch ((inst.b>> CATEGORY_LSB)} & CATEGORY_MASK)\
(\

/**************************/\

case 2: /* CATEGORY 2 */\

LA R AR SR RS R R REEE S EESSEESES LN
/ /\

switch (OPCODE}\

N
cage 1l:\
{\
switch {(inst.b >> EXT OPCODE_LSB)} & EXT_OPCODE_MASK)\
{\
case 3:\
{\
/* VSHRI */\
extern vstateT wvstate;\
enum md_fault_type _fault;\
int index;\
Wordlé amount;\
amount=GPR (IMMS_ADDR) ; /* (Wordlg) IMM8; * /\
for {(index=0; index< wvstate.VLEN; index++)\
{\
if (RD_ADDR (=0 )\
vstate.VRF[RD_ADDR] [index] =my_ shr simple
(index,vstate.VRF[RS1_ADDR] [index], {Wordlé6)amount) ;\
JAY
break;

Figure 4-13: Instruction Definition in Vector.def



4. Methodologv and Architectural Results 87

The vector.def file contains the opcode definitions of the whole extended instruction
set. Extended opcodes are split into 3 parts; the opcode bits 20-24, category bits 25-28
and the extended opcode bits 29-31. A typical opcode is implemented with 3 Ievels of
switch statements. The first level is the category switch, the second level the opcode
switch and the final level is the extended opcode switch. Figure 4-13 shows the C
description of the vector shift right coprocessor command and, as it can be seen, is similar
to the C macro definition of the instruction in Figure 4-5. The main difference is how the
source/destination registers are decoded. They have been extracted from the instruction
opcode in an earlier stage. Inside the loop the vector instruction is performed and every
loop iteration represents a vector datapath lane. This replicates the functionality of the
vector processor. When the extended SimpleScalar toolset is running, the extended vector
instruction count is added to the default instruction count to derive precise execution

statistics for the whole (base and extended) processor architecture.
4.3.8 Inline Assembly

The C representation of the extended instructions (macro-based) adds a lot of time-
overhead as every opcode corresponds to a number of instructions and is thus used only
to model the execution of these instructions. Therefore, in order to derive a final

optimized implementation, the extended instructions were inserted with inline assembly.

#ifdef S8
// simplescalar
#define vshri(vrf,amount} \
({\
asm volatile {"addu $10,%0,$0" : :"r"{amount):"$10");\
asm volatile {".word 0x00010000");\
asm volatile ({".word \

3 << 29 | /* EXT_OPCODE */\
2 << 25 | /* CATEGORY */\
1 << 20 | /* OPCODE */\
"$vrfr<< 15 | /* VRD = VRF */\
"fyrfr<< 10 | /* VRS1=10 */\
10 << 5"); /* RS2 = HOST REG */ \
i
#else
// Sparc
#endif

#endif

Figure 4-14: Inline Assembly Instruction Definiticn



4. Methodology and Architectural Resulis 88

With this method, every scalar/vector opcode corresponds to one instruction onty and the
added instructions can run in the SimpleScalar mode to produce reliable statistics. Figure
4-14 illustrates an example of inline assembly for the vshri vector instruction; that its C
macro was showed in Figure 4-5. The asm volatile statement is divided in three parts, The
first part is the code section where the first (source) operand (%0} is added to source
register 0 and stored into the target register 10 ($10) [30]. Since there are not output
operands two consecutives colons are added on the place where the output operands
would go. The “r” (amount) signifies that is the other input register operand. The “r” is a
constraint string which indicates that the following C variable (amount) is placed in a
general register. The last part of the asm instruction, the clobber list, is utilised to inform
the compiler about which register is clobbered (modified) by the assembly code. In this
example “10” indicates to the compiler that register 10 has been modified by the inline
assembly. The next two assembly lines comprise 2 64-bit opcode that will be dynamically
decoded by sim-vector during run time. The first part of the opcode which is 32-bits
(0x00010000) represents the nop instruction annotation 1 (flag) whereas the second part
builds the remaining 32-bits (word) which is the actual vector instruction [30]. This word
is the binary pattern of the instruction set extensions. The compiler composes the opcode
binary according to the above inline assembly statements. During runtime SimpleScalar
encounters the nop opcode and checks the binary pattern. If it is an extended instruction,

it performs the transformation on the processor state as specified by the extended opcode.
4.4 Architectural Results

As it was described in the previous sections, both workloads were optimized with the
development of vector and scalar extended ISAs. Throughout the experimentation phase,
the modified workloads were validated by using the ITU-T test bitstreams to ensure
compliance with the reference speech coders. In order to study the optimization benefits,
simulations were run for all ITU-T input vectors and for vector lengths of up to 128 16-
bit elements. During compile time, the user can select which mode the coprocessor will
run. A special file (compile.h) contains all necessary switches for compilation in order
to be able to select the mode that the code will run. By selecting x86 (native mode) or SS
(SimpleScalar mode) the compiler is using the C-macros (Figure 4-5) or the inline

assembly implementation (Figure 4-14) of the extended instructions respectively. The



4. Methodology and Architectural Results 89

ORIGINAL switch selects if the code will run in original or vector mode while the
METHOD?2 adds the scalar features. The results are segmented in two major groupings
with the first group showing the induced performance of the vector ISA only. The second
group reflects the performance of the full optimizations and exposes the additional
performance benefits of the scalar ISA. Figure 4-15 and Figure 4-16 show the results of
the extended, architecture-level performance simulation of the G.729A encoder and
decoder respectively for vector optimizations only. The performance metric used is the
relative dynamic instruction count which in both cases is approximately 59.1% and

60.7% respectively at a vector length of sixteen 16-bit elements.

G.729A Encoder (Vector Only)
0.4
—algthm —fixed
§ Isp — pitch
= —lame —lest
§ 047 —speech
o
Q
c
2
‘g 0.45
@
=
2
E 04
©
€
>
(=]
g
= 041
-]
]
o
N
0.3
DL 16 32 48 64 80 96 112 128
Vector Length (VLMAX)

Figure 4-15: G.729A Encoder (Vector Only) Results

This essentially means that the vectorized G.729A encoder executes 59.1% fewer
instructions compared to the reference C implementation when the vector ISA comes in

effect, fora VLMAX of 16. In the case of the G.729A decoder, this figure is 60.7%.



4. Methodology and Architectural Results 90

G.729A Decoder (Vector Only)
05
—algthm —lixed

—_ Isp pitch
__ii —tame ——speach
‘g" 044 —arasure — overflow
o ar
S parity
§ 044
T
°
E
«Q
§. 0.44
a
L]
>
% . - d
s = —
c T

0.36

0 l 20 40 60 80 100 120
% Vector Length (VLMAX)

Figure 4-16: G.729A Decoder (Vector Only) Results

The slope of the graphs clearly demonstrates that the most significant performance
benefits are realized at shorter vector lengths, in the range of 2 to 16 16-bit elements,
while no further significant reduction is measured beyond that configuration. This
observation has the benefit of restricting the microarchitecture design space to shorter
vector lengths as configurations with vector lengths greater than 16-bit elements are in
practice unrealistic, due to the large silicon overhead incurred by such wide datapaths and

the need for very long cache fill bursts [31].

G.729A Encoder (Full Optimization)
03 =
—algthm —fixed

= Isp ~—pitch
E, 0. —tame —test
S —speech
Q
5 o
3
£
£ 0.2
g
§ \

0.2
&
2
8 024
[
@

sl

0 l 16 a2 48 64 80 96 12 128
% Vector Length (VLMAX)

Figure 4-17: G.729A Encoder (Full Optimization) Results



4. Methodology and Architectural Results 9l

Figure 4-17 and Figure 4-18 depict the relative algorithmic complexity of the G.729A

encoder and decoder obtained with all the optimizations.

G.729A Decoder (Full Optimization)

(=]
Y

—algthm —fixed
Isp pitch
—tame ——speech
04 ——erasure — overllow
pnrny

o

o

o
-

o
2

Relative Dynamic Instruction Count (%)

0.3z
16 32 a8 64 80 96 112 128

Vector Length (VLMAX)

o
T —

Figure 4-18: G.729A Decoder (Full Optimization) Results

In this particular case, both the data-parallel as well the non-vectorizable sections of the
code were optimized. The achieved performance metric improvement for the encoder and
decoder is 76.2% and 65.9% respectively for vector length of 16 (256 bits) and no further
improvement appears for larger vector lengths. It is clear from the results that there is
significant improvement in the dynamic instruction compared to the original execution.
These data indicate that both speech coding standards benefit substantially from

combined, scalar and vector accelerator.



4. Methodology and Architectural Results 92

G.723.1 Encoder (Vector Only)

o
o
@

=+ dix53mix.tin (r53)
—=— tx63.tin (r63)
—=—dtx53mix.tin (mixed)

o
= o
L4

7 T—

M S LR R R

Ralative Dynamic Instruction Count (%)
& <
-

16 32 48 64 80 %6 112 128
Vector Length (VLMAX)

Figure 4-19: G.723.1 Encoder Vector Optimization Results

Figure 4-19 and Figure 4-20 illustrate the relative dynamic instruction count reduction of

the G.723.1 encoder and decoder respectively for the vector optimization only.

G.723.1 Decoder (Vector Only)
0.46¢ -
= —e—dtxB3.rco  — dx53.rco
g:' 0 —— dtxmix.rco '—thSa.tco‘
[ =
3 —— dix63b.tco
O
§
=
E 0.4
E
Q pad - -
E j
[
e
$
=
5 034 _—
4
o.
oé 16 32 48 64 80 98 112 128
Vector Length (VLMAX)

Figure 4-20: G.723.1 Decoder Vector Optimization Results

The performance metric for the encoder and decoder is approximately 70% and 67%
respectively at a vector length of 16 16-bit elements. This maximum improvement
appears at a vector length of 16 (256 bits) and no significant improvement emerges

beyond that. Performance saturation clearly indicates that wider DLP configurations are



4. Methodology and Architectural Results 93

not needed and that most of the inherent DLP of the algorithms can be exploited by a

256-bit wide vector coprocessor.

G.723.1 Coder (Full Optimization)

- mx53mlx.ﬁn tra) 1
& dix63.tin (r63)
& dtx53mix.tin (mixed)

.28

- D-o-'—m\ APt Pttt ey et bttt ettt st rssrrttesess

Relative Dynamic Instruction Count (%)

0.24 -\ %,
A -~ -
L W00 sitatttueitntey aobrbitnini it tbpiad b st S iy
"ua o L X
\ -
| 03 il ....\hf-........"-.ll .".'...'Illl.--.-ll'IlllI.-IIIII
W
0.1
Qg 16 32 48 64 80 96 112 128
Vector Length (VLMAX)

Figure 4-21: G.723.1 Encoder Full Optimization Results

Figure 4-21 and Figure 4-22 depict the performance metric of the G.723.1 encoder and
decoder with full scalar and vector optimizations. In this case, the dynamic instruction

count is reduced approximately to 79.7% and 73.6% at a vector length of 16 (256 bits).

G.723.1 Decoder (Full Optimization)

0.3
i —&—dtx63.rco — dtx53.rco
&
-E'o | —*—dtxmix.rco — dtx63e.tco
3 —+—dtx63b.tco
© 034
c
2
°
2 033 —
@
E
2 03—
£ 3
@
&

o2d N R A A e SR S S R R AR AR AR AR Tiaaaad
B0l
= b
3 024
S

0.2

0 g 18 32 48 64 80 9 112 128
Vector Length (VLMAX)

Figure 4-22: G.723.1 Decoder Full Optimization Results



4. Methodology and Architectural Results 94

This additional decrease in the dynamic instruction count of both speech codecs shows
considerable improvement with the introduction of the scalar instructions. It is clear that
the combination of scalar and vector optimized code, via the two proposed extended ISAs
yields better performance metrics and for this reason the design implementation includes
both coprocessors. The next set of graphs (Figure 4-23 up to Figure 4-34) illustrates the
performance improvement of the most compute-intensive functions as they appear in
Table 4-6 and Table 4-7, for both speech codecs. These results can be used to see the
specific sections of the speech codec which have been improved. Figure 4-23 shows the
results for the G.729A encoder function Cor h x under full-optimization. This
function computes the correlation of the input response with the target vector in the
algebraic codebook (fixed codebook) search procedure [27]. The fractional performance
improvement of the optimized codebook search at vector length of 16 16-bit elements
(256 bits) is 75.5% and it reaches 78.5% at vector length of 2048 bit over the range of

reference input bitstreams.

Cor_h_x (Full Optimization)

—=—Algthm —=—Fixed
——Lsp === Pitch
0.45
—— SpBBCh —e—Tame

——=Tost
04

0.35+

0.3

0.2+

Relative Dynamic Instruction Count (%)

‘mewd-v_h)ﬁw*guhmﬂ*_..\
48 64 80

0.2
G% 16 32 96 112 128

Vector Length (VLMAX)

Figure 4-23: Cor_h_x (Full Optimization) Results

Figure 4-24 presents the performance metric (relative instruction count) of the G.729A
function Syn_filt. This function implements the 10" order Linear Prediction (LP)
synthesis filter (1/A(z)) [27]. The performance improvement of the synthesis filter at
vector length of sixteen is 73.5% over the range of the reference input bitstreams. As it

can be seen no further improvement is evident beyond this vector length. This is



4. Methodology and Architectural Results 95

explained from the fact that the number of iterations for the internal loop of this function

is 10.

Syn_filt (Full Optimization)

—+— Algthm —e—Fixed

(=]

—=—Lsp ~==Pitch

o
n

—=—Speech —e—Tame
——Test

o

e

L N S e R P Ry R e R T R Ty

Relative Dynamic Instruction Count (%)

02
o % 16 32 48 64 80 96 12 128
Vector Length (VLMAX)

Figure 4-24: Syn_filt (Full Optimization) Results

Figure 4-25 depicts the relative instruction count of the G.729A function
Pitch ol fast under full-optimizations. This function estimates the open-loop pitch
delay based on the perceptually weighted speech signal. This open-loop delay is used as
an indication from the closed-loop analysis to find the adaptive-codebook delay and gain

[27].



4. Methodology and Architectural Results 96

Pitch_ol_fast (Full Optimization)

—+—Algthm —=—Fixed
~e=Lsp —— Pitch
—=—Speech —*—Tame

~—— Test

o o © o ©o o
& in o 0w @ @

o
Ix]

Relative Dynamic Instruction Count (%)
(=]
N

o

“‘“".‘Mwwma

o

ror—
o
t

48 64 80 96 112 128
Vector Length (VLMAX)

Figure 4-25: Pitch_ol_fast (Full Optimization) Results

In this case the performance-metric reduction (relative dynamic instruction count) is
approximately 78.7% at a vector length of sixteen 16-bit elements. The next graph in
Figure 4-26 shows the relative performance improvement of the G.729A function
Residu. This function computes the LP residual signal by filtering the input speech
through the LP synthesis filter. The LP residual signal is used to find the target vector for

the adaptive-codebook search [27].

Residu (Full Optimization)
—+—Algthm -®- Fixed |

55 Lsp =~ Pitch
= ~=-Speech -+ Tame
E ~— Test
o
(&)
s
'ﬁ ¥
3
B
£
2
g
£
5
e L SN UCSOONSENeSRNEENUNENUERNAUENEEUUENDUSONNNEDNENUCINDUOERUORNORREUN

16 32 48 64 80 96 112 128

Vector Length (VLMAX)

Figure 4-26: Residu (Full Optimization) Results



4. Methodology and Architectural Results 97

In this case the achieved instruction count reduction for this function is of the order
75.1%. No further improvement is evident beyond this vector length as the number of
iterations for the internal loop of this function is 10. Figure 4-27 depicts the performance
improvement for the G.729A function Autocorr. This function computes the
autocorrelation of the signal with a 30ms asymmetric window in order to perform linear
prediction (short-term) analysis. Later the autocorrelation coefficients of the windowed

speech are computed and converted to the LP coefficients using the Levinson algorithm
[27].

Autocorr (Full Optimization)

0.4
] ——Algthm =*=Fixed

g 03 —=—Lsp —=—Pitch
€ —=—Speach —*=Tame
3 — Tes!
8 0.4 o =
c
o
£ 024
g |
£ o2
2
E

0.1§
g
>
(=]
o 01
>
£}
%
& 0.05 = = n

Teles Ssssssuy
0 ! 16 32 48 64 B0 86 112 128
Vector Length (VLMAX)

Figure 4-27: Autocorr (Full Optimization) Results

This function demonstrates excellent performance stability and experiences a dynamic
instruction count reduction of approximately 93.4% at a vector length sixteen. The
Autocorr function contains a large number of data-parallel loops that were vectorized

successfully.

Figure 4-28 shows the relative instruction count of the G.729A function
Lsp_pre_select. This function implements the first stage quantizer that quantizes the
difference between the computed and predicted LSF coefficients of the current frame.
This quantizer is a 10-dimensional Vector Quantizer (VQ) that uses a codebook with 128

entries (7 bits) [27].



4. Methodology and Architectural Results 98

Lsp_pre_select (Full Optimization)

o
n

——Algthm  =*—Fixed |
~—Lsp ~—Pitch |

o
P
in

——Speech —*—Tame
—Test

£

€

=2

o

O o4

]

<]

=

o

g 034 +

I

=

[}

= 03

8

€

& 024

o

=

3 od

&0 0.3~ 20880002000 £8 40 0200310 €3-83--05- 630003 00-S0-10-28 11 03-C0 €103 30 TO-00 0803033000213 1308-19 8.30 U0-E-0-40-08 000034048 4

0.1
Oi 16 32 48 64 80 a6 112 128
Vector Length (VLMAX)

Figure 4-28: Lsp_pre_select (Full Optimization) Results

The improvement in performance under full-optimizations is of the order of 80.7%. After
this vector length an expected performance saturation is observed since the number of

iterations for the internal loop of this function is 10.

Figure 4-29 represents the results of the G.729A decoder function Agc. This function
implements the Automatic Gain Control (AGC) procedure that takes the output of the

adaptive post filter and scales it to match the energy of the reconstructed signal [27].

Agc (Full Optimization)

S —e— Algthm & Fixed
0. Lsp Pitch
| \ ~%—Spoech —e—Tame
o.ﬂ\\\
084 \“. . - o
1\‘. W'- s b bt g |
-

?
{
4
:
:
i
|
:
:
|
:
:

L.

o
fa

Relative Dynamic Instruction Count (%)
o
L

5
=

L) s
" Sapasen sen
w 'seSarasefes peSatEfasenattE,ustannenttanmna
u

16 32 48 64 80 98 112 128
Vector Length (VLMAX)

Figure 4-29: Agc (Full Optimization) Results

o
Aoe—t




4. Methodology and Architectural Results 99

The dynamic instruction count reduction ranges between 50.6% and 86.6% at vector

length sixteen 16-bit elements over the range of reference input bitstreams.

Figure 4-30 illustrates the results of the full optimization of the G.723.1 Find Best
function. This function implements the fixed codebook search for the high rate encoder

by performing quantization on the residual signal in the MP-MLQ block [28].

Find_Best (Full Optimization)

=]

—+— Mixed Rate

——63 Rate

o
@

e
4

o
in

o
P

Relative Dynamic Instruction Count (%)
o o
o
in

o

32 48 64 80 96 112 128
Vector Length (VLMAX)

[=]

1]

oY

RO s
&>

Figure 4-30: Find_Best (Full Optimization) Results

It is interesting to note that this graph only shows results for two workloads: Mixed Rate
and 5.3 kbits/s. This is because the codebook search is only done at lower bit rates. The
quantization process 1s approximating the target vector (residual signal) and the excitation
is made by positive or negative pulses multiplied by a gain and whose positions can be
either all odd or even. The fractional instruction count improvement of this codebook

search 1s 66% at vector length of sixteen (256 bits).

Figure 4-31 illustrates the results for the relative algorithmic complexity of the G.723.1
function Estim_Pitch. This function implements the open-loop pitch estimation that is
performed twice per frame, one for the first two subframes and one for the last two. The
open loop estimate is computed using the perceptually weighted speech that is selected by

the maximization of the cross-correlation of the speech method [28].



4. Methodology and Architectural Results 100

Estim_Pitch (Full Optimization)

——Mixed Rate
—=—53 Rale
—— 83 Rate

0.34

0.3

0.2¢ |

0.223

0.18

0.14

Relative Dynamic Instruction Count (%)

0.02
0 I 16 32 48 64 80 a6 112 128
Vector Length (VLMAX)

Figure 4-31: Estim_Pitch (Full Optimization) Results

The overall improvement appears for a vector length sixteen and full-optimizations and is
of the order of 92.3%. The next plot in Figure 4-32 shows the architecture-level results of
the G.723.1 encoder function Comp_Lpc that computes the 10" order LPC filter
coefficients for every frame. A Hamming-windowed block is centred on the subframe and
is used to compute the eleven autocorrelation coefficients that are inputs in the Levinson-
Durbin algorithm that generates the LPC coefficients. The produced LPC sets are
constructing the short-term perceptual weighting filter that performs the synthesis [28].
This function demonstrates excellent performance scalability and experiences a reduction

in dynamic instruction count of approximately 88% at a vector length sixteen (256 bit).



4. Methodology and Architectural Results 101

Comp_Lpc (Full Optimization)

—+—Mixed Code

e
=~

——53 Rate
— 63 Rate

o
@

o
in

o
W

(=]
0

.

Teeen

Rl S
R R
mﬂ““'*'m”mﬂmmofoam

o

Relative Dynamic Instruction Count (%)
=3

32 48 B4 80 96 112 128
Vector Length (VLMAX)

<
I\.\O—‘
&

Figure 4-32: Comp_Lpc (Full Optimization) Results

Figure 4-33 shows the relative algorithmic complexity results of the G.723.1 function
Decod_Acbk that computes the adaptive codebook contribution from the previous

excitation vector in the pitch predictor [28].

Decod_Acbk (Full Optimization)
095
—+— Code mix

ﬁ 0. —=—53 Rate
k]

g =63 Rate
O 08

g

E o

2

)

E 0.7

g

8 o

2

-

o

© 08

@

0.6
0 i 16 32 48 64 80 96 112 128
Vector Length (VLMAX)

Figure 4-33: Decod_Acbk (Full Optimization) Results

The reduction in the dynamic instruction count is 36% at vector length of sixteen (256

bit) and full-optimizations. As it can be seen there is no further improvement beyond



4. Methodology and Architectural Results 102

vector length of 6 (96 bits) as the number of iterations for the internal loop of this

function is 6.

Figure 4-34 depicts the simulation results for the G.723.1 function Comp_ Pw that
computes the harmonic noise filter coefficients. The optimal lag for this filter is searched

around the open loop pitch lag that maximises the positive correlation [28].

Comp_Pw (Full Optimization)
0.
—+—Mixed Rate
- ——53 Rate
ﬁ 0.4 —— 63 Rate
E
2
o
O o4
s
-1
E 0.24
£
2 04
E
©
(3
& 0.1
§ o A
(i3
|
0.08—+
0 g 16 32 48 64 80 96 12 128
Vector Length (VLMAX)

Figure 4-34: Comp_Pw (Full Optimization) Results

The results show that the improvement in the dynamic instruction count performance
metric is of the order of 87.6% at a vector length of 16. In the following table are the most
compute-intensive functions of G.732.1 in order to have an overall view of the

performance improvement.
4.5 Summary

This chapter described the optimization methodology and the performance improvements
that were achieved via custom vector and scalar ISA extensions and optimizations of both
speech coding standards. During this process the workloads were profiled over a range of
vector lengths to identify the enhancement the custom ISA extensions have produced.
The architectural results are very promising, demonstrating a reduction in the dynamic
instruction count metric of 58% and 71% for G.729A and G.723.1 speech coders

respectively when the vector instructions were introduced and a further 18% and 9%



4. Methodology and Architectural Results ] 103

reduction in dynamic instruction count when the scalar instructions were applied. These
tesults show the potential benefit of applying custom instructions and having associated
coprocessor vector functional units. The overall simulation results indicate that the
area/performance points of interest lie in between 64-bit to 256-bit wide configurations.
In addition both sets of results reveal that the maximum benefit is achieved by a
combination of custom vector and scalar architectures. From this, the microarchitecture
can be designed and attached to a generic RISC CPU. This is explained in more detail in

the next chapters.



4. Methodology and Architectural Results 104

4.6 References

[1]

(2]

[3]
[4]

(51

(6]

[7]

[8]

(1

[10]

[11]

[12]

[13]

T. Austin, E. Larson, and D. Ernst, "SimpleScalar: An Infrastructure for

Computer System Modeling," in Computer. vol. 35 - no. 2, February 2002 pp.
59-67.

S. Dwarkadas, J. R. Jumnp, and J. B. Sinclair, "Execution-Driven Simulation of
Multiprocessors: Address and Timing Analysis," ACM Transactions on Modeling
and Computer Simulation (TOMACS), vol. 4, pp. 314 - 338 October 1994.

I. L. Peterson, P. J. Bohrer, and e. al, "Application of full-system simulation in
exploratory system design and development,” vol, 50, pp. 321-332, March 2006.

S. Hangal and M. O'Connor, "Performance Analysis and Validation of the
picoJava Processor," in IEEE Micro. vol. 19, May 1999, pp. 66-72.

T. A. Diep, C. Nelson, and J. P. Shen, "Performance evaluation of the PowerPC
620 microarchitecture,” in Proceedings of the 22nd annual international
symposium on Computer architecture, S. Margherita Ligure, Italy, 1995, pp. 163-
174.

L. Guerra, J. Fitzner, D. Talukdar, C. Schléger, B. Tabbara, and V. Zivojnovic,
"Cycle and phase accurate DSP modeling and integration for HW/SW co-
verification," in in Proceedings of the 36th ACM/IEEE conference on Design
automation, New Orleans, Louisiana, United States, 1999, pp. 964 - 969

P. Mishra, N. Dutt, and H. Tomiyama, "Architecture Description Language
driven Validation of Dynamic Behavior in Pipelined Processor Specifications,”
CECS Technical Report #03-25, Center for Embedded Computer Systems,
University of California, Irvine July 2003.

A. Halambi, P. Grun, V. Ganesh, A. Khare, N. Dutt, and A. Nicolau,
"EXPRESSION: A languagefor architecture exploration through

compiler/simulator retargetability,” in in Proceedings of Design Automation and
Test in Europe (DATE), 1999, pp. 485-490.

F. S.-H. Chang, "Fast Specification of Cycle-Accurate Processor Models,” in
Proceedings of the International Conference on Computer Design: VLSI in
Computers & Processors, 2001, pp. 488-492,

G. Zimmermann, "The MIMOLA design system a computer aided digital
processor design method," in in Proceedings of the 16th ACM IEEE Conference
on Design automation San Diego, CA, United States, 1979, pp. 53-58.

M. Reshadi and N. Dutt, "Generic Pipelined Processor Modeling and High
Performance Cycle-Accurate Simulator Generation," in Proceedings of the
conference on Design, Automation and Test in Europe, 2005, pp. 786 - 791.

M. Freericks, "The nML machine description formalism,"” Technical Report
1991/15, Technische Fachbereich Informatik, Berlin University, Berlin 1991.

G. Hadjiyiannis, S. Hanono, and 8. Devadas, "ISDL: An Instruction Set
Description Language for Retargetability,” in in Proceedings of the 34th annual
conference on Design automation, Anaheim, California, United States, 1997, pp.
299-302.



4. Methodology and Architectural Results 105

[14]

[15]

[16}

[17]

[18]

[19]

(20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

M. Barbacci, "Instruction Set Processor Specifications (ISPS): The Notation and
Its Applications," IEEE Transactions on Computers, vol. 30(1), pp. 24-40, 1981,

G. Mulley, "Using Ismene to Debug and Predict the Performance of an
Embedded System Device Driver," University of Glamorgan, Technical report
2004.

T. Hoshino, "UDL/I version Two: A New Horizon of HDL Standards,” IFIP
Transactions: Proceedings of the 11th IFIP WG10.2 International Conference on

Computer Hardware Description Languages and their Applications, vol. A-32,
pp. 437 - 452 1993.

V. Zivojnovic, S. Pees, and H. Meyr, "LISA-machine description language and
generic machine model for HW/SW co-design," in IEEE Workshop on VLSI
Signal Processing, pp. 127-136, 1996.

W. S. Mong and J. Zhu, "A retargetable micro-architecture simulator," in
Proceedings of the 40th ACM IEEE conference on Design automation, Anaheim,
CA, USA, 2003, pp. 752-757.

G. Maturana, J. L. Ball, J. Gee, and e. al, "Incas; A Cycle Accurate Model of
UltraSPARC," in Proceedings of the 1995 International Conference on Computer
Design: VLSI in Computers and Processors, Los Alamitos, California, October
1995, pp. 130-135.

J. L. Hennessy and D. J, Patterson, Computer Architecture: A Quantitative
Approach 2nd ed.: Morgan Kaufman, 1996.

D. Martin, "Vector Extensions to the MIPS-IV Instruction Set Architecture (The
VIRAM Architecture Manual) Revision 3,7.5.," March 2000.

T. M. Austin, "SimpleScalar 3.0a pre-release,” SimpleScalar LLC:
http://www.simplescalar.com.

V. A. Chouliaras, K. Koutsomyti, T. Jacobs, S. Parr, D. Mulvaney, and R.
Thomson, "SystemC-defined SIMD instructions for high performance SoC
architectures," in /3th IEEE International Conference on Electronics, Circuits
and Systems, Nice France, December 10-13, 2006.

V. A. Chouliaras and J. L. Nunez, "Scalar Coprocessors for accelerating the
G723.1 and G729A Speech Coders," IEEE Transactions on Consumer
Electronies, vol. 49, pp. 703-710, August 2003,

V. A. Chouliaras, J. Nunez, S. R. Parr, K. Koutsomyti, D, J. Mulvaney, and S.
Data, "Development of custom vector accelerator for high-performance speech
coding," IEE Electronics Letters, vol. 40, pp. 1559-1561, Nov 2004.

K. Asanovic, "Vectorizing SPECint95," in Computer Science Division. vol.
Unpublished manuscript extracted from PhD Thesis California: Berkeley, March
1998.

ITU-T Recommendation G.729A, "Coding of speech at 8 kbit/s using conjugate-
structure algebraic-code-excited linear-prediction (CS-ACELP)," 3/96.

ITU-T Recommendation G.723.1, "Dual Rate Speech coder for multimedia
communications transmitting at 5.3 and 6.3 kbit/s," 3/96.



4. Methodology and Architectural Results 106

[29] R. Allen and K. Kennedy, "Automatic translation of FORTRAN programs to
vector form," ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 9, pp. 491 - 542, October 1987.

[30] "http://gce.gnu.org/onlinedocs/."

[31] K. Koutsomyti, S. R. Parr, V. A. Chouliaras, and J. Nunez, "Applying Data-
Parallel and Scalar Optimizations for the efficient implementation of the G.729A
and G.723.1 Speech Coding Standards," in Proceedings of the 7th IASTED
International Conference, Signal and Image Processing, Honolulu, Hawaii, USA,
August 2005, pp. 40-45.



CHAPTER 5
VECTOR PROCESSOR ARCHITECTURE

5.1 Vector Architectural State

The vector-scalar coprocessor is attached to the Sparc-V8 compliant CPU core via a
custom, pipelined coprocessor interface. The accelerator consists of two major unit
microarchitectures: One parametric microarchitecture that implements the vector ISA and
a second that implcments the scalar ISA. The coprocessor attaches to the integer unit of
the Leon CPU in the fifth pipeline stage which is the memory stage. It was not designed
as a stand-alone AHB coprocessor because, though the workloads perform a Iot of work
on blocks of data (samples), there where many more instances where custom assembly
code (scalar) needed to be inserted into irregular (non-iterative) blocks. Therefore a very
tightly-coupled configuration was pursued which accommodates efficiently both cases
[1]. The coprocessor is connected to the memory stage in order to avoid the majority of
the exceptions and interruptions of the Leon CPU and to have enough time to transfer
data to/from the main processor if requested. Therefore, when a valid vector coprocessor
instruction is encountered and there is no exception or pipeline stall then the vector/scalar
instruction along with a valid signal is sent to the first stage (decode} of the vector
coprocessor pipeline for execution. By defining coprocessor extension instructions
instead of a full stand-alone instruction set allows taking advantage of any developments
in the Leon architecture and use of the development tools available for the latter. In
addition, the coprocessor can be imported into any other embedded CPU architecture with

very little modifications.

The vector pipeline is a SIMD array of functional units (FUs). The functional units are
organised in four groups: Addition (vadd), multiplication (vmult}, shift (vshift) and
miscellaneous (vmmisc). Each group has a parametric number of functional units equal to
half the maximum vector length (VLMAX/2) where VLMAX can take values that are
power of 2. On every cycle, only one of the aforementioned FU groups is active. The
subdivision of the vector pipeline into the four vector FU groups is detailed in the next

chapter in section 6.4. The VLMAX/2 vector FUs are driven by the corresponding slices

107



5 Vector Processor Architecture 108

of the operand registers (vector elements), stored in the vector register file. These slices
provide, per unit, two read ports (2 x 32-bits) and a write port (32-bits). Each functional
unit has a dynamically configurable 2-way SIMD or scalar organisation, depending on
whether the instruction produces 2x16-bit results or 32-bit. The vector length is located in
the vector length (vlen) register and defines the width of the vector registers and the
number of FU that are utilised to perform an operation. It does not alter any of the
hardware resources. All vector operations are governed by the current vector length and a
vector mask. The current vector length is taken from the vlen register and the vector
mask is implemented by a combinational logic that differs for each specific instruction.
The FUs take their source operands from either vector registers, scalar registers or vector
accumulators and can perform both vector and scalar operations. Each functional unit of
the group active in the current cycle accepts 32-bit source operands and produces a 32-bit
result except from the FUs of the vmult group that can handle 16-bit input operands and
produce a 32-bit result. Figure 5-1 illustrates an example of a vector operation that is

performed in two source vector registers.

Source 2 register Fa 3 "_5|“7 2 32[3t 1 1s|1s " o|

g 47 32131 16]15 0
Source1 register 3 | I ‘ ] 0 |
opr1(31 16]‘ Jopr2(31 16) opri(31 16)3 opr2(31.16)
| opri(15.0) }opa{fs 0) opri(15:0) opr2(15:0)
x - . _ W ¥

=

0060

OEEE))

\

S N\ Ad A 4 4
. ] |
res(31 1s;¢ res(31 18)L res(15 o¢ res(150)1v

. i aBJar 32[31 1615 0
Destination register ) 2 1 0

Figure 5-1: Example of an operation that is performed in two vector registers with vector
length 64-bits. Each functional unit is driven by the pair of the corresponding slices (vector
elements) of the source vector registers. The produced results are stored back to the

corresponding slices (vector elements) of the destination vector register.

In the case of scalar instructions only the first (FUO) functional unit from the active group
operates whereas the others do not change state (via clock gating and combinational logic
gating) in order to save power. The control/status flag and registers have two uses: to
support predicated execution and to store exception bits that are implicitly set by

instructions that may produce the relevant exceptions [2].



5 Vector Processor Architecture 109

5.2 Programmers Model

The user programming model is shown in Figure 5-2. Along with the instruction set it
completes the portion of the architecture that is visible to software. The programmer’s
model contains two types of registers, the general-purpose registers and the control/status
registers. The general-purpose registers consist of the vector and scalar register files. The
vector register file contains VREGS vector registers of statically-configurable length
VLMAX of scalar 16-bits elements with two read ports and one write port. The VREGS
configuration constant can take values from 2 to 32 and in this instance of the architecture
that value is 16. The 16 vector registers are mdividually designated by the symbols VRO,
VRI,..., VRIS as illustrated. The scalar register file contains SREGS general-purpose
scalar registers of 32-bits width and it has three read ports and one write port. The
SREGS configuration constant is 16 in the current implementation but can be any value
between of 2-32. The 16 scalar registers are individually designated by the symbols SRO,
SR1,..., SR15, as illustrated in the model of Figure 5-2. The scalar registers can serve a
number of purposes including use as address pointer registers, for scalar memory
references, provide data values for vector and scalar operations, store final or

intermediate results etc.

Overflow Flag : Vector Register File ‘ Scalar Register File
w Elamont 0 Etement 1. Element 2° Element {VLMAX-1} . i
EERRITE R VRO - SRo i
Vector Overflow VR1 SR1
. Register ' VR2 SR2 .|
,)::]M VR3. SR3 ..
O VR4 | SR4 ]
(VLMAX/2)-1 bits VRS S8R5
Predication Register o VRE | 8R6 -
i * Jpreg - VR7 SR7
VIAK B VRS . . SR8
VRO - SRg
;- Vlen Register . = VR10 - SR10. " ¢
R Jvien VR11 SR11
‘m} vR12 - SR12
K VR13 . . SR13
e VR14 SR14
VR15 SR15
18 blts:_:__ . . . - 32 bits -
Element0 " _ Element 1 7 Element (VLMAX2-1)
s VACCH
_ VACCO
32 bits s

Figure 5-2: Vector and Scalar coprecessor programmer’s model



3 Vector Processor Architecture 1i0

There are also ACC_NUMBER vector accumulators consisting of VLMAX/2 scalar
elements (32-bit). The ACC_NUMBER configuration constant in this case 1s 2 (VACCO,
VACC]1) but can be any value of the range of 2-32 with the restriction for the long
instructions which access the accumulators, except the multiply-add/sub instructions, that
can use only the first two accumulators (VACCO0, VACC]1) as source operands. There are
special move instructions that éxchange data between the vector, scalar and Leon general
purpose registers and the vector accumulators. The control/status registers include a
vector length register (vlen), a predication register (pred), a vector overflow register
{ovf) and an overflow flag (VV). The vlen register has maximum value of VLMAX
and defines the width of the data that will be processed by the vector datapath. The
predication register is a type of mask register with VLMAX bits where each bit
corresponds to a vector element. It is set when a comparison instruction takes place and it
is utilised during merge operations to select the appropriate vector elements that comprise
the vector comparison result (merge operation). The overflow flag (VV) is a single bit and
it is set whenever an overflow happens during arithmetic instructions. Internally, multiple
overflow flags are generated where each such flag corresponds to one vector element, and
they are combined in a single overflow flag by using an or-reduce operation. In addition,
there is a vector overflow register (ovf) that is VLMAX/2-bit long where every bit is the
overflow result of each functional unit of the group that performed the particular
operation. The only vector mask register is the predication register that is employed for
the comparison and merge operations. All the other masking processes are implemented

on the run by combinational logic obeying the current vector length value.
5.3 Vector Processor Instruction Set Architecture

The instruction set defines the transformations the software component can perform in the
architectural state, including both memory and register file. Instructions define one or
more operations for a scalar set of data. The vector instruction set, on the other hand,
allows software to express, with a single opcode, multiple independent operations on
arrays of data [3]. This section describes the instruction set that implements most of the
basic DSP operations on the target, G.729A and G.723.1, ITU-T speech coding
algorithms. These operations are more complicated than the basic operations of a RISC

architecture and are described in this document in two levels of detail. The first level of



5 Vector Processor Architecture 111

detail is presented in the remaining of the chapter which is divided into sections that
present and briefly describe groups of instructions of similar types. Each group is
expanded into a more detailed description for each instruction that comprises it. This is
the second level of detail that is contained in the Appendix A and contains for every
instruction, its format, a short description of the instruction’s operation and a software
example. In the proposed processor architecture all the coprocessors instructions are 22
bits wide and include 2 and 3-address formats (1 or 2 source operand registers and the
destination register, all independently specified). The instruction set is divided into two

main categories; the vector instructions and the scalar instructions.
5.3.1 Vector ISA

The vector instruction set described in this document comprises 43 instructions which are
divided into groups of instructions of similar types. Every type is detailed by showing
assembly formats and giving a short description of the instruction’s operation. More
detail is contained in Appendix A, where each instruction is presented separately. The
vector instructions can be grouped into five categories: load/store, move, arithmetic, shift
and miscellaneous. The assembly language format of an instruction is written with a
shorthand notation and few examples of the vector and scalar assembly are given. In
vector mode the coprocessor can process in parallel VLMAX 16-bit operations or
VLMAZX/2 32-bit operations.

5.3.1.1 Load/Store Instructions

Vector load /store instructions are the only instructions that access memory via the Vector
Load/Store Unit (VLSU) and are illustrated in Table 5-1. This table also includes the
instruction that loads the vlen register (1avlen_r) with an immediate even if it is not

regarded as a load instruction in a typical sense.



5 Vector Processor Architecture 112

Table 5-1: Vector Load/Store Instructions

No Instruction  Assembly Brief Description

1 ldvlen_r ldvlen_r(imm) Load Vector Length Register with immediate

2 vidw vidw(vrd,srs1) Load vector register from memory address

3 vldwn vldwn(vrd,srst) Load vector register downward from memory

4 vstw vstw(vrs2,srs1) Store vector register back to memory address

5 vstwn vstwn(vrs2,srs1) Store vector register downwards to memory

6 vidacew vidaccw{vaccd,sts1) Load vector accumulator from memory
address

7 vstace vstacc(vace,velemysrsl)  Store vector accumulator element to memory

Vector load/store operations use a scalar register (srsi) that contains the memory
address in which data is loaded from/stored to. For the load instructions the destination
can be a vector register (v1dw) or a vector accumulator (vldaccw) while for the store
instructions (vstw or vstacc) these registers are the data sources. The load/store
instructions are strided. A strided load takes a base address, in this case the srs1, and a
signed stride, and loads a vector of values starting at the base address, where each
element is separated by the stride amount. The stride is in units of elements, not bytes and
can take the values 1 (vldw) and —1 for load downward (vldwn). A similar method
applies for the strided store in which a vector of values is stored starting from the base
address and be separated from 1 (vstw) or -1 stride for store downward (stwn) {2].
Store instructions have one cycle latency and are performed in the Vector Register Access
(VREG) stage where the store data, along with the memory address, are sent to the VLSU
unit. Load instructions have latency of two cycles as the VLSU unit has a cascade
TAG/DATA configuration. During a load operation the load address is sent to VLSU unit
at the VREG stage and the memory data are obtained at the second Vector Datapath
(VDP2) stage. It is clear that the load/store latency depends on the VLSU
implementation. A parallel TAG/DATA configuration for the VLSU microarchitecture
will reduce the load instruction latency from two cycles to one cycle at the expense of

increased power consumption.

5.3.1.2 Move Instructions

The vector move instructions are used to exchange data between the vector, scalar and
Leon general purpose registers as well as the vector accumulators. They comprise move
instructions (mvvr2gpr or mvgpr2vr) that transfer data between coprocessor’s vector

registers and the main CPU’s (Leon) general-purpose registers.



J Vector Processor Architecture 113

Table 5-2: Vector Move Instructions

No Instruction Assembly Brief Description
8 vaceelr vaccclr(vacc) Set the value in the vector accumulator to zero
9 vsplatacci  vsplatacci(vaced,srs1)  Load vector accumulator with a scalar value

vldacceli Load immediate value into vector accurnulator
(vaccd,velem,value) element

Splat a 16-bit scalar value to all elements of
vector register

Extract high (amount=0) or low (amount=16)
the even elements of vector accumulator and
load them to vector register

Extract high (amount=0) or low (amount=16)
the odd elements of vector accumulator and load
them to vector register

Deposit high (amount=16) or low (amount=0)
the even elements of vector register to the vector
accurnulator

Deposit high (amount=16) or low (amount=0)

10 vldacceli
11 vsplat_h_r vsplat h_r(vrd,srsl)

12 mvacetre vmvacctre
vimvaeetr {vrd,vacc1,amount)
13 vmvacctro vIvacetro
{vrd,vaccl,amount)
vmvrtacce

14 vmyrtacce (vaccd,vrs1,amount)

15 vmvrtacco ::r:gtiﬁl amount) the even elements of vector register to the vector
? accumulator
16 mvgpravr mvgpr2vr Moves a value (32-bit) from the general purpose
(vrd,velem,grsl) register (Leon) to the vector register element
17 mvvi2gpr mvvr2gpr Moves the vector register element to the general
(grd,velemvisl) purpose register (Leon)

Splat instruction (vspiat_h_r) “splats” a scalar value in a vector register and deposit
instructions (vmvrtacce and vmvrtacco) deposit low or high data from a vector
register to a vector accumulator. The extract instructions (vmvacctre and vimvacctro)
are utilized to extract high or low data from vector accumulators into vector registers.
Finally, they comprise instructions that set to zero (vaccclr), splat scalar data
(vsplatacci) or load an immediate value (vldacceli) into a vector accumulator, All

the move instructions are summarised in Table 5-2.

5.3.1.3 Arithmetic Instructions

The vector arithmetic instructions include short and long addition, subtraction and
multiplication. All the arithmetic instructions are performed in a single cycle apart from
the multiply-add (vmace/vmaco) and the multiply-sub (vmsue/vmsuo) which take two
cycles. The short addition (vaddh) and subtraction (vitu_sub_x) take as inputs two
vector registers and perform a 16-bit addition operation. The long addition (vaddacc)
and subtraction (vsubacc) take as inputs vector accumulators and perform 32-bit
addition operations. Figure 5-3 shows a vector addition for a vector length of 2 that

specifies two vectors as input operands and produces a vector result by executing the



3 Vector Processor Architecture

same operation on each pair of elements from the input arrays. The multiply instructions
are implemented as pairs for the even and odd elements of the vector registers as the
multiplier for every vector functional unit takes as input two 16-bits and produces a 16-bit

(short multiplication) or 32-bit (long multiplication) product. Figure 5-4 illustrates a short

multiplication of two vectors with vector length 2.

Vector Addition

vrsi

{ 1 |

vrd

1

0

Figure 5-3: Vector Short Addition

It takes as inputs the even elements of the pair of vector registers (elements 0) and the

product is placed in the even element of the destination register.

Vector Multiplication Even

vrs1 vrs2
[ i [ [
vrd
| 1 | 0 ]
Vector Multiplication Odd
wrs1 vrs2
[ 1 I i
vrd

1

0

Figure 5-4: Vector Short Multiplication for even/odd elements




J Vector Processor Architecture 115

Then it takes as inputs the odd elements of the pair of vector registers (elements 1) and
the product is placed to the odd element of the destination register., The short
multiplication involves simpie multiplication (mult), multiplication with rounding
(mult_r) and integer multiplication (imult). All these multiply instructions perform a
signed or unsigned 16 x 16 —> 16-bit operation. The long multiplication performs a
signed 16 x 16 — 32-bit operation and, along with the multiply-add, is executed from the
pair of instructions vmace/vmaco but without the accumulation part. The multiply-add
(vmace/vmaco) and the multiply-sub (vméue /vmsuo) instructions are performed in the
even and odd elements respectively of the vector registers vrsl and vrs2 and add or

subtract the product to the even and odd elements of the vector accumulator vacc.

Vector Multiplication Even Vector Multiplication Odd

Figure 5-5: Vector multiply-add/sub

Finally, the vaccaddreduce is used after the execution of the pair instructions that
involve the accumulator and perform add-reduce to the elements of the accumulator, With
the use of an adder tree, a 32-bit final result is obtained and it is placed to the element 0 of

the vector accumulator. All the vector arithmetic instructions are summarized in Table
5-3.



5 Vector Processor Architecture 116

Table 5-3: Arithmetic Instructions

No Instruction Assembly Brief Description
18 vaddh vaddh(vrd,vrs],vrs2) Vector shgrt addition {16-bit) of
vector registers
19 vitu_sub r vit_sub_r(vidvrslyrs2) ¥ ector short subtraction (16-bit) of
- - vector registers
20 vaddacc vaddace(vaced,vacel,vacc2) Vector long addition (32-bit) of
vector accumulators
21 vsubacc vsubace({vaccd,vacel,vacc2) :Z;toc;r:g;inﬁ:giztxon (32-bit) of
22 vaccaddreduce vaccaddreduce (vacc) Vector accumulator add-reduce
23 vite mult e r vitu_mult e r Vector signed short multiply of the
- - (vrd,vrs1,vis2) vector registers even elements
. vitu_mult o 1 Vector signed short multiply of the
24 vitu_mult_o_r {vrd,vrs1,vrs2} vector registers odd elements
25 vitw mult r e r vimult 1 e r Vector short multiply with rounding
= === (vrd,vrs1,vrs2) of the vector register even elements
26  vitw mult T © T vitn mult r_o_r Vector short multiply with rounding
= === (vid,vrsl,vrs2) of the vector registers odd elements
27 vitw i mult e r vitu_i mult e r Vector short integer multiply of the
—-= iy {vrd,vrs1,vrs2) vector registers even elements
ol vitu i mult o r Vector short integer multiply of the
28 vitu_j mult o r & Py
—— — - (vrd,vrs1,vrs2) vector elements odd elements
29  vmace vmace (vacc,visl,vrs2) Vector mu_thply-add (L_mac) of the
vector registers even elements
30 vmaco vmaco (vace,vrsl,vrs2) Vector mu_thply-add (L_mac) of the
vector registers odd elements
31  vmsue vmsue {vacc,vrs1,vrs2) Vector mu_thply—sub(L_msu) of the
vector registers even elements
32 ymsuo vmsuo (vace,vrs] vrs2) Vector mutliply-sub(L_msu) of the

vector registers odd elements

5.3.1.4 Shift Instructions

The shift instructions implement the 16 and 32-bit ITU shift operations. These operations
have also the ability to specify negative shift amounts resulting in a positive shift in the
opposite direction. In addition they saturate the result in the range of 0xffff8000-
0x000071ff in case of overflows or underflows. The short (16-bit) shifts are performed in
a vector register with an immediate or with the shift amount being in the second vector
register. The long (32-bit) shifts are implemented in vector accumulator with an
immediate value or with the amount stored in a vector register. All the shift instructions

are summarized in Table 5-4.



5 Vector Processor Architecture

117

Table 5-4: Vector Shift Instructions

Page Instruction Assembly Brief Description

33 vshli vshli (vrd,vrs1l,amount) Vector short (16-bit) shift left by amount

34 vshri vshri (vrd,vrs1,amount) Vector short (16-bit) shift right by amount

35 vshir vshlr (vrd,vrs1,vrs2) Vector short shift left with register

36 vshrr vshrr (vrd,vrsl,vrs2) Vector short shift right with register
vlshlacc . .

37 vishlace (vaccd,vaccl amount) Vector long (32-bit) shift left by amount
vlshracc PP

38 vishrace (vaced,vacel,amount) Vector long (32-bit) shift right by amount
vishlaccr . . . .

39 vishlacer (vaced,vacel,vrs1) Vector long (32-bit) shift left with register

40 Vishracer vishracer Vec;tor long (32-bit) shift right with
(vaccd,vacel,vrs2) register

--———5.3.1.5 Miscellaneous Instructions

The miscellaneous instructions for the vector ISA perform only comparison operations

between vector registers (16-bit) or vector accumulators (32-bit} and comparison with

zero. The compare instruction compares the two operands together by subtracting the one

from the other. If the result is positive (first operand is greater than or equal to the second

operand register, accumulator or zero) the predication flag (pred) is set to ‘1°. If the

result is negative (first operand is less than the second) the predication flag is set to ‘0°.

Finally the merge instructions are utilised to select the vector register or accumulator

value that satisfies the given equation, on a per-element basis.

Table 5-5: Vector Miscellaneous Instructions

Page Instruction Assembly Brief Description

Compare vector accumulators and update
41 vemp vemp(vaccl,vacc2) Predication flag (pred)

Compare vector registers and update
42 vremp vremp(vrsl, vrs2) Predication flag (pred)

Check vector register if it is greater than or
43 vemp_h_ge vemp_h_ge(vrsl) equal to zero and update Predication flag

vmerge t h r Merge two vector registers according to the
44 vmerge th r (vrd,vrs1,vrs2) Predication flag value
45 vmerce vierge Merge two vector accumulators according
& {vaccd,vaccl,vacc2) to the predication flag value

This is a multiplexer-style operation that selects between two values which one to pass to

the output result, according to the predication flag value. The miscellaneous instructions

are depicted in the above table.



5 Vector Processor Architecture 118

5.3.2 Scalar ISA

The scalar instruction set comprises 36 instructions which are grouped into five
categories: load/store, move, arithmetic, shift and miscellaneous. Each category is
presented to the following sections whereas a more detailed description for every scalar
instruction is given in Appendix A. In scalar mode the coprocessor can accommodate one

16-bit or 32-bit operation.

5.3.2.1 Load/Store Instructions

The scalar load/store instructions access memory via the VLSU unit. The load
instructions can load 16 or 32-bit data from the memory location that is contained in
scalar register (srs1) into the destination register (sxrd). The store instructions store the —— ————
16 or 32-bit data of the scalar register (srs2) into the memory location stored in scalar

register (srs1). All the scalar load/store instructions are summarized to the Table 5-6.

Table 5-6: Scalar Load/Store Instructions

Page Instruction  Assembly Brief Description

46 m2sld16 m2sld16(srd,srsl) Load scalar register with 16-bit from memory
47 m2sld32 m2s1d32(srd,srs1) Load scalar register with 32-bit from memory
48 m2sstl6 m2sstl6(srs2,sts1)  Store 16-bit word of scalar register to memory
49 m2sst32 m2sst32(srs2,srs1)  Store 32-bit word of scalar register to memory

5.3.2.2 Move Instructions

The scalar move instructions offer a flexible way to transfer data between the
coprocessor’s scalar registers and the main CPU’s (Leon) general-purpose register file.
These instructions comprise the address of the source register (srs1 or grs1) and the

address of the destination register (grd or sxrd) and are listed in Table 5-7,

Table 5-7: Scalar Move Instructions

Page Instruction  Assembly Brief Description

Moves contents from general purpose register
to scalar register

Moves contents from scalar register to general
51 mvsr2gpr mvst2gpr(gprd,stsl)  purpose register

50 mvgprsr mvgpr2sr(srd,gprl)




3 Vector Processor Architecture 119

5.3.2.3 Arithmetic Instructions

The scalar arithmetic instructions include short and long addition, subtraction and
multiplication, All these arithmetic instructions take as inputs two scalar registers and
perform a 16 or 32-bit operation. When the result exceeds the range of 0x80000000-
Ox7{ffffff an overflow bit is produced. In the case of multiply-add and multiply-sub the
role of the accumulator is played by a third scalar register that is used both as a source
and as destination register. This was also the reason that the scalar register file has three
read ports instead of two as the main vector register file has. The scalar arithmetic

instructions are listed in Table 5-8.

Table 5-8: Scalar Arithmetic Instruction

Page Instruction Assembly Brief Description

52 m2stadd m2sladd(srd,srs1,srs2) Scalar Long (32-bit) Addition

53 m2slsub m2slsub(srd,srs?,srs2) Scalar Long (32-bit) Subtraction
54 m2sadd m2sadd{srd,srs1,s1s2) Scalar Short (16-bit) Addition

55 m2ssub m2ssub(srd,srs1,srs2) Scalar Short(16-bit} Subtraction

56 m2slmac m2slmac(srd,srsl,srs2) Sealar multiply-accumulate (L_mac)
57 m2slmsu m2slmsu(srd,srsl,srs2) Scalar multiply-subtract (L_msu)
58 m2slmult  m2slmult(srd,srs1,srs2) Scalar long (32-bit) multiplication
59 m2smult m2smult(srd,srs1,srs2) Scalar short (16-bit) multiplication
60 m2smult_r m2smult_r(srd,srsi,srs2) Scalar multiplication with rounding
61 m2simult  m2simult(srd,srs1,srs2) Scalar short integer multiplication

5.3.2.4 Shift Instructions

Shift instructions are used to shift the contents of a scalar register left or right by a given
amount. The shift amount can be specified by a constant (amount) in the instruction or
by the contents of a scalar register (srs2). As with the vector shift instructions, short and

long scalar shifts are supported. The scalar shift instructions are summarized in Table 5-9.



3 Vector Processor Architecture 120

Table 5-9: Scalar Shift Instructions

Page Instruction Assembly Brief Description
62 m2slshl m2slshl (srd,stsl,amount)  Scalar long 32-bit shift left by immediate
63 m2slshr m2sishr (srd,srsl,amount)  Scalar long shift right by immediate

64 m2sishl_rg  m2slshl_rg (srd,srsl,srs2)  Scalar long shift left with register

65 m2slshr_rg  m2slshr rg (srd,srsl,srs2)  Scalar long shift right with register

66 m2sshl m2sshl (srd,srs1,amount) Scalar short shift left by amount

67 m2sshr m2sshr (srd,srs1,amount) Scalar short shift right by amount
68 m2sshl_rg m2sshl rg (srd,srsl,srs2) Scalar short shift left with register
69 m2sshr_rg m2sshr rg (srd,srsl srs2) Scalar short shift right with register

5.3.2.5 Miscellaneous Instructions

The miscellaneous instructions perform the remaining instructions that comprise the basic
operations of the ITU standard algorithms. They include short and long negate, absolute

value, normalization, deposit, extract and rounding.

Table 5-10: Scalar miscellaneons instructions

Page Instruction Assembly Brief Description
70 m2slnegate m2slnegate (srd,srs1) Scalar long negate (L_negate)
71 m2slabs m2slabs (srd,srsl) Scalar long absolute value (L_abs)
72 m2snorm | m2snorm_1(srd,srsl) Scalar long normalisation (norm_I)
. m2sldeposit 1 Deposits 16 LSB into the LSB of scalar
3 m2sldeposit_I (srd,srsl) register the remain are sign extended
. m2sldeposit_h Deposits 16 LSB into the MSB of scalar
" m2sldeposit_h (srd,srs]) register the remain are zero extended
75 m2snegate m2snegate (srd,srs1) Scalar short negate (negate)
76 m2sabs s m2sabs_s (srd,srs1) Scalar short absolute value (abs_s)

77 m2sextract h  m2sextract_h (srd,srs1)  Extracts the 16 MSB from scalar register
78 m2sextract 1  m2sextract_l(srd,srsl)  Extracts the 16 LSB from scalar register
79 m2sround m2sround (srd,srs1) Rounds a 32-bit value to 16-bit

They use one scalar register (srs1) as source operand and calculate the result that place

into the destination register (srd). Table 5-10 lists all the miscellaneous instructions.

5.4 Leon3 CPU

Leon3 is an open-source synthesisable VHDL model of a 32-bit processor core
implementing the SPARC V8 architecture (standard IEEE-1754) [4]. The model is highly
configurable, and particularly suitable for system-on-a-chip (SoC) designs. It is designed

for embedded applications that require a high performance, low complexity and low



5 Vector Processor Architecture 121

power consumption programmable engine. The Leon3 CPU has a 7 stage pipelined

integer unit with a psendo-Harvard architecture (separate instruction and data caches):

» Fetch Stage: In this stage the instruction is fetched from the instruction cache if it
is enabled else a request sent to the memory controller. In addition, the value of
the program counter is updated. At the end of this stage the valid instruction and
the value of the program counter are latched to the next stage.

=  Decode Stage: The instruction is decoded and extracts the addresses for both
source operands and the destination operand. Also it generates the addresses for
branch and CALL instructions and the control signals for the next stages.

»  Register Access Stage: The source operands are read from the register file or
from bypassed intermediate results.

* Execute Stage: All the arithmetical, shift and miscellaneous operations are
performed. For memory load or store and jump/return operations the address is
generated and sent to the memory unit.

®»  Memory Stage: At this stage the data cache is accessed and the store operation is
performed.

= Exception Stage: All the traps and interrupts signals are processed and the data
are aligned in the case of a data cache load.

=  Write Back Stage: The result from any arithmetical, logical, shift or cache

operation is written back to the register file,

It has an on-chip debug support unit and interfaces to a Floating-point unit (FPU) and a
custom coprocessor. The Leon3 processor implements the full SPARC V8 Reference
Memory Management Unit (SRMMU) and its interrupt model recognises and handles 15
asynchronous interrupts. The number of the registers in the register file is configurable
within the range of 2 to 32 with a default value of 8. The cache system is highly
configurable as well and is connected to two independent cache controllers for the
instruction and data caches respectively (icache.vhd and dcache.vhd) [4]. In addition,
there is an interface between the two caches controllers and the Amba AHB bus
(acache.vhd). Both caches are configured to be direct-mapped or multi-set with set
associativity of 2-4 sets, where every set can be 1-256 Kbytes and be divided into cache
lines (blocks) of 16-32 bytes each. The Leon3 includes a hardware multiplier, with
optional 16x16 bit MAC and 40-bit accumulator, and a divider. In this research, we will



3 Vector Processor Architecture 122

consider the integer unit of the Leon3 processor in which the vector processor is attached
in a closely coupled configuration. Leon3 can be configured to provide a generic interface
to a user-defined co-processor. The interface allows the operation of the coprocessor in
parallel increasing this way the performance. The vector coprocessor is a hardware
component that will run in parallel with the Leon3 and will exchange data with it. In
order to perform this, the coprocessor-allocated opcodes must be ignored by the decode
logic of the pipeline of Leon3. This means that the Leon3 should treat these instructions
in a benign way, as is the case of a nop instruction. From the SPARC architecture manual
it can be seen that the instructions are encoded in three major 32-bit formats as illustrated

in Figure 5-6.

Format 1 (op = 1); CALL

| op | disp30
31 29 o
Format 2 (op = 0): SETHI & Branches {Bicc, FBfee, CBece)

op rd op2 imm22

op |a |oond op2 disp22
31 2828 24 21 0
Format 3 (op = 2 or 3): Remaining instructions

op rd op3 rs1  [i=0 asi | rs2

op rd op3 rs1  |i=0 simm13

op rd op3 rs1 opf l rs2
31 29 24 18 13 12 4 0

Figure 5-6: Instruction Formats of Leon3

The format that can be used for the vector coprocessor and will demand only few
modifications of the Leon3 decode logic is the unimplemented instruction (UNIMP). The
values of the UNIMP instruction are not reserved by the architecture for any future use
and the const22 value is ignored by the hardware [5]. The UNIMP instruction is an
instruction with unimplemented opcode that causes an illegal instruction trap and its

format is shown in Figure 5-7.

Format 2 {op = 0): UNIMP

| 00 | reserved 1 000 | const22

31 24 21 0
Figure 5-7: Unimplemented Instruction




5 Vector Processor Architecture 123

Because the UNIMP instruction causes an illegal_instruction trap at the exception
detection stage additional decode logic and modifications in the existing decode logic
prevent the exception process from setting the illegal_inst signal. Furthermore, the Leon3
was modified to perform add with zero when the allocated opcode is decoded. In this
way, the Leon3 IU performs a nop instruction while the 22-bits of the UNIMP opcode
(const22) are sent for further decoding in the vector coprocessor, Therefore the available
22-bits are utilised for encoding the vector and scalar instruction set. More detailed
description, for the Leon3 modifications and the way that the vector coprocessor is

attached to it, is given in Chapter 6.

As mentioned the UNIMP instruction cause an illegal_instruction trap. Traps are
vectored transfer of program control caused from events that should not occur during
normal program execution. Traps can be induced by an exception related to an instruction
or by an external interrupt. If a defined trap condition occurs, the system trap handler is
invoked to handle the program interruption through a special trap table. The base address
is defined in the trap base register (TBR} and the displacement within the table is
calculated in combination with the trap ID. There are three trap categories: the precise
trap that is caused from a particular instruction and takes place before any program-
visible state is altered; the deferred trap that is like the precise one but occurs after the
program-visible state changes and the interrupting trap that is induced by an external
interrupt request. The default trap model that is implemented in Leon3 comprises precise
traps apart from the FPU or coprocessor traps and the “Non-resumable machine-check”
exceptions. The table that contains the 3-bit field (op2) that encode the format 2

instructions is shown in Table 5-11.

Table 5-11: Enhanced op2 Encoding (Format 2)

Op2 Instructions Description

0 UNIMP Vector Processor Instruction

1 unimplemented unimplemented

2 Bicc Branch on Integer Condition Codes

3 unimplemented unimplemented

4 SETHI Set High 22 bits of an r register instruction
5 unimplemented unimplemented

6 FBfcc Branch on Floating-point Condition Codes
7 CBfce Branch on Coprocessor Condition Codes




5 Vector Processor Architecture 124

5.5 Overall System Architecture

The vector coprocessor microarchitecture is currently being implemented in RTL VHDL
as a tightly coupled coprocessor for the Leon Sparc-V8 CPU. It has private vector and
scalar register files as this method promises significantly better performance. Detailed
microarchitecture analysis followed by trial synthesis confirmed that all instructions can
fit in a single high frequency cycle resulting in a latency of 1 and an initiation rate of 1.
Exceptions to this are the Multiply-add/subtract instructions and the short divide with
latency/initiation rate of 2/1 and 17/17 respectively. In particular, it was decided that due
to the very low improvement, the iterative divider block would not be utilized {6]. The

overall system architecture is depicted in Figure 5-8,

SoC IIF
Processing Unit
T TTTT o TmT S s s s e s e e e ]
' !
E Coprocessor Leon !
1 |
Fel > ?JMA ! VLSU icache | acache [dcache| |
nit : I
_______ AL_____________T_______I
f N
y 4 AHB
] PCIIF Mermory APB Bridge
Controller
Host J |— I Sysltem
Timers o Registers

SDRAM SRAM

Figure 5-8: Overall system architecture

It consists of the backbone interconnect (32-bit AHB bus), a configurable number of
processor-coprocessor units, a DMA (Direct Memory Access) unit, 2 PCI IF (Peripheral
Component Interconnect Interface), the external memory controller a low-speed (non-
streaming) peripheral bus (APB) subsystem which houses miscellaneous units such as

timers, interrupt controllers, I/0 and memory-mapped registers.



5 Vector Processor Architecture 125

5.5.1 Processor-coprocessor programmable unit

The main processing unit is the wvector processor (Leon3/vector coprocessor
combination). This unit has two AHB taps, one used for refilling the scalar processor
caches (Instruction, Data) and the second for refilling the coprocessor data cache. Both
main processor and coprocessor caches remain consistent via i) using a write-through
configuration and ii) uses a write-invalidate mechanism which ensures that writes to a
cache block from either processor invalidates the same block in the other processor. Thus
the latter processor will have to go to the main memory if it accesses that location and

recover the up-to-date contents instead of using its own stale data.
5.5.2 DMA taps

These are the input ports to the SoC. An external agent requests the DMA unit for
transferring PCM (frames) data into the SoC address space. The DMA unit has AHB
mastering capability and is also used to transfer the compressed bitstream (processed

frames) from the SoC address space to the environment.

3.5.3 PCILF

An Opencores [7] PCI I/F is used to transfer data between the host system (host PC) and
the FPGA board.

5.5.4 External Memory Controller

This unit is responsible for all memory accesses in the SoC addresses space. It directly
interfaces to a 133MHz DDR (Double Data Rate) memory component and a standard
asynchronous RAM component, These external memories are address-range enabled
(0x60000000 for SDRAM, 0x40000000 SRAM). The optimized speech coder and the
frames to be processed are transferred with DMA from the host PC to the SDRAM
memory of the RISC/Coprocessor FPGA board. After that, the RISC CPU/coprocessor
combination processes the frames and stores the compressed frames in local memory
(SDRAM). The compressed frames are transferred back to the PC memory for
comparison with the ITU-T test vectors [6].



5 Vector Processor Architecture 126

5.5.5 APB Subsystem

The final subsystem includes al! non-streaming components (internal and external) such
as timers, IO ports, interrupt controllers and UARTS. This subsystem also houses

-

memory mapped registers.
5.6 Summary

This chapter introduced the architectural state and programmer’s model of the vector
processor. The vector and scalar instruction extensions were presented, divided into
groups of instructions of similar types. Every type was detailed by showing assembly
formats and giving a short description of the instruction’s operation. More details of the
instructions are contained in Appendix A. Finally a description for the overall system

architecture was given.



J Vector Processor Architecture 127

5.7 References

(1]

(2]
[31
[4]
(5]
(6]

[7]

K. Koutsomyti, S. R. Parr, V. A. Chouliaras, J. Nunez, D. J. Mulvaney, and S.
Data, "Scalar and parametric vector accelerators for the G.729A speech coding
standards," in Proceedings of IEE/ACM SoC Design, Test and Technology
Postgraduate Seminar, Loughborough University, September 2004, pp. 53-57.

D. Martin, "Vector Extensions to the MIPS-IV Instruction Set Architecture (The
VIRAM Architecture Manual) Revision 3.7.5.," March 2000,

C. Kozyrakis, "Scalable Vector Media-processors for Embedded Systems,” in
Computer Science University of California: Berkeley, 2002.

"GRLIB IP Core User’s Manual, Version 1.0.7," Gaisler Research February
2006.

"The Sparc Architecture Manual Version 8 ", www.sparc.com.

V. A. Chouliaras and J. L. Nunez, "Scalar Coprocessors for accelerating the
G723.1 and G729A Speech Coders," JEEE Transactions on Consumer
Electronics, vol. 49, pp. 703-710, August 2003.

http://www.opencores.org/.



CHAPTER 6
VECTOR PROCESSOR IMPLEMENTATION

6.1 Overview

This chapter describes the vector processor along with a number of implementation
details and the general principles of its operation. In addition, it details the way that the
vector speech coprocessor is attached to the main Leon3 scalar processor. The vector
processor consists of the Vector Datapath (VDP) and the Vector Load/Store Unit
(VLSU). In the sections that follow only the Vector Datapath is discussed in detail as the
VLSU is addressed as part of another thesis [1]. The vector processor fully implements
the Vector and Scalar ISAs that were described in the previous chapter. The vector
pipeline comprises four-stage pipeline: the Vector Decode Stage (VDEC), the Vector
Register Access Stage (VREG) and the Vector Datapath Stage (VDP) which consists of a
two stage pipeline (VDP1 and VDP2). All vector/scalar instructions are fully-pipelined
with a latency of one and an initiation rate of one instruction per cycle, with the exception
of multiply-add and multiply-sub instructions which have a latency of two cycles and an

initiation rate of one.

The organization of the speech coprocessor with the 4-stage pipeline is depicted in Figure
6-1. The vector coprocessor is parameterised along both the architecture and the
microarchitecture axes. The architectural parameterisation refers to the number of
registers including accumulators and the extensible vector ISA. The microarchitectural
parameterisation refers to the extensible, non programmer visible state of the processor.
This includes the number of scalar datapaths (functional units), maximum data width and
internal flop-based state. This parameterisation is defined from a number of compile-time
parameters that specify the various architectural and microarchitectural characteristics of

the coprocessor.

128



129

6 Vector Processor Implementation

iu2vcop_opc_valid u2vcop_opc leon_dout

L] L} L]
VDEC Stage VDEC STAGE
e [ gl reg_en1
P————
[ VRF SRF I
— I — [1]
. Y | b
VREG Stage -
7 Shee |
1 o &
o final_vopr1_i ‘ final_vopr2_i _
— EE——e——
7 I
hift i
VDP1 Stage X [ l""”‘
==
reg_en3
- - = Cemessem———
s |
T I I
- "ﬁ:I'B:,;
vadd2 vaccreduce | ‘
VDP2 Stage B i

|

=

Figure 6-1: The vector speech coprocessor microarchitecture with the four-stage pipeline:

Vector Decode Stage (VDEC), Vector Register Access Stage (VREG) and two stages for the
Vector Datapath Stage (VDP1 and VDP2)

The choice of compile-time configuration puts the combined processor/vector

coprocessor firmly in the domain of configurable, extensible CPUs. The compile-time
parameters are listed in Table 6-1.
This table indicates the valid values and the maximum number of the vector/scalar

registers, the accumulators and the vector units (VLMAX/2). Exceeding these limits or

choosing other values than the valid will generate errors during the RTL simulation.



6 Vector Processor Implementation 130

Table 6-1: Compile-time vector processor parameters for its architectural and

micrearchitectural state that are contained in gxx_config.vhd file

Parameter Allowed range Default Description

VLMAX 24,8,16,32,64,128 2 Maximum Vector Length
VREGS 4,8, 16,32 16 Number of Vector Registers
SREGS 4, 8,16, 32 16 Number of Scalar Registers
ACC_NUMBER 2,4, 8, 16,32 2 Number of Vector Accumulator
ACC WIDTH {VLMAX/2)*32 (VLMAX/2)*32  Width of Vector Accumulator

The code is parameterised as to target a number of technologies easily. This has been
achieved through the use of fully technology independent VHDL constructs as well as

using generic RAM components. The allowed silicon technologies are listed in Table 6-2.

Table 6-2: The allowed silicon technologies that are used for synthesis and place and route

contained in gxx_config.vhd file

Parameter Description

GEN Technology independent RAM macros

XST Xiling FPGA Technology (Spartan3}

TSMCO18 Taiwan Semiconductor Manufacturing Company
(TSMC) 0.18um standard-cell technology

TSMC013 TSMC 0.13um standard-cell technology

6.2 Vector Decode Stage (VDEC)

This is the first stage of the pipelined vector coprocessor datapath. In this stage the
instruction from the Leon3 opcode register is decoded and all the datapath control signals
for the following pipeline stages are produced. The instruction for the decoding is coming
pipelined from the Decode stage of the Leon3 to the Memory stage where the coprocessor
is attached along with few control signals. More specifically in this stage the following

operations are performed:

» The opcode is decoded and control signals are produced ready to be pipelined in
subsequent stages.

= The addresses for the source and destination register operands are produced and
access of the vector and the scalar register files starts (split over two stages).

» The write enables for all the pipeline registers of the vector pipeline are

produced.



6 Vector Processor Implementation 131

The electrical interface of the VDEC stage is depicted in Figure 6-2. The input signals are
coming from the Leon3 processor and vector load/store unit (VLSU). The output signals

that are of vdec2vregs type are going to the input of the VREG stage.

VDEC
dk- Jclk vdec2vregs » vdec2vregs
reset. » reset
gxx_hold. hold
g opcode
P opcevalid
Kl of ikill
R |vlsu2vdp
leon_din din
" 9P

Figure 6-2: The electrical interface of the VDEC Stage

As mentioned in the previous chapter, the selected instruction format for the vector
processor is included in the Unimplemented Instruction [2] of the Sparc V8 architecture
and it is depicted in Figure 6-3. This instruction is architecturally not implemented and

generates an exception if encountered.

In the Leon3 the const22 bitfield is completely ignored by the decoding logic of the
processor. Additional combinational logic has been inserted in Leon3 to extract the

const22 field and sent it to the vector coprocessor decode unit as the input vector opcode.

Format 2 (op = 0): UNIMP

{ 00 | reserved LOOO \ const22

31 29 24 21 0
Figure 6-3: The Unimplemented instruction format of the Sparc V8 architecture

In the decode stage of the coprocessor the opcode-valid signal is asserted if the 22 bits are
a valid vector instruction and datapath control signals, addresses for the vector/scalar
register operands and enables are produced. In the case of a 3-address format (Figure 6-4)
the extracted addresses fields along with the produced read enable signals are used to
access the synchronous register file, in parallel with the decoding of the latched
instruction. In this way, the depth of the pipeline of the coprocessor is reduced by one

stage compared to a purely cascade decode/register access organisation and this has an



6 Vector Processor Implementation 132

additional beneficial effect during the transfer of data from the coprocessor to and from

the scalar processor.

3-address format

‘ opcode | rd I rs1 | rs2 I
21 14 9 4 0
4-address format (4™ is the accumulator implicitly

| opcode | vaccd I vrsi l vrs2 l
21 14 9 4 0
2-address format with immediate data

| opcode [ vaced | vrsi I amount ]
21 14 2] 4 0
3-address format with vector element

I opcode | vrd | vaccelem [ grs1 |
21 14 9 4 0

Figure 6-4: Different types of instruction formats of the vector processor ISA

A similar process is performed in the case of multiply-add and multiply-sub instructions
that are a 4-address format instructions (the accumulator is an implicit source and
destination operand). In this case the accumulator address and read enable are sent during
the decoding of the latched instruction in order to obtain the accumulator operand for the
next stage. Another difference for these instructions is that they are always implemented
in pairs of even and odd elements. A combinational logic (evodl6_en) asserts the
appropriate read enable bits for the even or odd operands. In the case that one of the
source operands is immediate data, this is included in the instruction field [4:0] which is
extracted and sent to the next stage where it is zero extended to 32-bits. A detailed
description of the extension process will be given in the VREG stage. In the case where
one register operand is used to select a vector element (vaccelem) for load or store
operations then the instruction field [9:5] is extracted and used to calculate the write or
read enables respectively for the specific vector element (16-bit word). The same method
is followed in the case of the move from or to Leon3 instructions to or from an element of
a vector register. When a move from Leon3 instruction is performed, the operand is
coming from the main scalar CPU register file and it is pipelined to the next stage
(VREG). At that stage it is selected as a source operand and enters the appropriate lane of
the coprocessor vector pipeline to finally commit to either the coprocessor scalar or

vector register file. In the case of a move to Leon3 instruction, the selected 16-bit element



6 Vector Processor Implementation 133

of the vector register is zero extended to 32-bits and it is sent to the Leon3 register file.
More detail description is given in the VREG stage. The custom instruction formats for
the previously mentioned cases are depicted in Figure 6-4. All the datapath data and
control signals are latched at the end of the VDEC stage to the set of registers of type
vdec2vregs. The pipeline enable (reg_enl) of these registers is asserted when the

following conditions are true:

the main CPU is not halted (holdn="1")
* 1o exception takes place in the main CPU (ikill=*0")
= there is no cache miss in VLSU (vlsu2vdp.hold='0’)

= the coprocessor instruction is valid (opcvalid="1")
6.3 Vector Registers Stage (VREG)

The Vector Registers Access Stage selects the source operands from the vector/scalar
register files or from the accumulator file or from the bypassed results of the first and
second stage of the vector datapath. In the latter case, the results are made available, from
any of the other downstream stages, to the VREG stage in order to be used as source
operands if this is required. This bypassing of intermediate results is established practice
in CPU architecture [3] and is the only way to resolve data dependences without stalling
the pipeline. As mentioned in Chapter 3, data dependences happen when an instruction
needs to use the result of a previous instruction prior to its commit to the register file [4].
In addition, it is the stage where store instruction takes place and the memory address for
the load instruction is sent to the VLSU unit in order for load data to be ready and be sent
to the second stage of the VDP. Furthermore the vector length (v1en_r) register and the
overflow and predication (pred) registers are updated. The detailed schematic of the

VREG stage is illustrated in Figure 6-5.



6 Vector Processor Implementation 134

DECODE LOGIC

| reg_enl reg_eni
[

SRF
‘ |
vrs1_dout_i } wrs2_dout_| srs1_dout_i| srs2|dout_i ‘ srs3_dout_i |
vdp2vregs data vbpassL{eiF e — L - Lyquwegs data sbpass1 | res
vdp2vregs data vbpass2_res > vbypass ) \ sbypass ‘ vdp2vregs data sbpass2 [res

- ol — |

| resv_sopri_i resv) sopr2_||
resv_vopri_i | resv_vopr2_i e |

—— | —

|
| |
Leon data T T ==
» Splat_data ) | ( Splat_data Splat_data
g =l vlaom_r vacc2 |r i vacci_r vacc2 f| — ::lmm_vaiue
1 | | 11 .
o reg_en2 § E———= reg_en2 reg_en2
final_vopri_i — ot final_vopr2_i" | ot Sl b
\
A\ A v
vregs2vdp.data.vrf_opr1_r vregs2vdp data vrf_opr2_r vregs2vdp

Figure 6-5: Vector Register Access Stage (VREG) microarchitecture
6.3.1 Reverse Data Process

When a load or store instruction with a negative stride is performed a special control
signal (vdec2vregs.lst_neg_r) is asserted. In the case of a negative stride store
(vstwn) the data to be written to the memory that comes from the bypass logic of the

second register file read port (resv_vopr2_i) needs to be reversed.

veclor register

3 2 1 0
63 ) 47 31 15 0
vector operand
for store in visu
A » A -
0 1 2 3
63 47 31 15 0

Figure 6-6: Reverse Data Process

This is performed with the use of the reverse data function logic (reverse_data) which
swaps the order of the elements as they are placed within the final vector, from the most

significant element to the least significant element. The output of this function is sent to



6 Vector Processor Implementation 135

the input of the VLSU (sregs2vlsu.data_in) as the data that will be written to the
vector data cache. The data-reversing process is shown in Figure 6-6. The reverse process
for the load insfruction is the same but it is performed in the VDP2 stage of the vector

processor. For this reason is described in section 8.4.5.

6.3.2 Splat Data Process

There are instructions that need to replicate a 16-bit (vsplat_h_r) or 32-bit
(vsplatacci) scalar value to all the elements of a vector register or accumulator
respectively. This “splat” operation is performed in the splat function (splat_data) in
the VREG stage. The splat logic takes as inputs a 32-bit word and the width of the vector
operand in which the value will be copied. If the value that is to be “splated” is 16-bit, it
is duplicated in order to produce the necessary 32-bit value that acts as the 32-bit input of
the function. The resulting vector is sent to the multiplexer responsible for the first

operand selection in the VREG stage. The schematic for this function is depicted in

Figure 6-7.
splat value
15 0
3 2 1 0
63 47 31 15 0

Figure 6-7; Splat Data Process

6.3.3 Masking Process

There are two masking processes that are implemented in the VREG stage: these are the
mask_width and the mask_extract. The mask_width logic takes as an input a value
that indicates the width of the vector to be processed and produces a mask bit-vector that
is VLMAX*16 bits long. The produced mask defines a set of bits that are used as a
selector tn order to extract the desired scalar elements from the vector that the mask is
applied. The input value (width) gives the number of the mask’s bits that will be ‘1’ while

the remaining bits will be ‘0’. The functionality of this masking operation is depicted in



6 Vector Processor Implementation 136

Figure 6-8. This type of mask is used in the bypass logic for the selection and formulation
of the input operands to the vector ALU stage.

unmasked vector

E

VLMAX*16 0
AND

mask_width

|00000000 .......... 01010 B e Rl B I R R R Bl I B B e B T 11111111111
VLMAX*16 vien_value*16 o

masked vector

loooooooo.......... 000 :

VLMAX*16 vien_value*16 g
Figure 6-8: Mask width function

The mask_extract logic (function) takes as an input a value that indicates which vector
element of 32-bits should be selected and produces a mask that is VLMAX*16 long. This
second mask comprises sets of ‘0’s and ‘1’s that are structured in a way to extract the
desired 32-bits from a given input vector. The input value to this function resembles a
“read-enable” that selects the 32-bits element that will be exfracted from the vector in

which the mask is applied. The mask_extract functionality is illustrated in Figure 6-9.

unmasked vector

VLMAX*16 0
AND

mask_extract

{ 00000000.......... 000 11 1M1 111111111 I 000000000000000000000000............ 0000 |

VLMAX*16 (i+1)*32-1 i*32 [7]

masked vector ‘

100000000 0000 |

VLMAX*16 (i+1)*32-1 i"32 0
Figure 6-9: Mask extract function

This type of mask is used to select a scalar element from an accumulator register for load

or store operations.



6 Vector Processor Implementation 137

6.3.4 Bypass process

The bypass process is critical for the efficient operation of pipelined processors. In the
VREG stage it selects the operands from the vector/scalar register files, the vector
accumulators or the intermediate results produced in the vector datapath (before they are
written to the register files) from the first and second stages of the VDP. There are
actually two bypass processes: the vector bypass and the scalar bypass. In the
vector_bypass process, the two vector-operand read addresses
(vdec2vregs.vrsl_rdaddr_a, vdec2vregs.vrs2_rdaddr_a) for the vector
register file are compared respectively with the write  address
(vdp2vregs.ctrl.vbpassl_vwr_addr_r) of the instruction currently executing at
the first VDP stage (VDP1). If either of them is equal with the VDP write-back address
and the valid signal (vdp2vregs.ctrl.vbpassl_valid) of the bypass result is
asserted, the vector length of the bypassed result (vdp2vregs.data.vlen_cvalue_r)
is compared with the current (architected) vector length (v1len_r) of the coprocessor that
is located in the vlen register. In the case that the result from the VDP1 stage has a vector
length smaller than the vector length of the resolved operand, then the bits from 0 to
vdp2vregs.data.vlen_cvalue 1*16-1 are containing in the bypassed result
(vap2vregs.data.vbpassl_res) while the remaining bits up the vlen_r*16 are filled
with the outputs of the corresponding read ports (vrs1l_dout_i or vrs2_dout_i) of the
vector register file. If the vector length of the bypassed result is larger then the operand’s
(resv_voprl_i or resv_vopr2_i) bits are filled with one of the outputs of the read
ports (vrsl_dout_i or vrs2_dout_i) from bits 0 to vlen_r*16-1. In the case that both
vector lengths are equal, the resolved operand comprises the bypassed result of the first
VDP stage. The same process is followed for the bypassed result of the second VDP stage
(VDP2) and both read ports of the vector register file in the case where there is a
mismatch in the target register of the first VDP stage and the source register in VREGS in
order the appropriate operands to be selected. The formulation of the resolved operands is
always performed with the use of the masking process (mask_width). The schematic for
the vector bypass process for one of the vector source operands and the intermediate

result of one of the two VDP stages is illustrated in Figure 6-10.



6 Vector Processor Implementation 138

masked current vector unmasked curment vector
 orR OR
masked bypassed vector masked bypassed vector masked bypassed vector
000000000000...000 m 000000...000 111111111111111..111 000000..0 RIXRILRY
VLMAX*16 vien_cvalve_r 0 VIMAX“tE vien_r o VIMAXME  vien_cvalue_r 0
masked opan:ind masked operand . masked operand ) 1
000..0 A7228888888  ooovoo..0 %%,
VIMAX*16  vien_r vien_cvalue_r 0 VLMAX“18 vien_r a

vien_cvalue_r < vien_r
.

VIMAX*T6 ]

Figure 6-10: Vector bypass process for one of the vector source operands and the

intermediate result of one of the two VDP stages

The scalar bypass process is much simpler than the vector bypass as there is no need for
masking of the operands. The three scalar read addresses (srsl rdaddr a,
srs2_rdaddr_a and srs3_rdaddr_a) for the scalar register file are compared
respectively  with the write address of the bypassed scalar result
(vdp2vregs.ctrl.sbpassl_swr_addr_r) of the first VDP stage. If they are the same
and the valid signal (vdp2vregs.ctrl.sbpassl valid) of the result is asserted, the
corresponding resolved operand (resv_soprl_i, resv_sopr2_i, resv_sopr3_i) is
assigned from the scalar bypassed result (vdp2vregs.data.sbpassl_res) else with
the output of the corresponding read port of the scalar register file (srs1_dout_i or
srs2_dout i or srs3_dout_i). The same process is followed for the bypassed scalar
result of the second VDP stage and the three read ports of the scalar register file. Figure

6-11 depicts the scalar bypass process for one of the scalar operands.

srs1 sbypass1_res sbypass2_res
B f

| |

032 ‘

[ I
| |
srs1_addr | |
T 5

b /

L

' resv_sopri

Figure 6-11: Scalar bypass process for the selection of one of the scalar operands (first)



6 Vector Processor Implementation /139

6.3.5 Operands Selection

The two source operands (vector or scalar) are selected after the bypass process, prior to
the end of the VREG stage and committed to the output registers of vregs2vdp type. In
the case of a move-from-coprocessor instruction, the requested 32-bit data from the
Leon3 are extracted from the selected first source operand prior to committing and sent
back to the main CPU write-back stage via the coprocessor-CPU custom interface. The
third operand, that is always scalar, is driven directly from the output of the third read
port (srs3_dout_i) of the scalar register file to the corresponding output register. The
selection of the two operands is performed via two large multiplexers as they depicted in
the detailed schematic in Figure 6-5. The first operand (£inal_voprl_i) can be the 16-
bit (vdec2vregs.sel_width_r = ‘1’) or 32-bit output of the scalar bypass process
(resv_soprl_i) or the output of the vector bypass process (resv_voprl_i). It can
also be one of the vector accumulator file hardwired read ports
(vdp2vregs.data.vaccl_r or vdp2vregs.data.vacc2_r) or the Leon3 general
purpose registers (gpdata) or the “splated” data formulated from the splash function using
data from a scalar register. Similarly, the second operand can come from the output (16-
bit or 32-bit) of the scalar bypass process (resv_sopr2_i) or the output of the vector
bypass process (resv_vopr2_i) or one of the hardwired read ports of the accumulator
file or the immediate data (imm_value) that have been extracted from the coprocessor

instruction at the decode stage.
6.3.6 Register enable

The register enable (reg_en2) for the output registers of the VREG stage is asserted
when both hold signals that are coming from the Leon3 (hold) and the VLSU unit
(vlsu2vdp.hold) are not asserted. In addition, the pipelined register enable
(vdec2vregs.reg_en2_r) should be asserted and the signal vdec2vregs.sel_st_r
must be set to zero in order to prevent any store instruction from taking place. The later
condition is necessary because the store instruction is performed and completed at the
VREG stage so the next stages are not used for this instruction. Therefore, when the store
is completed no change in the state of the following datapath stages flip flops should take

place in order to avoid unnecessary power consumption. The reg_en2 is the pipeline



6 Vector Processor Implementation 140

enable of the output registers (vreg2vdp) in which all the datapath data and control
signals of the VREG stage are latched.

6.3.7 Vector Register File (gxx_vreg file)

The coprocessor stores the results of the vector computations in a vector register file that
1s a two-dimensional storage array where every row holds all the scalar elements of a
single vector. The vector register file is parametric so its dimensions are specified from
compile-time parameters in both axes. The width is defined from the number of the vector
elements (16-bits each) and is equal to the maximum vector length (VLMAX) while the
number of such entries is VREGS, equal to the architectural vector registers. The vector
register file provides two read ports and one write port that translates to two vector read

and one vector write operations per cycle.

6.3.7.1 Parameterisation

The vector register file is fully-configurable design. The number of register windows
(VREGS) is within the range of 2 to 32, with a default setting of 16. These parameters are
specified in gxx_config.vhd and are shown in Table 6-3:

Table 6-3: Compile-time vector register file parameters for its architectural and

microarchitectural state that are contained in gxx_config.vhd file

Parameter Default

VLMAX 2,4,8,16, 32, 64, 128
VREGS 16

Technology GEN, TSMC013

6.3.7.2 The vector register file implementation

The electrical interface of the vector register file is shown in Figure 6-12.



0 Vector Processor Implementation 141

gxx_vreg_file
clk = Bro

reset

[ T i
»——sclk vrs1_dout P__vrs1_dout_r
| vrs2_dout_i

»——» reset vrs2_dout » S

d vrs1_rdadd
vdec2vregs.vrs1_rdaddr_a ‘lVfSLI' "

vdec2vregs.vrs1_rden_a
——s»vrs1_rden
dec2vregs.vrs2_rdaddr_a
¥ . :2 e 5 "“d "% = vrs2_rdaddr
vdec2vregs.vrs2_rden_a —avrs2_rden

vdp2vregs.ctrl.vrd_waddr_r — » vrd_addr i

dp2vregs.ctri.vrd_wen_r
e e ———=» vrd_wen

vdp2vregs.data.vdp_vres | vl iy

Figure 6-12: Electrical Interface of Vector Register File

It has two read address ports (vdec2vregs.vrsl rdaddr_a,
vdec2vregs .vrs2_rdaddr_a) that are driven unlatched from the vector decode stage
in parallel with the decoding of the latched opcode, in order to initiate the register file
access which in turn, will return the operands before the end of the VREG stage. The
write address port (vdp2vregs.ctrl.vrd waddr_r) is coming pipelined from the
end of the second stage of the VDP in order to commit the vector result. The register file
is technology-independent and allows two reads and one write to be performed on the
same cycle. In the case where a read of a register is required at the same cycle that it is
written, a R/W conflict occurs. When this condition is detected the read-port is disabled
and the data are bypassed from the write-port write-data. This ensures that the memory
cell does not get corrupted when doing a simultancous R/W operation at the same
address. This behaviour has been observed in the TSMC 0.13um dual-port RAMs and the
above solution ensures that this extreme case never causes corruption of data. Figure 6-13
details the organisation of the vector register file with R/W conflict avoidance. This
performed by the conflict process logic in which each read address is compared
with the incoming write address and if are the same and any of the bits of the read or
write enable signals are asserted then a conflict signal is produced. Because there are two
read ports there are two conflict signals (conflictl_i, conflict2_i) and when one of
them is asserted the output data are coming from the write-port data via the output

multiplexer.



6 Vector Processor Implementation 142

confictt, ] — = _|c.onl’l|c:11___|r
L -
B vrd_din | wdata_r [
1
J1_gen_rf_cell . \
| surs1_dout
vrs1_dout_i -
——{relk dout
i § 1 raddr [
vrs1_rdaddr - — s ™\ rt-h‘ﬂ1 i | | It
vis]_rdens- { conflict_pr .1 ,’
vrd_waddr »———¢—4 ——welk
vid_wens- T'l:,;,-, . il I 1 | ‘
L— S — {—wdan
Kd_ﬂﬂl-—ol— — o —_— |. ! ldin
| |
! ‘?9"?‘.‘?‘.2.'__[ | | Jeenfic2
{ [ | 1 1
' [ vrd_din wdata_r
] . T —
F J2_gen_rf_cell
vrs2 dout i -ayrs2_doul
relk dout ——— o
|
| I ~ raddr
V2 _rdaddre—f s rden2_i I
vIsZ_rden s— —f ot ‘
vrd_waddr s——4— 7“ uproche2 I
vid wene—t et " |
L__ S —————{wden
: : din

Figure 6-13: Detailed microarchitecture of the Vector Register File with R/W conflict

avoidance

In addition, there are two read enable ports (vdec2vregs.vrsl_rden_a,
vdec2vregs.vrs2_rden_a) that are coming from the decode stage at the same time as
the read addresses. The read enable signal is a bit vector in which every bit enables the
read operation at byte-granularity from the selected register. In this specific case every 2
bits of the read enable signal correspond to a 16-bit element from the source vector
register. When the read addresses are valid and the read enables are set to ‘17, the
corresponded data are read and sent to the outputs of the register file (vrsl_dout_i,
vrs2_dout_i). The write enable strobes (vdp2vregs.ctrl.vrd_wen_r) arrive
pipelined from the end of the VDP2 stage and are based in the same principle as the read
enable strobes. When the write address is valid and the write enable is asserted the input

data (vdp2vregs.data.vdp_vres) are written to the selected register.



6 Vector Processor Implementation 143

6.3.8 Scalar Register File (gxx_sreg_file)

The scalar operands are stored to the scalar register file that is again a two-dimensional
storage array. It contains sixteen registers of 32-bit width and it supports three reads and

one write operations per cycle.

6.3.8.1 Parameterisation

The scalar register file has SREGS registers that can be in the range of 2 to 32 and with
default setting of 16. The compile-time parameters with their default values that specify

the structure of the scalar register are shown in Table 6-4:

Table 6-4: Compile-time scalar register file parameters for its architectural state that are

contained in gxx_config.vhd file

Parameter Default
SREGS 16
Technology GEN, TSMCO13

6.3.8.2 Scalar register file implementation

The electrical interface of the scalar register file is depicted in Figure 6-14,

gxx_sreg_file

-'_c_lk srs1_dout

-» reset srs2_dout

vdec2vregs.srs1_rdaddr:§. sre1_rdaddr  srs3_dout

vdec2vregs.srs1_rden_a |

clk 1 srs1_dout_i
> B

reset srs2 _dout i
» - =

srs3_dout_i
. 5

srs1_rden
srs2_rdaddr
srs2_rden
srs3_addr
srs3_rden
srd_addr

srd_wen

vdec2vregs.srs2_rdaddr_a
vdec2vregs.srs2_rd en_a
vdp2vregs.srs3_rdaddr__a.
vdp2vregs.srs3_rden:a.

vd p2vregs.ctrl.srd_wa_c|§|r__r'
vdp2vregs.ctrl.srd_wen_ A

vdp2vregs.data.vdp___sre_s.
|
Figure 6-14: Electrical Interface of Scalar Register File

srd_din

The scalar register file has three read address ports (vdec2vregs.srsl_rdaddr_a,
vdec2vregs.srs2_rdaddr_a, vdec2vregs.srs3_rdaddr_a) and three read enable ports

(vdec2vregs.srs]_rden, vdec2vregs.srs2_rden, vdec2vregs.srs3_rden) that are coming



6 Vector Processor Implementation 144

unlatched from the vector decode stage (VDEC). This is happening in order the scalar
register file to be accessed during the decoding and produce the scalar operands before
the end of the VREG stage in time for bypassing. It was decided to attach an additional
read port to the scalar register file as a third operand was needed to play the role of the

accumulator for the multiply-add/sub instructions.

conllict! | Jeontiictt dr
)
—=—  s_dn 1Y waata_r |-\
LI
J1_gen_rf_cell ‘ 39
—=——asr$1_doul
|srs1_dout_|
——relk dint—
T == raddr l
srs1_rdaddr(log,{SREGS)s————— t—’ﬁ' . ——rden |
sts1_rdanié)e————— sonier processt |
srd_waddr(log.(SREGS) / ¢ wclk
srd_wan(4) . = e waddr |
wdan
srd_din(32)» din
conflict2 | Ly i |:0nlllr.!2,lr

1 1
srd_din \l wdata_r
= I S =S
J2_gen_rf_cell
32—-5:52 dout
P ain srsz_duut_l’m
————{raddr

srs2_rdaddr(log,(SREGS)s— " N e L {rden
8r82_rden(d]s=— [ conlllcl_procassa

srd_waddr(log,(SREGS)s— welk
srd_wen{d)s— | sl wadde
wdan
din
conflictd_i | Joontiictd_ir

I 3
srd_din wdata_r
_:I—__\._..-
J3_gen_ri_cell a2
= —esrs3_dout
relk din srs3_dout | L.
ddlr
- == faaur
st53_rdaddr(log(SREGS)s— T\ srden3_| et
srs3_rden(4)s— canflict_processa
srd_waddr(log:(SREGS)s— welk
srd,weﬂ(d)'—%/_ — lwaddr
wden

din
din

Figure 6-15: Detailed microarchitecture of the Scalar Register File with R/W conflict

avoidance

The  write address (vdp2vregs.ctrl.srd_waddr_r) and the write enable
(vdp2vregs.ctrl.srd_wen_r) are coming pipelined from the end of the VDP2 stage. The
scalar register file is described in a technology-independent way and supports three reads
and one write operations per cycle. R‘W conflict avoidance happens with three conflict
signals (conflictl_i, conflict2_i, conflict3_i) that are produced from the conflict_process

1, 2, 3 in order to prevent a read and write operation to happen simultaneously to the



6 Vector Processor Implementation 145

same register address. In this case the particular read-port is disabled and the data are
coming instead bypassed from the write-port data. The detailed schematic is depicted in
Figure 6-15.

6.3.9 Vlen register

The degree of data-level parallelism that the vector coprocessor can exploit on every
cycle is defined by the vector length register (vlen_r). This control register stores the
value of the dynamic vector length that determines the number of the 16-bit elements in
which the vector operations will be performed. For example, a vector short addition with
vector length of four will only add the first four pairs (4x16-bit) of elements of the input
vector registers and will ignore the rest. The value of the vector length is stored to
vlen_r register before any other instruction takes place in order to reconfigure the
hardware. The vector length can take any value that is multiple of two; 2, 4, 16, 32, 64 up
to the maximum vector length (VLMAX) that in this case is 128 (2048 bits). If the data-
level parallelism in a particular loop of the speech algorithm, which corresponds to the
number of times a loop body is executed, is greater than the VLMAX then the vlen_r is
loaded with the maximum value and performs a sequence of identical operations that
comprise the loop. At the end the vlen_r is loaded with the remaining of the modulus
division of the number of repetitions of the loop with the VLMAX (loop strip mining)
and one more iteration of identical operations is performed but this time with a shorter-
than-VLMAX vector length. The instruction that is responsible for loading the vlen_r
register with a value for vector length is 1dvlen_r(value). When this instruction is
encountered, the value is extracted from the instruction opcode and the vlen_r write-
enable (vdec_i.vlen_wen) is set at the decode stage. Subsequently they are latched to
the VREG stage as vdec2vregs.vlen_nvalue_r and vdec2vregs.vlen_wen_r
respectively and pipelined to the following stages of the vector datapath coprocessor. At
the VREG stage the pipelined write-enable (vdp2vregs.ctrl.vlen_wen_r) is
checked and if asserted the pipelined value of the vector length
(vdp2vregs.data.vlen_nvalue_r) from the VDP2 stage is committed to vlen_r. In
every cycle the vlien_r 15 read and the current value
(vregs2vdp.data.vlen_cvalue_r) is pipelined to next stages to dynamically

reconfigure the vector pipeline [5].



6 Vector Processor Implementation 146

6.3.10 Overflow and Pred Flags

When an arithmetic instruction produces a result that is greater than the value a register
can store or represent then an overflow bit is asserted and written to the overflow flag.
The overflow flag is set to indicate a problem so the software can be aware of this
condition and act accordingly to compensate or mitigate the error. More specifically, both
ITU-T speech coding algorithms that execute on the coprocessor deal with this problem
by using the saturation instruction that limits the output to the allowed range for 16-bit or
32-bit numbers. The coprocessor has a vector overflow register (ov£) and an overflow
flag (vv). The vector overflow register (ov£) is VLMAX/2 bits long, one overflow bit per
32-bits of the vector length, and it is updated at the VREG stage when the overflow
enable (vdp2vregs.ctrl.ovf_wen) that is forwarded from the end of the second stage
of VDP is set. In this case, the vector overflow register takes the new value
(vdp2vregs.data.ovf_r) that is coming pipelined from the VDP2 stage. The
overflow flag (vv) is 1-bit and it changes when the same overflow enable as before is
asserted. The new value of the overflow flag is the or-reduce result of the vector overflow
value (vdp2vregs.data.ovi_r). In the case of a vector comparison instruction the
predicate bits are set according to the result of the comparison and written to the pred
flag. The comparison is performed on pairs of vector operand elements and every
produced predicate bit corresponds to a 16-bit comparison. The pred register is VLMAX
bits long. The pred register is updated at the VREG stage when the predicate write-
enable (vdp2vregs.ctrl.pred_en) that is coming pipelined from the end of the
VDP2 stage is set and the pred register can take the result predicate bits

(vdp2vregs .data.pred_r) from the comparison.
6.4 Vector Load/Store Unit (gxx_vlsu)

At the VREG stage the Vector Load Store Unit (VLSU) is accessed and the load/store
instruction along with the store data (in the case of store) and the control information are
sent from the vector coprocessor to the former. The electrical interface of the VLSU is

illustrated in Figure 6-16.



6 Vector Processor Implementation 147

VLSU
clk.i . a e _ad—d;J\;f ~ addr_out

reset._ ] rst addr_valid_out b ~ addr_valid_out

. J| ahbi read fead

addr_ ———w» addr data e

addrveld  addr valid  missp ™S

ol ﬂ data_in hold L -

s  vien vlenL ik

read -l read ahbo!b _ahbo

Figure 6-16: VLSU Electrical Interface

In the case of a load instruction (sregs2vlsu.read="1'), the VLSU takes the read
address (sregs2vlsu.addr) for the memory along with the valid signal
(sregs2vlsu.addr_valid) and the vector length (sregs2vlsu.vlen) that
determines the width of the vector data in order to prepare that vector and return it to the
second stage of VDP. When a store instruction (sregs2vlsu.read="0") is performed,
again the address with the control signals are sent from the VREG stage to the VLSU
along with the data for storing (sregs2vlsu.data_in). The VLSU has a cascade
TAG/DATA configuration resulting in one latent Load-Use cycle through the bypass
logic of the vector coprocessor. This means that the TAG array is checked one cycle
before accessing the DATA array, on the following cycle, resulting in the load data being
ready at the second stage of the VDP. Even though this configuration results in increased
latency than the more traditional parallel TAG/DATA organization, it leads to
substantially lower power consumption; in a multi-way configuration, all TAG and one
(selected) DATA arrays are powered up in consecutive cycles whereas in the parallel
TAG/DATA case, all TAG and all DATA arrays are powered up concurrently, resulting
in higher power consumption. Whereas in the cascade TAG/DATA configuration all
TAG RAMs are power-up during cyclel but only the selected way of the DATA RAM is

powered up on cycle 2.



06 Vector Processor Implementation

148

Parallel TAG/DATA Configuration Cache

address

|

|
!
(=) (=) (= (=
[ [

—— i
Unary-fo-Binary Encoder

Cascade TAG/DATA Configuration Cache

address
v

i

Unary-to-Binary Encnﬁar )

‘ bATA

n—

DATA ‘

’ DATA 1’

DATA ‘

¥ returned data

Figure 6-17: Parallel TAG/DATA configuration and Cascade TAG/DATA configuration

caches

For example, a cascade 4-way set associative data cache has four TAG RAMs (cycle 1)

and one DATA RAM (cycle 2) powered up while a parallel data cache will have four
TAG RAMs and four DATA RAMs that makes eight RAMs in total powered up. Figure
6-17 depicts parallel TAG/DATA configuration and cascade TAG/DATA configurations

caches.



6 Vector Processor Implementation

149

addr_valid addr data_in read vien
Y - ' = ? —— ’ >
TAG | | J I
- ————
et 1 fine b »
\‘:‘_P{_:\\ -7 !\EJ
il e
hold @ —|—— ( Checklagiselectway )
— | FSM
aclclr&es_\\valh.‘.I address | dala_\}alid way miss J~— i :»‘dala_in |read vien
[——
| ( et )|
| _—
[ |
{ DATA ‘ ‘ ‘ I
‘ I | ¢ Sort Data ;l | ‘ |
| | |
v v v v v
addr_valid_out addr out data valid data miss read vien

——4 AHB_IN

» AHB_OUT

Figure 6-18: Microarchitecture of VLSU in cascade TAG/DATA configuration

The microarchitecture of the VLSU is parameterised and is depicted in Figure 6-18.

There are a number of compile-time parameters that specify the number of ways and the

size of each cache and are defined in the coprocessor configuration file (gxx_config.vhd).

In addition, there is a Finite-State-Machine (FSM) that handles the communication with

the AMBA bus [6)].

6.5 Vector Datapath Stage (VDP)

The Vector Datapath Stage forms the execution core of the vector coprocessor and is the

most complicated piece of logic. The VDP is divided in two stages: Stage one performs

all the arithmetic, shift and miscellaneous vector operations that are of single cycle

latency and the multiplication part of the multiply-add and multiply-sub instructions.



6 Vector Processor Implementation 150

vregs2vdp nop_type vregs2vdp.ctrli.sel_vu_r vregs2vdp.ctri

N { |

1 0
e ek _{_ —— —
VADD VMULT VSHIFT VMISC
g - vadd_out_i.vres vmull out_ivres l_shrll out_i.vres |vmlscﬁout_} vies
— . S ——
“ —-l —'—m __vregs2vdp.cirl sel_vu_r

I

vregs2vdp ctrl.sel_vs_r
=

1

vdpzvregs data. sbpass1 res N g

T vbpassi res? ]sbpass1_res _—
e | i
|

vdp2vi Egs data vbpass1_res i i
\ I — . reg_en3

. — —_— jiage‘l_tas,_r {

¢ mask :; ~, vadd2_outvres — S

stagel_res t - . .
[ 11 resuh vlsu _res_i - ‘
e Iumm ros T VLSU | |

=it o vacc_lmpdata ‘ ‘
vaccreduce | Ti
'vacc_dala }
o— vacc_opr1 srf_opr3_r
vdp2vregs

i‘ pred_st1

l“

e Y ]
&4 VvACC | \° % ] ‘
F"‘ vri_opri_r
£ VLo, VADD2
N i — stage1_res_r ol

visu_res_i e ——)
[ vadd2_out.vres ‘

vdp2vragsﬂa{a vbpass2,_res \

vbpassz res feq _an

wogs data sbpass2_os | ——

Figure 6-19: Microarchitecture of the VDP stage

The second stage accepts returning loads from the VLSU and performs the
addition/subtraction part of the multiply-add/sub as well as the setting-up of the write data
to the register files. At the end of each of the VDP stages and right before they are latched
in to the corresponding output (VDP] stage) or architectural (VDP2 stage) registers, the

results are bypassed to the VREG stage in order to be available to dependent instructions



6 Vector Processor Implementation 15]

and avoid stalls due to Read-After-Write (RAW) dependences. The detailed schematic of
the VDP stage is shown in Figure 6-19. Stage one consists of four vector datapath units:
The vector adder (vadd), the vector multiplier (vmult), the vector shifter (vshift) and
the vector miscellaneous (vmisc) unit. Each such vector unit consist of VLMAX/2
replications of their corresponding scalar unit that produces a 32-bit result. At the input of
the vector units there are multiplexers that select which vector unit will accept the input
operands and the control signals that are coming from the output registers of the VREG
stage. The vector units not participating in the current computation cycle execute a nop
instruction. This input operand gating is applied to eliminate redundant switching activity
in the multiple functional units of the vector datapath. This ensures that unused functional
units are kept in a quiescent state by maintaining constant inputs. This minimizes
switching activity and as a result, dynamic power consumption. In the case that the
coprocessor is performing a scalar instruction, the scalar operands along with the signal
(vregs2vdp.ctrl.sel_vs_r ='0") that indicates that it is a scalar operation are the
inputs to the vector units. Special logic activates scalar lane (lower 32-bits) of the
particular unit that comprises the selected vector path instead of implementing a
dedicated scalar datapath. This results in reduced silicon area and control logic overheads
and also to less verification effort [6]. At the output of the vector units there is another
multiplexer that selects the vector result (vbpassl_res) or the scalar result
(sbpassl_res) to be passed on to VDP2 stage, depending on the operation. At the same
time, the result is bypassed to the VREG stage as an intermediate result and also it is
written to the output registers of the first stage (reg_st1). At the second VDP stage the
latched result from stage one (stagel_res_r) or the load data (vlsu_res) returned
from the VLSU, are sent directly for writing back at the end of the cycle. In the case of
the multiply-add/sub instruction the latched result from stage one (stagel_res_r) is
used as the second input operand to the vector adder unit (vadd_snd_stage) of the
second stage for the addition/subtraction part of the operation. When other instructions
that employ accumulators occur, the registered result (stagel_res_r) is driven as the
input data to the accumulator file with the exception of the vaccreduce instruction
where the latched result of stage one is sent as an input to the adder tree (reduction unit).
At the end of the second VDP stage, there is a multiplexer that selects the final result
from the vector adder, the adder tree, the vector accumulator file, the load data from the

VLSU or the pipelined result from the previous stage to commit to the vector/scalar



6 Vector Processor Implementation 152

register files. The final result is bypassed as discussed previously to the VREG stage, in

order that dependent instructions don’t stall the vector pipeline.
6.5.1 Vector Adder Unit (gxx_vadd_dp)

The vector adder unit (vadd) is an array of VLMAX/2 identical units, where every such
functional unit takes two 32-bit operands and produces a 32-bit result. The vadd unit can
perform short (16-bit) or long (32-bit) addition, subtraction, comparison or 32-bit to 16-
bit round operation. The electrical interface of the vector adder unit is depicted in Figure
6-20. As shown, every such functional unit takes as operands the correspondent elements
of the input vector and produces a 32-bit vector result along with the overflow and

predicate bits.

‘!Lmi —vadd_out.vovf(i)
———— 5 E vadd_out.vpred(i)
2

E —vadd_out.vres(32%)

S r— 1
vadd_in.SIMD(i) l!
vadd_in.sel_sub(i)
vadd_in.sel_sfetn(i) -
vadd_in.sel_round(i) —I!
vadd_in.sel_cmp(i) :]
vadd_in.vrf_ovf_r(i) —
vadd_in.vrf_opr1_low_r(15%)
vadd_in.vrf_opr1_high_r(15%)
vadd_in.vrf_opr2_low_r(15%) — — L
vadd_in.vrf_opr2_high_r(15%) H{

Figure 6-20: Electrical interface of the vector adder unit

The vadd unit comprises two mirrored combinational logic blocks that are called the
“low” and “high” part of the unit. The low part calculates the least-significant 16-bits of
the 32-bit result and the high part calculates the most-significant 16-bits. Additional logic
exists between the low and high part that combines them in order to perform a long (32-
bit) instruction. When a short operation is performed (vadd_in.SIMD(i)="0") the two
blocks work in parallel and produce two 16-bit results along with separate overflow and
predicate bits. When a long operation takes place then the two blocks are linked together
e.g. the carry out of the low part is driven to the carry in of the high part of the functional

unit. A detailed schematic of the vadd functional unit’s microarchitecture is illustrated in



6 Vector Processor Implementation 153

Figure 6-21. The remaining control signals that define which operation the vector adder

unit will execute are described in more detail in Appendix B.

wil_sptd_high_r(3%18) O wr_opr1_igh_r118) wil_oprd_low_i(15.0) vrl_opr_lew_r{150)
| wel_sfent 0eB000
L\ 3 2 V4
ik —vl_opea_taw_|
”_d
o 1
ol wrt_opra_| I'w v I el m
e 7 2D _;_
- . —ms.'.*'._(..“ ""-_!
-
- gy o | e Y mnu!n l_ L_
e hgh T ped_in an-_b-
wat_cmp
=} 2t pel) \—l—'ﬁj 1
Lada_res * . —
wl_ope wl_sod 0 0} 2 s ses 32 __.I —
U % ue 32 —_ p— [ Bty |
Z @} Hllrll l T
CUE ® 1—1-! OuMmOO0L |,
{ — D [ LR J 1
ood_res | musi_sn -k ﬂ———g‘—- — i
ey F - A voutooomn, |5

Figure 6-21: Microarchitecture of a functional unit of the vector adder

6.5.2 Vector Multiplier Unit (gxx_vmult_dp)

The vector multiplier unit (vmult) is an array of VLMAX/2 identical datapath units,
where each such datapath takes two 16-bit operands and produces a 32-bit result. The
vmult can execute all kinds of multiplications that the target speech coding workloads

require. The electrical interface of the vmult is illustrated in Figure 6-22.



6 Vector Processor Implementation 154

VL;"-}'AXIZ; —— vmult_out.vovf(i)
S L. ‘
N ;—_23 » vmult_out vres(32*)

ke ——» 1
vmult_in.sel_mult(i) —— =
vmult_in.sel_mult_r(i) - »
vmult_in.vrf_ovf_r(i) »

vmult_in.vrf_opri_low_r(15%) - » L]
vmult_in.vrf_opr2_low_r(15%) - ks 5l

Figure 6-22: Electrical interface of the vector multiplier unit

Every functional unit takes as inputs the corresponding 16-bit elements, even or odd, of
the full input vector operands and produces a 32-bit result for long multiplication or a
zero extended 16-bit result for result consistency with the other types of multiplication
along with an overflow bit. This is because every such unit comprises a 16x16 signed
multiplier and every multiplication operation executes in instruction pairs for the even
and odd elements of the input vector operands. The reason behind this choice comes from
previous simulation studies which showed an improvement in the dynamic instruction
count metric of the order of 2 - 4% when multiplying the even and odd elements of the
input operands in parallel. Therefore by utilising a single multiplier per 32-bit scalar
datapath, the number of multipliers is halved and at the same time the performance
penalty is very little. The complete schematic of the microarchitecture of a functional unit

of the vector multiplier is shown in Figure 6-22.



0 Vector Processor Implementation

vii_opri_t vii_opr2_r
' .
| |
[s6x7] o]
|
(x )
viwir  Max 32 [ Lmibrg
| | | Lres |
% e N 77 " oneo000000L | ) _ 0x00004000L
\ ah—— g\ \
multr_v vi_w_rl _mult_w_) kg
=l J__ 2 ‘ I_res mult_r_res
<3 3 - | w sel_mult_r
|_muh_res_i I_ Extract_| ] ) )
mult_v i 16
| i_res_mull | — OxfTB000L
I_mun_res_| e
|——— )
T ires1_mun
S
>>15 |
0x00010000L | Lres, ’""‘T— OxIMB000L
) )
l,_les'l,,llmT ) | i_res1_jor
=1 |5 o
7E:¢nd_l ¢ _res2_mull
Min_18 o i
| _g ———
N 7 <oxmmoool | 4
e mati vl |
| .
L b AL >oxo0007m | 7/
} 1% multr_v |
[ sel_mul . mul_res_j|
‘*‘l 7 |
—
| mult_res

Figure 6-23: Microarchitecture of a functional unit of the vector multiplier

6.5.3 Vector Shifter Unit (gxx_vshift_dp)

The vector shifter unit (vshift) is an array of VLMAX/2 identical units, where each

such functional unit takes as inputs two 32-bit operands and produces a 32-bit result and

overflow bit. The vshift can perform short and long shift left and shift right operations

to all or the even/odd elements of the input vector operands. The electrical interface of the

vector shifter unit is depicted in Figure 6-24.



6 Vector Processor Implementation 156

[ VL!V'AX’ 2?,__ — vshift_out vovf(i)

J;;S. »——— vshift_out.vres(32")

[
UL S— 1
vshift_in.SIMD(i) ]
vshift_in.cmd_shift(i) '
vshift_in.vrf_ovf_r(i)

vshift_in.vrf_opr1_low_r(15%) — i

vshift_in.vrf_opr1_high_r(15*)
vshift_in.vrl_opr2_low_r(15%)
vshift_in.vrf_opr2_high_r(15%)

Figure 6-24: Electrical interface of the vector shifter unit

L3}

Every functional unit comprises two mirrored combinational logic blocks for the “low
and “high” part for the input vectors. The corresponded 16-bit elements of the input
vector operands drive each of them respectively. Additional logic links the two parts of
the unit in order to execute the long shift (stMp_i=‘1'). Each of the logic blocks
contains a specialised barrel shifter that implements the core functionality of the ITU-T
shift operations. A barrel shifter is a common digital circuit that can shift or even rotate a
data word by any number of bits in a single cycle [7]. For this particular design, a 16-bit
bi-directional barrel shifter is implemented that comprises a network of multiplexers and
can shift up to 15 positions on either direction. Each functional unit contains two such 16-
bit barrel shifters that are connected in series in order to execute two short shifts or one

long shift. Figure 6-25 shows the connections of the two barrel shifters ports.

Barrel Shifter

Isi=0 rso = Isi rso = OPEN

high |
Iso = OPEN \rsi = lgo/ \rsi =0
Figure 6-25: Two Barrel Shifters connected in series for short or long shift operations

The right shift output (rso) for the “low™ barrel shifter and the left shift output (1so) for
the “high” barrel shifter are left open as no rotation is specified in the coprocessor ISA.

Due to this reason the right shift input (rsi) of the “low™ shifter and the left shift



157

6 Vector Processor Implementation

,fﬂr..iplfrJlﬁu

A | A
(oG mor 20 WNOCLOCTi OSUTRTDITIA  (oSHIMOCINHA VIDINNTITIA (oL OITNLOEA (9K @UHOMONTIOTHA (gyeNTime e (DG GETEdo e (GHENIaeIA

Figure 6-26: Microarchitecture of a functional unit of the vector shifter



6 Vector Processor Implementation 158

input (1si) of the “high” shifter are permanently tied to value zero. The remaining ports
are linked together in order to execute the long shifts. The additional combinational logic
around the barrel shifter saturates the shift result in case of underflows or overflows and
checks if the shift amount is negative in order to perform the opposite-direction shift. A
detailed schematic of the microarchitecture of a functional unit of the vector shifter is

shown in Figure 6-26.
6.5.4 Vector Miscellaneous Unit (gxx_vmisc_dp)

The vector miscellaneous unit (vmisc) contains the logic that implements the
miscellaneous vector operations of the coprocessor ISA. Every functional unit of the
vmisc accepts two 32-bit input vector operands in case of vector operations or one 32-bit
scalar operand for scalar operations and produces a 32-bit result (or 16-bit result zero-

extended to 32-bits). The electrical interface of the vmise is depicted in Figure 6-27.

[ 3l

vmisc_out.vres(32%)

clkm——
vmisc_in.sel_misc(i) ——

vmisc_in.pred_in(i) —

vmisc_in.srf_opr1_r(32%) ——

vmisc_in.vrf_opr1_low_r(32%) ——

vmisc_in.vrf_opr2_low_r(32%)

99w w9 w w_

Figure 6-27: Electrical interface of the vector miscellaneous unit

6.5.5 Reverse Data Logic

As previously mentioned for the case of store operations with a negative stride, the store
data are reversed in the VREG stage prior to sending them to the VLSU. The same
operation is performed for data that return from the VLSU (v1su2vdp.data) in the case
of a load instruction with negative stride (v1ldwn). This is achieved with the reverse data

logic (function). The function (reverse data) output drives a multiplexer which selects



0 Vector Processor Implementation 159

amongst the reversed (load with negative stride) and no reversed (standard load) for the

returning result at the end of the second VDP stage.
6.5.6 Masking Process Logic

The masking process logic that is implemented in the second VDP stage selects the
appropriate elements of a vector input and places them in the target vector accumulator.
The input control signal (reg_stl.ctrl.sel_evod_r) defines which elements, even
or odd, should be extracted from the vector input and be placed at the corresponding even
or odd elements of the vector accumulator. The second input operand
(reg_stl.ctrl.vrf opr2 r) determines whether the sixteen bits of the even or odd
elements of the vector input should be placed at the MSB (deposit high operation) or LSB

(deposit low operation) of the 32-bits elements of the vector accumulator.

Mask for even elements

unmasked cunent vector unmasked current vector

U000k

______J _

Imasked vector i o ! masked Vec, r )
000...-0 | 1114..1 J‘ 000....0 | 1111...1 [ ‘1111....1’ 000....0 }1111....1 000....0 ‘
VLMAX*16 47 32 16 0 VLMAX'16 47 32 18 0

masked operand 1 masked operand 1

VLMAX*16 0 VLMAX*16 32

000....0
(i+1)*32-17

vrf_opr2_r=0 |

st1_result
Figure 6-28: Masking process logic for low (vrf_opr2_r="1") or high (vrf_opr2_r=’0") deposit

for the even elements of the input vectors to the accumulator

This is implemented by shifting left by the amount specified in the second operand of the
16-bit scalar elements (within the vector input) that will be placed inside the

corresponding 32-bit elements of the vector accumulator; the amount can take only the



6 Vector Processor Implementation 160

values of zero or sixteen. The remaining bits of each element of the accumulator are filled
with zeros. Figure 6-28 depicts the masking process for the even elements of a vector

value with the second operand being zero and sixteen respectively.
6.5.7 Bypassing network of the first VDP stage

At the end of the first stage and prior to clocking the results into the VDP2 input registers,
the intermediate vector and scalar results from the first execution stage
(vdp2vregs.data.vbpassl_res and vdp2vregs.data.sbpassl_res) are
forwarded to the VREG stage as inputs to the bypass logic process for the source vector
and scalar operands selection. In addition, the destination write-addresses for the vector
(vdp2vregs.ctrl.vbpassl_vwr_addr_r) and the scalar
(vdp2vregs.ctrl.sbpassl_swr_addr_r) register files are sent along with the valid
signals. The bypass-valid vector and scalar signals
(vdp2vregs.ctrl.vbpassl_valid, vdp2vregs.ctrl.sbpassl_valid) are
asserted in the same way as the register enable signals. For the vector bypass result, the
current vector length (vdp2vregs.data.vbpassl_vlen_r) is also sent to the bypass
logic to determine the extend that the intermediate result will comprise the source

operand. The bypass logic for the second VDP stage is described in section 6.4.15.
6.5.8 Register Enable for the input VDP2 registers

The register enable (reg_en3) for the registers of the first VDP stage is asserted when
both hold signals that come from the Leon3 (hold) and the VLSU unit
(vlsu2vdp.hold) are set to zero. In addition, the latched register enable of the previous
stage (vregs2vdp.ctrl.reg_en3_r) should be asserted. The registers at the end of the
first VDP stage is of reg_st1 type.

6.5.9 Second stage adder

When a multiply-add or a multiply-sub is executed, the multiplication is performed at the
first VDP stage while the addition or subtraction part of the instruction is performed in

the vector adder in the second VDP stage.



6 Vector Processor Implementation 161

VADD2

s.[k .a‘ === 7a dd v p vadd2_out.vres

l \ SIMD add res b vadd2_out.vovf
reg_st1.ctrl.sel_sub_r o sel sub el “00"

90 » sel_sfctn

= sel_round

» sel_cmp

reg_st1.data.vrf_ovf_r ‘ Vit v

reg_st1.data.srf_opr3 —LJ :
!‘ [ ‘; vrf_opr1_low_r

| | o  vrf_opr1_high_r
vacc_opr1 | 0, L
0 } stage1_res_r(15:0) | S onr o 1
stage1_res_r(31:16) o vrf_opr2_high_r

——= pred_in

Figure 6-29: Electrical interface of the second VDP stage vector adder

This vector adder is identical to the vector adder unit of the previous stage apart from the
fact that the control signals are pre-set to perform long addition or subtraction. This
pipeline scheme was chosen to allow single cycle operations in VDPI stage and at the
same time compound (pipelined) operations such as multiply-add and multiply-sub to be
fully pipelined by using the multiplier in the first stage and the second instance of the
vector adder in the second VDP stage since the vector adder unit is reasonably cheap. The
first input operand comes from a vector accumulator (vacc_oprl) or a scalar register
(reg_stl.data.srf_opr3_r), depending if the instruction is a vector or scalar one.
The second input operand is the registered multiplication result from the previous stage
(stagel_res_r). The result from the vector adder (vadd2_out .vres) is written in the
target vector accumulator and is also bypassed to the end of the second stage for the

dependent instructions.
6.5.10 Vector Accumulator File (gxx_vaccs)

When the coprocessor is executing long operations (32-bits elements) or instructions that
access the accumulator, one or two vector operands are read from the vector accumulator
file. The vector accumulator file is a two-dimensional storage array parameterised as to
the number of accumulators and their width. The number of the elements per accumulator
is always equal to half the maximum vector length (VLMAX), 32-bit elements and there

are ACC_NUMBER vector accumulators. In this particular instance of the architecture



6 Vector Processor Implementation 162

the number of vector accumulators is set to 2 but can increase till 32, as the available

opcode bits allow, for the multiply-add and multiply-sub operations.

vaccs_file
clk
acci_douts—— vacc_opr1
reset
" acc2_doute ———— vacc_opr2
reg_st1.ctrl.vacc1_rdaddr_r
- accl_rd_addr  accl_rm —vacc_opr1
reg_st1.ctrl.vacc1_rden_r
— yacc1_rden acc2_rp——— vacc_opr2
reg_st1.ctrl.vacc2_rdaddr_r
————macc2_rd_addr
reg_st1.ctrl.vacc2_rden_r
~——macc2_rden

reg_st1 .clrl.vacc_waddr_f

acc_wr_addr
vacc_wen
————macc_wen
vacc_data g
———macc_din

Figure 6-30: Electrical Interface of Vector Accumulator File

The only restriction is that the remaining long operations can use for source operands
only the accumulator zero and accumulator one as these are hardwired to VREG stage for
the source operands selection. The vector accumulator file implementation is flip flops-
based and has two asynchronous read ports and one synchronous write port. In addition,
there are an extra two hardwired read ports with the accumulators that are used in the
VREG stage to retrieve the source operands when an accumulator source is specified. The
accumulator file is located physically in the second stage of the VDP and its electrical

interface is depicted in Figure 6-30.

6.5.10.1 Parameterisation

The vector accumulator file is a fully-configurable design. The number of accumulators
(ACC_NUMBER) is within the range of 2 to 32, with a default setting of 2. The
accumulator width (ACC_WIDTH) is always equal to half the maximum vector length
(VLMAX), 32-bit elements. The compile-time parameters with their default values that
specify the structure of the vector accumulator are specified in gxx_config.vhd and are

listed to the Table 6-4.



0 Vector Processor Implementation 163

Table 6-4: Compile-time vector accumulator file parameters for its architectural and

microarchitectural state that are contained in gxx_config.vhd file

Parameter Default

VLMAX 2,4,8,16,32, 64, 128
ACC_NUMBER 2

ACC_WIDTH (VLMAX/2)*32

6.5.10.2 The vector accumulator implementation

In the vector accumulator file both read addresses (reg_st1.ctrl.vaccl rdaddr r,
reg_stl.ctrl.vacc2 rdaddr_r) and read-enable strobes
(reg_stl.ctrl.vaccl rden r, reg stl.ctrl.vacc2 rden r) are coming
pipelined from the vector decode stage as well as the write address
(reg_stl.ctrl.vacc_waddr_r). The write enable (vacc_wen) is set when the
register enable (reg_en) of this stage is set in order to implement the synchronous write
when the result is ready at the end of the second VDP stage. The accumulator write data
(vacc_data) are coming from the second vector add unit when multiply-add/sub

operation is performed or from the VLSU unit in the case of load or from the adder tree.
stagel_res_r

7
| mask_process f

s

st1_resull| visu_res_i

l sel_vu_r=vicad

1 0 7|

vadd?_ous.vres reg_stl.ctrl.vacc_wen_r g
| stizjvadd_r ‘ ‘ reg.en
= 7 e |

vacc_tmpdata| vaccreduce_res vagc_waen

! ‘ sel_vaccred_r
v

i 0
b .
vacc_data

Figure 6-31: Write data and write-enable selection logic for the vector accumulator file

Otherwise, the write data originate from the masked vector output (st1 result) of the
VDPI. The masked value is formulated with the use of a masking logic to implement the
pair of instructions, even and odd, for deposit high (amount 16) and deposit low (amount

0) operations and it is described in more detail in section 6.5.6. In the case of other long



0 Vector Processor Implementation 164

instructions the vector output is unchanged. Figure 6-31 illustrates the selection logic for

the write data and write-enable for the vector accumulator file.
6.5.11 Vector Adder Tree (gxx_adder_tree)

The adder tree is utilised in the vacereduce instruction in which all the scalar elements
in an accumulator are add-reduced to a final 32-bit result. The adder tree is a
parameterised two-dimensional matrix of adders log:(VLMAX) rows deep and
VLMAX/2 adders at the row zero that are decreased by half in every row. Figure 6-32
shows an adder tree configuration for vector length of 256-bit elements (VLMAX 16). At
the beginning (row zero) there are four (VLMAX/4) adders that perform 32-bit additions.
The 33-bit results are added in pairs from two adders that comprise the second row
(rowl). The two 34-bit results are added with each other to form the final 35-bit result

whose least-significant 32-bits are passed to the output (adder tree out) of the adder

tree.

mask_opri

[ 7 T 3 I 5 | 4 [ 3 [ 2 I 1 [ 0 |

32 32 32 32 32 32 32 32
row0
33 33 33 33
row1
34 34
row2
35

adder_tree_out

Figure 6-32: Adder tree configuration for VLMAX 16

The input operand (adder tree_in.data.vrf_oprl_r) is masked to the current
vector length (adder_tree_in.data.vlen_cvalue_r) in order only the necessary
vector elements to be processed as the remaining vector elements till VLMAX are set to
zero. This process is performed for reducing power consumption as the non used flops are

not switching.



6 Vector Processor Implementation 165

6.5.12 VLSU unit interface with VDP2

When a load instruction is performed (reg_stl.ctrl.sel_vwu_r=vload) the
requested data from the memory is returned, if valid (vlsu2vdp.data_valid="1"), by
the VLSU in the second VDP stage as shown in Figure 6-14. As previously mentioned
the VLSU has a cascade TAG/DATA configuration which translates to a minimum of 2-
cycle load/use latency if no cache miss takes place. The returned data (vlsu_res) has
vector length of VLMAX*16 bits for vector load or 32 bits zero extended to VLMAX*16

bits for the scalar load.
6.5.13 Overflow and Predicate Flags

At the end of the first VDP stage a multiplexer selects the result overflow (ovf_st1)
from the vector unit that executed the coprocessor operation. In the case of a
miscellaneous or shift operation, the overflow takes the pipelined value of the overflow
register (vregs2vdp.data.vrf_ovf_r) as no new overflow value is produced by
either operation. In the second VDP stage another multiplexer selects the overflow
(ovi_st2) from  the latched overflow of the previous  stage
(reg_stl.data.vrf_ovf_r) and the produced overflow (vadd2_out.vovf) of the
second vector adder in the case of multiply-add/sub operation. The write enable signal
(vdp2vregs.ctrl.ovf_wen) for the overflow flag/register is asserted when the
instruction is valid and no exception is detected (reg_en='1") and it is pipelined along
with the overflow value to the VREG stage to update the overflow flag/register. A
predicate value is produced only in the first VDP stage from the vector adder unit (vadd)
in the case of a comparison instruction. A multiplexer selects, at the end of the first stage,
the predicate value (pred_st1) from the pipelined value of the predication register
(vregs2vdp.data.pred r) or the predicate result of the vadd. At the second stage the
latched predicate value (reg_stl.data.pred_r) along with the write enable
(vdp2vregs.ctrl.pred_wen) are sent to the VREG stage in order to update the
predicate register. The write enable of the predicate register is controlled by the same

conditions that apply to the overflow flag/register write enable signal.



6 Vector Processor Implementation 166

6.5.14 Bypassing network of the second stage

Prior to writing back to the register files, the results (vdp2vregs.data.vbpass2_res
and vdp2vregs .data.sbpass2_res) are forwarded again to the VREG stage as inputs
to the bypass process for source operands selection. The wvalid signals
(v@p2vregs.ctrl.vbpass2_valid and vdp2vregs.ctrl.sbpass2_valid) that
are sent along with the bypassed results and the target register write addresses are
asserted when the instruction is valid and no exception is detected from the previous
stages (reg_en="1"). Again the current vector length
(vdp2vregs.data.vbpass2_vlen_r) is sent to determine which part of the source

operand will contain the forwarded vector result.
6.5.15 Write Back

This is the final stage prior to committing a result to the vector or scalar register files or
the vector accumulators. This stage is actually incorporated in the end of the second VDP.
It includes combinational logic that selects the results of the operations that took place in
the second stage of the vector datapath along with the results from the previous stage. The
result thus can be derived from the VLSU unit (load operation) or from the accumulator
file (L_mac/L_msu operation) or the adder tree unit (vaccareduce operation) or the
registered result of the first stage of the vector datapath. The pipelined addresses and

write enables are sent to VREG stage to select the destination registers for the results.
6.6 Output Register Bunch

At the end of each stage of the vector coprocessor pipeline, there are the output registers
which contain the control and data signals that enter into the following stage. The signals

for all the pipeline stages are listed analytically in Appendix B.
6.7 Leon3

As discussed in the previous chapter, the vector coprocessor is tightly-coupled to the
Leon3 32-bit CPU which was chosen as the basecase CPU. A number of modifications

took place in the Leon3 pipeline in order to attach the vector coprocessor and its control



6 Vector Processor Implementation 167

and data channels. These changes will be described in the order they appear in every

stage of the pipeline of the Leon3 in the following paragraphs.
6.7.1 Decode Stage

In the Decode stage the latched instruction from the Fetch stage (de_inst) is decoded in
parallel from both the CPU and an additional combinational logic that inspects if the
current instruction is for the vector processor or not. As mentioned above the instruction
opcode that is targeted for the vector processor is the one embedded in the lower 22 bits
of the UNIMP instruction (Figure 6-3). The additional combinational logic checks the bits
31:30 and 24:21 of the latched instruction and if equal to zero an opcode valid signal
(v.a.opc_valid) is asserted and the bits 21:0 are pipelined as the coprocessor opcode
(v.a.opc). In the case of a move data instruction from Leon3 to coprocessor (mvsr2gpr
or mvvr2gpr) a data enable signal (v.a.vcop_data_en) is also asserted. Additionally
in this stage, the addresses of the source and the destination operands are extracted from
the latched instruction in parallel with decoding. This allows the concurrent access of the
register file in order to prepare the operands for the next stage. When the address of the
first source operand is calculated additional logic checks from which field to extract it
depending on whether it is a move instruction from the main CPU to coprocessor or not.
Similar combinational logic selects the destination address and sets the write enable
signals according to whether a move instruction from the coprocessor to the CPU has

been decoded or not.
6.7.2 Register Access stage

In this stage the operands are read from the register file or from intermediate data bypass
networks. When a coprocessor instruction is performed the selected default operation in
Leon3 will be addition. This in combination with the zero operands passed to the next
stage, will cause Leon3 to perform a NOP operation when the executed instruction is
targeting the coprocessor. However, this is still a valid instruction packet and can be
interrupted like any other Sparc V8 instruction. In the case of a move from the CPU to the
coprocessor instruction the first source operand (v.e.opl) is pipelined as data input
(v.e.leon_data) to the latter. The opcode (v.e.opc), the opcode valid

(v.e.opc_valid) and the data enable (v.e.vcop_data_en) signals for the



6 Vector Processor Implementation 168

coprocessor are pipelined to the next stage if there is no exception and the opcode valid of
the previous stage (r.a.opc_valid) is asserted. In addition, at the exception detect
process, the VCOP logic was added to deactivate the illegal_inst signal when the
Leon3 decoder detects the UNIMP format that is the case of a coprocessor instruction.
This ensures that all UNIMP opcodes are “hijacked” and passed to the coprocessor for

execution.

6.7.3 Execute Stage

In the Execute stage all the arithmetic, logical, shift and miscellaneous operations are
performed along with the load/store address calculation. When a coprocessor instruction
is executed the source operands are set to zero. Therefore, the Leon3 will perform an
addition with zero operands and this will emulate a nop instruction. Similarly to the
previous  stage, the coprocessor  signals (v.m.opc, v.m.opc_valid,
v.m.vcop_data_en) are pipelined to the next stage in the case of no exception and the

opcode valid of the previous stage (r.e.opc_valid) is asserted.

6.7.4 Memory Stage

In the Memory stage the data cache is accessed and the store operation is performed. It is
this stage where the vector coprocessor is attached to the Leon3 pipeline in order to avoid
the majority of the exceptions and interruptions of the Leon3 and to have enough time to
transfer data to/from the main processor (write stage) if requested. Therefore, when a
coprocessor instruction is performed and there is no exception and the opcode valid of the
previous stage (r.m.opc_valid) is asserted the vector/scalar instruction
(iu2vcop_opc) along with the valid signal (iu2vcop_opc_valid) is sent to the decode
stage of the vector coprocessor. In addition, the other control signals (v.x.opc_valid

and v.x.vcop_data_en) are pipelined to the next stage.
6.7.5 Exception Stage

In this stage, all the traps and interrupts are resolved and the data are aligned for data

cache read. Even though the full functionality of Leon3 supports single issue, seven stage



6 Vector Processor Implementation 169

ipeline, in this application the write back (7" stage) is not implemented and the outputs
pip pp g p p

from the exception stage are going straight to the register file.

. Add
I-cache A
o jmpa tor
data ackiress,
1 pc
Fetch -
o v 4 pe
Decod I de_mnst
| T = decode logic hokdne'y"
and
Will_i='g
a_mst a_po f a_imm {7 r.aope_vaid [ raopc
rd
Register Fila
Regster ¥, the_ wim, psr
Acces ' 11 }
1 holdn="1"
7 and
Will_i=0r
veop! and
T ¥ t T8 ope_vald="1
e _mat _pc I rsi f 2 reope_vaid I reope_vald i@ leon_data
Execute alhufshit mulidiy
— holdn="1
and
Kill_i=0r
| ™ and
‘ —1 re.ope_valids'1"
| | | .
=] Tmpe |} N [ A~ [ my || {iimepeveld }< { wmope | { rmison duta
|
: datain
| _address/dataout n2veop_ope leon_dout
Memory = holdne"t K- :
2veop. ’
Ny VDEC STAGE
*.8.0pc_valid='"1 reg_ent
2 et Lo [ xms [ y {1 aope_vald F
VRF SRF
Exception =t el
xc_result 1 e __bypass bypass.
e T Wil_i= 0 T T
ur +
idata |
| lean_din
1 |l & final_vapr1_| final_vopr2_| reg_en2
w g [T 0 T ¢ [0 0 @
vadd vmut wahift ymac
— reg_en3
v
i RS
P
vadd2 | | vacereduce |
.
.
reg_en

VRF SRF

Figure 6-33: Leon3 integer unit and vector coprocessor datapath diagram

The write data, prior to commit to the register file (rfi.wdata), is the output of a final
multiplexer which selects the result from the main CPU (xc_result) or the coprocessor

data (leon_din) from the VREG stage in the case of a move instruction from the VCOP



6 Vector Processor Implementation 170

to the Leon3. The latter is performed only if there is no exception and the opcode valid of
the previous stage (r.x.ope _valid) is asserted. The detailed schematic of the Leon3

with the attached vector coprocessor is illustrated in Figure 6-33.

The vector processor was added in the proc3 hierarchy and connected with the interface
of the integer unit. In this hierarchy, the Leon3 processor core with the integer unit and
the complete cache sub-system with controllers and rams are contained. It also comprises
the multiply and divide units hardware. Figure 6-34 depicts the proc3 hierarchy that

includes the vector processor.

PROC3
CACHE vCcoP
clk ico clk gxx_leon_dout_j
- = clk ico » s sclk leon_dout m-— = = o=
St  dooh O ““—m’rg—-'- resel gxx_ahbo »T-Froc3-ahbo
ooowic  ahbo paimg 3 L '?( il
ici cram o kil |
T e i':n = clk Kil -:::—:';'g'l ugx_'apc:': :‘l",c
ahbsi — = rsin iu2veop_ope »C = gxx_ope_valid_i |
.hb,i ::::L st dE?ld':- holdn iu2veop_opc_valld ":::_l‘:p:n_vd::d:. gxx_lcnn_dln_i: g_::d
phoidy Gxx_lean_ oo~ ® leon_din foon_dout »* === gue_proc3, ahbl] gun-nhbi
» ico ici » i
Cramg cramo o deo dei » 961
o190 )  mula
MMU CACHE '&EL. » irgi irqo » dgg: £ eck  muio aTUO
ool omck  cos €0 mulo || 294 L muli ngidnx?] £
st esin Heatl deo = mulo mull = = holdnx
"ici :id s :a'him v divo divi » d["" mul_ g myli
9 Jldei  crami o " fpo foi b o )
ahbi o b i P oo cpi s P Diva2
'mm-lhbll * tho this P slk Jak  dive p 9V
aneag e . | fon
pholdg, 1o holdn nOME otk
= cramo divi_ o divi

Figure 6-34: Leon3 processor core block diagram
6.8 Summary

In this chapter, the design and implementation of the vector datapath was described. The
pipeline organization and its constituent components were presented along with a brief
description of the VLSU. In addition, the modifications to the Leon3 pipeline to enable its

tight-coupling to the vector processor were detailed.



G Vector Processor Implementation 171

6.9 References

(1]

(5]

[6]

[7]

S. R. Parr, "High Performance Load/Store Unit for a highly configurable,
embedded vector processor," in Electronic and Electrical Engineering:
Loughborough, 2007.

"The Sparc Architecture Manual Version 8 ", www.sparc.com.

J. L. Hennessy and D. A. Patterson, "Computer Architecture: A Quantitative
Approach," 3 ed: Morgan Kaufmann, 2003.

S. Furber, "ARM: System-on-Chip Architecture," Second ed: Addison-Wesley,
2000, pp. 80-81.

C. Kozyrakis, "Scalable Vector Media-processors for Embedded Systems," in
Computer Science University of California: Berkeley, 2002.

S. R. Parr, K. Koutsomyti, and V. A. Chouliaras, "A High Bandwidth
Configurable Load/Store Unit for an Embedded VectorProcessor," in
Postgraduate Workshop on Embedded Systems Birmingham, UK, 2006.

P. A. Beerel, S. Kim, P.-C. Yeh, and K. Kim, "Statistically optimized
asynchronous barrel shifters for variable length codecs," in International
symposium on Low power electronics and design, San Diego, California, 1999,
pp. 261 - 263.



CHAPTER 7
VECTOR PROCESSOR VLSI IMPLEMENTATION

7.1 Design Verification

The vector datapath was verified using test vectors that were produced by recording the
inputs operands, the state of the global overflow flag and output results from each of the
C macros that implement the basic operations. The recording process was performed by
inserting pre-processor directives to every basic operation in their definition file as it is
shown in the code snippet of Figure 7-1. The figure depicts the C macro of the basic
operation L _mult and as it can be seen the pre-processor directive (#ifdef
GEN_TVEC_L_MULT) uniquely identifies the name of the operation under test and
selects the inputs and the outputs for recording which are then piped to a file. The whole

process was controlled by a Perl script.

Word32 L_mult(Word16 varl,Word16 var2)
{
Word32 L_var_out;
#ifdef GEN_TVEC L MULT
int Overflow_in=Overflow;
#endif
L var out=(Word32)varl * (Word32)var2;
if (L_var_out != (Word32)0x40000000L) {
L var out *=2L;
H
else {
Overflow = 1;
L _var out=MAX 32;
}
#ifdef GEN_TVEC L MULT
fprintf (tv ,"%x,%x,%x,%x,%x\n" ,varl , var2 , Overflow_in, L var out, Overflow);
ffendif
return(L_var out);
h

Figure 7-1: Example of recording the inputs and the outputs of the L_mult operation C

macro



7. Vector Processor VLSI Implementation 173

The two scripts for producing test vectors for the speech coding algorithms run the
workloads by using the architecture-level simulator for all the ITU-supplied bitstreams.
The produced test vectors are subsequently applied to the vector datapath via a FLI-based
testbench. The testbench is a self-contained VHDL model in a testing system and is
designed to perform an automatic sequence of operations to validate the functionality of a
design-under-test. The latter is instantiated and driven with a long sequence of the test
vectors, created during the normal execution of the ITU-T workloads. These vectors are
imported into the testbench and read by a Foreign Language Interface (FLI)-based
stimulus process. The FLI provides a way for software components written in a high-level
language, such as C, to interact with components written in VHDL or Verilog. In this
particular case, the FLI allows for the C code, which reads in the test vectors from the
stimulus file, to be used within the VHDL simulation environment and for each variable
in the test vector to drive the correct signals of the VHDL testbench. The designs were
simulated and verified with Mentor Graphic’s ModelSim [2]. This software package
allows for the event driven simulation of a VHDL or Verilog design and performs direct
comparison between the outputs from the design-under-test and the expected (golden)
results, stored also in the stimulus file. From the comparison an error report is produced

that is used to validate the functionality of the design-under-test.

th_gxx_mult_dp

clock_process

error report
T s

test vectors

Figure 7-2: Test bench for the vector mult unit of the vector datapath

The functionality is based on the specifications imposed on the design and can be
confirmed by producing the expected results. The vector datapath testbench consists of

four testbenches, one for each vector unit. Each such testbench was designed for the



7. Vector Processor VLSI Implementation 174

particular datapath blocks and their functionality was validated on a per-workload basis.
Figure 7-2 shows the configuration of the testbench for the vmult unit. It comprises the
clock process, the stimulus process (tester_mult) that reads the test vector from the
stimulus file via the FLI (tdp_init.c), the wvmult unit (design-under-test:
gxx_mult_dp) and the check process that performs the comparison of the outputs of the
vmult unit and the expected golden results from the FLI. The testbenches for the other
vector units of the datapath have similar configurations. This kind of verification is called
block-level verification. After the block-level verification, system level verification was

performed. Figure 7-3 depicts the configuration of the testbench for the overall design of

the vector COprocessor.

tb_gxx_vcop
clock_process

stimulus_process

Figure 7-3: Vector coprocessor testbench configuration

The full coprocessor testbench consists of the clock process that generates the periodic
clock signal, a hardwired stimulus process and the VHDL simulator output. The
hardwired stimulus process drives the inputs of the vector coprocessor interface and the

produced response is observed on the VHDL simulation environment.
7.2 Synthesis and Place & Route Design Flow

The design flow of the vector coprocessor is completed via a fully-automated
synthesis/place-and-route campaign. This process is driven by using a grand (master)
script whose pseudocode is depicted in Figure 7-4. This script runs Design Compiler for
logical synthesis (statement S9), Cadence SoC Encounter for place and route (S10) and

again DC (S11) for statistical power analysis. These are performed for different vector



7. Vector Processor VLSI Implementation 173

lengths (VLMAX) and different periods in order to have a complete view of the vector

COProcessor.

Main driver script

{
83 for each VLMAX

{

S5 for each period

{
Change period;

s8 Modify processor configuration;
59 DC runl: Logical Synthesis;
S10 Encounter run: Place and Route;
S11 DC run2: Power Analysis;
}
}
} end;

Figure 7-4: Script in a pseudocode for the design flow of the vector coprocessor

These steps of the master script and the produced results are described in more detail in

the following sections.

7.2.1 Design Compiler Stage (Logical Synthesis)

After the design verification the next step is the synthesis phase. Synthesis is the
automatic transformation of a Register Transfer Level (RTL) design description to a gate
level netlist implementation. The synthesis process takes as inputs the RTL HDL
description, timing constraints and attributes for the design and a technology library and
produces a fully-mapped gate level netlist. Synthesis is an iterative process that starts by
defining the constraints for each RTL block of the design and optimising the gate-level
netlist for area, timing and power [1]. The synthesis tool that was used for the coprocessor
design is the industry standard Synopsys Design Compiler (DC) [3]. The target standard-
cell technology chosen for the design was Taiwan Semiconductor Manufacturing
Company’s (TSMC) 0.13um standard-cell library (1Poly, 8 Copper) [4]. Using this
technology, each design was synthesised varying both VLMAX and target clock
frequency (period). The design constraints that contain the timing and the area
information are defined in the design compiler’s TCL (Tool Control Language) driven
script. This script is used to guide the synthesis and optimization process of the design

with the ultimate aim of meeting the user-specified constraints. The output of the DC run



7. Vector Processor VLSI Implementation 176

are design timing constrains in Synopsys design constraints (*.sdc) format in addition to

the new netlist representing the mapped and optimised design.
7.2.2 SoC Encounter script Stage (Place and Route)

After Logical Synthesis with Design Compiler, it is the turn of the Place-and-Route
encounter script to run. This script drives the place and route process which produces the
necessary files for statistical power analysis. The script starts by running Cadence First
Encounter (FE) [5] in batch mode and by reading in the physical view of the RAMs and
the library along with their timing view. The optimised verilog netlist (*.v) from the
previous stage and the Synopsys Design Constraints (*.sdc) file that specifies the timing
constraints are then imported. The place and route tool performs floor planning, power
grid specification (power/ground ring and stripes), placement of RAM macros and
standard cells, and clock tree synthesis. These are followed by global and detail routing
(multithreaded mode), extraction of RC data and post clock tree synthesis timing
optimization to fix the setup time. This is achieved by the tool inserting to the setup-
violating paths buffers or inverters and doing gate resizing (including flip-flops) and
instance cloning. After that step, filler cells (dummy cells) are added to fill the area
between the placed and routed standard cells and connect their VDD and VSS rails to the
power ring. When the final layout is ready it needs to be checked against the verilog
netlist (Layout vs. Schematic LVS). In addition, Design Rule Check (DRC) takes place
that checks the enforcement of the technology library design rules in the final layout. The
outputs from this stage include area, and maximum frequency reports, of the design along
with path delays, timing constraint values, interconnect delays in standard delay format
(*.sdf) file, standard parasitic extraction format (*.spef) file and a new gate-level netlist
representing the very final placed-and-routed design. These outputs are then read back

into DC for the final stage of statistical power analysis.
7.2.3 Statistical Power Analysis Stage (Design Compiler)

Power analysis in statistical mode is run immediately after the end of place and route. The
post placed-and-routed verilog netlist is loaded along with the timing constraints (.*sdc)
and the standard parasitic extraction format (*.spef). When the statistical power analysis

is performed several files are created which include average power dissipation, area,



7. Vector Processor VLSI Implementation 177

worst IR drop etc. The final such results for the vector datapath, coprocessor and the

overall system are presented in the following sections.
7.3 Implementation Campaign for Vector Datapath

For the vector datapath three different metrics were obtained, namely power, area and
maximum operating frequency f,,«. Figure 7-5 depicts the statistical power consumption
observed for varying VLMAX and clock period of the vector datapath design. Here each
requested period is plotted against its corresponding power. Observing this set of results it
is obvious that the general shape of the graph is of a similar nature. It can be seen that as
VLMAX increases the amount of power increases proportionally. This is due to the fact
that the higher the VLMAX the higher becomes the physical number of gates placed on
the silicon. This rise in the number of the gates inevitably leads to an increase in the
power consumption. In addition, this plot reveals how the consumed power has a direct
relationship with the speed that the design can operate. As the design is pushed into
operating at higher frequencies the power dissipated at these frequencies increases as
well. This is an expected result as the design’s clock frequency affects the number of

switching gates thus leading to a rise in dynamic power.

Statistical Power Results
300
x
250
200 =
§ = + vimax4
= > " - yimax8
gg- 150 - - + vimax16
3 o = #— vimax32
> b -
100 _x .
] x~ =
i
=
50 .
- 5 o
o .
0 50 100 150 200 250 300 350
Requested Frequency (MHz)

Figure 7-5: Statistical power results of vector datapath for different vector lengths

Another interesting observation is the significant difference in power consumption that

observed for all VLMAX and maximum frequencies. At a vector length of 4 and a



7. Vector Processor VLSI Implementation 178

frequency range of 100 to 333MHz the vector datapath power consumption ranges from
9.94 to 82.17mW whereas for vector length 32 at the same frequency range the power
consumption ranges between 33.69 to 272.96mW. This can be seen as a fairly constant
three fold increase in power consumption. In addition to studying the power consumption
of each design methodology the physical area of each design was recorded. Figure 7-6
shows how this area changes for different values of VLMAX and at different frequencies

(periods) for the vector datapath design.

Post-Synthesis Area (no wireload)

3500000
3000000
. = =g i
2500000
g 2000000 +—Vimaxd
A i I = vimax8
«© + vimax16
2 1500000 * vimax32
<
1000000 a—— *
— - -
500000 — — =
—a——a— =
- .
-+ . *
0 : - - - - -
0 50 100 150 200 250 300 350

Requested Frequency (MHz)

Figure 7-6: Statistical area results of vector datapath for different vector lengths

As it can be observed from the graph the required area for a given VLMAX shows a
marginal change for the studied frequency range. The vast majority of the silicon area
within the chip is used by the logic gates that perform the functionality of the design. As
the frequency requirement increases various synthesis optimization methods are
automatically applied to allow for the design to operate at this higher frequency. These
methods often lead to an increase in silicon area as they employ faster and larger buffers
for timing optimization of the critical paths and consequently affect the whole system
layout. All these methods for pushing the design to achieve ever increasing speeds have
an adverse affect on both power and area. Another observation that can be made from the
above graph is that the area of the device is directly related to the vector length (VLMAX).
This is due to the effect of the vector length on the quantity of the design logic as each

increase in VLMAX involves additional vector element instantiations. The increase in area



7. Vector Processor VLSI Implementation 179

required for higher vector length completely overshadows the increase due to the
operation at higher frequencies. This effect of the operating frequency on the area of a
device is less apparent as the effect of the dramatic increase in logic required for each
change in VLMAX. Due to these reasons the graph shows a near parallel set of lines for

the vector datapath.

Post-Synthesis Frequency Results

300

250 X

w200 + ,
I /
= / N » vimax4
> Z y, N\ .
2 150 F \ vimax8
g e | maxts
= =— vimax32
g p— e
w 100 o
il
50F
0
50 100 1 125 143 200 250 333

Requested Frequency (MHz)

Figure 7-7: Frequency results of vector datapath for different vector lengths

Figure 7-7 illustrates the maximum achievable frequency against the requested frequency
for different vector lengths. It is observed that the relationship between the achieved
frequency and the requested is near-linear for frequencies up to 333 MHz and vector
lengths from 4 to 16. For VLMAX 32 and frequencies below 200 MHZ the same near-
linear relationship is observed. As the requested frequency is increased above 200 MHz,
the achieved frequency becomes more unpredictable due to the enormous size of the

netlist optimised by DC in a top-down mode.
7.4 Implementation Campaign for Vector Coprocessor

The statistical power analysis was performed for the vector coprocessor as a whole. This

includes the vector datapath (previous section) and the VLSU (other project') unit. Figure

" This is a parallel running project, addressing the design of the Vector Load/Store Unit of the

Processor.



7. Vector Processor VLSI Implementation 180

7-8 illustrates the power consumption for different VLMAX and periods (frequencies).
From the results it can be seen that as the requested period (frequency) increases the
amount of the power dissipated increases proportionally. This direct relationship is due to
the number of switching gates and their size, as the latter is affected with increasing the
requested clock frequency. The higher the frequency, the higher the capacity load

switching, which leads to the rise in the dynamic power.

Statistical Power Results

600
500 "
N
-
> 400 =
g =
] y —+— vimaxd
g 300 Z e - vimax8
: ,,}'" * vimax16
7] e
a o
@ 200 > -
g T~ o
o -~ o
100 >
'S
0
0 S0 100 150 200 250 300 350

Power (uW)

Figure 7-8: Statistical power results of vector coprocessor for different vector lengths

For different VLMAX the graph shows a marginal change for the dissipated power. This
is because the size of the VLSU is much larger than the vector coprocessor and
consequently the power it dissipates. At low requested periods the difference in statistical
power between VLMAX 4 and VLMAX 16 is approximately 12.3% which seems
constant over the frequency range. The statistical power results were obtained up to
VLMAX 16 and reveal that the power consumption increase is a fairly constant 6.6 fold
for the period range of 20ns (50MHz) to 3ns (333MHz). No results were obtained for
higher VLMAX as the design was too large for the synthesis run to complete
successfully. Apart from the power consumption the physical area of the vector
coprocessor design was also recorded. Figure 7-9 depicts the area for different values of
VLMAX and for various requested periods (frequencies) for the vector coprocessor
design. Again the required area for a given VLMAX shows a marginal change for all the

frequency range, as the silicon area is proportional to the number of gates that perform



7. Vector Processor VLSI Implementation 181

the functionality of the design. As the frequency increases however there is a slight rise in

the silicon area as the timing optimization methods affect the whole design layout.

Post-Synthesis Area (no wireload)
4500000
4000000 - . .
- - - & =
3500000
3000000
Uo.l 2500000 —+— vimax4
= R113 S - — = vimax8
8 2000000 == o—w + vimax16
<
1500000
— e > r—+ -— — -
1000000
500000
0
0 50 100 150 200 250 300 350
Requested Frequency (MHz)

Figure 7-9: Statistical area results of vector coprocessor for different vector lengths

Additionally from the graph it can be seen that the area is directly related to the vector
length (VLMAX). This was expected as the vector length affects the number of the
functional units in the vector datapath along with the size of the register files and the
VLSU unit. The last graph in Figure 7-10 illustrates the achievable frequency against the
requested frequency for different vector lengths of the whole vector coprocessor. As it
can be seen the achievable frequency matches or even is higher than the requested for
frequencies up to 200 MHz and vector lengths from 4 to 16. For higher frequencies
however logical synthesis is unable to achieve the requested frequency an effect
exacerbated at higher vector lengths. This is due to the increased design size which can’t

be handled efficiently by the synthesis tool.



7. Vector Processor VLSI Implementation 182

Post-Synthesis Frequency Results

300

250 -

N 200 -
I
£
= ~+— vimax4
g 150 »- vimaxa
-
g - = vimax16
g .
w 100 ——
f——tp—
50
0
50 67 100 11 125 143 200 250 333

Requested Frequency (MHz)

Figure 7-10: Frequency results of vector coprocessor for different vector lengths

From the graph it can be observed that the maximum operational frequency for the vector
coprocessor is 256 MHz for vector lengths up to 8 and 208 MHz for a vector length of 16.
These figures fall well within the acceptable range of high performance industrial-level

ASIC design for the given silicon technology.

7.5 VLSI Layout

The following sections present the resulting VLSI macrocells along with their physical

characteristics for the Vector Datapath and the Vector Processor designs respectively.

7.5.1 Vector Datapath Layout for VLMAX 16

The vector datapath with VLMAX=16 (256-bit length) was taken through the full front
end (logical synthesis) and the back end (Place and Route) flows. The design was read
into Synopsys design compiler and synthesized for a target frequency of 250 MHz,
targeting the TSMC 0.13um (1 Poly, 8 Copper) process. A top-down flow and no
wireload models were used. This flow was chosen as our experience shows that the back
end tool (Cadence SoC Encounter) is capable of very advanced netlist re-synthesis thus
making the use of front end wireload models unnecessary. After synthesis the optimized

netlist of the vector datapath with length 256 bits was imported into SoC Encounter and



7. Vector Processor VLSI Implementation 183

the flat physical flow was carried out. The physical characteristics of the VLSI cell are

given in Table 7-1.

Table 7-1: VLSI Layout physical parameters for VDP with VLMAX 16

Parameters Value

X dim (pum) 1010

Y dim (um) 1010
Area (mm sq) 1.02
Cells (RAMs) 63945 (7)
Cell rows 279
Speed (MHz) 186.2

The VLSI results show a worst case (0.9V, 125 C) maximum frequency of 186.2 MHz
post-route. The achieved frequency is well within the domain of high performance

implementations of wide parallel processors.

L LU

| ]

| Figure 7-1i: Vector Datlapath ﬁacrocell for VLMAX 16



7. Vector Processor VLSI Implementation 184

It is anticipated that further work at the back-end will result in a substantially faster cell.
The power consumption based on statistical activity (not workload-based) of the cell is
also moderate; at 61.3 mW when optimized for 4ns period. The design includes
approximately 64 K gates, 7 RAM macros in 279 standard cells rows. The cell area is

1.01 by 1.01 mm’. The resulting VLSI macrocell is shown in Figure 7-11.
7.5.2 Vector Datapath Layout for VLMAX 32

The same methodology was followed for the vector datapath with VLMAX=32 (512-bit
length). The design was synthesized for a target frequency of 200 MHz, targeting the
TSMC 0.13um (1 Poly, 8 Copper) process. The physical characteristics of the VLSI cell

are given in Table 7-2.

Table 7-2: VLSI Layout physical parameters for VDP with VLMAX 32

Parameters Value

X dim (um) 1801

Y dim (pum) 1800

Area (mm sq) 3.24

Cells (RAMs) 209809 (11)
Cell rows 453

Speed (MHz) 126.7

Again no wireload models were used and the physical flow was carried out for the vector

datapath with length 512 bits. The resulting VLSI macrocell is shown in Figure 7-12.



7. Vector Processor VLSI Implementation 185

S S ——

Figure 7-12: Vector Datapath macrocell for VLMAX 32

The design achieved a much lower frequency of 126.7 MHz post-route, worst case (0.9V,
125 C) maximum frequency when optimised for 5ns period. This discrepancy between
logical synthesis (200MHz) and final post-route speed (126.7MHz) is attributed to very
wide datapath (512 bits) which resulted in a substantially congested VLSI macro. The
VLSI macro includes approximately 210 K gates, 11 RAM macros in 453 standard cells

rows. The cell area is 1.8 by 1.8 mm”.
7.5.3 Vector Processor Layout for VLMAX 16

Finally, the full vector processor (incorporating the Vector Datapath and the VLSU) with
VLMAX=16 and Vector Data Cache configuration 4-way, 8Kbytes, 128 bytes block
length and 2 sub-blocks per block, was taken through the full front end (logical synthesis)
and the back end (Place and Route) flows. The design synthesized for a target frequency
of 200 MHz, targeting the TSMC 0.13pm (1 Poly, 8 Copper) process.



7. Vector Processor VLSI Implementation 186

Table 7-3: VLSI Layout physical parameters for VCOP with VLMAX 16

Parameters Value

X dim (um) 1802

Y dim (um) 3491

Area (mm sq) 6.29

Cells (RAMs) 257308 (22)
Cell rows 921

Speed (MHz) 182

A top-down flow and no wireload models were used. After synthesis the optimized netlist
was imported into SoC Encounter and the physical flow was carried out with the two
major partitions being the vector datapath and Vector Load/Store Unit (VLSU). The

resulting VLSI macrocell is shown in Figure 7-13.

{f;r:'rf il g

Figure 7-13: Layout for the whole vector processor (vector datapath and VLSU unit)



7. Vector Processor VLSI Implementation 187

The physical characteristics of the VLSI cell are given in Table 7-3. The design includes
approximately 257 K gates, 22 RAM macros in 921 standard cells rows. The cell area is
1.8 by 3.5 mm’”. The design achieved 182 MHz post-route, worst case (0.9V, 125 C)
maximum frequency that clearly indicates that the critical path lies within the Vector

Datapath.
7.6 ESL Implementation

This section discusses briefly the SystemC-based methodology, which automatically
generates a technology independent Verilog netlist from the vector instructions of a
vectorized application. This application involves both ITU-T speech coders, G.729A and
G.723.1. The vector instruction set extensions, which were described in Chapter 5, were
formed by C-source vector macro-opcodes and were introduced to a next-generation
multi-parallel, configurable application-specific processor known as SS_SPARC. The
SS_SPARC platform along with the ESL methodology and the statistical power analysis
results obtained from the SystemC-accelerator synthesis and the handed-code RTL

synthesis are presented in the following sections [6].
7.6.1 SS_SPARC Platform

SS_SPARC is a configurable, extensible, chip multi-processor where each processor is a
S-issue, simultaneous multithreaded vector processor [6]. A high-level view of a 3-

instance SS_SPARC kernel is depicted in Figure 7-1.

i
Configurable |

number of |
SMT Cores |

. N
standalone <

accelerators |

>
AHB
Channel

Arbiter/AHB/AXI port

=

Interconnect  Banked L2 Cache Configurable system
memory port

Figure 7-14: High level view of a 3-instance SS_SPARC kernel

The SS_SPARC platform consists of a configurable number of SMT processing units, a

number of user-defined, loosely-coupled coprocessors, a pipelined switch matrix, and a



7. Vector Processor VLSI Implementation 188

multi-banked, level-2 memory system with a standard AHB interface. Additionally, a
generic, transaction-level-pipelined memory interface which connects to the next
generation AMBA 3 Advanced eXtensible Interface (AXI) [7] standard is available. The
design is parameterized as to the number of SMT processing units, the number of
contexts per processor unit, the vector infrastructure, the instruction and data caches
configuration and buffering schemes and the switch matrix configuration [6]. Figure 7-15
illustrates the schematic diagram of the superscalar pipeline of a SMT processing unit. It
comprises the instruction Front-End (IFE), the scalar core (SCORE), the vector core
(VCORE) and the load/store unit (LSU).

ntex

Figure 7-15: Superscalar SMT pipeline organisation

The IFE consists of a configurable, multi-way instruction cache (ICache) and supplies an
instruction block (5 instructions) per cycle to the per-context instruction buffers. A
programmable arbitration mechanism is employed to select one of the non-blocked
contexts. The ICache services one block request per cycle and supports pipelined
transactions to the main memory. In case of a cache miss only the particular context is
blocked while the remainder are allowed to proceed. The employed branch predictor is

configurable as to the numbers of branches it can predict per cache block and it is



7. Vector Processor VLSI Implementation 189

relatively simple with good prediction rate in the computationally intensive loops
dominant workloads of the telecoms domain. After the instruction buffers there is a
dispatch logic which checks the buffered instruction per processing unit to resolve data
dependences and prepare the instruction packet for execution. The instruction packet is
dispatched to the register/bypass stage in the SCORE block, for subsequent context

prioritization and transfer to the execution block [6].

The scalar core (SCORE) block consists of the microarchitectural units equal with the
number of supported contexts, the context selection unit (CCU) and a 3-stage pipeline
that implements the Sparc V8 ISA [8]. The instructions that were dispatched in the
previous cycle access per-context the register files. These instructions are prioritized by
the CCU, and progress to the registers of the execution datapath. The datapath comprises
two 32-bit integer ALUs in a cascade configuration. Figure 7-16 illustrates the SCORE

pipeline organization [6].

Bk
'3

r
-

é, éwﬁg—hl_gl

=l | |aw |

-
lll'

Figure 7-16: Scalar core (SCORE) pipeline organization

The dual-pipeline vector core (VCORE) is highly configurable and extensible for the
architecture (programmer’s model and ISA) as well as the microarchitecture (width of
vector registers, number of stages of the vector pipeline, bypassing etc) and it is the
primary DSP engine [6]. In the first pipeline, custom instructions can be easily inserted
as ‘plug-in datapaths’ in the vector core by using the exposed interface of the latter. The

second pipeline is dedicated to returning vector loads from the high-bandwidth LSU and



7. Vector Processor VLSI Implementation 190

it is not accessible from the system architect. As shown in Figure 7-17 the vector core
comprises the architected state (one per context), the vector bypass logic, and a
configurable number of vector execute stages for the custom datapath. In a multi-context
configuration, multiple threads access the architected state of the processor. In the case
that there are no register or resource dependences, multiple contexts are prepared to be
dispatched to the single-issue vector datapath. The CCU arbitrates the ready CPU
contexts by using context arbitration algorithm and issues one to the vector pipeline. The
results are made available (via bypassing) to dependent vector instructions. The exposed
microarchitecture allows the system architect to design and implement custom
instructions using a number of methodologies including RTL-based and, ESL-based. The
interfaces that facilitate this are: a) the Dispatch IF that is the input interface to the user
defined vector datapath b) the Bypass IF consists of the vector result buses, one per stage,
vector masks and valid strobes to determine the bypass paths ¢) the LSU return path IF is
the entry point of the return vector load from the LSU d) the write-back IF is the point
where the produced vector results (two per cycle) from the vector datapath are passed to

the vector register file of the specific context for writing [6].

Per-
context
architect
ed state

LSU return
= Path
Exposed
(User-
defined)
voP

Per-
context

VRF I
XR2ZW

Figure 7-17: Dual-pipeline vector unit organization



7. Vector Processor VLSI Implementation 191

7.6.2 ESL Methodology

The input of the flow of the developed methodology is the vectorized source code of the
ITU-T G.729A and G.723.1 speech coders. The vectorization was performed by using a
number of assembly-like C-macros. The C-level macros define precisely the vector
instruction set extensions that were described in Chapter 5. The custom flow parses these
C-macros and creates a SystemC module that instantiates these SIMD instructions. The
SystemC model is verified by using the test vectors that were produced by running the
vectorized algorithm in order to ensure that this “packing” of the SIMD ISA hasn’t
change the functionality of the operations. A number of pipeline registers and the bypass
taps are specified in the synthesis tool. The SystemC datapath is then synthesized to
technology independent gates RTL-VHDL using a commercial SystemC synthesizer.
Afterwards the RTL model is validated again by the same test vectors (as they applied
before) to ensure that the SystemC-RTL transformation was successful. The resulting
RTL datapath is instantiated in the exposed vector unit of the SS_SPARC processor and
further decoding logic is added to the core processor to enable the execution of these
extensions [6]. The combined RTL (vector extensions and SS_SPARC platform) goes to
the standard design flow which was described in sections 7.2.1 to 7.2.3. The results from
the statistical power analysis results for both the SystemC-accelerator and the RTL-

accelerator synthesis along with a VLSI layout are presented in the following section.

7.6.3 Micro-Architecture Results

In this work the statistical power consumption and the area were obtained for the
SystemC-defined accelerators as well as the RTL-accelerators. Figure 7-18 depicts the
power consumption of both implementations for all the configurations: vector length 256-
bit (VLMAX 16) and 512-bit (VLMAX 32), vector contexts 1, 2, 4 and 8 for different
clock periods. In this figure each requested period is plotted against its corresponding
power. From the set of the results it is obvious that the general shape of the graphs is of a

similar nature.



7. Vector Processor VLSI Implementation 192

ITU Vector Engine Power Consumption

1000.00
900,00 |
800.00 * 10ns
70000' = Ons
5 Bns
£ 5000 s
£ » . *—6ns
o 500,00 *—5ns
8 4ns
2 40000 | - o - ns
- 3 =
w - o -
300.00 - n
y . ‘ .
- - 4
200,00 | - . Lo . "l
2 p " 7 . z
100,00 + . LA s A ¥ 5
- . - - ] - -
= =
0.00 | y : = = =
s el e e - - - | o | e - -
o | S = 3 3
B|E|E|E| |B|2|8(3| |E|E|E|E| |B|§|%|%
3|8 | ¥ |8 s |8 |8 |%
& &l &l é & & lala
VLMAX16 VLMAX32
Configuration

Figure 7-18: I'TU VCore Power Results

The SystemC-accelerators shows a pre-route overhead of 3% to 15% compared to the
hand-coded (RTL) designs over the synthesis campaign. These results demonstrate that
the SystemC synthesis is fairly reliable and can achieve power consumption close to the
traditional RTL synthesis [6]. Additionally, from the RTL results it can be seen that the
power consumption is affected significantly from the vector length (VLMAX). The
power consumption shows a 4 fold increase for context 1 between VLMAX 16 and

VLMAX 32 whereas the increase for context 8 is 2 fold between these vector lengths.

Figure 7-19 shows the pre-route area of both sets of accelerators also for all
configurations. In this case, the SystemC-implementation exhibited even better area usage
characteristics with a reduction in the range of 2% to 18% compared to the hand-coded
(RTL) designs. This is due to the fact that the SystemC synthesizer that makes more
intelligent resource allocation compared to the traditional RTL design flow [6].
Additionally from the graph it can be seen that the area is directly related to the vector
length (VLMAX). From the results it can be seen that there is a fairly constant two fold
increase in area allocation between VLMAX 16 and VLMAX 32 and for all the range of
contexts. This was expected as the vector length affects the number and the width of the

vector datapaths that for VLMAX 32 is double.



7. Vector Processor VLSI Implementation 193

ITU Vector Engine Area vs Delay

Area {micron 8q - no wireload)

RTUY
RTL
RTLL
RTUE
SystemC/1

SystemC/2

%

Configutation

Fig]ire&@: ITU VCore Area-Delay Results

The SystemC-defined datapath configuration (VLMAX=32, T,.=250 MHz) was
through the entire flow to a VLSI macro. The resulting VCORE (including the datapath,
the vector contexts, ail multiplexing/bypassing and the LSU return path) is shown in
Figure 7-20. The design includes approximately 70K gates and six 16x128-bit dual-port
RAM macros, three for each vector register file of the two CPU contexts. A two-stage
pipelined architecture was specified which resulted in a worst-case (0.9V, 125C)

maximum frequency of 213 MHz [6].

Figure 7-20: Two-context, 256-bit ITU vector engine



7. Vector Processor VLSI Implementation 194

7.7 Summary

This chapter discussed the verification methodology used to validate the vector processor
and its associated units along with the synthesis and back-end flow of the vector datapath.
Statistical power/area/frequency results were presented for the vector datapath and the
vector coprocessor as a whole for different configurations (VLMAX, frequency) after a
scripted synthesis/place-and route campaign. The VLSI layouts and their physical
parameters of the vector datapath and the vector processor were also illustrated. This was
followed by the description of the SS_SPARC ASIC platform, the SystemC modelling of
the vector instruction set extensions and their subsequent synthesis to low-level RTL. The
ESL-implemented of the vector extensions was inserted after to the exposed vector
engine of the SS_SPARC processor and statistical power analysis results for both the

SystemC-accelerator and the RTL-accelerator datapaths were presented and compared.



7. Vector Processor VLSI Implementation 195

7.8 References

(1]

(2]

(3]
(4]

(5]

(6]

[7]
(8]

S. Akella, "Guidelines For Design Synthesis Using Synopsys Design Compiler,"
Department of Computer Science Engineering, University of South Carolina,
Columbia, December 2000,

G. R. Beck, D. W. L. Yen, and T. L. Anderson., "The Cydra 5
minisupercomputer:  Architecture and implementation," The Journal of
Supercomputing, vol. 7, pp. 143-180, May 1993.

"Design Compiler 2003.06," Synopsys Inc., 2003.

"Advanced Logic Technology - 0.13um," Taiwan Semiconductor Manufacturing
Company, 2006.

C. Kozyrakis, "A Media-Enhanced Vector Architecture for Embedded Memory
Systems," Technical Report: CSD-99-1059, University of California at Berkeley
1999.

V. A. Chouliaras, K. Koutsomyti, T. Jacobs, et al., "SystemC-defined SIMD
instructions for high SystemC-defined SIMD instructions for high," in /3th IEEE
International Conference on Electronics, Circuits and Systems, Nice, France,
2006, pp. 822-825.

"AMBA AXI Specification," http://www.arm.com/armtech/AXI.

"The Sparc Architecture Manual Version 8 ", www.sparc.com.



CHAPTER 8
CONCLUSIONS

The aim of this thesis was to study the potential acceleration of both speech coding
algorithms, namely G.729A and G.723.1, through their efficient implementation on a
configurable extensible vector embedded CPU architecture. The outcome of this work
was the optimization of both C reference codes and the design and implementation of a
parametric (configurable) vector processor, to explore the effects of different
configurations (VLMAX, number of registers and accumulators) and thus, probe the
microarchitecture space. The optimized reference codes and the vector architecture were
fully validated with the use of the ITU-supplied test vectors. This chapter presents the
main contributions of this research and proposes further work which leads on from this

project.

8.1 Contribution of this thesis

At the beginning of this work and in order to investigate the potential acceleration of both
speech codecs, the profiling of both C reference codes was performed to identify the
computation workload distribution. This revealed that the most CPU-intensive parts of
the codes were in the DSP emulation functions (e.g. in G.723.1 decoder 66.7% of the
total machine instructions) of the reference implementations. Additionally, these
algorithms exhibited a large amount of data-level parallelism. Therefore it was decided
that efficient implementation of these basic operations in the form of a configurable
vector processor with a targeted, data-parallel architecture, could achieve a leading

area/power/cost result.

An optimization methodology was developed, in which custom vector and scalar ISA
extensions were identified and inserted into both reference codes in place of the DLP-
loops and other non-vectorizable parts of the codes respectively. The optimized codes
were verified and run on the SimpleScalar toolset for all ITU-T test vectors, over a range
of vector lengths, to evaluate the performance of the vector architecture prior its

implementation in hardware. For this purpose the simulator was modified and extended to



8. Conclusions 197

include the added state (coprocessor scalar and vector state) and the scalar and vector

extensions.

The architectural results were very promising, demonstrating a reduction in the dynamic
instruction count metric of 58% and 71% for G.729A and G.723.1 speech coders
respectively when the vector instructions were introduced and a further 18% and 9%
reduction in dynamic instruction count when the scalar instructions were applied. The
overall simulation results indicated that the area/performance points of interest lie in
between 64-bit (VLMAX 4) to 256-bit (VLMAX 16) wide configurations as there was
not much more improvement over a vector data length of 16 (256 bits) due to the size of
the speech frames. These speech codecs operate on frames (blocks) of 240 samples and
these frames are also divided into subframes of 60 samples and hence fast performance
improvement can be seen for lower vector lengths. At vector length of 4, the coprocessor
would save 71.6% of the dynamic instruction count of the G.729A encoder and almost
75% for the G.723.1 encoder. For vector length 16, the coprocessor would only save
another 4.4% and 5% for G.729A and G.723.1 respectively and no significant
improvement emerges beyond that. In addition both sets of results revealed that the
maximum benefit is achieved by the combination of custom vector and scalar
architectures. These results conclusively showed the potential benefit of applying custom

instructions and having associated coprocessor vector functional units.

Another aspect of this work was the SystemC modelling of the vector instruction set
extensions and their subsequent synthesis info low-level RTL. This work was undertaken
to explore faster routes to silicon for SIMD extensions, compared to the established RTL
flow. These ESL-implemented vector extensions were inserted into the exposed vector
engine of the SS_SPARC ASIC processor and statistical power analysis results, for both
the SystemC-accelerator and the RTL-accelerator datapaths, were presented and
compared. From the synthesis results it was shown that the SystemC synthesis was fairly

reliable and achieved power consumption close to the traditional RTL synthesis.

The main contribution of this research project was the full design and implementation of
the proposed vector datapath of the vector processor. The vector pipeline is a SIMD array
of functional units with a configurable 2-way SIMD or scalar organization. It has a four

stage-pipeline organization and it is parameterised along both the architecture and the



8. Conclusions 198

microarchitecture axes. Few modifications took place to the Leon3 pipeline to enable its

tight-coupling to the vector processor.

The vector datapath was verified by using an FLI-based testbench that applied the ITU-
supplied test vectors. Finally, statistical power/area/frequency results were obtained for
the vector datapath and the vector coprocessor as a whole for different configurations
(VLMAX, frequency) after a scripted synthesis/place-and route campaign. In addition,
the VLSI layouts and their physical parameters of the vector datapath and the vector
processor were obtained. From these results, the vector datapath with VLMAX=16
configuration showed a worst case (0.9V, 125C) maximum frequency of 186.2MHz, area
1.02 mm’ and power of 61.3 mW. The whole vector coprocessor with VLMAX=16 and
vector data cache configuration 4-way, 8Kbytes, 128 bytes block length and 2 sub-blocks
per block achieved maximum frequency of 182MHz, area of 6.29 mm’ and power of

74.97 mw.
8.2 Suggestions for future research

The vector processor was developed to efficiently execute the G.729A and G.723.1
speech coding standards in an embedded application. Since its vector and scalar ISA are
based on the basic operations of these algorithms, all the ITU G.7xx speech coding
standards which share the same (or a subset) emulation operations such as G.711, G.726,
G.727, G.728 and G.729 can also be accelerated by adapting them for this vector
processor. This adaptation involves optimization with the insertion of vector and scalar

extensions.

The developed vector processor can be attached to any scalar CPU with very little
modifications in its interface. This gives it the great advantage of being able to interface
to different architectures and ASIC platforms. Thus allows further research on novel

multimedia architectures that incorporate VoIP/speech coding functionality.

Since the VLSU unit is also parametric, several different configurations can be
implemented and their performance in terms of area and power dissipation investigated.
In addition, entirely different VLSUs can be attached to the vector datapath with cascade
or parallel TAG/DATA organization with few modifications to their interface with the



8. Conclusions 199

vector datapath. As the current VLSU has cascade TAG/DATA organization an extra
signal in the output multiplexer of the VDP1 stage needs to be added. This signal will
select the return load data from the VLSU at the end of the VDP1 stage as the load takes
only one cycle for a parallel TAG/DATA configuration instead of two which is the case

for the cascade configuration.

As already discussed, the vector coprocessor implementation is technology independent
therefore it can be re-targeted to different silicon technologies. The multiple
configurations (VLMAX, number of registers and accumulators) lead to different
statistical power/area/frequency points thus covering a large part of the implementation

spectrum.

Another area of research would be to investigate the benefits of ESL techniques instead
of programmable architectures by coupling the ESL-implemented vector datapath to other
ESL defined architectures.

As multimedia applications consist of more than one time-critical execution threads there
is a significant amount of coarse-grained parallelism. Therefore by attaching the vector
coprocessor to a multithreaded architecture could accelerate even more multimedia-rich

applications that incorporate speech coding [1].

Another interesting approach will be an architecture that combines the best of ILP and
DLP techniques for an optimal implementation. This architecture would combine vector
instructions with out-of-order execution with register renaming and even simultaneous
multithreaded execution. Such implementations are very promising according to Espasa
[2] and Quintana [3] and the Tarantula project [4] in which a vector unit is attached to the
superscalar Alpha engine. This is also the domain of the SS_SPARC processor [5].



8. Conclusions 200

8.3 References

[1]

(2]

[4]

(5]

K. Diefendorff and P. Dubey, "How Multimedia Workloads Will Change
Processor Design," in JEEE Computer. vol. 30, September 1997, pp. 43-45.

R. Espasa and M. Valero, "Exploiting Instruction- and Data-Level Parallelism,"
in JEEE Micro. vol. 17, September 1997, pp. 20-27.

Francisca Quintana, Roger Espasa, and Mateo Valero, "A Case for Merging the
ILP and DLP Paradigms," in 6th Euromicro Workshop on Parallel and
Distributed Processing, Madrid, Spain, 1998, pp. 217-224.

R. Espasa, F. Ardanaz, J. Gago, et al., "Tarantula: A Vector Extension to the
Alpha Architecture " in the Proceedings of the 29th Annual International
Symposium on Computer Architecture (ISCA'02) Anchorage, Alaska, 2002, pp.
281-292.

V. A. Chouliaras, K. Koutsomyti, T. Jacobs, et al., "SystemC-defined SIMD
instructions for high performance SoC architectures," in /3th IEEE International

Conference on Electronics, Circuits and Systems, Nice, France, December 2006,
pp. 822-825.



APPENDIX AVECTOR AND SCALAR ISA

ldvilen_r

Instruction Format

Idvlen_r format
0000000 0 imm
21 15 8 0

Syntax
ldvlen_xr ( imm)

where:
imm 1S @ numeric constant

Description

The vlen_r instruction loads an immediate into the Vector Length Register
Example

ldvlen_r(16); //Vector Length Register is set to 16

vidw

Instruction Format

vidw format
0000001 vrd srsi 0
2 15 10 5 0

Syntax

vldw (vrd, srsl)

where:
vrd 1s the destination vector register
srsl 1s the address of the variable in memory

Description

The v1dw instruction loads the vector register vrd from memory address given in scalar
register srsl.

201



Appendix A Vector and Scalar 1SA 202

Example

vlidw(2, 3); //Load vreg2 from address given in sreg3

vidwn

Instruction Format

vidwn format
0000010 vrd srsi 0
21 15 10 5 0

Syntax

vldwn (vrd, srsl)

where:

vrd is the destination vector register

srsl is the address of the variable in memory
Description

The v1dwn instruction loads vector register vrd downward from memory address given
in scalar register srsl.

Example
vldwn (2, addr); //Load vreg2 downwards from address given
in sreg3

vstw
Instruction Format

vstw format

0000011 0 vrs2 srsi

21 15 10 5 0
Syntax
vstw(vrs2, srsl)
where:
vrs2 is the source vector register
srsl 1s the memory address
Description

The vstw instruction stores the vector register vrs2 to memory address given from
scalar register srsl.



Appendix A Vector and Scalar ISA 203

Example

vstw(3, 1); //Store vreg3 to memory address given in sregl

vstwn

Instruction Format

vstwn format
0000100 0 vrs2 srsi
21 15 10 5 0

Syntax

vstwn (vrs2, srsl)

where:

vrs2 is the source vector register
srsl is the memory address
Description

The vstwn instruction stores a vector register downward to memory address
Example
vstwn (3, addr); //Store vreg3 downwards to addr

vidaccw

Instruction Format

vidaccw format
0101000 vaccd srsi 0
21 15 10 5 0

Syntax

vldaccw (vaced, srsl)

where:

vaced 1s the destination vector accumulator
srsl is the address of the variable in memory
Description

The v1daccw instruction loads 32-bit word to the vector accumulator from memory

Example

vldaccw (0, addr); //Load vaccO0 from addr



Appendix A Vector and Scalar ISA 204

vstacc

Instruction Format

vstacc format
0010100 vacc vaccelem srsi
21 15 10 5 0

Syntax

vstacc (vacc, velem, srsl)

where:

vacc 1s the source vector accumulator

velem is the element of the source vector accumulator
srsl is the memory address

Description

The vstacc instruction stores a vector accumulator element (32-bit) to memory
Example

vstacc(l,0,addr); //Store element 0 of vaccl to addr

vaccclr

Instruction Format

vaccclr format
[ 0010000 vacc 0
21 15 10 0

Syntax

vacclr (vacc)

where:
vacc is the vector accumulator

Description
The vaccclr instruction sets the value in the vector accumulator vac to zero (clear)

Example

vaccclr(l); //Set wvaccl to zero



Appendix A Vector and Scalar ISA 205

vsplatacci

Instruction Format

vsplatacci format

0010001 vaccd srs1 0
21 15 10 5 0
Syntax
vsplatacci (vaced, srsl)
where:
vaccd 1s the destination vector accumulator
srsl is the value (32-bits) that is splated into the vector accumulator

Description

The vsplatacci instruction splats the 32-bit word scalar value into the vector
accumulator.

Example

vsplatacci(0, 3); //Splat vaccO0 with the value of the
scalar register 3

vidacceli

Instruction Format

vidacceli format
0010010 ] vaced vaccelem imm
21 15 10 5 0

Syntax

vldacceli (vaced, velem, imm)

where:

vaccd is the destination vector accumulator

velem is the destination element of the vector accumulator
imm 1s the immediate to be loaded

Description
The vldacceli instruction loads an immediate value into a vector accumulator element

Example

vldacceli(1,0,16); //Load immediate 16 into element 0 of
vacel



Appendix A Vector and Scalar ISA 206

vsplat_h_r

Instruction Format

vsplat_h_r format

0100010 vrd srs1 0

21 15 10 i 0
Syntax
vsplat_h_r(vrd, srsl)
where:
vrd is the destination vector register
srsl is the scalar register value
Description

The vsplat_h_x instruction splats a 16-bit word of scalar register srs1 to all the
elements of vector register vrd.

Example

vsplat_h r(1,3); //Splat 1l6-bit value of sreg3 to vregl

vmvacctre

Instruction Format

vmvacctre format
0011000 | vrd vacci amount
21 15 10 5 0

Syntax

vmvacctre (vrd, vaccl, amount)

where:

vrd 1s the destination vector register
vacc is the vector accumulator
amount 1s the shift amount
Description

The vmvacctre instruction extracts high (amount=0) or low (amount=16) the even
elements of vector accumulator and loads them into the even elements of the vector
register vrd

Example

vmvacctre(2,1,16); //Extracts high the even elements of



Appendix A Vector and Scalar ISA 207

vaccl and loads them to vreg2

vmvaccitro

Instruction Format

vmvacctro format
0011001 vrd vacc1 amount
21 15 10 L 0

Syntax

vmmvacctro(vrd, vaccl, amount)

where:

vrd is the destination vector register
vace is the vector accumulator
amount 1s the shift amount
Description

The vmvacctro instruction extracts high (amount=0) or low (amount=16) the odd
elements of vector accumulator and loads them into the even elements of the vector
register vrd.

Example

vmvacctro(3,0,0); //Extracts low the odd elements of
vacc0 and loads them to vreg3

vmvrtacce

Instruction Format

vmvrtacce format

0100110 vaccd vrs1i amount
21 15 10 5 0

Syntax

vmvrtacce (vaccd, vrsl, amount)

where:
vacced 1s the destination vector accumulator
vrsl is the destination vector register

amount 15 the shift amount



Appendix A Vector and Scalar IS4 208

Description

The vmvrtacce instruction deposits high (amount=16) or low (amount=0) the even
elements of vector register to the vector accumulator.

Example

vmvrtacce(0,3,16); //Deposits high the even elements of
vreg3 to vacc0

vmvrtacco

Instruction Format

vmvrtacco format
0100111 vaccd vrs1 amount
21 15 10 5 0

Syntax

vmvrtacco (vaced, vrsl, amount)

where:

vaccd is the destination vector accumulator
vrsl is the destination vector register
amount is the shift amount

Description

The vmvrtacco instruction deposits high (amount=16) or low (amount=0) the odd
elements of vector register to the vector accumulator.

Example

vmmvrtacco(1,3,0); //Deposits low the odd elements of
vreg3 to wvaccl

mvgpr2vr

Instruction Format

mvgpr2vr format
1001101 | vrd velem ars1
21 15 10 5 0

Syntax

mvgpr2vr (vrd, velem, grsl)

where:
vrd is the destination vector register



Appendix A Vector and Scalar IS4 209

velem is the destination element of the vector register
grsl is the source general purpose register (Leon)

Description

The mvgpr2vr instruction moves the scalar contents (32-bit) of the general purpose
register to the vector register element.

Example

mvgpr2vr (1,2,5); //Move the contents of the general
purpose register 5 to the 2" element

of vregl
mvvr2gpr
Instruction Format
mvvr2gpr format
1001110 grd velem vrs1
21 15 10 5 0

Syntax

mvvr2gpr (grd, velem, vrsl)

where:

grd is the destination general purpose register (Leon)
velem is the vector register element

vrsl is the source vector register

Description

The mvvr2gpr instruction moves the contents of the vector register element to the
general purpose register (Leon).

Example

mvvr2gpr(2,3,5); //Move the contents of the 3d element
of vreg5 to the general purpose
register 2

vaddh

Instruction Format

vaddh format
0011010 vrd vrs1 vrs2
21 15 10 5 0




Appendix A Vector and Scalar ISA 210

Syntax

vaddh(vrd, vrsl, vrs2)

where:

vrd is the destination vector register

vrsl is the first source vector register (operand 1)
vrs2 is the second source vector register (operand 2)
Description

The vaddh instruction performs short addition (16-bit) of source vector registers vrs1
and vrs2 and places the result to the destination vector register vrd.

Example
vaddh(5,2,3); //vregb=vreg2+vreg3 (l6-bits)

vitu_sub_r

Instruction Format

vitu_sub_r format
0011011 vrd vrs1 vrs2
21 15 10 5 0

Syntax

vitu_sub r(vrd, vrsl, vrs2)

where:

vrd is the destination vector register

vrsl is the first source vector register (operand 1)
vrs2 is the second source vector register (operand 2)
Description

The vitu_sub_r instruction performs short subtraction (16-bit) of source vector
registers vrsl and vrs2 and places the result to the destination vector register vrd.

Example
vitu_sub_r(5,2,3); //vregb=vreg2-vreg3 (l6-bits)

vaddacc

Instruction Format

vaddacc format
0010111 J vaccd vacci vacc2
21 15 10 5 0




Appendix A Vector and Scalar ISA 211

Syntax

vaddacc (vaccd, vaccl, vacc?)

where:

vaccd is the destination vector accumulator

vaccl is the first source vector accumulator (operand 1)
vacc2 is the second source vector accumulator (operand 2)

Description

The vaddacc instruction performs long addition (32-bit) of source vector accumulators
vaccl and vacc?2 and places the result to the destination vector accumulator vaccd.

Example

vaddacc (0,0,1); //vaccO=vaccO+vaccl (32-bits)

vsubacc

Instruction Format

vsubacc format
’ 0100101 vaccd vacci vacc2
21 15 10 5 0

Syntax

vsubacc (vaccd, vaccl, vacc?2)

where:

vaccd 1s the destination vector accumulator

vaccl 1s the first source vector accumulator (operand 1)
vacc2 is the second source vector accumulator (operand 2)
Description

The vsubacc instruction performs long subtraction (32-bit) of source vector
accumulators vaccl and vacec?2 and places the result to the destination vector
accumulator vaccd.

Example

vsubacc (0,0,1); //vaccO=vaccO-vaccl (32-bits)



Appendix A Vector and Scalar ISA

212

vaccaddreduce

Instruction Format

vaccaddreduce format

0010011 vace 0

21 15 10
Syntax
vaccaddreduce (vacc)

where:
vacc 1s the vector accumulator

Description

The vaccaddreduce instruction add-reduces all the elements of the vector
accumulator vacc to a 32-bit value that is placed to its zero element.

Example

vaccaddreduce (1) ; //Add-reduce vector accumulator 1

vitu_mult_e_r

Instruction Format

vitu_mult_e_r format

| 0011110 vrd vrs1 vrs2

21 15 10 5

Syntax

vitumult e r(vrd, vrsl, vrs2)

where:

vrd is the destination vector register

vrsl is the first source vector register (operand 1)
vrs2 is the second source vector register (operand 2)
Description

The vitu_mult_e_xr instruction performs signed short multiplication (16-bit) to the
even elements of the source vector registers vrs1 and vrs2 and places the result to the

even elements of the destination vector register vrd.

Example

vitu_mult_e_r(3,1,2); //vreg3=vregl*vreg2 (even elements)



Appendix A Vector and Scalar ISA 273

vitu_mult_o_r

Instruction Format

vitu_mult_o_r format
0011111 vrd vrs1 vrs2
21 15 10 5 0

Syntax

vitu_mult_o_r(vrd, vrsl, vrs2)

where:

vrd is the destination vector register

vrsl is the first source vector register (operand 1)
vrs2 is the second source vector register (operand 2)
Description

The vitu_mult_o_r instruction performs signed short multiplication (16-bit) to the
odd elements of the source vector registers vrs1 and vrs2 and places the result to the
even elements of the destination vector register vrd.

Example
vitu mult_o_r(3,1,2); //vreg3=vregl*vreg2 (odd elements)

vitu_mult_r_e_r

Instruction Format

vitu_mult_r_e_r format
0011100 vrd vrs1 vrs2
21 15 10 5 0

Syntax

vitu mult_r e r(vrd, vrsl, vrs2)

where:

vrd is the destination vector register

vrsl is the first source vector register (operand 1)
vrs2 is the second source vector register (operand 2)

Description

The vitu_mult_r_e_r instruction performs signed short multiplication (16-bit) with
rounding to the even elements of the source vector registers vrsl and vrs2 and places
the result to the even elements of the destination vector register vrd.



Appendix A Vector and Scalar ISA 214

Example

vitumult_r e r(3,1,2); //vreg3=vregl*vreg2 (with
rounding - even elements)

vitu_mult_r o_r

Instruction Format

vitu_mult_r_o_r format

0011101 vrd vrs vrs2
21 15 10 5 0

Syntax

vitu_mult_r_o_r(vrd, vrsl, vrs2)

where:

vrd is the destination vector register

vrsl 1s the first source vector register (operand 1)
vrs2 1s the second source vector register (operand 2)

Description

The vitu_mult_r_o_r instruction performs signed short multiplication (16-bit) with

rounding to the odd elements of the source vector registers vrs1 and vrs2 and places
the result to the odd elements of the destination vector register vrd.

Example

vitu_ mult_r o r(3,1,2); //vreg3d=vregl*vreg2 (with
rounding - odd elements)

vitu_i_mult_e_r

Instruction Format

vitu_i_mult_e_r format
0101001 vrd vrs1 vrs2 J
21 15 10 5 0

Syntax

vitu i mult e r{vrd, vrsl, vrs2)

where:
vrd is the destination vector register
vrsl is the first source vector register (operand 1)

vrs2 is the second source vector register (operand 2)



Appendix A Vector and Scalar ISA 215

Description

The vitu_i_mult_e_r instruction performs integer short multiplication (16-bit) to
the even elements of the source vector registers vrs1 and vrs2 and places the result to
the even elements of the destination vector register vrd.

Example

vitu_i_mult_e r(3,1,2); //vreg3=vregl*vreg2 (integer-
even elements)

vitu_i_mult_o_r

Instruction Format

vitu_i_mult_o_r format
0101010 vrd vrs vrs2 J
21 15 10 5 0

Syntax

vitu i _malt o rivrd, vrsl, vrs?)

where:

vrd 1s the destination vector register

vrsl is the first source vector register (operand 1)
vrs2 1s the second source vector register (operand 2)

Description

The vitu_i_mult_o_r instruction performs integer short multiplication (16-bit) to
the odd elements of the source vector registers vrs1 and vrs2 and places the result to
the odd elements of the destination vector register vrd.

Example

vitu_ i _mult_o_r(3,1,2); //vreg3=vregl*vreg2 (integer-
odd elements)

vmace

Instruction Format

vmace format
| 0001100 | vaccd vrs1 vrs2
21 15 10 5 0

Syntax

vmace (vaced, vrsl, vrs2)



Appendix A Vector and Scalar 1SA 216

where:

vaccd is the destination vector accumulator

vrsl is the first source vector register (operand 1)
vrs2 is the second source vector register (operand 2)
Description

The vmace instruction performs long multiplication (32-bit) to the even elements of the
source vector registers vrs1 and vrs2 and adds the product to the even elements of the
destination vector accumulator vaccd.

Example

vmace(0,1,2); //Perform mac to even elements of wvaccO,
vregl and vreg2

vmaco

Instruction Format

vmaco format
0001101 vaccd vrsi vrs2
21 15 10 5 0

Syntax

vmaco (vaced, vrsl, vrs2)

where:

vaccd is the destination vector accumulator

vrsl is the first source vector register (operand 1)
vrs2 is the second source vector register (operand 2)
Description

The vmaco instruction performs long multiplication (32-bit) to the odd elements of the
source vector registers vrsl and vrs2 and adds the product to the odd elements of the
destination vector accumulator vaccd.

Example

vmaco(0,1,2); //Perform mac to odd elements of waccO,
vregl and vreg2



Appendix A Vector and Scalar ISA 217

vmsue

Instruction Format

vmsue format
0001110 vaced vrs1 F vrs2
21 15 10 5

Syntax

vmsue (vaced, vrsl, vrs2)

where:

vaccd is the destination vector accumulator

vrsl is the first source vector register (operand 1)
vrs2 is the second source vector register (operand 2)

Description

The vmsue instruction performs long multiplication (32-bit) to the even elements of the
source vector registers vrsl and vrs2 and subtracts the product to the even elements of
the destination vector accumulator vaccd.

Example

vmsue(0,1,2); //Perform multiply-subtract to even elements
of vacc0, vregl and vreg2

vmsuo

Instruction Format

vmsuo format
0001111 vaced vrs1 vrs2 —|
21 15 10 5 0

Syntax

vmsuo (vacecd, vrsl, vrs2)

where:

vaced is the destination vector accumulator

vrsl is the first source vector register (operand 1)
vrs2 1s the second source vector register (operand 2)

Description

The vmsuo instruction performs long multiplication (32-bit) to the odd elements of the
source vector registers vrsl and vrs2 and subtracts the product to the odd elements of
the destination vector accumulator vaced.



Appendix A Vector and Scalar ISA 218

Example

vimsuo(0,1,2); //Perform multiply-subtract to odd elements
of vacc0, vregl and vreg2

vshli

Instruction Format

vshli format
0001010 vrd vrsi amount
21 15 10 5 0
Syntax

vshli (vrd, vrsl, amount)

where:

vrd is the destination vector register

vrsl is the vector register (operand 1) to be shifted
amount is the shift amount (immediate)

Description

The vshli instruction performs short shift left (16-bit) to the vector register vrs1 by
immediate (amount).

Example

vshli(3,1,4); //Shift left vregl by 4 and put result to
vreg3

vshri

Instruction Format

vshri format

[ 0001011 vrd vrs1 amount

21 15 10 5 0
Syntax

vshri(vrd, vrsl, amount)

where:
vrd is the destination vector register
vrsl is the vector register (operand 1) to be shifted

amount is the shift amount (immediate)



Appendix A Vector and Scalar ISA 219

Description

The vshri instruction performs short shift right (16-bit) to the vector register vrs1 by
immediate (amount).

Example

vshri(3,1,4); //Shift right vregl by 4 and put result to
vreg3

vshir

Instruction Format

vshir format
0100001 vrd vrsi vrs2
21 15 10 5 0

Syntax

vshlr (vrd, vrsl, vrs2)

where:

vrd is the destination vector register

vrsl is the vector register (operand 1) to be shifted

vrs2 is the vector register (operand 2) that contains the shift amount
Description

The vshlr instruction performs short shift left (16-bit) to the vector register vrs1 by
the amount of the vector register vrs2.

Example

vshlr(5,1,3); //Shift left vregl by amount that is in
vreg3 and put result to vregb

vshrr

Instruction Format

vshrr format
0100000 l vrd vrsi . vrs2
21 15 10 5 0

Syntax

vshrr(vrd, vrsl, vrs2)

where:
vrd is the destination vector register



Appendix A Vector and Scalar ISA 220

vrsl 1s the vector register (operand 1) to be shifted
vrs2 1s the vector register (operand 2) that contains the shift amount

Description

The vshrr instruction performs short shift right (16-bit) to the vector register vrs1 by
the amount of the vector register vrs2 and places the result to the destination scalar
register vrd.

Example

vehrr(5,1,3); //Shift right vregl by amount that is in
vreg3d and put result to vregb

vishlacc

Instruction Format

vishlacc format

0010110 0 vacc amount
21 15 10 5 0

Syntax

vlshlacc (vacc, amount)

where:
vacc is the vector accumulator
amount 1s the shift amount

Description

The v1shlacc instruction performs long (32-bit) shift left to the vector accumulator
vacc by amount (immediate).

Example

vlshlacc(1l,3); //Long shift left vaccl by 3 and put result

to wvaccl
vishracc
Instruction Format
vishracc format
0010101 0 vacc amount
21 15 10 5 0

Syntax

vlshracec (vacc, amount)



Appendix A Vector and Scalar ISA 221

where:
vacc 1s the vector accumulator
amount 18 the shift amount

Description

The vlshracc instruction performs long (32-bit) shift right to the vector accumulator
vacc by amount (immediate).

Example

vlshracc(1,3); //Long shift right wvaccl by 3 and put
result to vaccl

vishlaccr

Instruction Format

vishlaccr format
0100100 0 vacc vrs2
21 15 10 5

oL

Syntax

vlshlaccr (vacc, vrs2)

where:

vacc is the vector accumulator

vrs2 is the vector register with the shift amount
Description

The vlshlaccr instruction performs long (32-bit) shift left to the vector accumulator
vacc by the amount of the vector register vrs2.

Example

vlshlaccr(1,2); //Long shift left vaccl by amount that is
in vreg2 and put result to vaccl

vishraccr

Instruction Format

vishraccr format
0100011 0 vace vrs2
21 75 10 5 0




Appendix A Vector and Scalar ISA 222

Syntax

vlshraccr (vacc, vrs2)

where:

vacc 1s the vector accumulator

vrs2 is the vector register with the shift amount
Description

The vlshraccr instruction performs long (32-bit) shift right to the vector accumulator
vacc by the amount of the vector register vrs2.

Example

vlshracecr(1,2); //Long shift right vaccl by amount that is
in vreg2 and put result to vaccl

vemp

Instruction Format

vemp format

[ 0000101 0 vacc1 | vacc2

21 15 10 5 0
Syntax

vemp (vaccl, vacc2)

where:

vaccl is the first source vector accumulator (operand 1)
vacc2 is the second source vector accumulator (operand 2)
Description

The vemp instruction compares two vector accumulators (vaccl, vacc2) . If vaccl
is greater than vacc2 then the predication flag becomes 1 (true) else 0 (false).

Example

vemp (0,1); //Compares vacc0 with vaccl

vremp

Instruction Format

vrecmp format
0000110 0 vrs1 vrs2
21 15 10 5 0




Appendix A Vector and Scalar ISA 223

Syntax

vremp (vrsl, vrs2)

where:
vrsl is the first source vector register (operand 1)
vrs2 is the second source vector register (operand 2)

Description

The vrcmp instruction compares two vector registers (vrsl, vrs2). Ifvrslis
greater than vrs2 then the predication flag becomes 1 (true) else 0 (false).

Example
vrcemp(1l,2); //Compares vregl with vreg2

vemp_h_ge

Instruction Format

vemp_h_ge format
0000111 0 vrsi 0
21 15 10 5 0

Syntax

vemp_h_ge (vrsl)

where:
vrsl is the vector register to be compared

Description

The vemp_h_ge instruction checks if vector register vrs1 is greater than or equal to

zero and if it is true sets the predication flag to 1 (true) else 0 (false).
Example

vemp_h_ge(2); //Compares vreg2 with zero

vmerge_t _h_r

Instruction Format

vmerge_t_h_r format
| 0001000 vrd vrs1 vrs2
21 15 10 5 0




Appendix A Vector and Scalar ISA 224

Syntax

vmerge_t_h r (vrd, vrsl, vrs2)

where:

vrd is the destination vector register

vrsl is the first source vector register (operand 1)
vrs2 1s the second source vector register (operand 2)
Description

The vimerge_t_h_r instruction merges two vector registers (vrsl, vrs2)
according to the predication flag value. If pred is 1 then vrd=vrsl else vrd=vrs2.

Example
vmerge_t_h r(3,4,2); //if pred=1 vreg3=vregd4 else vrd=vreg2

vmerge

Instruction Format

vmerge format
0001001 vaccd vacci vacc2
21 15 10 5 0

Syntax

vmerge (vaccd, vaccl, vacc2)

where:

vaced is the destination vector accumulator

vaccl is the first source vector accumulator (operand 1)
vacc2 is the second source vector accumulator (operand 2)
Description

The vmerge instruction merges two vector accumulators (vaccl, wvacc2) according
to the predication flag value. If pred is 1 then vaccd=vaccl else vaccd=vacc2.

Example

vmerge(0,0,1); //if pred=1 vaccO=vacc0 else vaccO=vaccl

m2sid16

Instruction Format

m2sld16 format
[ 0101011 srd srs1 0
21 15 10 5 0




Appendix A Vector and Scalar ISA 225

Syntax
m2sl1dl6 (srd, srsl)

where:
srd 1s the destination scalar register
srsl is the address of the variable in memory

Description

The m2s1d16 instruction loads a 16-bit value to scalar register srd from memory
address given in scalar register srsl.

Example

m2s1dl6(2, 3); //Load (1l6-bit) to sreg2 from address that
is in sreg3

m2sld32

Instruction Format

m2sld32 format

| 0101100 srd srs1 ] 0
21 15 10 5 0
Syntax
m2sld32(srd, srsl)
where:
srd is the destination scalar register
srsl is the address of the variable in memory
Description

The m2s1d32 instruction loads a 32-bit value to scalar register srd from memory
address given in scalar register srsl.

Example

m2sl1dl6(4, 3); //Load (32-bit) to sreg4 from address that
is in sreg3

m2sst16

Instruction Format

m2sst16 format
0101101 0 srs2 srs1
21 15 10 5 0




Appendix A Vector and Scalar ISA 226

Syntax

m2sstl6(srs2, srsl)

where:

srs2 1s the source scalar register
srsl is the memory address
Description

The m2sst16 instruction stores a 16-bit value of scalar register srs2 to memory
address given from scalar register srsl.

Example

m2sstl6(4, 3); //Store (1l6-bit) sreg4 to memory address
that is in sreg3

m2sst32

Instruction Format

m2sst32 format
0101110 0 L srs2 srsi
21 15 10 5 0

Syntax

m2sst32(srs2, srsl)

where:

srs2 is the source scalar register
srsl is the memory address
Description

The m2sst32 instruction stores a 32-bit value of scalar register srs2 to memory
address given from scalar register srs1.

Example

m2sst32(2, 1); //Store (32-bit) sreg2 to memory address
that is in sregl

mvgpr2sr

Instruction Format

mvgpr2sr format

| 1001011 srd 0 ars1
21 15 10 5 0




Appendix A Vector and Scalar ISA 227

Syntax

mvgpr2sr (srd, grsl)

where:

srd is the destination scalar register

grsl is the source general purpose register (Leon)
Description

The mvgpr2sr instruction moves the scalar contents (32-bit) of the general purpose
register grs1 to the scalar register srd.

Example

mvgpr2sr(1l,2); //Move the contents of the greg2 to sregl

mvsr2gpr

Instruction Format

mvsr2gpr format
1001100 grd 0 srs1
21 15 10 5 0

Syntax

mvsr2gpr (grd, srsl)

where:

grd is the destination general purpose register (Leon)
srsl is the source vector register

Description

The mvsr2gpr instruction moves the contents of the scalar register srs1 to the general
purpose register (Leon) grd.

Example

mvsr2gpr(2,3); //Move the contents of sreg3 to greg2

m2sladd

Instruction Format

m2sladd format
0101111 srd srsi srs2
21 15 10 5 0




Appendix A Vector and Scalar ISA 228

Syntax

m2sladd(srd, srsl, srs2)

where:

srd is the destination scalar register

srsl is the first source scalar register (operand 1)
srs2 1s the second source scalar register (operand 2)
Description

The m2 s1add instruction performs long addition (32-bit) of source scalar registers srs1
and srs2 and places the result to the destination scalar register sxrd.

Example
m2sladd(4,2,3); //sregd=sreg2+sreg3 (32-bit)

m2sisub

Instruction Format

m2slsub format
0110001 srd srsi srs2
21 15 10 5 0

Syntax

m2slsub(srd, srsl, srs2)

where:

srd 1s the destination scalar register

srsl is the first source scalar register (operand 1)
srs2 is the second source scalar register (operand 2)

Description

The m2 s1sub instruction performs long subtraction (32-bit) of source scalar registers
srsl and srs2 and places the result to the destination scalar register srd.

Example
m2slsub(4,2,3); //sregd=sreg2-sreg3 (32-bit)

m2sadd

Instruction Format

m2sadd format
0110000 srd srsi srs2
21 15 10 5 0




Appendix A Vector and Scalar ISA 229

Syntax
m2sadd (srd, srsl, srs2)

where:

srd is the destination scalar register

srsl is the first source scalar register (operand 1)
srs2 is the second source scalar register (operand 2)

Description

The m2sadd instruction performs short addition (16-bit) of source scalar registers srs1
and srs2 and places the result to the destination scalar register srd.

Example
m2sadd(4,2,3); //sregd=sreg2+sreg3 (16-bit)

m2ssub

Instruction Format

m2ssub format
1000000 srd srsi srs2
21 15 10 5 0

Syntax

m2ssub(srd, srsl, srs2)

where:

srd is the destination scalar register

srsl is the first source scalar register (operand 1)
srs2 is the second source scalar register (operand 2)

Description

The m2ssub instruction performs short subtraction (16-bit) of source scalar registers
srsl and srs2 and places the result to the destination scalar register srd.

Example
m2ssub(4,2,3); //sregd=sreg2-sreg3 (16-bit)

m2simac

Instruction Format

m2simac format
0111011 srd srsi srs2
21 15 10 5 0




Appendix A Vector and Scalar ISA 230

Syntax

m2slmac (srd, srsl, srs2)

where:

srd is the destination scalar register

srsl is the first source scalar register (operand 1)
srs2 is the second source scalar register (operand 2)
Description

The m2s1mac instruction performs long multiplication (32-bit) to source scalar registers
srsl and srs2 and adds the product to the destination scalar register srd.

Example
m2slmac(4,2,3); //sregd=sregd+ (sreg2*sreg3)

m2simsu

Instruction Format

m2simsu format

L 0111100 srd srs1 srs2
21 15 10 5 0
Syntax
m2slmsu(srd, srsl, srs2)
where:
srd 1s the destination scalar register
srsl is the first source scalar register (operand 1)
srs2 is the second source scalar register (operand 2)

Description

The m2s1msu instruction performs long multiplication (32-bit) to source scalar registers
srsl and srs2 and subtracts the product to the destination scalar register srd.

Example
m2slmsu(4,2,3); // sregd=sregld-(sreg2*sreg3)

m2simult

Instruction Format

m2simult format
0111111 srd srs1 srs2
21 15 10 5 0




Appendix A Vector and Scalar ISA 231

Syntax

m2slmult(srd, srsl, srs2)

where:

srd is the destination scalar register

srsl is the first source scalar register (operand 1)
srs2 1s the second source scalar register (operand 2)

Description

The m2s1mult instruction performs long multiplication (32-bit) to source scalar
registers srs1 and srs2 and places the result to the destination vector register srd.

Example
m2slmult(4,2,3); //sregd=sreg2*sreg3 (32-bit)

m2smult

Instruction Format

m2smult format
1000101 srd srsi srs2
21 15 10 5 0

Syntax

m2smult (srd, srsl, srs2)

where:

srd is the destination scalar register

srsl is the first source scalar register (operand 1)
srs2 is the second source scalar register (operand 2)

Description

The m2smult instruction performs short multiplication (16-bit) to source scalar registers
srsl and srs2 and places the result to the destination vector register srd.

Example
m2smult(4,2,3); //sregd=sreg2*sreg3 (1l6-bit)

m2smult_r

Instruction Format

m2smult_r format
0111110 srd srs1i srs2
21 15 10 5 0




Appendix A Vector and Scalar ISA 232

Syntax

m2smult_x (srd, srsl, srs2)

where:

srd is the destination scalar register

srsl is the first source scalar register (operand 1)
srs2 1s the second source scalar register (operand 2)

Description

The m2smult_xr instruction performs short multiplication (16-bit) with rounding to
source scalar registers srsl and srs2 and places the result to the destination vector
register srd.

Example
m2smult_r(4,2,3); //sregd=sreg2*sreg3 (with rounding)

m2simult

Instruction Format

m2simult format
1001010 srd srsi srs2
21 15 10 5 0

Syntax

m2simult (srd, srsl, srs2)

where:

srd is the destination scalar register

srsl is the first source scalar register (operand 1)
srs2 is the second source scalar register (operand 2)

Description

The m2simult instruction performs short integer multiplication (16-bit) to source scalar
registers srs1 and srs2 and places the result to the destination vector register srd.

Example

m2simult(4,2,3); //sregd=sreg2*sreg3 (integer)



Appendix A Vector and Scalar ISA 233

m2sishl

Instruction Format

m2sishl format
0110101 srd srs1 amount
21 15 10 5 0

Syntax

m2slshl (srd, srsl, amount)

where:

srd is the destination scalar register

srsl is the scalar register (operand 1) to be shifted
amount is the shift amount (immediate)

Description

The m2s1shl instruction performs long shift left (32-bit) to the scalar register srs1 by
immediate (amount) and places the result to the destination scalar register srd.

Example

m2slshl(3,1,4); //Long shift left sregl by 4 and put
result to sreg3

m2sishr

Instruction Format

m2slshr format
0110111 [ srd srs1 amount
27 15 70 5 0

Syntax

m2slshr(srd, srsl, amount)

where:

srd is the destination scalar register

srsl 1s the scalar register (operand 1) to be shifted
amount is the shift amount (immediate)

Description

The m2 s1shr instruction performs long shift right (32-bit) to the scalar register srs1l
by immediate (amount) and places the result to the destination scalar register srd.



Appendix A Vector and Scalar ISA 234

Example

m2slshr(3,1,4); //Long shift right sregl by 4 and put
result to sreg3

m2sishl_rg

Instruction Format

m2sishl_rg format
l 0110110 srd srs1 srs2
21 15 10 5 0

Syntax

m2slshl_rg(srd, srsl, srs2)

where:

srd is the destination scalar register

srsl 1s the scalar register (operand 1) to be shifted

srs2 is the scalar register (operand 2) with the shift amount

Description

The m2s1shl_rg instruction performs long shift left (32-bit) to the scalar register
srsl by the amount of the vector register srs2 and places the result to the destination
scalar register srd.

Example

m2slshl_rg(3,1,4); //Long shift left sregl by amount that
is in sreg4 and put result to sreg3

m2slishr_rg

Instruction Format

m2sishr_rg format
0111000 | srd srs1 srs2
21 15 10 5 0

Syntax

m2slshr rgl(srd, srsl, srs2)

where:
srd is the destination scalar register
srsl is the scalar register (operand 1) to be shifted

srs2 is the scalar register (operand 2) with the shift amount



Appendix A Vector and Scalar ISA 235

Description

The m2slshr_rg instruction performs long shift right (32-bit) to the scalar register
srsl by the amount of the vector register srs2 and places the result to the destination
scalar register srd.

Example

m2slshr _rg(3,1,4); //Long shift right sregl by amount that
is in sregd4 and put result to sreg3

m2sshi

Instruction Format

m2sshl format
| 1000010 srd srs amount
21 15 10 5 0

Syntax

m2sshl (srd, srsl, amount)

where:

srd is the destination scalar register

srsl is the scalar register (operand 1) to be shifted
amount is the shift amount (immediate)

Description

The m2sshl instruction performs short shift left (16-bit) to the scalar register srs1 by
immediate (amount) and places the result to the destination scalar register srd.

Example

m2sshl(3,1,4); //Short shift left sregl by 4 and put
result to sreg3

m2sshr

Instruction Format

m2sshr format

1000011 } srd srst L amount
21 15 10 5

Syntax

m2sshr (srd, srsl, amount)

where:



Appendix A Vector and Scalar ISA 236

srd 1s the destination scalar register
srsl 1s the scalar register (operand 1) to be shifted
amount is the shift amount (immediate)

Description

The m2 sshr instruction performs short shift right (16-bit) to the scalar register srs1 by
immediate (amount) and places the result to the destination scalar register srd.

Example

m2sshr(3,1,4); //Short shift right sregl by 4 and put
result to sreg3

m2sshl_rg

Instruction Format

m2sshl_rg format
0111101 srd srs1 srs2
21 15 10 5 0

Syntax

m2sshl_rg(srd, srsl, srs2)

where:

srd is the destination scalar register

srsl is the scalar register (operand 1) to be shifted

srs2 1s the scalar register (operand 2) with the shift amount

Description

The m2sshl_rg instruction performs short shift left (16-bit) to the scalar register srs1
by the amount of the vector register srs2 and places the result to the destination scalar
register srd.

Example

m2sshl_rg(3,1,4); //Short shift left sregl by amount that
is in sreg4 and put result to sreg3l

m2sshr_rg

Instruction Format

m2sshr_rg format
1000100 srd —‘ srs1 srs2
21 15 10 5 0




Appendix A Vector and Scalar ISA 237

Syntax

m2sshr_rg(srd, srsl, srs2)

where:

srd is the destination scalar register

srsl is the scalar register (operand 1) to be shifted

srs2 is the scalar register (operand 2) with the shift amount

Description

The m2sshr_rg instruction performs short shift right (16-bit) to the scalar register
srsl by the amount of the vector register srs2 and places the result to the destination
scalar register srd.

Example

m2sshr_rg(3,1,4); //Short shift right sregl by amount that
is in sreg4 and put result to sreg3

m2sinegate

Instruction Format

m2sinegate format
0110010 srd srs1 0
21 15 10 5 0

Syntax

m2slnegate(srd, srsl)

where:
srd is the destination scalar register
srsl is the source scalar register (operand 1)

Description

The m2s1lnegate instruction negates the 32-bit value in scalar register srs1 with
saturation and stores the result to the destination scalar register srd.

Example

m2slnegate(3,1); //Negates (32-bit) value sregl and put
result to sreg3



Appendix A Vector and Scalar ISA 238

m2slabs

Instruction Format

m2slabs format
0110011 srd [ srs1 0
21 15 10 5 0

Syntax
m2slabs_s(srd, srsl)

where:
srd is the destination scalar register
srsl is the source scalar register (operand 1)

Description

The m2slabs instruction produces the absolute value of the 32-bit value in scalar
register srs1 and places the result to the destination scalar register srd.

Example

m2slabs(3,1); //Absolute (32-bit) wvalue of sregl and put
result to sreg3

m2snorm_|

Instruction Format

m2snorm_| format
\ 0110100 L srd srs1 0
21 15 10 5 0

Syntax

mZ2snorm_1 (srd, srsl)

where:

srd is the destination scalar register

srsl 1s the source scalar register (operand 1)
Description

The m2snorm_1 instruction produces the number of left shifts needed to normalise the
32-bit value in scalar register srs1 and places the result to the destination scalar register
srd.

Example

m2snorm_1(3,1); //Normalise value (32-bit)of sregl and put



Appendix A Vector and Scalar ISA 239
result to sreg3
m2sldeposit_|
Instruction Format
m2sldeposit_| format
| 0111001 srd srs1
21 15 10 0

Syntax

m2sldeposit_1(srd, srsl)

where:

srd is the destination scalar register

srsl is the source scalar register (operand 1)
Description

The m2s1ldeposit_1 instruction deposits the 16 LSB of scalar register srs1 into the
LSB 32-bit of destination scalar register srd. The 16 MSB of srd are sign extended.

Example
m2sldeposit_1(3,1); //Deposit 16 LSB of sregl into 16 LSB
of sreg3
m2sideposit_h
Instruction Format
m2sldeposit_h format
[ 0111010 srd srs1
21 15 10 0
Syntax
m2sldeposit_h(srd, srsl)
where:
srd 1s the destination scalar register
srsl is the source scalar register (operand 1)
Description

The m2sldeposit_h instruction deposits the 16 LSB of scalar register srs1 into the
MSB 32-bit of destination scalar register srd. The 16 LSB of srd are zero extended.



Appendix A Vector and Scalar ISA 240

Example
m2sldeposit_h(3,1); //Deposit 16 LSB of sregl into 16 MSB
of sreg3

m2snegate
Instruction Format

m2snegate format

1000110 srd srsi 0

21 15 10 5 0
Syntax
m2snegate(srd, srsl)
where:
srd is the destination scalar register
srsl is the source scalar register (operand 1)
Description

The m2 snegate instruction negates the 16-bit value in scalar register srs1 and places
the result to the destination scalar register srd.

Example

m2snegate(4,2); //Negate value (l6-bit)of sreg2 and put
result to sregd

m2sabs_s

Instruction Format

m2sabs_s format
1000001 srd srs1 0
21 15 10 5 0

Syntax

m2sabs_s (srd, srsl)

where:
srd is the destination scalar register
srsl is the source scalar register (operand 1)



Appendix A Vector and Scalar ISA 241

Description

The m2sabs_s instruction produces the absolute value of the 16-bit value in scalar
register srs1 and places the result to the destination scalar register srd.

Example

m2sabs_s(4,2); //Absolute value (l1l6-bit)of sreg2 and put
result to sregd

m2sextract_h

Instruction Format

m2sextract_h format
1000111 srd srs1 0
21 15 10 5 0

Syntax

m2sextract_h(srd, srsl)

where:
srd is the destination scalar register
srsl is the source scalar register (operand 1)

Description

The m2sextract_h instruction extracts the 16 MSB of the 32-bit value of scalar
register srs1 and places them into the 16 LSB of the destination scalar register srd.
The 16 MSB of srd are zero extended.

Example

m2sextract_h(4,2); //Extract 16 MSB of sreg2 and put
them to sreg4

m2sextract_|

Instruction Format

m2sextract_| format
1001000 srd srs1 0
21 15 10 5 0

Syntax

m2sextract 1 (srd, srsl)



Appendix A Vector and Scalar ISA 242

where:

srd 1s the destination scalar register

srsl 1s the source scalar register (operand 1)
Description

The m2sextract_1 instruction extracts the 16 MSB of the 32-bit value of scalar
register srs1 and places them into the 16 LSB of the destination scalar register srd.
The 16 MSB of srd are zero extended.

Example

m2sextract_1(4,2); //Extract 16 LSB of sreg2 and put
them to sregd

m2sround

Instruction Format

m2sround format

| 1001001 srd srs1 0 —]
27 15 70 5 0

Syntax

m2sround (srd, srsl)

where:

srd is the destination scalar register

srsl is the source scalar register (operand 1)
Description

The m2 sround instruction rounds the 16 LSB of the 32-bit value of scalar register
srsl into its most significant 16-bits with saturation. The result is shifted right by 16 and
placed in the destination scalar register srd.

Example

m2sround (4,2); //Round 32-bit value of sreg2 and put
the result to sregd



APPENDIX B SIGNAL DESCRIPTION

Signals for Vector Datapath

Signal Type Width Brief Description

’ Selects two 16-bit (when = ‘0") operations
SIMD _r Control 1 bit or anie 326t (wher ="1%)
il i A Control 1 bit Selects_ ?d,dition (when="0") or subtraction

S (when="1")
sel_sfetn_r Control 2 bits Selects function for vadd unit
sel_round r Control 1 bit Selects round operation (when="1")
sel_cmp _r Control 1 bit Selects compare operation (when="1")
sel_mult_r Control 2 bits Selects multiplication type for vmult unit
sel_mult_r_r Control 1 bit Selects mult (when="0") or mult_r ("1°)
cmd_shift_r Control  cmd_shift_type Selects shift operation
sel_misc_r Control 4 bits Selects miscellaneous operation
sel_vu_r Control  sel_vu_type Selects vector unit for operation
vrsl_rdaddr r  Control Log2(VREGS) Source 1 vector register address
vrsl_rden_r Control VLMAX*2 Source 1 vector register read-enable
vrs2_rdaddr r  Control Log2(VREGS) Source 2 vector register address
vrs2_rden_r Control VLMAX*2 Source 2 vector register read-enable
vrd_addr Control  Log2(VREGS) Destination vector register address
vrd_wen Control VLMAX*2 Destination vector register write-enable
srsl_rdaddr_ r  Control Log2(SREGS) Source 1 scalar register address
srsl_rden_r Control 4 bits Source 1 scalar register read-enable
srs2_rdaddr_r  Control Log2(SREGS) Source 2 scalar register address
srs2_rden_r Control 4 bits Source 2 scalar register read-enable
srs3_rdaddr r  Control  Log2(SREGS) Source 3 scalar register address
srs3_rden_r Control 4 bits Source 3 scalar register read-enable
srd_waddr_r Control  Log2(SREGS) Destination scalar register address
srd_wen_r Control 4 bits Destination scalar register write-enable
vacel_rdaddr_r Control t:g%?_NUMBER) Source 1 vector accumulator address
vacel _rden_r Control ACC_WIDTH/32 Source 1 vector accumulator read-enable
vacc2_rdaddr_r Control %:(%%I_NUMBER) Source 2 vector accumulator address
vace2_rden_r Control ACC WIDTH/32  Source 2 vector accumulator read-enable
vace_waddr_r Control %:(gfzc_NUMBER) Destination vector accumulator address
vace yen, ¥ Control  ACC WIDTH/32 ‘Ia)neas‘;ilzation vector accumulator write-
vlen_wen r Control 1 bit Write enable for the vlen register
ovi_wen Control 1 bit Write enable for the overflow register
pred_wen Control 1 bit Write enable for the predicate register
vlen_nvalue Data Log2(VLMAX) New value for the vlen register
ist_neg Control 1 bit Selects_ zozsadfstore negative stride
(when="1")

opc_valid Control 1 bit Valid signal for the register output
addr_valid Control 1 bit Signal to indicate the address is valid
read Control 1 bit Selects load (“17) or store (*0") instruction
sel vs Control 1 bit Selects vector (‘1) or scalar (‘07) ruction

243




Appendix B Signal Description 244

| Signal Type Width Brief Description
sel_width Control 1 bit Selects 16 (*17) or 32 (*0") bits data width
sel_evod Control  even_odd_type Selects even or odd or normal operation
sel_oprl Control  opr_type Selects the type of the first operand
sel_opr2 Control  opr_type Selects the type of the second operand
stg2 vadd Control 1 bit Stage 2 vadd unit enable
sel vacered Control 1 bit Vaccreduce unit enable
gpdata Data 32 bits Data from Leon register file
sel st Control 1 bit Selects store instruction (when="1")
sel mask Control 1 bit Selects to mask the result (when="1")

Control signal for Vadd Unit

sel sfetn Instruction
00 add/sub/vremp
01 vemp_h ge

10 vemp

11 round

Control signal for Vmult Unit

sel mult Instruction
00 L_mult

01 1_mult

10 mult

11 mult r

sel mult r Instruction
0 mult

1 mult r

Control signal for Vmisc Unit

sel _misc Instruction
0000 L negate
0001 negate
0010 norm_|1
0011 L _abs
0100 abs_s

0101 extract |
0110 extract_h
0111 1 deposit_1
1000 | deposit h
1001 merge

1010 merge t h




APPENDIX C G729A AND G.723.1 FUNCTION
RESULTS

This section presents the results from the G.729A speech codec showing the improvement

made from a function perspective.

Acelp_Code_A (Full Optimization)

=== Algthm —&— Fixaed

0gk Lsp —— Pitch
\ —=—Speach —*—Tame
— Test

Relative Dynamic Instruction Count (%)

Vector Length (VLMAX)

Copy (Full Optimization)

Algthm Fixed

o 0347 Lsp Pitch
!9_ Speech Tame
€ 034 Test
o
§ oed
=
]
E 024
E
L2
E 019
a
&

0.14 X
¢ N
& Py
o ' e e — E——e e e
& o.09 \ ~ -

0.0

0 16 32 48 64 80 96 112 128

Vector Length (VLMAX)




Appendix C G.729A and G.723.1 Function Results

240

Corr_xy2 (Full Optimization)
05
a —+— Algthm »- Fixed
- Lsp Pitch
E_—?—D"‘ L\ -=—Speech -+ Tame
§ 0. | + Test
o
§ o3
B
E o
w
£ ]
L 028
E
]
£ o L3
g L]
% 0.1 =
1 LR 2]
@ o. .la---I-II
L L L R L R R R R R R I C N E R R R TY T
0.0%
16 32 48 64 80 96 12 128
Vector Length (VLMAX)
G_pitch (Full Optimization)
0.55 T ~+—Aigthm  -®- Fixed
—_ ! Lsp Pitch
f_-g' o \ *-Speech —=- Tame
[ -
g 0.45 Test
Q
g 0.4
g 0.33+
£
o 03
E
-]
€ 025+
a
$ o2
=1
=5
& 015
0.1
0 16 3z 48 64 80 9% 112 128
Vector Length (VLMAX)
Gain_predict (Full Optimization)
16
~+- Algthm -®- Fixad
;i. Lsp = Pitch
-.-14! »-Speech —e-Tame
g I‘l “ Test
3 \ 2
O 13h
c |
§ |
k] .
g ¥
] |
g i\
L ol
§ | ¢
.
g' 04 ' .,
; L] LA
'ﬁ - Ry esan et
- L v .. i
s o4 R LT DT i I i i S
|
g
0 16 32 a8 64 80 96 112 128
Vector Length (VLMAX)




Appendix C G.729A and G.723.1 Function Results

247

Get_wegt (Full Optimization)

4] —+— Algthm & Fixed
—_ Lsp Pitch
2 & = Speech - Tame
E 04 — Test
= 064 |
£
© 04
£
2 osg
L
E o4
o
QE' 0.4
g
'Jg 0.4
°
T 034 =

0.

0 16 32 48 64 80 96 112 128
Vector Length (VLMAX)
int_glpc (Full Optimization)

9 i —+- Algthm  ~®- Fixed
50.45 | Lsp = Pitch
P | —+-Speech -+ Tame
2 | +—Test
8 04 i
B \

E 0.39 !E

2 04 u —

- \\

§ 0,241 - -
) "

o 04 =

> \

B \

® \

® 0.1 "

o BEGRUSSONROUNDENERCURERNURENNENSIUNRENREUENHNENERSERENRNUENEEREE RS

o.

0 16 32 48 64 80 96 12 128

Vector Length (VLMAX)
Lag_window (Full Optimization)
1.25

o o
-~ ©o

Relative Dynamic Instruction Count (%)
o o
[ -]

—+—Algthm -®- Fixed

Lsp = Pitch
~+—Speech -®- Tame
—Tes!

0.5! : -
0.4 7
Bl ppladel peSgound ssenan L,Fatef aenaPR aeSspnunSsounn
0.3 -F \f A A
" " "
0.2%
0 16 32 48 64 80 96 112 128

Vector Length (VLMAX)




Appendix C G.729A and G.723.1 Function Results

248

Lsp_get_quant (Full Optimization)

o
—

o
m

o
n
&

o
0

A

Relative Dynamic Instruction Count (%)
] -3

-+— Algthm  —®- Fixed

Lsp = Pitch
#- Speech ~e— Tame
+ Taesl

R Y R P R P PR R PR R Y

B R e o L T B R R LI S RS

16 32 48 64 80 9 112 128
Vector Length (VLMAX)

Lsp_get_tdist (Full Optimization)

o
o o
—

~+—Algthm  -®- Fixed

— Lsp = Pitch
E—gr | -=— Speech -e- Tame
| - Test

‘g’ 0.4 %‘
3 l

0.4 - — —
il
© \
E o028 |
- ‘
[= \
& od =1
2 \
= 0.1§ 1.
E o LA SRR R R AR R ARRERRRTREREREERETRERE SRR RRE

1 = z
0.0
o 16 32 48 B84 80 26 12 128
Vector Longth (VLMAX)
Lsp_prev_compose (Full Optimization)
0.8

o [ o o o
L3 - i o ~i
1 1 — e
—d

Relative Dynamic Instruction Count (%)
o

e

—+— Algthm *- Fixed

Lsp - Pitch
—+—Speach —e Tame
«—Test

\
LA R R R R R R R R R R R R R R R R R R R R R R R R R R R N R R R R R R

16 32 48 B4 80 96 112 128
Vector Length (VLMAX)




Appendix C G.729A and G.723.1 Function Results

249

Lsp_prev_extract (Full Optimization)
o l +- Algthm - :xaa
Z l Lsp itch
':'-_; | * Speech —* Tame
5 o071 Test
=]
Q
5 oq
2
% 0.8+
= s
o \
E 04
©
e
s \
E 0.3+ ew
=
2 03 i
IS ANENNENENUNOENERUUENNUENONSDDNENEEIURNoUNEDTEIRURRS
0.1
0 16 32 48 64 B0 98 112 128
Vector Length (VLMAX)
Lsp_select_1 (Full Optimization)
06
l «- Algthm  ~®- Fixed
- o Pitih
£ 058 \ i 3
t I ~#- Speech - Tame
2
8 0.5 JI - = Test
§ ||
E |
g 045 m
2 1IN
(%} 1\
£ 0.4 1
-
g‘oas -
¢ \.
% 04 l.l..‘.lll.l"lllll..II.IIII.IIIIII'I.III.IIIﬁl!lll“..l...llll{
o
02
0 16 32 48 64 80 96 112 128
Vector Length (VLMAX)
Lsp_select_2 (Full Optimization)
0.
| —+—Algthm —®- Fixed
-
= “ P
& osd | L';p "
T —=— Speach - Tame
3 | :
S o4 ‘ B Test
i ||
B osg |
1] s
£ |
L 1 |
£ “177
Lo \
5 |
0 038 1
g
g (R LR R R R R e R R R P R R P R P R R R R S R R R R R R R R R
E 04
0.28
0 16 32 48 64 80 96 12 128
Vector Length (VLMAX)




Appendix C G.729A and G.723.1 Function Results

250

Relative Dynamic Instruction Count (%)

Pitch_fr3_fast (Full Optimization)

0.
~— Algthm ®- Fixed
l Lsp - Pitch
0.5 || ~=— Speach -*—Tame
| +- Test
\
o4
]
|
0.3 |
|
oq+ 3 T
,
|/ \ L]
o 41 4 P
1 see DaISEIGS IDIDI—“.{.IIQI-II SsuDscUCOUGOCENSCUNEDOOGUODORLEY
Q 18 b 48 B4 80 96 12 128
Vector Length (VLMAX)

Relative Dynamic Instruction Count (%)

Relspwed (Full Optimization)

| —e— Algthm # Fixed

Lsp “ Pitch
—=— Speech -#-Tame
=zt o1

SO AETASIEEEsINER NS EESeNEEERIENSEEEEEEENSEEEENERCENUENEREREN

0.7
0 16 32 48 64 80 96 112 128
Vector Length (VLMAX)
Set_zero (Full Optimization)
;Alglhm ®- Fixed

F © Lsp - Pitch
'-;-:-' -+ Speech -e-Tame
é oq - ..
8
:
£ o3y
5
2
§
8 03
8
g
B 01
1)
c

0 16 32 48 64 80 96 112 128

Vector Length (VLMAX)




Appendix C G.729A and G.723.1 Function Results 251

Decod_ACELP (Full Optimization)

0.65

+- Algthm  ~®- Fixed
Lsp Pitch

= Speech —e Tame

o
o = o B

Relative Dynamic instruction Count (%)

=3

0 16 32 48 64 80 96 112 128
Vector Length (VLMAX)

Post_Filter (Full Optimization)

-+ Algthm  -®- Fixed
0.51 Lsp ~ Pitch
-+~ Speach - Tama

[~

o

e

Relative Dynamic Instruction Count (%)

(/] 16 32 48 64 80 96 112 128
Vector Length (VLMAX)




Appendix C G.729A and G.723.1 Function Results 252

This section presents the results from the G.723.]1 speech codec showing the

improvement made from a function perspective.

Acelp_Lbc (Full Optimization)

o
p

—=—Mix Code Rate

o
~

——Code Rate 53

(=] (=] o
h By 85 B

e

Relative Dynamic Instruction Count (%)
o
W

o

o
]

48 64 80 96 12 128
Vector Length (VLMAX)

o
o a—t
>
8

Cale_Exc_Rand (Full Optimization)

—+—Mixed Rate
—_ —=—53 Rale
& 098 — 63 Rale
‘g‘ ——63b Rate
3 0.8 —=—63e Rate
o |
c
'g 0.94 -
g
@
£ 092
£
E 0.9+ |
g o0.88 ‘
3"
5 !
] | — - .
2 Osj 1
0.84 .
0 16 32 48 64 80 96 112 128

Vector Length (VLMAX)




Appendix C G.729A and G.723.1 Function Results

253

Coder (Full Optimization)

og —

0.7+

Relative Dynamic Instruction Count (%)
-

"
LA AL A A A AR AR AR AR R R R R A R R R R R e R R R R

—+—Mixed Rate
9 ~=—53 Rale
€ —63 Rate
3
Q
§
B
;
2
E
@
1
)
2
=
]
o TSt S s sttt tasins - -
D! 16 32 48 64 80 96 112 128
Vector Length (VLMAX)
Cod_cng (Full Optimization)
1.
—+— Code Mix
#- 53 Rate
. 63 Rate

o 16 32 48 64 80 96 12
Vector Length (VLMAX)

128

Comp_Vad (Full Optimization)

—+—Mixod Ratlo
—=—53 Rato
——63 Rale

Relative Dynamic Instruction Count (%)

S B b e A A A A A A s S A R A s s S s s ]

16 32 48 64 a0 a6 112
Vector Length (VLMAX)

128




Appendix C G.729A and G.723.1 Function Results

254

Cor_h_x (Full Optimization)

[
e
n

o
Y

0.35

o
o n o
e n 2

Relative Dynamic Instruction Count (%)
o
T

0.1
0 l 16 32 48 64 80
Vector Length (VLMAX)

Find_f (Full Optimization)

<o
S
n

o o
N o w o
n L Ln_ -

e
n

0.18-+

Relative Dynamic Instruction Count (%)

—+—Mixed Rate —+=—53 Rate
—=—63 Rate ~+-63b Rate
—=—63e Rate

0 16 32 48 64 80
Vector Length (VLMAX)

Filt_Pw (Full Optimization)

o
2

0.24

Relative Dynamic Instruction Count (%)
$ 8z 3z

— . =+—Mixed Rate
—=—53 Rate
~—— 63 Rate

S

o
—
>

32 48 64 80
Vector Length (VLMAX)

96 12 128




Appendix C G.729A and G.723.1 Function Results

253

Relative Dynamic Instruction Count (%)

(=
@
w

=
-

o
o
o

2
tn

0.45 +

1
&

0.35

0.3

32

G_Code (Full Optimization)

——Mixed Rate
—=—53 Rate

48 64 80
Vector Length (VLMAX)

112 128

Relative Dynamic Instruction Count (%)

Init_Cod_Cnd (Full Optimization)

| —+—Mixed Rate

—=—53 Rate
—63 Rate

Relative Dynamic Instruction Count (%)

0.7 — =
0 16 32 a8 64 80 12 128
Vector Length (VLMAX)
Init_Coder (Full Optimization)
—+—Mixed Rate
og ——53 Rate
~——63 Rate

32

48 64 80
Vector Length (VLMAX)

12 128




Appendix C G.729A and G.723.1 Function Results

256

Init_Dec_Cng (Full Optimization)

e
N

(=]
o

o
S

Relative Dynamic Instruction Count (%)
o =]
FAY i

—+— Mixed Rate
~=—53 Rate
~— 63 Rate

SRR R e e e Rl e e S S AR S RS A ]

(=]
o b

16 32 48 64 80 96 12 128
Vector Length (VLMAX)

Init_Decod (Full Optimization)

o
~
o

Relative Dynamic Instruction Count (%)
o
.

o
rx

o
n

o
o P o
=

0.5

0.3§

—+—Mixed Rate
—=—253 Rate
— 63 Rate

o

16 32 48 64 80 96 12 128
Vector Length (VLMAX)

(=]
- ©
Fr -

o

o

Relative Dynamic Instruction Count (%)
o
S

o

o
N

o 82 o :
oM W o » @ m

g
o o
o,

S
o
o

Init_Vad (Full Optimization)

" ——Mixed Rate
| ==—53 Rate
—63 Rate

16 32 48 64 80 96 112 128
Vector Length (VLMAX)




Appendix C G.729A and G.723.1 Function Results

237

Lsp_Int (Full Optimization)

——Mixed Rate
T | =—53 Rate
E —63 Rate
3 0.64
(5]
c
o
T 054
£
£ 044
o 045 —
E
g
2 039
S
-
% 0.28 L N R T N N N s Ty
@«
0.1
0 16 32 48 64 80 o6 112 128
Vector Length (VLMAX)
LPCDiff (Full Optimization)
0.6 | =+=Mixed Coda
by =53 Rate
é-} 0.5i | ==—63 Rate
c
30
(5]
o. — S— p— =
04 .
@
£ 04
2
Eo —
3
ao o
S
£ o —
°
@ 0.2
0.22
of 16 32 48 84 80 96 112 128
Vector Length (VLMAX)
Lsp_int (Full Optimization)
0. :
—— Mixed Rate —=— 53 Rale
a-e- —=—63 Rate —63b Rate
= ——63¢ Rate
€ 0.7
3
§ o4
:
£og A
2
§
€ 04-
a
-]
2
® 04 —
@
« Rl
0.2
0 16 32 48 64 80 96 112 128

Vector Length (VLMAX)




Appendix C G.729A and G.723.1 Function Results

258

Mem_Shift (Full Optimization)

a 2
b o
oo

0.55

o Hhofo
L2 g A N n

025

0.11-

0.%
0.08+

e
m

Relative Dynamic Instruction Count (%)

'.mm

=+—Mixed Rate
——53 Rale
~—63 Rate

-

i = 2 > = 1

0 16 32 48 64 80 96
Vector Length (VLMAX)

112 128

Wght_Lpc (Full Optimization)

o

Relative Dynamic Instruction Count (%)
o o o o
D P kO A P i

e

—+—Mixed Rate

| =~=53 Rate
| =63 Rate

0 16 R 48 54 BO 96
Vector Length (VLMAX)




AUTHOR’S PUBLICATIONS

The following are the publications that have resulted from the work in this thesis.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

V. A. Chouliaras, J. L. Nunez, S. R. Parr, K. Koutsomyti, D. J. Mulvaney and S.
Datta, “Development of custom vector accelerator for high-performance speech
coding”, IEE Electronic Letters, vol. 40, November 2004, pp.1559-1561.

K. Koutsomyti, S. R. Parr, V. A. Chouliaras, J. L. Nunez, D. J. Mulvaney and S.
Datta, “Scalar and Parametric Vector Accelerators for the G.729A Speech Coding
Standard”, in Proceedings of IEE/ACM Soc Design, Test and Technology
Postgraduate Seminar, Loughborough University, September 2004 , pp. 53-57.

K. Koutsomyti, S. R. Parr, V. A. Chouliaras, J. L. Nunez, D. J. Mulvaney and S.
Datta, “Configurable Scalar and Vector Accelerators for the G.729A and G.723.1
Speech Coding Standards”, in Proceedings of Postgraduate Research Conference
in Electronics, Photonics, Communications and Networks, and Computing Science

(PREP2005), Lancaster University, March 2005, pp. 62-63.

S. R. Parr, K. Koutsomyti, V. A. Chouliaras, J. L. Nunez and D. J. Mulvaney,
“Configurable scalar and Vector Coprocessors for accelerating the G.723.1 and
G.729.A speech coders”, in Proceedings of the International Conference on
Signal and Image Processing, Novosibirsk, Russia, June 2005, pp.340-344.

K. Koutsomyti, S. R. Parr, V. A. Chouliaras and J. L. Nunez, “Applying Data-
Parallel and Scalar Optimizations for the efficient implementation of the G.729A
and G.723.1 Speech Coding Standards”, in Proceedings of the 7" IASTED
International Conference on Signal and Image Processing (SIP 2005), Honolulu,
USA, August 2005, pp. 40-45.

V. A. Chouliaras, K. Koutsomyti, T. R. Jacobs and S. R. Parr, D. J. Mulvaney and
R. Thomson, “SystemC-defined SIMD instructions for high performance SoC
architectures”, in 13" IEEE International Conference on Electronics, Circuits and
Systems, Nice, France, December 2006, pp. 822-825.

V. A. Chouliaras, K. Koutsomyti, T. R. Jacobs, S. R. Parr, D. J. Mulvaney and R.
Thomson, “SystemC-defined SIMD instructions for a CMP/SMT ASIC platform”,
in Proceedings of the 24" IEEE Norchip conference in ASIC design, Linkoping,
Sweden, November 2006, pp. 285-288.

K. Koutsomyti, V. A. Chouliaras, S. R. Parr, J. L. Nunez and S. Datta,
“Accelerating speech coding standards through SystemC synthesized SIMD and
Scalar accelerators”, in Proceedings of the IEEE International Conference on
Consumer Electronics (ICCE06), Las Vegas, USA, pp. 279-280.

S. R. Parr, K. Koutsomyti, V. A. Chouliaras, “A High Bandwidth
Configurable Load/Store Unit for an Embedded Vector Processor”, in

Postgraduate Workshop on Microelectronics and Embedded Systems,
Birmingham, UK, October 2006.









