
University Library

•• Loughborough
.., University

AuthorlFiling Title ~-{9..0:-:I~.9..~.fl.!.i .. .K.

T Class Mark .. .

Please note that fines are charged on ALL
overdue items.

I I 1111" 111111111 1111111111111

A Configurable Vector Processor for Accelerating

Speech Coding Algorithms

By

Konstantia Koutsomyti, MSc, BEng (Hons)

A Doctoral Thesis submitted in partial fulfilment of the requirements for the

award of Doctor of Philosophy of Loughborough University

September 2007

r" r, f.l D::..:~:hnr()Unh
" " , .. !

Uni\'!~t·~~~y V
Pilki:1gton Librr:ry

Date 1/3/01 _
.-

Class I

~~~ Ctto1 61 tr"7 '+V 

j 

j 
j 
j 
j 
j 
j 

j 
j 
j 

j 
j 

j 
I 



To my family 



ABSTRACT 

The growing demand for voice-over-packer (VoIP) services and multimedia-rich 

applications has made increasingly important the efficient, real-time implementation of 

low-bit rates speech coders on embedded VLSI platforms. Such speech coders are 

designed to substantially reduce the bandwidth requirements thus enabling dense multi

channel gateways in small form factor. This however comes at a high computational cost 

which mandates the use of very high performance embedded processors. 

This thesis investigates the potential acceleration of two major ITU-T speech coding 

algorithms, namely G.729A and G.723.1, through their efficient implementation on a 

configurable extensible vector embedded CPU architecture. New scalar and vector ISAs 

were introduced which resulted in up to 80% reduction in the dynamic instruction count 

of both workloads. These instructions were subsequently encapsulated into a parametric, 

hybrid SISD (scalar processor)-SIMD (vector) processor. This work presents the research 

and implementation of the vector datapath of this vector coprocessor which is tightly

coupled to a Sparc-V8 compliant CPU, the optimization and simulation methodologies 

employed and the use of Electronic System Level (ESL) techniques to rapidly design 

SIMD datapaths. 

1 



ACKNOWLEDGEMENTS 

I would like to thank my supervisors Dr. Sekhrujit Datta and especially Dr. Vassilios A. 

Chouliaras for the continuous guidance and support throughout all the stages of this work. 

Their advice has been invaluable. 

I would deeply like to thank a very special person in my life, Vasilis, for his continuous 

support and understanding through all these years. He drove me away from my little 

home in Rafina and gave me the greatest opportunity of all, to open my mind, to learn and 

believe in myself. Without him none of these would have happened. 

I would like to express my deep gratitude and love to my family for always standing by 

me and supporting me to follow my dreams and especially my beloved mother who 

taught me to always aim high. 

I acknowledge all my colleagues in Loughborough University and especially Tom Jacobs 

for their support and companionship throughout these years. All the wonderful people I 

met during my years in Loughborough and have become good friends have contributed 

even without knowing to this work by making these years special. 

Finally, I would like to express my gratitude to the EPSRC for providing me with 

financial support during the course of this thesis. 

11 



TABLE OF CONTENTS 

List of Figures .................................................................................................... IX 

List of Tables .................................................................................................. XIII 

List of Abbreviations ........................................................................................... xv 

Chapter 1 Introduction ............................................................................... 1 

1.1 Problem Fonnulation .................................................................................... 1 

1.2 VolP .............................................................................................................. 4 

1.2.1 Description of the VolP process ............................................................. 5 

1.2.2 VolP Applications .................................................................................. 8 

1.2.3 Current state of the art ......................................•...................•....•............ 8 

1.3 Programmable Architectures ......................................................................... 9 

1.3.1 General Purpose Processors ................................................................... 9 

1.3.2 DSP Processors .................................................................................... 10 

1.3.3 ASIC (Embedded) processors .............................................................. 10 

1.3.3.1 Configurable processors ................................................................ 10 

1.3.3.2 Reconfigurable Processors ............................................................ 11 

1.3.3.3 Fixed Processors ............................................................................ 12 

1.4 Hardwired Architectures ............................................................................. 12 

1.5 Research contribution and overview ........................................................... 13 

1.6 Thesis Outline ............................................................................................. 16 

1.7 References ................................................................................................... 18 

Chapter 2 Speech Coding Theory •....•.•...•••.••.•.......•...••.•..•...•.•.•..•••...•..•..• 22 

2.1 Introduction ................................................................................................. 22 

2.2 Speech Coding Objectives and Requirements ............................................ 22 

2.3 Speech production system ........................................................................... 24 

2.4 Coding strategies ......................................................................................... 26 

111 



Table of Contents iv 

2.4.1 Wavefonn Coders ................................................................................ 26 

2.4.2 Voice Coders 01 ocoders) ..................................................................... 27 

2.4.3 Hybrid Coders ...................................................................................... 28 

2.4.3.1 Analysis by Synthesis .................................................................... 29 

2.5 G.729A Speech Coding Standard ............................................................... 31 

2.6 G.723.1 Speech Coding Standard ............................................................... 33 

2.7 Summary ..................................................................................................... 36 

2.8 References ................................................................................................... 37 

Chapter 3 Software and Hardware Parallelism ..................................... 38 

3.1 Overview of Parallelism .............................................................................. 38 

3.2 Data Dependences ....................................................................................... 39 

3.2.1 Name Dependences .............................................................................. 40 

3.2.2 Control Dependences ........................................................................... 40 

3.3 Types of Parallelism .................................................................................... 41 

3.3.1 Instruction Level Parallelism ............................................................... 42 

3.3.1.1 Superscalar Processors .................................................................. 44 

3.3 .1.2 VLlW Processors .......................................................................... 46 

3.3.2 Data Level Parallelism ......................................................................... 48 

3.3.2.1 Advantages of vector architectures ............................................... 48 

3.3.2.2 Vector Processors .......................................................................... 50 

3.3.3 Thread Level Parallelism ..................................................................... 52 

3.3.3.1 Shared-Memory Architecture ........................................................ 53 

3.3.3.2 Distributed-Memory Architecture ................................................. 54 

3.3.3.3 Multithreading Architecture .......................................................... 55 

3.3.4 Hybrid Approaches and Research ........................................................ 56 

3.4 Summary ..................................................................................................... 57 

3.5 References ................................................................................................... 58 

Chapter 4 Methodology and Architectural Results ............................... 62 

4.1 Introduction ................................................................................................. 62 



Table of Contents v 

4.2 Simulation Infrastructure ............................................................................. 62 

4.2.1 SimpleScalar Toolset. ........................................................................... 66 

4.2.2 Customizing the SimpleScalar Toolset ................................................ 68 

4.3 Workload Optimization ............................................................................... 69 

4.3.1 Profiling ................................................................................................ 69 

4.3.2 Vector ISA Development and Experimentation Methodology ............ 74 

4.3.3 Identification of Data Parallel Loops ................................................... 78 

4.3.4 Implementation of vector loop using custom ISA ............................... 80 

4.3.5 Scalar Optimization .............................................................................. 83 

4.3.6 Validation Tests .................................................................................... 84 

4.3.7 The extended ISA (Scalar and Vector Extensions) .............................. 86 

4.3.8 Inline Assembly .................................................................................... 87 

4.4 Architectural Results ................................................................................... 88 

4.5 Summary ................................................................................................... 102 

4.6 References ................................................................................................. 104 

ChapterS Vector Processor Architecture ............................................. 107 

5.1 Vector Architectural State ......................................................................... 107 

5.2 Prograrmners Model .................................................................................. 109 

5.3 Vector Processor Instruction Set Architecture .......................................... 110 

5.3.1 Vector ISA .......................................................................................... 111 

5.3.1.1 Load/Store Instructions ...................................................... ......... 111 

5.3.1.2 Move Instructions ........................................................................ 112 

5.3.1.3 Arithmetic Instructions ................................................................ 113 

5.3.1.4 Shift Instructions ......................................................................... 116 

5.3.1.5 Miscellaneous Instructions .......................................................... 117 

5.3.2 ScalarISA .......................................................................................... 118 

5.3.2.1 Load/Store Instructions ............................................................... 118 

5.3.2.2 Move Instructions ........................................................................ 118 

5.3.2.3 Arithmetic Instructions ................................................................ 119 

5.3.2.4 Shift Instructions ......................................................................... 119 



Table ofeontents vi 

5.3.2.5 Miscellaneous Instructions .......................................................... 120 

5.4 Leon3 CPU ................................................................................................ 120 

5.5 Overall System Architecture ..................................................................... 124 

5.5.1 Processor-coprocessor progranunable unit ........................................ 125 

5.5.2 DMA taps ................................................. : ......................................... 125 

5.5.3 PCI IIF ................................................................................................ 125 

5.5.4 External Memory Controller .............................................................. 125 

5.5.5 APB Subsystem .................................................................................. 126 

5.6 Summary ................................................................................................... 126 

5.7 References ................................................................................................. 127 

Chapter 6 Vector Processor Implementation ....................................... 128 

6.1 Overview ................................................................................................... 128 

6.2 Vector Decode Stage (VDEC) .................................................................. 130 

6.3 Vector Registers Stage (VREG) ................................................................ 133 

6.3.1 Reverse Data Process ......................................................................... 134 

6.3.2 Splat Data Process .............................................................................. 135 

6.3.3 Masking Process ................................................................................. 135 

6.3.4 Bypass process ................................................................................... 137 

6.3.5 Operands Selection ............................................................................. 139 

6.3.6 Register enable ................................................................................... 139 

6.3.7 Vector Register File (gxx_vreg_fiIe) ................................................. 140 

6.3.7.1 Parameterisation .......................................................................... 140 

6.3.7.2 The vector register file implementation ...................................... 140 

6.3.8 Scalar Register File (gxx_sreg_fiIe) ................................................... 143 

6.3.8.1 Parameterisation .......................................................................... 143 

6.3.8.2 Scalar register file implementation ............................................. 143 

6.3.9 Vlen register ....................................................................................... 145 

6.3.10 Overflow and Pred Flags .................................................................. 146 

6.4 Vector Load/Store Unit (gxx_vlsu) ........................................................... 146 

6.5 Vector Datapath Stage (VDP) ................................................................... 149 



Table of Contents vii 

6.5.1 Vector Adder Unit (gxx_vadd_dp) .................................................... 152 

6.5.2 Vector Multiplier Unit (gxx_ vrnult_dp) ............................................. 153 

6.5.3 Vector Shifter Unit (gxx_vshift_dp) .................................................. 155 

6.5.4 Vector Miscellaneous Unit (gxx_vrnisc_dp) ...................................... 158 

6.5.5 Reverse Data Logic ............................................................................ 158 

6.5.6 Masking Process Logic ...................................................................... 159 

6.5.7 Bypassing network of the first VDP stage ......................................... 160 

6.5.8 Register Enable for the input VDP2 registers .................................... 160 

6.5.9 Second stage adder ............................................................................. 160 

6.5.10 Vector Accumulator File (gxx_ vaccs) ............................................. 161 

6.5.10.1 Parameterisation ........................................................................ 162 

6.5.10.2 The vector accumulator implementation ................................... 163 

6.5.11 Vector Adder Tree (gxx_adder_tree) ............................................... 164 

6.5.12 VLSU unit interface with VDP2 ...................................................... 165 

6.5.13 Overflow and Predicate Flags .......................................................... 165 

6.5.14 Bypassing network of the second stage ............................................ 166 

6.5.15 Write Back. ....................................................................................... 166 

6.6 Output Register Bunch .............................................................................. 166 

6.7 Leon3 ......................................................................................................... 166 

6.7.1 Decode Stage ...................................................................................... 167 

6.7.2 Register Access stage ......................................................................... 167 

6.7.3 Execute Stage ..................................................................................... 168 

6.7.4 Memory Stage .................................................................................... 168 

6.7.5 Exception Stage .................................................................................. 168 

6.8 Summary ................................................................................................... 170 

6.9 References ................................................................................................. 171 

Chapter 7 Vector Processor VLSI Implementation ............................. 172 

7.1 Design Verification ................................................................................... 172 

7.2 Synthesis and Place & Route Design Flow ............................................... 174 

7.2.1 Design Compiler Stage (Logical Synthesis) ...................................... 175 



Table of Contents viii 

7.2.2 SoC Encounter script Stage (Place and Route) .................................. 176 

7.2.3 Statistical Power Analysis Stage (Design Compiler) ......................... 176 

7.3 Implementation Campaign for Vector Datapath ....................................... 177 

7.4 Implementation Campaign for Vector Coprocessor .................................. 179 

7.5 VLSI Layout.. ............................................................................................ 182 

7.5.1 Vector Datapath Layout for VLMAX 16 ........................................... 182 

7.5.2 Vector Datapath Layout for VLMAX 32 ........................................... 184 

7.5.3 Vector Processor Layout for VLMAX 16 .......................................... 185 

7.6 ESL Implementation ................................................................................. 187 

7.6.1 SS_SPARC Platform .......................................................................... 187 

7.6.2 ESL Methodology .............................................................................. 191 

7.6.3 Micro-Architecture Results ................................................................ 191 

7.7 Summary ................................................................................................... 194 

7.8 References ................................................................................................. 195 

ChapterS Conclusions ............................................................................ 196 

8.1 Contribution of this thesis ......................................................................... 196 

8.2 Suggestions for future research ................................................................. 198 

8.3 References ................................................................................................. 200 

Appendix A Vector and Scalar ISA ................................................................. 201 

Appendix B Signal Description ........................................................................ 244 

Appendix C G.729A and G.723.1 Function Results ....................................... 246 

Author's Publications ....................................................................................... 260 



LIST OF FIGURES 

Figure I-I: Traditional voice and data networks Cal and VoIP network Cb)... ................................... 1 

Figure 1-2: The architectnre ofH.323 protocol stack ........................................................................ 2 

Figure 1-3: Simplified representation of possible JP telephony network connections ..................... .5 

Figure 1-4: V oIP signalling and transport flow between endpoints .................................................. 6 

Figure 1-5: Open Systems Interconnection COSIl and network protocols ......................................... 7 

Figure 2-1: Diagram oflhe human organs involved in speech production and the Spectral Range of 

Speech .................................................................................................................................... 24 

Figure 2-2: General speech production model ................................................................................ 25 

Figure 2-3: Analysis by Synthesis Code ......................................................................................... 30 

Figure 2-4: G.729A Encoder ........................................................................................................... 32 

Figure 2-5: G.729A Decoder .......................................................................................................... .33 

Figure 2-6: G.723.1 Encoder ........................................................................................................... 35 

Figure 2-7: G.723.1 Decoder. .......................................................................................................... 35 

Figure 3-1: Code snippet that shows the data dependences ............................................................. 39 

Fignre 3-2: Multiple-issuing of instructions in an ILP architectnre ............................................... .43 

Figure 3-3: Dvnamic Instruction Scheduling ................................................................................. .45 

Figure 3-4: Static Instruction Scheduling ....................................................................................... .46 

Figure 3-5: Basic Vector Processor Architectnre ............................................................................ 52 

Figure 3-6: The basic architectnre of a centralised shared-memory multiprocessor system ........... 53 

Figure 3-7: The basic architectnre of a distributed-memory multiprocessor system ....................... 54 

Figure 4-1: SimpleScalar Infrastructnre .......................................................................................... 67 

Figure 4-2: Machine instruction count for the BASOP.C functions ................................................ 71 

Figure 4-3: Experimentation Methodology ................................................................. uo ................. 75 

Figure 4-4: The extended processor state as defined in the configuration file vstate.h ................... 76 

Figure 4-5: Example of a C macro Instruction Definition ............................................................... 77 

Figure 4-6: Example of a non-vectorizable loop as the statement S5 depends on a previous result 

of the S5 execution. The same dependency appears to the statement S9 ............................... 79 

Figure 4-7: Example ofa vectorizable loop with statements S2 and S3 being independent from 

previous results of their execution ......................................................................................... 79 

Figure 4-8: Example ofloop with DLP within the original C code ................................................ 80 

Figure 4-9: Assign pointers and load the vlen rregister. ................................................................ 81 

Figure 4-10: Main vector loop ......................................................................................................... 81 

Figure 4-11: Strip mining loop ........................................................................................................ 82 

IX 



List o(Figures x 

Figure 4-12: Sc.l.r optimiz.tion ex.mple ....................................................................................... 84 

Figure 4-13: Instruction Definition in Vector.def... ......................................................................... 86 

Figure 4-14: Inline Assembly Instruction Definition ...................................................................... 87 

Figure 4-15: G. 729 A Encoder (Vector Only) Results ..................................................................... 89 

Figure 4-16: G.729A Decoder (Vector Only) Results ..................................................................... 90 

Figure 4-17: G.729A Encoder (Full Optimiz.tion) Results ............................................................ 90 

Figure 4-18: G.729A Decoder (Full Optimiz.tion) Results ............................................................ 91 

Figure 4-19: G.723.1 Encoder Vector Optimization Results ........................................................... 92 

Figure 4-20: G.723.1 Decoder Vector Optimization Results .......................................................... 92 

Figure 4-21: G. 723.1 Encoder Full Optimiz.tion Results ............................................................... 93 

Figure 4-22: G.723.1 Decoder Full Optimization Results ............................................................... 93 

Figure 4-23: Cor h x (Full Optimization) Results ......................................................................... 94 

Figure 4-24: Syn filt (Full Optimization) Results ........................................................................... 95 

Figure 4-25: Pitch 01 fast (Full Optimizatiou) Results .................................................................. 96 

Figure 4-26: Residu (Full Optimization) Results ............................................................................ 96 

Figure 4-27: Autocorr (Full Optimization) Results ......................................................................... 97 

Figure 4-28: Lsp pre select (Full Optimization) Results ............................................................... 98 

Figure 4-29: Age (Full Optimization) Results ................................................................................. 98 

Figure 4-30: Find Best (Full Optimization) Results ....................................................................... 99 

Figure 4-31: Estim Pitch (Full Optimization) Results .................................................................. 1 00 

Figure 4-32: Comp Lpc (Full Optimization) Results ................................................................... 101 

Figure 4-33: Decod Acbk (Full Optimization) Results ................................................................ 101 

Figure 4-34: Comp Pw (Full Optimiz.tion) Results ..................................................................... 102 

Figure 5-1: Example of an operation that is performed in two vector registers with vector length 

64-bits. Each functional unit is driven by the pair of the corresponding slices (vector 

elements) ofthe source vector registers. The produced results are stored back to the 

corresponding slices (vector elements) of the destination vector register ............................ 108 

Figure 5-2: Vector and Scal.r coprocessor programmer's model ................................................. 1 09 

Figure 5-3: Vector Short Addition ................................................................................................ 114 

Figure 5-4: Vector Short Multiplication for even/odd elements .................................................... 114 

Figure 5-5: Vector multiply-addlsub ............................................................................................. 115 

Figure 5-6: Instruction Formats ofLeon3 ..................................................................................... 122 

Figure 5-7: Unimplemented Instruction ........................................................................................ 122 

Figure 5-8: Overall system .rchitecture ........................................................................................ 124 



List of Figures xi 

Figure 6-1: The vector speech coprocessor microarchitecture with the four-stage pipeline: Vector 

Decode Stage (VDEC), Vector Register Access Stage (VREG) and two stages for the Vector 

Datapath Stage (VDP I and VDP2) """,,,,,,,,,,,,,,,,,,,,,,, ."" "."". "",,,.,,,,. ,,,,,,,,,,,,,, ",,,,, """"" 129 

Figure 6-2: The electrical interface of the VDEC Stage"""""""""""""""""""""""""""""""" 131 

Figure 6-3: The Unimplemented instruction format of the Sparc V8 architecture """",,,,,,,,,,,,,,,.131 

Figure 6-4: Different types of instruction formats of the vector processor ISA """"" ... "",,,,,,,,,,, 132 

Figure 6-5: Vector Register Access Stage (VREG) microarchitecture """"""""."""""""""."".134 

Figure 6-6: Reverse Data Process"".""" """ ""'''''''''''''''''' """.""""" ... """.""" """"""""""""" 134 

Figure 6-7: Splat Data Process """".""."".""""""""""""""""""" " ... """"""""""" ... "" ... """" 13 5 

Figure 6-8: Mask width function "". '''''''''''''''''''' """"""""""""""""" ......... """""""""""""" ... 136 

Figure 6-9: Mask extract function """"""""""" .. """ .. """"" .. """ .. """"""" .. "" .. """ .. """"""".136 

Figure 6-10: Vector bypass process for one ofthe vector source operands and the intermediate 

result of one of the two VDP stages""""""""""""""""""" .. """""" .. """ .. "" .. "" .. """"". 138 

Figure 6-11: Scalar bypass process for the selection of one of the scalar operands (first) .. """ .. " 138 

Figure 6-12: Electrical Interface of Vector Register File """"""""""""""" .. "" .. """""""""" .. " 141 

Figure 6-13: Detailed microarchitecture of the Vector Register File with RIW conflict avoidance 

""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""" .. ,142 

Figure 6-14: Electrical Interface of Scalar Register File """"""""""." .. """"""""""""".""""", 143 

Figure 6-15: Detailed microarchitecture of the Scalar Register File with RIW conflict avoidance 

.""""""""""" ... """ .. """""""""""""""""""""""""".""""".""""'"'''''''''''''''''''''''''''''''' 144 

Figure 6-16: VLSU Electrical Interface .. "."""""""" .... """."""""""".""" .. """""" .. "." .. ".""".147 

Figure 6-17: Parallel TAG/DATA configuration and Cascade TAGIDATA configuration caches 

"""."""""""""""""""" .. """"""""""""."""""""""." .. """"""""."""""".""""""""" .. " 148 

Figure 6-18: Microarchitecture ofVLSU in cascade TAGIDATA configuration""".""""""."", 149 

Figure 6-19: Microarchitecture of the VDP stage """""""".""."" .. """"""""." ... """".""""".".150 

Figure 6-20: Electrical interface of the vector adder unit .. " ... ""."" ....... ".""".""" ..... """ .. ""."".152 

Figure 6-21: Microarchitecture of a functional unit of the vector adder """ .. """"""""." .. """ .. ,, 153 

Figure 6-22: Electrical interface of the vector multiplier unit..".""""" .. " ..... " ..... """""""""" .. " 154 

Figure 6-23: Microarchitecture of a functional unit of the vector multiplier."".""""""""""""".155 

Figure 6-24: Electrical interface of the vector shiner uniL"""""" .. """""".""" ... ""."""" ... " ... " 156 

Figure 6-25: Two Barrel Shiners connected in series for short or long shift operations"""""."" 156 

Figure 6-26: Microarchitecture ofa functional unit of the vector shifter """"""""".""" .. """ ..... 157 

Figure 6-27: Electrical interface of the vector miscellaneous unit " ... " .. ""."""".""" ... "."""" .. ".158 

Figure 6-28: Masking process logic for low (Yrf opr2 r='I') or high Cvrf opr2 r='0') deposit for 

the even elements of the input vectors to the accumulator " ... """.""."""."" ..... "" ... """"" 159 

Figure 6-29: Electrical interface of the second VDP stage vector adder """."."""""""""""""".161 



List of Figures xii 

Figure 6-30: Electrical Interface of Vector Accumulator File ....................................................... 162 

Figure 6-31: Write data and write-enable selection logic for tbe vector accumulator file ............ 163 

Figure 6-32: Adder tree configuration for VLMAX 16 ................................................................. 164 

Figure 6-33: Leon3 integer unit and vector coprocessor datapath diagram ................................... 169 

Figure 6-34: Leon3 processor core block diagram ........................................................................ 170 

Figure 7-1: Example of recording the inputs and the outputs of the L mult operation C macro .. 172 

Figure 7-2: Test bench for the vector mult unit of the vector datapath ......................................... 173 

Figure 7-3: Vector coprocessor testbench configuration ............................................................... 174 

Figure 7-4: Script in a pseudocode for the design flow ofthe vector coprocessor. ....................... 175 

Figure 7-5: Statistical power results of vector datapath for different vector lengths ..................... 177 

Figure 7-6: Statistical area results of vector datapath for different vector lengths ........................ 178 

Figure 7-7: Frequency results of vector datapath for different vector lengths ............................... 179 

Figure 7-8: Statistical power results of vector coprocessor for different vector lengths ............... 180 

Figure 7-9: Statistical area results of vector coprocessor for different vector lengths ................... 181 

Figure 7-10: Frequency results of vector coprocessor for different vector lengths ....................... 182 

Figure 7-11: Vector Datapath macrocell for VLMAX 16 ............................................................. 183 

Figure 7-12: Vector Datapath macrocell for VLMAX 32 ............................................................. 185 

Figure 7-13: Layout for the whole vector processor (vector datapath and VLSU unitl ................ 186 

Figure 7-14: High level view of a 3-instance SS SP ARC kernel ................................................. 187 

Figure 7-15: Superscalar SMT pipeline organisation .................................................................... 188 

Figure 7-16: Scalar core (SCORE) pipeline organization ............................................................. 189 

Figure 7-17: Dual-pipeline vector unit organization ..................................................................... 190 

Figure 7-18: ITU VCore Power Results ........................................................................................ 192 

Figure 7-19: ITU VCore Area-Delay Results ................................................................................ 193 

Figure 7-20: Two-context. 256-bit 'TU vector engine .................................................................. 193 



LIST OF TABLES 

Table 1-1: !TU Standards for Voice Compression ............................................................................ 4 

Table 4-1: SimpleScalar baseline simulator models ........................................................................ 67 

Table 4-2: Relative amount of time spent outside the basic instructions ........................................ 70 

Table 4-3: Relative number of total instructions executed outside the DSP emulation instructions 

............................................................................................................................................... 70 

Table 4-4: G.723.1 Unmodified Workloads Instruction Count ....................................................... 72 

Table 4-5: G.729A Unmodified Workloads Instruction Count.. ..................................................... 72 

Table 4-6: Profiling the G.729A functions by using the speech workload ...................................... 73 

Table 4-7: Profiling the G.723.1 functions by using the 6.3kbits/s workload ................................. 74 

Table 4-8: G729 Encoder Test Vectors ........................................................................................... 84 

Table 4-9: G729 Decoder Test Vectors ........................................................................................... 85 

Table 4-10: G.723.1 Encoder and Decoder Test Vectors ................................................................ 85 

Table 5-1: Vector Load/Store Instructions .................................................................................... 112 

Table 5-2: Vector Move Instructions ............................................................................................ 113 

Table 5-3: Arithmetic Instructions ................................................................................................ 116 

Table 5-4: Vector Shift Instructions .............................................................................................. 117 

Table 5-5: Vector Miscellaneous Instructions ............................................................................... 117 

Table 5-6: Scalar Load/Store Instructions ..................................................................................... 118 

Table 5-7: Scalar Move Instructions ............................................................................................. 118 

Table 5-8: Scalar Arithmetic Instruction ....................................................................................... 119 

Table 5-9: Scalar Shift Instructions ............................................................................................... 120 

Table 5-10: Scalar miscellaneous instructions .............................................................................. 120 

Table 5-11: Enhanced op2 Encoding (Format 2) .......................................................................... 123 

Table 6-1: Compile-time vector processor parameters for its architectural and microarchitectural 

state that are contained in gxx config.vhd file .................................................................... 130 

Table 6-2: The allowed silicon technologies that are used for synthesis and place and route 

contained in gxx config.vhd file ......................................................................................... 130 

Table 6-3: Compile-time vector register file parameters for its architectural and microarchitectural 

state that are contained in gxx config.vhd file .................................................................... 140 

Table 6-4: Compile-time vector accumulator file parameters for its architectural and 

microarchitectural state that are contained in gxx config.vhd file ...................................... 163 

Table 7-1: VLSI Layout physical parameters forVDP with VLMAX 16 ................................... 183 

Table 7-2: VLSI Layout physical parameters forVDP with VLMAX 32 .................................... 184 

Xlii 



List of Tables xiv 

Table 7-3: VLSI Layout physical parameters for veop with VLMAX 16 ................................. 186 



LIST OF ABBREVIATIONS 

Abbreviation 

ABI 

AbS 

ADL 

ADM 

ADPCM 

AHB 

ALU 

AMBA 

APB 

ASIC 

ATC 

ATM 

BASOP 

CAS 

CATV 

CenT 

CELP 

CISC 

CLB 

CMP 

CNG 

CPI 

CPU 

CS-ACELP 

DLP 

DMA 

Expansion 

Application Binary Interface 

Analysis by Synthesis 

Architecture Description Language 

Adaptive Delta Modulation 

Adaptive Differential Pulse Code Modulation 

Advanced High-speed Bus 

Arithmetic Logic Unit 

Advanced Microprocessor Bus Architecture 

Advanced Peripheral Bus 

Application Specific Integrated Circuit 

Adaptive Transfonn Coding 

Asynchronous Transfer Mode 

Basic Operations 

Cycle Accurate Simulators 

Cable TV 

International Telephone and Telegraph Consultative 

Committee 

Code Excited Linear Prediction 

Complex Instruction Set Architecture 

Configurable Logic Block 

Chip Multi-Processing 

Comfort Generation Noise 

Cycles per Instruction 

Central Processing Unit 

Conjugate-Structure Algebraic Code Excited Linear 

Prediction 

Data Level Parallelism 

Direct Memory Access 

xv 



List of Abbreviations 

Abbreviation 

DSVD 

DSL 

DSM 

DSP 

EDA 

EPIC 

ESL 

FEC 

FLI 

FLOPS 

FPGA 

FITH 

ILP 

JP 

ISA 

ISDL 

ISPS 

ISS 

!TU 

LAN 

LISA 

LPC 

LSP 

MAC 

MBEN 

MELP 

MIMD 

MJPS 

MISD 

MOS 

MPEG 

MP-MLQ 

Expansion 

Digital Simultaneous Voice and Data 

Digital Subscriber Line 

Distributed Shared Memory 

Digital Signal Processing 

Electronic Design Automation 

Explicitly Parallel Instruction Computing 

Electronic System Level 

Forward Error Correction 

Foreign Language Interface 

FLoating point Operations Per Second 

Field Programmable Gate Array 

Fibre to the Home 

Instruction Level Parallelism 

Internet Protocol 

Instruction Set Architecture 

Instruction Set Description Language 

Instructions Set Processor Specification 

Instruction-accurate Simulator 

International Telecommunication Union 

Local Area Network 

Language for Instruction Set Architecture 

Linear Predictive Coding 

Line Spectral Pair 

Multiply and Accumulate 

Multi-Band Excited Vocoder 

Multi-pulse Excited Linear Prediction 

Multiple Instruction Multiple Data 

Million Instruction Per Second 

Multiple Instruction Single Data 

Mean Opinion Score 

Moving Picture Experts Group 

Multi-Pulse Maximum Likelihood Quantization 

xvi 



List o[Abbreviations xvii 

Abbreviation Expansion 

NUMA Non Uniform Memory Access 

OS Operating System 

OSI Open Systems Ioterconnection 

PCI Peripheral Component Ioterconnect 

PISA Portable Instruction Set Architecture 

PCM Pulse Code Modulation 

PSVQ Predictive Split Vector Quantizer 

QoS Quality of Service 

RAS Registration! Admission!Status channel 

RAM Random Access Memory 

RISC Reduced Iostruction Set Computer 

PCM Pulse Code Modulation 

psrn Public Switched Telephone Network 

RELP Residual Excited Linear Prediction 

RTL Register Transfer Level 

RTP Real Time Protocol 

RTCP RTP Control Protocol 

SBC Sub-Band Coding 

SDRAM Synchronous Dynamic RAM 

SISD Single Iostruction Single Data 

SIMD Single Iostruction Multiple Data 

SIP Session Ioitiation Protocol 

SMT Simultaneous Multi-Threading 

SMP Symmetric Multi-Processing 

SoC System on Chip 

SPARC Scalable Processor Architecture 

SRAM Static RAM 

SREGS Scalar Registers 

SRF Scalar Register File 

TSMC Taiwan Semiconductor 

TCP Transport Control Protocol 

TLP Thread Level Parallelism 



List of Abbreviations 

Abbreviation 

UART 

UDLII 

UDP 

ULIW 

UMA 

VACC 

VDEC 

VDP 

VHDL 

VLIW 

VLMAX 

VLSU 

VoIP 

VREG 

VREGS 

VRF 

WAN 

WiFi 

XST 

Expansion 

Universal Asynchronous Receiver Transmitter 

Unified Design Language for Integrated circuit 

User Datagram Protocol 

Ultralong Instruction Word 

Uniform Memory Access 

Vector Accumulator 

Vector Decode Stage 

Vector Datapath Stage 

Very high speed integrated circuit HDL 

Very Long Instruction Word 

Vector Length MAXimum 

Vector Load/Store Unit 

Voice over Packet Internet 

Vector Register access Stage 

Vector Registers 

Vector Register File 

Wide Area Network 

Wireless Fidelity 

Xilinx Synthesis Technology 

xviii 



CHAPTER 1 
INTRODUCTION 

1.1 Problem Formulation 

Ever-advancing technologies have enabled the worldwide convergence of voice and data 

communications in a single network infrastructure. This is the domain of packet-switched 

networks such as the Internet Protocol (1P) which lead to significant savings in cost and 

infrastructure deployment as well as to bandwidth efficiency [1]. Voice over Internet 

Protocol (V 01P) is such an example which uses IP to send digitised voice/data as a 

reliable alternative to traditional circuit-switched communication. In VolP, the voice 

network is integrated into the Local Area Network (LAN) and is connected to the 

traditional Public Switched Telephone Network (PSTN) through a gateway. The gateway 

is a special piece of equipment which handles the translation of signals from the PSTN 

into IP packets, required for the transmission across the Internet and vice versa [2]. Figure 

1-1 depicts the general model of traditional voice and data networks that are separated (a) 

and a VolP network that encompasses both in the same infrastructure. 

Laptop computer 
a: Traditional voice and b: VolP Network 

Figure 1-1: Traditional voice and data networks (a) and VoIP network (b) 

The transition from circuit-switched to packet-switched networks enables applications 

that go beyond simple voice transmission, embracing other forms of data and allowing 

them to all travel over the same infrastructure [2]. Packet-switched networks such as 

1 



J. JWro(/lIctiOIl 2 

Lnternet. Inl ranets, LA s and WANs encode the message and transmit it in the form of 

packets that are block of daw wi th added header and trailer information. Packet networks 

don' t need a ded icated l ink between transmiller and receiver hence there is lower cost per 

communication session as most illlerconnection charges are avo ided. Add itionall y, the 

required infrastruclllre is minimal because all the rea l-time app lications use the ex isting 

network. onsolidation of the different networks in one simplifies the equipment, 

prOlocols, software and hence enables beller service to be provided at low cost and with 

more efficient use of the resources. In the last few years, there has been a shift in large 

corporations migrating their communications into a single network in fra tmcture. The 

Japanese government decided in 2002 to establish an environment for the widespread use 

of IP telephony services_ This dec ision initiated the development of key tcchnologie for 

[P telephony [3]. BT began, since ovember 2006, to replace it ex isting telephone 

network wi th one based enlirely on the Internet Protoco l ( IP). When thi s is completed, the 

telephone system and the internet will share the very same network in frastructure [4]. 

Since the early days of VolP it became clear the need for the creation of a C01l11l10n 

protoco l stack in order to enable the development and spreading of the former. In 1996 

the H.323 [5] recommendation was issued by the Internat ional Telecom1l1unication Union 

(ITU) and revised in 1998 at which time the framework of an IP network was defined. 

H.323 was the basis for the first widely used YolP systems. Lt specifies a number of 

protocols for speech cod ing, call sewp, signalling, data transpon and other areas [6]. The 

archi tecture of the H.323 protocol stack is depicted in Figure 1-2. 

RTP/RTCP 

, 

TCP 

IP .,:. , , 

Data link Layer 

PhyaIcaI Layer 

figure 1-2 : The a rchitecture of H.323 protocol stack 



I. Introduction 3 

The H.323 standard incorporates the following ITV protocols: 

• Audio Codecs: G.7xx Series 

• Video Codecs: H.26x Series 

• RTP: Real Time Transport Protocol 

• RTCP: RTP Control Protocol 

• RAS (H.225): Registration/Admission/Status channel controlled by the 

H.225 gatekeeper protocol 

• H.245: Call (connection) Control, selects the compression algorithms, bit 

rate etc 

• Q.931 (H.255): Call signalling 

• UDP: User Datagram Protocol 

• TCP: Transport Control Protocol 

H.323 provides a complete protocol stack for real-time multimedia, conferencing (voice 

and video) and data transfer [2]. It played a key role in the widespread use of VolP 

services as H.323 gateways are the interface between the PSTN and packet-switched 

networks [7]. These gateways employ speech coding algorithms that encode the audio 

signal prior to transmission and decode it during reception. VolP specifies a significantly 

smaller voice bandwidth than a traditional PSTN that operates at a constant 64kbits/sec 

rate. Speech coding is the process of digitally encoding speech in order to reduce the bit 

rate of its representation during digital transmission, while maintaining an acceptable 

speech quality. Speech coding or compression algorithms provide good quality 

communication over packet based networks and reduce network bandwidth requirements. 

Hence efficient coding of the human speech is of paramount importance. The H.323 

multimedia standard supports a number of common ITV codecs such as G.711 [8], G.726 

[9], G.728 [10], G.729A [11] and G.723.1 [12] for interoperability reasons. These codecs 

have different bit rates, implementation complexity coding delay and voice quality. G.711 

is a compulsory recommendation that specifies a simple Nf.l-law codec that produces toll 

quality speech with low computation complexity, typically of 1MIPS, but requires up to 

64kbits/s bandwidth. G.729A and G.723.1 are the most popular for bandwidth limited 

transmission channels. G.729A was designed for simultaneous voice and data 

applications while G.723.l was indented for low-bit rate videophones [13]. These speech 



1. Introduction 4 

coding algorithms are very computationally intensive and consist of a number of sections 

of code executing in tight loops and processing arrays of data. More details about these 

codecs and speech coding theory are given in Chapter 2. Table 1-1 shows the 

characteristics of the aforementioned codecs that are widely employed in VoIP services. 

With the growing demand for VoIP services, it has become increasingly important to 

implement efficiently these algorithms. Codec optimization minimizes the processor 

loading and enables the system to support more voice channels per silicon area, while 

maintaining low power consumption [7][14). 

Table 1-1: ITU Standards for Voice Compression 

ITV Specification Transmission Rate Computation Mean 
(kbits/s) Complexity Opinion 

(MIPS) Score 
G.711 56/64 I 4.1 

G.723.1 5.3/6.3 16 3.65/3.9 

G.726 32 2 3.85 

G.728 16 30 3.61 
G.729/G.729A 8 20111 3.92/3.7 

This research presents the design and implementation of a high performance custom 

vector processor to accelerate these speech coding algorithms that are used typically for 

voice compression at the gateway of a VoIP network or for multimedia applications. 

More specifically, a controlling CPU (Leon3) and a closely-coupled, configurable, 

extensible vector coprocessor was researched and developed as SoC components [15). A 

vector processor was selected as it is generally accepted that for multimedia processing, 

SIMD execution units with wide datapaths are able to achieve significant speedups 

compared to existing scalar architectures without much of complexity cost [16). The 

vector coprocessor is a hybrid SISD (scalar processor)-SIMD (vector processor). The idea 

of vector coprocessors to be closely coupled to a superscalar CPU has been expressed in 

the late 80's [17). This combined scalar/vector architecture can lead to an order of 

magnitude improvement in workload performance and result in reduced area/power/cost 

per voice channel compared to the existing solutions. 

1.2 VoIP 

VoIP supports near-real-time, multidirectional voice exchanges by employing the Internet 

Protocol as transport technology. VoIP is an exciting technology that has changed the 



J. Jlll roc/IlClioll 5 

way that people communicate and its power and versat ilit y make it increasingly pervasive 

in embedded applications [ 18]. By merging the two traditional network infrastructures; 

Data (LAN) and voice (PSTN) the requi red equipment and ex perti se for the ir 

mai nte nance is simplified. Figure 1-3 shows possible IP te lephony network connections 

and components of a typical YolP syste m. 

T 
Analogy 

• 
Analogy 
Phone • IP Phone 

PC • Mobile 
Phone 

\ 

Gatewa~ • 
GateWa~ • ."Oh 

Gateway • 

Analogy 

• Analog, 

• 
Gateway • Switch • IP Phone 

PC 

• 
Figure 1-3: Simplified representation of possible tP t.elephony network connections 

1.2.1 Description of the VoIP process 

T radit ional voice networks such as PSTN employ di gital switching technology to 

establish a dedicated link (circuit) between nodes and terminals for cO lllmunicati on [2]. 

Each such dedicated circuit cannot be used by other ca llers even if it is not acti ve until it 

is released and a new cal l is set up_ On the other hand, in packet switched networks, the 

digital information is encapsulated in packets th at are routed between nodes over data 

links shared with other packet rrafFic. In each network node, packets are queued or 

buffered resulting in variable delay whereas in c ircuit switching the re is constant delay 

and tran mission bit rate between the node . Packet switching is categorized into 

datagram (connection less) such as Ethernet and IF networks and virtual circuit switc hing 

(connection o rientated) such as Asynchronous Transfer M ode (ATM), X.25 etc [19]. 



I . IlItroduction 6 

The connecti on stages between twO endpoil1ls in a VolP system are illustrated in Figure 

1-4 . These stages incorporate the following functions: signalling proce s, 

encoding/decoding, the transport mechanism, and the switching gateway. In the 

beginning the signall ing process takes place and establi shes the commu nication between 

the handset and the phone network. 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Transpon L_ 
(e-o UOP) 

IP 

........ -(8.0 RTP) 

Encoderl 
decoder 

(eg G .7231) 

----, 

____ ____ _________________ ____ ______ J 

- - - Signalling 
--DataFIow 

Figure 1-4: VolP signalling and transport n ow between endpoints 

The signalling process i responsible for maintaining and terminati ng the connection 

between the nodes and hence it is acti ve for the whole duration of the communicat ion. As 

Vol:!' transmission is packet-based the data/voice message that is sent during the 

communication is digiti zed and separated to frames whi h are encoded by the chosen 

speech co ler to reduce bandwidth requ irements. The resulting bi tstream is then 

packetized and i inserted into the IP network where it follows one or more transpoll 

protocols. Afterwards, it goes through a number of switches and eventually reaches the 

receiving gateway. The switching gateway ensures the packet set' interoperabi lity with a 

differel1l destination IJ>-ba ed system or a PSTN system. At the receiving end, the 

bitstream set is de-packetized, decoded and converted back to an audio signal, after go ing 

through the equi valent speech decoder [2] . 

The communicat ion protocol enab le interoperability of the system and are part of H.323 

or SJ.P protocol Slacks. SIJ> or Se sion Initiation Protocol is an alternati ve to the large, 



I . I lIIroduCfiol1 7 

complex and innexi ble H.323. h was developed spec ilicall y for 1P te lephony and other 

[nternet services but is si mpler than H.323 and can adapt more ea ily to future 

applications. There are several types of ignalling protocol runn ing concurrent ly at 

various levels. The various levels of protocol are categori sed according to their function 

in a standard ised seven layer model that is call ed Open Systems Int erco nnection (051) 

and is depicted in Figure 1-5 [20] . 

OSt Model 

Application layer 

Presentation 
layer 

Session layer 

Transport layer 

Netwrok layer 

Data link layer 

-
Physical layer 

TCPIIP Model 

AfI~I_n 

.~ 
~ 

'j;W-,',' 
Networ1l: 

TCPIIP Protocols 

Ethemot 
IEEE 802.3 

TWIsted Optical 
pair fibre 

Ethemel 
IEEE 80211 

W·fi 

Figure 1-5: OpeD Systems Interconnection (OSO and network protocols 

The three upper layers (Appl ication, Presentation and Se s ion) upport users' appli cati ons 

which are moving through ne twork to be defined in an ab tract higher-level way in order 

to be exchanged between different users. The four lower layers (physica l, Data link, 

Network and Transport) are used for formatting, encoding and transmission of the data 

over the network . An LP network operates in the first three layers and the transpon layer 

passes the data from above to the network layer. The tran port layer iso lates the upper 

layers from changes of the hardware and controls the movement of the packets, performs 

error checki ng ele [6]. Voice and video for real-time co mmunications use UDP (U er 

Datagram Protocol) packet transport instead of TCP (Tran mission Control Protocol) as 

the shonest delivery time is more critical than packet loss. However, the media deli very 

using UDP is sensitive to packet delay and los hence QoS (Qua lity of Service) for 

muhimedi a communications is very imporw.nt [21] . More specificall y, the level of 

intrinsic QoS (latency, jitter, dropped packet rate) for the packet-switched services must 

be determined in order to assure the adequate percei ved QoS [18] . 



1. Introduction 8 

1.2.2 VoIP Applications 

Even though VoIP is a technology for transferring voice over IP packets it is not 

restricted only to that. Broadband IP networks using xDSL (Digital Subscriber Line), 

FTTH (Fibre-to-the-home), and CATV (Cable TV) lines have increased the available 

bandwidth and hence the voice quality in VoIP has improved while making additional 

concurrent visual communication possible [3]. The VoIP infrastructure facilitates an 

entirely new set of networked real-time applications, such as: videoconferencing, remote 

video surveillance, analog telephone adapters, Multicasting, illstant messaging, Gaming, 

Electronic whiteboards etc. Other features added from IP services are automatic rerouting 

of phone calls on the PS1N to a user's VoIP phone connected to a network node. ill this 

way a global-enabled cellphone network is enabled without roaming charges as the user's 

location is seen as just another network connection point. IEEE 802.11 enabled VoIP 

handsets to allow conversation in worldwide WiFi hotspots without compatibility issues 

[2]. 

1.2.3 Current state of the art 

VoIP implementation depends heavily on the evolution of hardware and software 

technology. Much effort has focused on developing techniques to meet the QoS 

requirements and ensuring the performance and reliability of PS1N networks at 

significantly lower cost. Many protocols and standards have emerged in the last year and 

made the VoIP feasible. At the same time, many factors need to be balanced to produce a 

cost effective product with toll quality voice [19]. 

ill a VoIP ASIC, processor selection is very important as this has a direct consequence on 

the allocation of time critical (speech coding, voice activity detection, echo cancellation) 

and non-critical (signalling protocols, operating system, user interface) tasks. In addition, 

it affects significantly the ASIC cost as the core CPU system is typically the most 

expensive piece of silicon IP. The processor is usually a stand-alone 32-bit RISC engine 

with a) custom instruction extensions b) large capacity DSP on board processing and c) a 

loosely-coupled external DSP/coprocessor. The custom instruction extensions or the 

DSP/coprocessor perform the voice processing operations while the RISC processor 



1. Introduction 9 

handles only the control functions enabling this way the main processor to support more 

than one channels. 

A popular architecture in VoIP gateways is the dual core processor organization (c) that 

integrates both RISC and DSP cores within a single package. The software development, 

debugging and the management of inter-processor communication for this solution is 

complicated and time consuming. Another popular solution is the RISC/DSP (b) dual 

execution units but a single instruction set architecture. In this way, there is no need for 

inter-processor communication and hence smaller overhead and better voice quality [19]. 

A targeted architecture therefore that can perform efficiently the mathematically intensive 

operations, has zero-overhead loops, barrel shifters, modulo addressing can improve the 

system performance dramatically. Dedicated on-chip DSP/coprocessor memories keep 

the algorithm coefficients and voice sample data on-board, maintaining the processing 

throughput. Additionally, an integrated solution simplifies the overall complexity and 

reduces time to market [22]. 

1.3 Programmable Architectures 

1.3.1 General Purpose Processors 

In the past, general-purpose processor design was driven mostly for non-real-time, stand

alone applications which were largely nonnumeric with little inherent parallelism. The 

proliferation of multimedia-rich applications that involve significant real-time processing 

of continuous media data streams has forced profound changes in computer architecture. 

Since there are no limitations in the semiconductor technology, general-purpose 

processors can significantly accelerate media-intensive processing with relatively simple 

architectural support and the addition of instruction set extensions [16]. Over the last 

years the major vendors of general-purpose processors have announced the addition of 

instruction extensions in their ISAs to increase the performance of the multimedia 

applications. These instruction extensions are based on a subword execution model. This 

model uses the whole width of the processor datapath by processing smaller data types, 

typically found in signal processing (8- or 16-bits) in parallel by executing common 

multimedia operations [23]. Examples of general-purpose processors with added 

multimedia extensions are Intel's x86 with MMX [24] and SSE [25] extensions, Sun's 



1. Introduction 10 

UltraSparc enhanced with VIS [26], PowerPC with Altivec [27], Silicon Graphics' MIPS 

V with MDMX [28], Compaq's Alpha with MVI, and Hewlett-Packard's PARISC with 

MAX2 [29] extensions. 

1.3.2 DSP Processors 

The software implementation of speech codecs on DSP processors is a popular choice as 

these processors are more "tuned" to signal processing algorithms better than general

purpose processors. This is due to the advances in DSP architecture that effectively 

execute the repetitive computations on data streams present in these algorithms through 

mUltiple functional units that operate in parallel and SIMD operations. These techniques 

are performed using mechanisms with lower complexity than general-purpose processors 

and speed up significantly the execution of these applications while keeping power 

consumption low [30]. Several projects [31] [32] [33] employ the Texas Instruments 

DSPs to implement G.723.1 in real time after applying some iterative refinement and 

optimization on the reference C code. Motorola implements the G.729A on the StarCore 

SCI40 [34] after optimizing the C reference code of the algorithm and Samsung with its 

SSPI820 DSP implements the G.723.1 [35]. Another optimized solution is integrating 

conventional general-purpose rusc processors and DSP cores with dedicated 

functionality into a single, unified architecture such as the Hitachi SHx-DSP [36] and the 

Infineon TriCore [37]. 

1.3.3 ASIC (Embedded) processors 

In general, application specific hardware design is the most popular candidate to meet 

cost, performance and power demands for VoIP applications. ASIC implementations can 

be divided in to the following three categories: 

1.3.3.1 Configurable processors 

In high-speed communication system design the simplest and most common architecture 

use embedded 32-bit processors such as (ARM, MIPS, PowerPC etc) or DSPs in either 

discrete or integrated form. Though this provides a lot of flexibility and general 

applicability, the processing of some software-based algorithms limits the system 

performance to a great extent. In addition, DSPs may not be as attractive in 



I. Introduction 1I 

computationally expensive operations such as error correction algorithms or filters where 

hardware implementations tend to be more efficient. On the other hand, ASICs achieve 

very high performance but require significant design cost and effort and offer no 

flexibility [38, 39]. An alternative architecture that promises high performance, 

extendibility, flexibility, code size and power dissipation reduction and also lower cost is 

the configurable processor. Configurable processors can be modified and their ISAs 

extended to target a specific application domain by changing the processor's feature set in 

order to accelerate the critical parts of the algorithm. A processor can be configured in 

three general ways: 

• By altering the processor's predefined architectural framework such as cache 

size, number of registers, multipliers or barrel shifters etc. 

• By adding custom, high-performance interfaces and streaming memories 

• By adding custom instruction extensions to optimally map to the target 

application 

Configurable processors are typically delivered as synthesizable RTL ready to be 

synthesized and integrated into an FPGA or SoC design. They usually come with vendor 

tools, EDA synthesis scripts and verification environments to verify the correct operation 

on a target system [40]. Examples of configurable processors employed for audio 

processing apart from the vector processor of the current work are the Tensilica'a Xtensa 

[41] 32-bit microprocessor that has the ability to run any C or c++ programs and add 

execution units for the implementation of the instruction extensions to speed the targei 

application. A pioneer in this field is ARC International with its ARC 700 family [42] 

architecture with 128-bit SIMD configuration. Other vendors include Silicon Hive [43] 

with UltraLong Instruction Word (ULIW) architecture and so on. 

1.3.3.2 Reconfigurable Processors 

Reconfigurable processors adapt dynamically their microarchitecture to address the 

application requirements. This type of processor utilizes microcode and custom 

configured hardware to improve performance. The microcode is utilized to perform both 

the reconfiguration process and the 'execution of the code and its frequently used parts are 

located permanently in a fixed part of on-chip storage [44]. In the past reconfigurable 



1. Introduction 12 

architectures referred exclusively to the gate level (fine-grain) with every computation 

being built up from the Boolean gates. An example of such a device which functions at 

this level is the FPGA device. An architecture can also be reconfigured on 

microarchitecture or architecture level. These levels of computational hierarchy are 

implemented by coarser basic computational units that are incorporated in FPGA devices. 

The FPGA can contain hard (e.g. multipliers) or soft (e.g. components of a standard 

library) macros to customize its functionality. The hard macro is a fixed ASIC core 

embedded into the fabric of the FPGA while the soft macro is a sequence of computations 

implemented as fixed entities on the FPGA fabric [45). Examples of reconfigurable 

architectures used for multimedia applications at the microarchitecture level are the 

PipeRench [46) and RaPiD [47) processors whereas examples at the architecture level are 

the RAW project [48) and Pleiades of Berkeley University [49). Reconfigurable 

architectures offer flexibility, functional efficiency of hardware and software 

programmability, logic capacity of programmable devices and advanced automated 

design techniques. 

1.3.3.3 Fixed Processors 

This category incorporates fixed architecture processors typically integrated in an ASIC 

infrastructure (buses, local memories, coprocessors). In order to achieve high 

performance modifications are usually performed on either the C code or the assembly of 

the application in order to take full advantage of the processor architecture. Examples of 

fixed ASIC processor that realise speech codecs are the ARM9 which implements the 

G.723.lNG.729AB codecs [50) or the G.729E codec [51) by using optimized ARM 

assembly code. Another example is a low power DSP core that implements G.723.1 

codec within the H.324 standard [52). 

1.4 Hardwired Architectures 

There are very few instances of research projects focused on the acceleration of the 

G.723.1 and G.729 standards using configurable, extensible, vector architectures as 

proposed in this work. A suggested architecture for the hardware implementation of parts 

of both codecs was proposed by Olausson and Liu [14). Their paper briefly discusses 

three hardware structures to accelerate conditional moves and branches before or after the 



1. Introduction /3 

calculation of the 32-bit absolute value (L_abs) of the 6.3kbitsls G.723.1. Another more 

focused approach was the hardware/software co-design of the G.723.l by Mishra et al 

[7]. In that work parts of the codec (pitch estimator, formant perceptual weighting filter 

and harmonic noise shaper) were implemented in hardware using a single MAC unit that 

operates in parallel to a DSP processor which executes the rest of the algorithm. 

Additionally the normalisation operation is implemented in hardware. 

The hardware implementation of the speech codecs is not a common practice as the C 

reference codes have to be ported to VHDL and this is a quite tedious and time 

consuming task. Another problem is that the arithmetic logic and especially the 

multipliers are very complex and their implementation in an FPGA will require many 

CLBs (160 CLBs on a XILINX Virtex FPGA per mUltiplier approximately). Since the 

codecs are typical DSP codes, their execution on DSP processors generally leads to much 

better performance. On the other hand, ASICs seem a better solution for multi-channel 

codec implementation but the integration of several DSP cores on an ASIC to offer 

multiple-channel capabilities is a more effective and appealing solution [53]. 

1.5 Research contribution and overview 

The main objective of this work was to research and develop a configurable, extensible 

vector embedded CPU architecture for accelerating speech coding algorithms employed 

in VoIP networks. This research was funded by the Engineering and Physical Sciences 

Research Council (EPSRC) under grant GRlS44976/01. The contributions of this project 

are outlined in this section. 

At the beginning of this research and in order to investigate the potential acceleration, 

both C reference codes were profiled to identify the computation workload distribution. 

This is described in section 4.3.1 of this thesis. The results showed that the most CPU

intensive parts of the code were in the DSP emulation functions of the reference 

implementation. Further studying of the code revealed that a significant number of the 

basic operations appear in data-parallel loops. It was apparent that the creation of vector 

instructions that closely match these basic operations could lead to high performance. 

This is a major contribution of this work. 



1. Introduction 14 

The next task was to define the custom vector instructions and the data-level-parallel 

architecture of the vector coprocessor. Parallel exploitation is essential for the efficient 

execution of DSP codes. However, the reference implementations have to be fully 

vectorized in order to benefit from data-parallel processing which is the primary 

capability of the proposed vector architecture. The custom vector instructions were 

represented by C macros and were introduced into the C reference codes to implement the 

data-level-parallel inner loops. As speech coding algorithms consist of small loops or 

kernels that dominate overall processing time it was important to perform manual vector 

assembly coding and hand optimization of such tight loops [16]. In order to check the 

correct operation of the vectorized speech codecs after the vectorization of every loop the 

codes were verified against the ITU test vectors by comparing the output bitstream of the 

optimized code with the original one. The vectorization methodology is described in 

sections 4.3.2 -4.3.4 and the full vectorization of both the G.723.1 and G.729A speech 

coders and decoders is another major contribution. 

The remainder of the code that consists of the non-vectorizable loops and other parts of 

the code which contain basic DSP operations was optimized through the addition of 

custom scalar instructions. Again algorithmic equivalence between the optimized and the 

original (reference) code was established. The scalar optimization and the verification are 

presented in sections 4.3.5 and 4.3.6 respectively. In addition, both vector and scalar 

instructions are described in Chapter 5 and are listed in more detail in Appendix A. The 

joint scalar optimization and vectorization of the reference ITU-T codes is a third 

contribution of this work. 

The next step was to evaluate the performance of the vector architecture before it is 

implemented in hardware. For this purpose, the SimpleScalar toolset was used to evaluate 

the coprocessor architecture under study. The simulator was modified and extended to 

include the added state (coprocessor scalar and vector state) and the scalar and vector 

extensions. The extended instructions that were represented in C macros were replaced 

with inline assembly and executed on the simulator. The modifications of the 

SimpleScalar simulator are described in sections 4.3.7 and 4.3.8. Simulations were run for 

all ITU-T input vectors and for vector lengths of up to 128 16-bit elements. Results, in the 

form of relative dynamic instruction count, were taken for the vector only and for full 

optimization (scalar and vector) of both speech coding algorithms. These results show the 



1. Introduction 15 

perfonnance metric improvement which the instruction-accurate model of the vector 

coprocessor achieves. The results are presented on section 4.4 and Appendix C. 

Methodologies for the introduction of scalar and vector state and addition of instructions 

in the SimpleScalar infrastructure are another contribution of this work. 

Another task of this project was the modelling in SystemC of the vector instruction set 

extensions and its subsequent synthesis to Iow-level RTL in order to be introduced to the 

multi-parallel, configurable SS_SPARC processor. This work was undertaken to study 

faster routes to silicon of the SIMD extensions, compared to the established RTL flow 

and is presented in paper [54] and is discussed in section 7.8. The SystemC model is the 

behavioural description of the same vector instructions that were introduced in the speech 

codecs. The "packing" of the SIMD ISA was verified by using the !TU test vectors to 

validate their functionality. The obtained results from the statistical power analysis results 

for both the SystemC-accelerator and the RTL-accelerator synthesis are presented in 

section 7.8.3. This is a major contribution of this work as it compares the benefits of 

synthesizing a configurable, extensible SIMD datapath with that of a highly optimized 

RTL-based implementation. 

The main author's contribution to the research project was the full design and 

implementation of the proposed vector datapath of the vector processor. The vector 

datapath was verified by using an FLI-based testbench and this process is described in 

section 7. I. The vector processor was attached to the fifth stage (memory stage) of the 

main Leon3 scalar processor. Modifications were made to the pipeline of the scalar core 

and extra decode logic was added to accomodate the vector unit. The microarchitecture of 

the vector datapath and its interfacing to the Leon3 is explained in Chapter 6. Finally, 

statistical power analysis was perfonned for the vector datapath and the vector 

coprocessor as a whole for different configurations (VLMAX, frequency) in order to 

explore their effects on area/power/frequency results. These results along with the layouts 

ofthe vector datapath and vector processor are presented in sections 7.4 to 7.7. This is the 

final and major contribution of this work. 



I. Introduction 16 

1.6 Thesis Outline 

The remainder of this thesis is organized as follows. In Chapter 2 a background section in 

speech coding is given describing the general models of speech representation, coding 

schemes and types of speech coders that exist. In addition, the characteristics and 

principles of the two !TU standards that are used in this project namely, the G.729A and 

G.723.1 standards are presented. Chapter 3 gives an overview of parallelism including the 

limitations imposed from dependences and description of their types. Additionally the 

three different types of parallelism are introduced along with the appropriate processor 

architectures for their efficient exploitation. Emphasis is given to DLP which is the 

primary form of parallelism addressed in this project. This form of parallelism is most 

effectively exploited with vector architectures. Chapter 4 discusses the optimization 

methodology and the performance improvement achieved with the introduction of custom 

scalar and vector ISA extensions in both speech coding standards. Following that it 

presents the modifications made to the SimpleScalar instruction-set simulator to 

incorporate a large number of scalar and vector instruction extensions. Finally this 

chapter presents the performance benefits achieved via the introduction of the 

aforementioned instructions for different vector lengths and workloads. In Chapter 5 the 

vector coprocessor architectural state and programmer's model are presented followed by 

the introduction of the Leon processor and the overall system architecture. Chapter 6 

gives a detailed description of the pipeline organization and its constituent components. 

This is followed by a brief description of the VLSU which is part of another research 

work. The modifications to the Leon3 pipeline are then presented to enable the tight

coupling of the vector coprocessor. Chapter 7 deals with the verification, synthesis and 

back-end flow of the vector datapath and vector processor as a whole. This is followed by 

the SystemC modelling and the parametric ESL implementation of the vector datapath. 

The latter was then inserted in the exposed vector engine of the SS _ SP ARC processor. 

The Chapter 7 also includes a detailed description of the SS _ SP ARC ASIC processor. 

Finally this chapter presents the statistical power analysis results for both the SystemC 

and RTL-designed vector datapaths. The Conclusions chapter discusses suggestions for 

further research, potential applications and additions to this work. Appendix A includes 

the details of the vector processor instruction set. Each instruction is presented 

individually with its format, a short description of the instruction's operation and a 



I. Introduction 17 

software example. Appendix B includes the internal control and data signals and their 

combinations as used in the vector pipeline. Finally, the performance improvement results 

at function level of both speech codecs obtained from the first year's work are presented 

in Appendix C. 



I. Introduction 

1.7 References 

[I] Todd Wynia, " Laying the foundation for VolP: A perspective on platfonns, 
protocols and technologies," in Embedded Computing Design, Spring 2001. 

[2] Jim Doherty and Neil Anderson, Internet Phone Services Simplified (VoIP): 
Cisco Press, 2006. 

18 

[3] M. Mineo, A. Niimura, H. Ooboshi, et a!., "IP Telephony Tenninal Solutions for 
Broadband Networks," HitachiReview, vo!. 51, June 2002. 

[4] Steven Cheny, "Nothing but Net," in IEEE Spectrum. vo!. 44, January 2007, pp. 
18-21. 

[5] ITIJ-T Recommendation H.323, "Packet-based Multimedia communication 
systems," 1998. 

[6] Andrew S. Tanenbaum, Computer Networks, 4th ed.: Pearson Education 
International, pp. 685-691, 2003. 

[7] S. M. Mishra and A. Balaram, "Efficient hardware-software co-design for the 
G.723.1 algorithmtargeted at VolP applications," in IEEE International 
Conference on Multimedia and Expo, 2000, pp. 1379-1382. 

[8] ITIJ-T Recommendation G.71I, "General Aspects of Digital Transmission 
Systems," 1989. 

[9] ITIJ-T Recommendation G.726, "40, 32, 24, 16 kbitls Adaptive Differential Pulse 
Code Modulation (ADPCM)." 

[10] ITIJ-T Recommendation G.728, "Coding of Speech at 16 kbitis using Low-Delay 
Code Excited Linear Prediction." 

[11] ITU-T Recommendation G.729A, "Coding of speech at 8 kbitls using conjugate
structure algebraic-code-excited linear-prediction (CS-ACELP)," 3/96. 

[12] ITIJ-T Recommendation G.723.1, "Dual Rate Speech coder for multimedia 
communications transmitting at 5.3 and 6.3 kbitis," 3/96. 

[13] R. V. Cox and P. Kroon, "Low bit-rate speech coders for multimedia 
communication," in IEEE Communications Magazine. vo!. 34, December 1996, 
pp. 34-41. 

[14] M. Olausson and D. Liu, "Instruction and hardware accelerations in 
G.723.1(6.3/5.3) and G.729," in the 1st IEEE International Symposium on Signal 
Processing and Information Technology, 2001, pp. 34-39. 

[15] V. A. Chouliaras, "Vector Coprocessor for Speech Coding: Case of Support," 
Engineering and Physical Sciences Research Council (EPSRC) - GRlS44976/01, 
Loughborough University 2002. 

[16] K. Diefendorffand P. Dubey, "How Multimedia Workloads Will Change 
Processor Design," in IEEE Computer. vo!. 30, September 1997, pp. 43-45. 

[17] Francisca Quintana, Roger Espasa, and Mateo Valero, "A Case for Merging the 
ILP and DLP Paradigms," in 6th Euromicro Workshop on Parallel and 
Distributed Processing, Madrid, Spain, 1998, pp. 217-224. 



1. Introduction 

[18) William C. Hardy, VoIP Service Quality: Measuring and Evaluating Packet
Switched Voice: McGraw-Hill Networking, 2003. 

[19) J. Dionne and B. Davis, "Embedded VoIP implementations using SIP," inEE 
Times Asia, 16 September 2004, 
www.eetasia.com/ART_8800346844_499491_TA-e55eI221.HTM. 

[20) Andy Bateman, Digital Communications: Design for the real world: Addison
Wesley, 1999. 

[21) Heory Sinnreich and Alan B. Johston, Internet Communications Using SIP: 
Delivering VoIP and Multimedia Services with Session Initiation Protocol, 
Second ed.: WHey, 2006. 

[22) A. M. Kondoz, "Digital Speech: Coding for Low Bit Rate Communications 
Systems," John Wiley & sons, 1994, pp. 117-123. 

[23) T. M. Conte, P. K. Dubey, M. D. Jennings, et aI., "Challenges to Combining 
General-Purpose and Multimedia Processors," in IEEE Computer. vol. 30, 
December 1997, pp. 33-37. 

19 

[24) A. Peleg and U. Weiser, "MMX Technology Extension to the Intel Architecture," 
in IEEE Micro. vol. 16, August 1996, pp. 42-50. 

[25) K. Diefendorff, "Pentium HI = Pentium IT + SSE: Internet SSE Architecture 
Boosts Multimedia Performance," in Microprocessor Report. vol. 13, March 
1999. 

[26) Marc Tremblay, J. Michael O'Connor, Venkatesh Narayanan, et aI., "VIS Speeds 
New Media Processing," in IEEE Micro. vol. 16, August 1996, pp. 10-20. 

[27) K. Diefendorff, P. K. Dubey, R. Hochsprung, et aI., "AltiVec Extension to 
PowerPC Accelerates Media Processing," in IEEE Micro. vol. 20, March 2000, 
pp. 85-95. 

[28) "MIPS Digital Media Extension," Instruction Set Architecture Specification, 
http://www.mips/MDMXspec.pc, October 1997. 

[29) R. B. Lee, "Subword Parallelism with MAX-2," in IEEE Micro. vol. 16, August 
1996, pp. 51-59. 

[30) J. H. Moreno, V. Zyuban, U. Shvadron, et aI., "An innovative low-power high
performance programmable signal processor for digital communications," IBM 
Journal of Research and Development, vol. 47, pp. 299-326, 2003. 

[31) AZ.R. Langi, "Rapid development ofa real-time speech coder on a 
TMS320C54x DSP," in Proceedings of the IEEE Canadian Conference on 
Electrical and Computer Engineering, 2002, pp. 1045-1048. 

[32) Y. Choi, C. Ahn, and T. Kang, "Implementation of a Multi-channel G.723.1 
Annex A using DSP," in International Conference on Consumer Electronics 
(ICCE), 2002, pp. 320-321. 

[33) Y. Huang, Y. Juan, S. Zhang, et aI., "Implementation ofITU-T G.723.1 Dual 
Rate Speech Codec based on TMS320C601 DSP," in the Proceedings of the 5th 
International Conference on Signal Processing (ICSP), Beijing, China, August 
2005. 



1. Introduction 

[34] R. Ungureanu, B. Costinescu, and C. nas, "ITU-T G.729A Implementation on 
StarCore SCI40," Application Note, Motorola 200l. 

[35] S. Lee, S. Park, and Y. Jang, "Cost-effective implementation ofITU-T G.723.1 
on a DSP chip," in Proceedings of J 997 IEEE International Symposium on 
Consumer Electronics, December 1997, pp. 31-34. 

20 

[36] M. Schlett, "The RlSC challenge in signal processing," in Proceedings of the 3d 
of the IEEE International Conference onElectronics, Circuits, and Systems, 
October 1996, pp. 550-553. 

[37] H. Shi, "RlSC+SlMD=DSP," in Proceedings of the IEEE International 
Conference on Acoustics, Speech and Signal Processing (ICASSP), June 2000, 
pp. 3211-3214. 

[38] A. Wang, E. KiIIian, D. Maydan, et aI., "Hardware/software instruction set 
configurability for system-on-chip processors," in Proceedings of the 38th IEEE 
conference on Design automation, Las Vegas, United States, 2001, pp. 184-188. 

[39] S. Leibson and J. Kim, "Configurable processors: a new era in chip design," in 
IEEE Computer. vol. 38, July 2005, pp. 51-59. 

[40] David Fritz, "Configurable Processors: Ready for Prime Time," in RTC, 
http://www.rtcmagazine.com/home/article.php?id=100066. January 2004. 

[41] R. E Gonzalez, "Xtensa: A configurable and extensible processor," in IEEE 
MIicro, MarchlApril2000, pp. 60-70. 

[42] "ARC Cores Ltd, www.arc.com/subsystems ... 

[43] Tom R. HalfhiIl, "Silicon Hive breaks out," in Microprocessor Report, December 
2003. 

[44] G. Kuzmanov, G. Gaydadjiev, and S. Vassiliadis, "The MOLEN processor 
prototype," in Proceedings of the 12th Annual IEEE Symposium on Field
Programmable Custom Computing Machines, 2004, pp. 296-299. 

[45] R. Kastner, A. Kaplan, S. Ogrenci Memik, et aI., "Instruction Generation for 
Hybrid Reconfigurable Systems," ACM Transactions on Design Automation of 
Electronics Systems, vol. 7, pp. 605-627, October 2002. 

[46] Y. Chou, P. PiIlai, H. Schmit, et aI., "PipeRench Implementation of the 
Instruction Path Coprocessor," in Proceedings of the 33rd annual ACM/IEEE 
international symposium on Microarchitecture, Monterey, California, 2000, pp. 
147-158. 

[47] C. Ebeling, D. C. Cronquist, and P. FrankIin, "RaPiD-reconfigurable pipelined 
datapath," in Proceedings of the 6th International Workshop on Field
Programmable Logic, Smart Applications, New Paradigms and Compilers, 1996, 
pp. 126-135. 

[48] M. B. Taylor, J. Kim, J. Miller, et aI., "The Raw Microprocessor: A 
Computational Fabric for Software Circuits and General-Purpose Programs," in 
IEEE Micro. vol. 22, March 2002, pp. 25-35. 



1. Introduction 

[49) M. Wan, H. Zhang, V. George, et aI., "Design Methodology of a Low-Energy 
Reconfigurable Single-Chip DSP System," Journal ofVLSI Signal Processing 
Systems, vol. 28, pp. 47-61, May 2001. 

[50) Y. Choi and G. Lee, "Real-time implementation ofG.723.1NG.729AB on a 
RISC processor for personal JP telephony devices," in Proceedings of the 9th 
International Symposium on Consumer Electronics(ISCE), South Korea, 2005, 
pp. 20-24. 

[51) A. Tripathi, S. Verma, and D. D. Gajski, "G.729E Algorithm Optimization for 
ARM926EJ-S Processor," University ofCaIifomia, lrvine 2003. 

[52) H. Okuhata, M. H. Miki, T. Onoye, et aI., "A Iow-power DSP core architecture 
for Iow bitrate speech codec," in Proceedings of the IEEE International 
Conference on Acoustics, Speech and Signal Processing, Seattle, USA, May 
1998, pp. 3121-3124. 

[53) C. Plessl and S. Maurer, "Hardware/Software Codesign in speech compression 
applications," in Institut for Technische Informatik und Kommunikationsnetze 
Zurich: Eidgenossische Tecbnische Hochschule, February 2000. 

21 

[54) V. A_ ChouIiaras, K. Koutsomyti, T. Jacobs, et aI., "SystemC-defined SIMD 
instructions for high perfonnance SoC architectures," in I 3th IEEE International 
Conference on Electronics, Circuits and Systems, Nice, France, December 2006, 
pp. 822-825. 



CHAPTER 2 
SPEECH CODING THEORY 

2.1 Introduction 

As already identified there is a major trend toward integrating voice-related applications 

in the context of multimedia applications such as VoIP networks, simultaneous voice and 

data (DSVD) applications, speech recognition, videoconferencing and so on [I]. This is 

consistent with the growing demand for wireless and satellite communications which 

require enhanced privacy and high bandwidth. To meet these needs the speech signal is 

transformed to digital format in order to be processed, stored and transmitted efficiently 

under software control. Digital speech exhibits flexibility, ability for 

encryptionldecryption and error correction, however requires high transmission 

bandwidth and storage capacity. To reduce these requirements, speech coding or speech 

compression has emerged on the research field concerned with efficient digital 

representations of voice signals for high-quality speech at low data rates [2]. Even though 

the sampling rate cannot be lower than twice the bandwidth of analog speech, the past 

decades several methods have been proposed to represent the sampled waveform with a 

minimum number of bits while preserving its perceptual quality. These methods have 

been adopted in a number of speech coders standards that are based on an optimum 

tradeoff between efficient low-bit transmission, perceptual quality for the available 

bandwidth and a combination of other objectives according to the requirements of every 

application [2] [I]. In the next sections, a brief description of the speech coding 

objectives and requirements will be given along with the speech production system. In 

addition, the main coding strategies will be introduced and the two ITV standards used in 

this research will be presented. 

2.2 Speech Coding Objectives and Requirements 

There are several objectives and requirements that a speech coder must meet for specific 

target applications. These requirements define the basic bitrate, speech perceptual quality, 

22 



2. Speech Coding Theory 23 

algorithmic complexity, cost and system delay of the selected speech codec. Therefore, 

these influencing factors require careful consideration in order to converge towards an 

optimum compromise between these often conflicting objectives. Speech quality and bit 

rate are two factors that directly conflict with each other. The lower the bit rate of the 

speech coder the higher the signal compression and the more the speech quality 

degradation. Public Switched Telephone Network (pSTN) and associated systems such as 

CCITT require high quality of encoding usually referred to as 'toll quality'. For private 

commercial networks and military systems, the quality factor may be reduced to lower 

processing and bandwidth requirements. Although absolute quality is often specified, 

sometimes it is compromised for a lower standard if other factors are allocated a higher 

overall rating. In general, in a mobile radio system it is the overall average quality that is 

the deciding factor and takes into account both good and bad transmission conditions. 

Other important factors for the choice of a speech coding algorithm is the coding delay, 

the immunity to error, the algorithm complexity and the implementation cost [3]. 

Coding delay includes algorithmic (the buffering of speech for analysis), computational 

(time taken to process the stored speech samples) and transmission contributions. Only 

the first two concern the speech coding subsystem though sometimes the transmission can 

be initiated before the algorithm has completed processing all the information in the 

analysis frame. In this case, the encoder starts transmission of the spectral parameters as 

soon as they become available. Low delay is essential if the major issue of echo is to be 

minimised. For mobile system applications and satellite communication systems echo 

cancellation is already included as substantial propagation delays exist. In PSTN, where 

the delay is very small, extra echo cancellers will be required if coders with long delays 

are introduced [3]. The other problem with the delay is the subjective annoyance factor. 

Therefore, all the standardised speech coders have specific requirements for the delay. As 

it is known [4], the speech coding bandwidth occupies only a small fraction of the total 

channel capacity, the rest is used for Forward Error Correction (FEe) and signalling. For 

mobile connections which suffer from both random and burst errors, a coding scheme's 

built-in tolerance to channel errors is essential for acceptable communication quality. By 

utilising built-in robustness, less FEe can be used resulting in higher source coding 

capacity. This trade-off between quality and robustness is a difficult task and it is 

considered from the beginning of the speech coding algorithm design. In order to achieve 



2. Speech Coding Theory 24 

a good average overall perfonnance more sophisticated algorithms are created with 

increased computational complexity. Therefore, the real-time implementation of such 

algorithms under the additional constraints of size and power consumption is a major 

issue and several techniques are employed to minimize multiple conflicting objectives 

[4]. Before we describe the basic model of a vocoder and the various methods that exist, 

we need to describe the principles ofthe speech production model. 

2.3 Speech production system 

The diagram of the main organs of the human anatomy involved in the speech production 

mechanism is shown in Figure 2-1. The compressed air forced from the lungs to the vocal 

apparatus pushes apart the vocal cords and creates an opening !mown as the glottis. When 

the air passes through the glottis the pressure decreases and the opening closes. The 

repetition of this process causes the vibration of the vocal cords and a high-energy quasi

periodic speech wavefonn is produced and sent into the mouth and nose cavities. The 

excitation of the vocal cords is filtered through the vocal apparatus which operates like a 

spectral shaping filter with a transfer function that represents the spectral shaping action 

of the glottis, vocal tract (pharynx and mouth cavity), lip radiation characteristics and so 

forth [4] [5]. 

Hz 
Nasal 

8192 
""~ 

4096 

2048 Typical 

T' """" 1024 range of 

"""" 512 T,,,,,, 
"" ""'~I 

256 vocal cord 

128 Contralto 
d~~Ofl 

"""" 64 

32 

Figure 2-1: Diagram of the human organs involved in speech production and the Spectral 

Range of Speech 

The excitation of the vocal apparatus with glottal vibrations generates voiced sounds and 

the vibration fundamental frequency is !mown as pitch frequency. The unvoiced sounds, 

such as whisper or aspirate, are lower-energy signals as the vocal cords do not participate 



2, Speech Coding Tll em'v 25 

and the excitation behaves like noise generator. These sounds are produced by the 

deli berate ly constricted air fl ow through rhe mouth . Constrict ions can be produced by the 

tongue, the position of the velum, the coupling of the voca l tract wit h the nasa l cavity, the 

teeth and the lips [4] [5]. 

Speech can be class ified as voiced (e .g. laI, IkI, etc). un voiced (e.g. /sh/, /hl etc) or mi xed. 

As mentioned above, voiced speech is quasi-peri odic in the time-domain while un voiced 

speech is random-like. The pitch pe riod that is identifi ed by the positions of the largest 

peaks of the quasi-peri odic segment s of the voiced signa ls, consists of approximate ly 80 

samp les [2]. Pitch frequency that is used alre rnati vely wit h the term pitch period, typica ll y 

ranges for male speaker between 40- 120Hz whereas for fema le speakers is much higher 

and ranges between 300-400Hz [3]. In the frequency-domain the voiced speech is 

harmonica ll y structured and its spectrum is characteri zed by it s fine and formam 

structure. The fine harmonic structure, a lso known as long-term correlation, is attributed 

to the vibrating vocal cords. The formant structure or spectral envelope or short-term 

correlation is attributed to the interaction of the excitation and the vocal tract and is 

characterized by a set of widened but distinctive spectral needles (peaks) that are multiple 

of the pitch period and are called fo rmants. Typica lly for an average vocal tract, three to 

fi ve spectral envelope peaks can be observed which appear usuall y around 500Hz, 

1500Hz and 2700Hz and represent the resonances of the vocal tract. The amp litudes and 

locations of the first three formants are vita l for the speech synthesis and perception [2]. 

In contrast, the un voiced speec h does not have a formant structu re and exhibit a more 

high-pass natu re wit h peak around 2500Hz. In addi tion the energy of un voiced speec h is 

generall y lower than that of voiced speec h [4]. 

Excitation model Spectral shaping Radiation model Spee 

Elz} filter Hlz) R(z) - ch Slz) 

Figure 2-2: General speech production model 

The speech reproduction i based on the elttracti on of the key information of the speech 

s ignal [5]. The model of the peech production proce s i based on digi tal techniques and 

a simplified bl ock di agram is shown in Figure 2-2. rn thi s model, the input is the 

exc itation signal wh ich is generally approximated by an impulse sequence for voiced 



2. Speech Coding Theory 26 

speech or random noise for unvoiced speech. The excitation signal denoted by E(z} is 

filtered through a time-varying linear digital filter that represents the combined spectral 

contributions of the glottis, vocal tract and lip radiation characteristics. The filter has a 

transfer function H(z} that can be approximated by an all-pole model and whose 

coefficients directly depend on the time varying geometry of the vocal apparatus. This 

speech production model can produce high quality synthetic speech if the underlying 

model parameters, speech power spectral envelope and the excitation model are 

appropriately chosen (3) (5). Even though the process of speech production is known, the 

perception of the speech by the human auditory system remains a puzzle. It is stilI 

unexplained how the recognition between voiced and unvoiced sounds takes place, the 

ability to locate the position of a sound source (binaural hearing) or to separate a specific 

voice from a noisy background (cocktail party effect) (2). Hence there is ongoing' 

research in all these areas. 

2.4 Coding strategies 

Speech coding schemes can be broadly divided into three main categories: Waveform 

coders, Hybrid coders and Vocoders. The general operations that these coding schemes 

perform are to analyse the signal, remove the redundancy and efficiently code its non

redundant parts in order to preserve its perceptual quality. These coding schemes are 

classified based on their encoding methodology and each has optimal operation within a 

certain bitrate region (3). 

2.4.1 Waveform Coders 

Waveform coders are signal independent as they don't exploit any specific properties of 

speech. They are designed to work with any input signal that is appropriately limited in 

amplitude and bandwidth. This has the advantage that waveform coders can also encode 

other types of information such as signaIling tones, voice-band data, or even music. By 

preserving this generality, their coding efficiency is quite modest and limited to rates 

above 16kbitls (4). However, they are stiIl popular due to their simplicity and ease of 

implementation. Waveform coders are further divided into time-domain and frequency

domain. The most weIl known representative for the time-domain is the first speech 

encoding standard 64kbitls Pulse Code Modulation (PCM), the 32kbitls Adaptive 



2. Speech Coding Theory 27 

Differential PCM (ADPCM) that has been standardised by the nu Recommendation in 

G.72l and the Adaptive Delta Modulation (ADM) [3]. Time-domain coders utilise the 

redundancy in the speech waveform by exploiting the correlations between adjacent 

samples and encode only the difference between them. In addition, they use predictors at 

the receiver end to reduce the variance of the encoded signal and consequently the 

number of bits needed to represent it. Frequency-domain waveform coders exploit the 

redundancy of the signal in the transform domain. The signal is split into a number of 

sub-bands and each sub-band is encoded by using a different number of bits. The various 

methods differ in the way they represent the short-time power spectrum of speech and 

also in the perceptual properties of the human ear. The most well known frequency

domain coders are the Sub-Band Coding (SBC) and the Adaptive Transform Coding 

(ATC) [4]. 

2.4.2 Voice Coders (Vocoders) 

Vocoders lie at the opposite end of waveform coders. They deal with speech-specific 

signals and in particular the physical principles behind speech and as such they do not 

attempt to reproduce the input waveform [2]. Hence, the performance of vocoders 

degrades significantly for nonspeech signals. The design and implementation of a 

vocoder is based on the speech production model that described in section 2.3. This 

model represents the human speech production mechanism and specifies the basic 

parameters needed to be extracted from the input speech signal in order to reproduce it as 

faithfully as possible [4]. Vocoders traditionally operate at rates below 4.8kbitsls which is 

their main advantage however the produced speech sounds often crude and synthetic. 

The preservation of the speech power spectral envelope and the preservation of the 

voicing information are the two factors that vocoder engineers use when designing speech 

codecs. These can then be used to re-synthesise speech sounds [3]. A vocoder consists of 

two parts: analysis and synthesis. The analysis takes place in the encoder where the 

parameters that describe the vocal excitation and the vocal transmission are extracted 

from the speech signal. At the decoder the received information is utilised to synthesize 

the signal that sounds like the original speech. The concepts that are associated with the 

vocoders were introduced as early as 1939. These concepts incorporate the two-state 

excitation (pulse/noise), voicing and pitch detection, and filter-bank representation. The 



2. Speech Coding Theory 28 

simple excitation model is related to very low bit-rates but at the same time it is 

responsible for the synthetic quality of speech that is one of the main disadvantages of 

vocoders. In addition, the estimation parameters that describe the spectral envelope need 

reliable envelope estimators. Estimators based on linear prediction and homomorphic 

signal processing were developed around 1960 and this challenging area provoked further 

research and spawned the development of several methods with improved quality and 

increased complexity. Channel vocoder is one of the first vocoding systems. It uses a 

bank of band-pass filters (typically 16 channels) to represent the speech spectrum. The 

two-stage excitation is utilised and if it is voiced the fine structure is represented using 

pitch-periodic pulse-like waves while if it is unvoiced it is reproduced using noise-like 

excitation. Even though the resulting speech is intelligible, the quality is quite synthetic. 

The Formant vocoders use a similar method to the channel vocoders but the 

representation of the spectrum needs only the frequencies and the spectral amplitudes of 

the formants. As a result, they achieve further band savings. Another category is the 

Homomorphic vocoders that are based on the idea that convolution of the vocal tract 

impulse response and the vocal excitation can represent the speech log-magnitude 

spectrum. The output speech has good quality and by applying predictive encoding the 

transmission rate can be reduced to 4kbitls. In general, frequency-domain vocoders are 

more robust to channel errors and background noise but with low, synthetic speech 

quality. Time-domain vocoders however such as the Linear-Predictive vocoders produce 

highly intelligible speech making them one of the most popular techniques for speech 

coding but they are very sensitive to channel errors and noise [2]. 

2.4.3 Hybrid Coders 

Hybrid coders fill the gap for coding rates between 4.8-16kbitls by incorporating the 

advantages of both vocoders and waveform coders in order to provide acceptable and 

natural speech at lower bit rates [4]. These codecs model the spectral properties of speech 

and exploit the perceptual properties of the ear for the minimal representation ofthe voice 

signal like the vocoders. Hybrid codecs produce more faithful waveform representation 

and as a result, more robust and better quality speech as the waveform coders [2]. 

Hybrid coders are broadly divided into two main categories: frequency domain and time 

domain. The frequency domain coders divide the speech spectrum into frequency bands 



2. Speech Coding Theory 29 

or components by using a filter bank or block transform respectively. These coders are 

based on the assumption that the signal is slowly time-varying. Hence the short-time 

segment of the input signal can be modelled with a short-time spectrum. The most 

commonly known coding schemes in this category are Sub-band Coding (SBC) and the 

Adaptive Transform Coding (ATC) that operate at bit rates between 9.6 to 16kbits/s. 

Another frequency-domain codec is the Multi-band Excited Vocoder (MBEV). This 

codec with effective pitch modelling can produce good quality speech for bit rates as low 

as 4.8kbitsls. A lower bit rate can be achieved by using a modified version of MBE V that 

represents the harmonic magnitudes by an LPC filter [3]. 

Time domain hybrids coder are very similar to the Linear-Predictive coders with a portion 

of the original signal to be transmitted instead of pitch and voicing information. They 

employ the speech source model described in section 2.3 in which the excitation is 

represented by a linear time-varying filter with a periodic pUlse-train for voiced speech or 

a random noise for unvoiced speech. Though there are several forms of time domain 

hybrid coders, the most successful and commonly used are time-domain Analysis-by

Synthesis (AbS) codecs. Examples of AbS codecs are the Residual Excited Linear 

Prediction (RELP), the Code-Excited Linear Prediction (CELP), the Voice Excited Linear 

Prediction (VELP) and the Multipulse Excited Linear Prediction (MELP) coders [3]. 

2.4.3.1 Analysis by Synthesis 

Analysis-by-Synthesis speech coders have been widely adopted as they produce good 

quality speech while maintaining a low bit-rate (between 4.8-16kbitls) at the cost of high 

computational complexity [4]. In the AbS approach, the encoder (analysis) incorporates 

the decoder (synthesis) to determine the excitation signal and uses linear prediction 

techniques to calculate the coefficients of the speech synthesis filter. The basic structure 

of an AbS-LPC coding system is depicted in Figure 2-3. There are three main sub-blocks 

in the model that are used to obtain a good synthesised speech signal [3]. 

• Time-varying filter (synthesis filter) 

• Excitation generator 

• Perceptually based minimisation procedure 



2. Speech Coding Theory 30 

In the analysis procedure, the input speech is partitioned into blocks of samples (frames) 

whose length and update rate determines the bit rate of the coding scheme [4]. The 

decoded speech is produced by filtering the signal produced by the excitation generator 

through both a long-term (pitch synthesis) filter and a short-term (LPC synthesis) filter. 

The excitation signal is found by minimising the mean-squared error over a block of 

samples. The error signal is the difference between the original and decoded signals and it 

is perceptually weighted by a weighting filter. In the end, the quantized filter parameters 

and the vector quantized excitation are transmitted to the decoder. As shown in Figure 2-3 

the decoder uses an identical structure with the encoder, where the synthesized speech is 

generated by filtering the decoded excitation signal through the synthesis filter. The long

term predictor filter models the long-term correlation (spectral fine structure) in the 

speech signal and its coefficients are adapted at rates varying from 100-200 times/so An 

alternative structure for the pitch filter is the adaptive codebook in which the filter is 

replaced by a codebook that contains the previous excitation at different delays. The 

resulting vectors are searched and the one that best matches is selected and scaled with an 

optimal scaling factor. The short-term synthesis filter models the short-term correlation 

(spectral envelope) in the speech signal. This is an all-pole filter with an order between 8 

and 16 and its coefficients are determined using linear prediction techniques for each 

frame. 

Excitation u(n) Synthesis ~(n) e(n) 

G <:nc:ration Filter -

Error eJn) 
Minimisation 

Encoder 

Excitation u(n) Syntbe<i< g(n) 
Generation Filter 

Decoder 

Figure 2-3: Analysis by Synthesis Code 

Error 
Weighting 

Reproduced 
Speech 



2. Speech Coding Theory 31 

The synthetic speech is generated in the encoder and decoder in order that both ends 

contain identical conditions in their filter memories. In this way, all the parts of the codec 

remain synchronised without the need for the memory parameters transmission. 

Preserving the identical conditions in both ends is one of the biggest challenges as this 

type of codec is very sensitive to channel errors [3]. Another important factor is the 

representation of the excitation signal of the time-varying filter. Three main excitation 

models for Analysis-by-Synthesis Linear Predictive Coding (AbS-LPC) are the multi

pulse model, the regular pulse excitation model and the vector or code excitation model 

[2]. 

The International Telecommunication Union (ITV) has created a number of speech 

coding standards for different voices qualities and bandwidth requirements. All current 

low-rate speech coders are based on AbS-LPC coding. In the following sections the two 

!TU standards, G.729A and G.723.1, studied in this research will be presented. 

2.5 G.729A Speech Coding Standard 

The G.729A [6] speech coding standard is a reduced complexity version of Conjugate

Structure Algebraic-Code-Excited Linear-Prediction (CS-ACELP) coder of the !TU 

G.729 recommendation [7]. It is designed for multimedia digital simultaneous voice and 

data (DSVD) applications though its use is not limited to these areas. G.729A grew from 

the need for low complexity (around 10 MIPS) speech codecs with speech quality 

equivalent to G.726 at 32kbits/s and operation bitrate of 11.4kbits/s and lower, in 1995. 

G.729A produces high quality speech (almost toll quality), in most conditions equivalent 

to G.726 at 32kbits/s, at a low bit rate of 8kbitls. The complexity of this algorithm is 

typically 11 MIPS that is 50% less complex than G.729 (22 MIPS) with a small 

degradation in performance in the case of three tandems and in the presence of 

background noise [4]. The G.729A has a 5ms look-ahead, 10 ms processing delay, 10 ms 

transmission delay and the overall one-way system delay is 35ms. The amount of RAM 

that required is 3000 words [8]. This coder belongs to the time-domain Analysis-by

Synthesis class of speech coders. The encoder and the decoder dataflows of G.729A are 

depicted in Figure 2-4 and Figure 2-5 respectively [9]. 



2. Speech Cot/ing Tlleor\' 

t- - -

I... T,ansmill ed 
- - " BitSbeam 

InlHJI 
Speech 

Figure 2-4: G.729A Encoder 

32 

The excitation for the synthesis filter is obtained by combining the outputs of two 

codebooks based on the ana lysis-by-synthes is search procedu re. An adapti ve codebook is 

used to model the long-term periodicities which represent the pitch (line) structure of 

voiced speech and a fi xed code book that models the rando m noise-li ke un voiced sounds 

such as nasal or plosive utterances. The excitation signal is then applied to a tenth-order 

synthesis filter whose transfer fun ction models the human vocal tract. The residual error 

between the reconstructed speech produced by the synthesis filt er and the original input 

peech is processed by a perceptual weighting fi lter in order to produce the perceptuall y 

weighted error. The minimi zati on of this e rror determines the adapti ve codebook index 

and gain for the optimum excitation sequence. The closed-loop search of the fi xed 

codebook is implemented by using an algebraic codebook that simplifie the 

detenninati on of the codebook parameters and makes real-time operation possible. The 

index and gains fo r both codebooks are assembled together wi th the synthes is fi lter 

coefficients to form the bit tream transmitted to the decoder. This entire process i 

repeated for every IOms frame of the speech signal [7]. 



2. Sveech Codillg Tlteorv 33 

Go 5peac h OUIllIIl 

Gp 

Figure 2-5: G.729A Decoder 

Al the decoder the received bitstream is used lO eX lraCl and decode the encoder 

paramelers corresponding lO a 10 ms speech frame. These parameters give the synlhes is 

fill er coefficients and selecl the el1lries for the adaplive and fi xed codebooks lO represenl 

the exci!ation !O !his filter. The exc ilation is conslrucled by adding the adap!i ve and fixed

code book vec!ors scaled by lheir respeclive gains. The excilation is fillered af!erwards by 

the synlhesis filter and the speech is reconstnlcled. Addilional posl-processi ng of lhe 

reconstTUC!ed speech signa l is performed [ 0 enhance its perceplUa l qualily (7) (10) . 

MOSl of the G.729A codec is iden!icallo G.729 wi!·h changes lO the following parts of the 

codec in order to reduce complex i!y: 

• The perceptual weighling filler uses a more tradilional error weighling tilter. 

• The open-loop search for the pitch delay uses for !he calculari on of !he 

autocorrelation funct ion only !he even samples of the weigh!eci input. 

• The closed-loop pitch search is achieved by maximizing a simpler 

(approximated) term lhan in G.729 !hat causes some degrada!ion as the chosen 

adaptive codebook delay differs by 113 from !he chosen in G.729. 

• The algebraic codebook search is simplified by searchi ng only 640 codebook 

entries per frame compared !o 2880 codebook entrie in G.729, using a dep!h

firs! tree search method. 

• The decoder post-processing is s implified by using onl y inleger delays and rhus 

the complex ity is reduced!o I MIPS compared to 2.5 MIPS of G.729 [6). 

2.6 G.723.1 Speech Coding Standard 

ITU Recommendation G.723. 1 (11) was designed for low-bi! rale videophone, in!erne! 

phone and panicularly as pan of the H.324 mul!imedi a standard . The G.723.1 has two 



2. Speech Coding Theory 34 

transmitting bit rates at 5.3 and 6.3kbitls. The higher bit rate has greater quality while the 

lower bit rate gives good quality and offers more design flexibility. It is possible to switch 

between the two rates at any 30ms frame boundary. The G.723.l dual-rate codec was 

initially referred to as G.723. However, because under this name coexisted the older 

ADPCM-based G.723 standard, this scheme was renamed G.723.1 in order to avoid 

confusion. The G.723.1 is based on Linear Prediction Analysis-by-Synthesis coding 

carried out for 30 ms or 240-sample speech segments with a look-ahead of7.5ms, giving 

a total delay of 37.5 ms [4]. This codec employs Algebraic-Code-Excited Linear

Prediction (ACELP) for its 5.3kbitls rate and it has algorithmic complexity of 14.6MIPS. 

For its 6.3kbits/s mode of operation uses Multi-Pulse Maximum Likelihood Quantization 

(MP-MLQ) excitation and it has complexity of 16 MIPS. Both modes of operation use 

2200 words of RAM [8]. Its dual-rate principle is very useful for intelligent multimode 

transceivers which are reconfigured at each speech frame boundary to provide more 

robust but lower speech quality or higher speech quality with less immunity to error. In 

addition, the G.723.l utilises voice-activity controlled transmission (higher rate for active 

speech and lower rate for background) and comfort noise generation (CNG) for passive 

speech intervals [4]. 

The G.723.l encoder operates on blocks of 30 ms [11]. Each block is fITst high-pass 

filtered to remove the DC components and then divided into 4 sub frames of 60 samples 

each. For every subframe, the coefficients of the lOth order Linear Prediction Coding 

(LPC) filter are determined. The LP coefficients of the last subframe are converted to 

Line Spectral Pair (LSP) and quantized using a Predictive Split Vector Quantizer 

(PSVQ). The other subframes are used to construct the short-term perceptual weighting 

filter in order to obtain the perceptually weighted speech signal that is used for the open 

loop pitch period computation. The estimated open loop pitch period is used to construct 

a harmonic noise shaping filter. Then the combination of the LPC synthesis filter, the 

formant perceptual weighting filter, and the harmonic shaping filter produces the impulse 

response. An initial pitch period estimation is derived from the formant-weighted speech 

signal in an open-loop search. The impulse response along with the pitch period 

estimation is used for a more accurate closed-loop search which takes place in the fifth

order pitch predictor. Consecutively, the pitch period is calculated as a small differential 

value around the open loop pitch estimate and the effect of the refined pitch predictor is 



2. Speech Coding Them"\' 35 

removed from the speech signal. Depending on the operation mode, the resultant res idual 

signal is subjected to either MP-MLQ for 6.3kbits/s rate or ACELP for 5.3kbi ts/s . Fina ll y, 

the pitch period and the differentia l va lue along with the LPC coefficients are transmitted 

10 Ihe decoder [ 11 ] . The detai led bl k diagram of Ihe G.723. 1 encoder is depicled in 

Figure 2-6. 

B LSP Quafltlse 'EJ-{SPI'~_'~ 
~'I ~ 

AI'I 

IF~ 
Impulse r-SI:!.,. High PUI FWler A{l } R.tponse M.mory Upd. le /"- elnl 

""""''''' r-
'~I 

B 
+ --.{' '-, 

W(z] p(z) 

LPCAn./ytis I- ~ 
Zero Inpul 1-- Pllctl Decode EJ:eil.11on 
R.sponse De<Ode 

AI.I 

F~", :.0 '-:-\-~ '-0 p_m",' [1 H~.N." - r'I P"" P,.."'" r-'- ~. MP·MLOI 
W""... Oh_""" ~ ACELP 

~~'I ""---r~ J 
~~, I '\: ~, 

Piw:tl Esomator 

FIgure 2-6: C.723.1 Encoder 

At the decoder, the quantized LPC indices are decoded and used to construcl the LPC 

synthesis filter. The adapti ve codebook excitation and fi xed codebook exc itation are 

decoded for every subframe and feed the synthesis filter. 

----oj LSP 00<0d0I i---------i LSP Jr!'.poI.r 1-- AI» 

110 Syntnesll Fitter i-'rl't-+ F .... "" 
poslfil1et ----oj PIid'! Decoder t4m] n} Pilth postNtet wl'[n 

P\ nl 

'--< Gm Kale .nt ~, 

Figure 2-7: C.723 . .l Decoder 



2. Speech Coding Theory 36 

The excitation signal input the pitch postfilter in order to improve the quality of the 

synthesized signal and the output of the postfilter feeds the synthesis filter consequently. 

The output of the synthesis filter feed the formant postfilter whose energy level is 

maintained by the gain scaling unit. The block diagram of the G.723.1 decoder is shown 

in Figure 2-7. 

2.7 Summary 

In this chapter a brief introduction of speech coding was given by discussing the coding 

objectives and requirements and presenting the basic speech source models. 

Consequently, the basic principles of the main coding techniques were introduced with 

more emphasis placed on the analysis-by-synthesis hybrid codecs as this type is 

employed in low bit-rate speech coders for multimedia applications. Finally, the 

characteristics and the basic operation of both nu standards, G.729A and G.723.1, 

employed in this research were discussed. 



2. Speech Coding Theory 

2.8 References 

[1) K. Diefendorff and P. Dubey, "How Multimedia Workloads Will Change 
Processor Design," in IEEE Computer. vol. 30, September 1997, pp. 43-45. 

37 

[2) A. S. Spanias, "Speech Coding: A tutorial review," Proceedings of the IEEE, vol. 
82, pp. 1541-1582, October 1994. 

[3) A. M. Kondoz, "Digital Speech: Coding for Low Bit Rate Communications 
Systems," John Wiley & sons, 1994, pp. 117-123. 

[4) L. Hanzo, C. Somerville, and J. Woodard, "Voice Compression and 
Communications: Principles and Applications for Fixed and Wireless Channels," 
Wiley-Interscience, 2001, pp. 3-10, 65-67, 269-274. 

[5) R. M. Nickel, "Automatic speech character identification," in IEEE Circuits and 
Systems. vol. 4, Fourth Quarter 2006, pp. 10-31. 

[6) ITU-T Recommendation G.729A, "Annex A: Reduced complexity 8 kbits/s CS
ACELP speech codec," 11196. 

[7) ITU-T Recommendation G.729, "Coding of speech at 8 kbitls using conjugate
structure algebraic-code-excited linear-prediction (CS-ACELP)," 3/96. 

[8) R. V. Cox and P. Kroon, "Low bit-rate speech coders for multimedia 
communication," in IEEE Communications Magazine. vol. 34, December 1996, 
pp. 34-41. 

[9) ITU-T Recommendation G.729A, "Coding of speech at 8 kbitls using conjugate
structure algebraic-code-excited linear-prediction (CS-ACELP)," 3/96. 

[10) K. Koutsomyti, S. R. Parr, V. A. Chouliaras, et aI., "Scalar and parametric vector 
accelerators for the G.729A speech coding standard," in Proceedings of 
IEEIACM SoC Design, Test and Technology Postgraduate Seminar, 
Loughborough University, September 2004, pp. 53-57. 

[11) ITU-T Recommendation G.723.1, "Dual Rate Speech coder for multimedia 
communications transmitting at 5.3 and 6.3 kbitls," 3/96. 



CHAPTER 3 
SOFTWARE AND HARDWARE PARALLELISM 

3.1 Overview of Parallelism 

The proliferation of dynamic multimedia applications such' as videoconferencing, 

image/speech processing and compression, 3D graphics, animation, Virtual Reality 

Modelling Language, encryption etc has changed the processing workloads of embedded 

processors significantly [1]. In order to run these multimedia codes efficiently and in real 

time there is need for high-performance application-specific processors. One approach to 

improve processor performance is to increase the clock speed. Though this may seem 

easy at first, the increase of a circuit's clock speed is a direct function of the chosen 

implementation technology. More importantly, this causes a high increase in the dynamic 

(switching) power dissipation rendering high-frequency designs unusable for power

constrained consumer applications. An altemative approach to improving processor 

performance is to increase the number of operations executed per clock cycle [2]. This 

approach yields very high performance and it is independent of the underlying circuit 

technology. In order to achieve this, multiple operations must be scheduled to execute in 

parallel in the extra functional units or processors. To make this, various techniques have 

been employed to exploit the inherit parallelism in modern applications and speed up 

their execution. The key to achieving high performance in current and emerging 

workloads is parallelism. The performance limit is set by the available parallelism in the 

application and the amount of the adaptation needed on the source code in order to allow 

the processor to exploit it [3]. 

The idea of parallelism to increase processor performance has been introduced as early 

as 1961 with the pipelining technique introduced by Stretch, the mM 7030 processor [4]. 

Pipelining is a micro-architectural technique to exploit the parallelism that exists among 

the actions (steps) needed to complete the execution of an instruction. In this way, 

different parts of multiple instructions in a sequential instruction stream are overlapped in 

execution and thus, their completion time decreases [5]. Pipelining is the first form of the 

Instruction Level Parallelism (lLP) even though it is considered nowadays a low-level 

38 



3. Software and Hardware Parallelism 39 

parallelism mechanism. Another form of parallelism (DLP, TLP) was exploited in 1964 

with the Control Data Corporation (CDq 6600 CPU [6]. This processor used ten 

functional units that could operate in parallel and could perform ten unrelated operations 

per cycle introducing with this way the concept of Data Level Parallelism (DLP) and !LP. 

In addition, it had ten identical peripheral processors that operated independently and 

simultaneously and could execute up to ten programs at the time introducing the idea of 

Thread Level Parallelism (TLP). Conclusively addressing all forms of parallelism 

however is a recent achievement enabled by advances in silicon technology and 

EDNtools/compilers. In the following sections an overview of the three main techniques 

of parallelism: !LP, DLP and TLP will be given with more emphasis in DLP as it forms 

the basic target of this research. Limitations in parallelism exploitation are imposed from 

dependences that are found in every code sequence. These dependences can cause 

structural stalls, data hazard stalls or control stalls thus reducing the performance [2]. 

There are three different types of dependences: data dependences, name dependences, and 

control dependences [2]. 

3.2 Data Dependences 

An instruction is data dependent on another instruction if its execution uses as input a 

value created by a previous execution of the latter [7]. The data dependence implies the 

two instructions cannot execute in parallel or be overlapped as it will affect the 

correctness of the program [5]. An example of this type of dependence, also known as 

true data dependence, is illustrated in Figure 3-1. 

S1 Loop: Id r1~ [aO] ; load array element a 

S2 add r4, r1, r2; add array element to r2 

t 
S3 st r4, [e, rO] ; store result to array b 

S4 add rO, rO, #1; increment counter 

t 
SS bnez rO, Loop; branch to loop if rO!=O 

Figure 3-1: Code snippet that shows the data dependences 

The data hazards caused from data dependence are known as RAW (Read after Write), 

referring to the order in which instructions are presented in the pipeline. This type of data 



3. Software and Hardware Parallelism 40 

hazard occurs when one instruction reads one register operand before that operand is 

produced from an earlier instruction, resulting in the use of the wrong register operand. 

Dependences are detected and data hazards are avoided within a processor with pipeline 

interlocks that force execution stall. In VLIW architectures a compiler performs the 

instruction scheduling and hides such data dependences rendering the use of interlock 

logic unnecessary [5]. 

3.2.1 Name Dependences 

There are two types of name dependence: antidependence and the output dependence. An 

antidependence occurs when an instruction reads from the same register or memory 

location that another instruction writes. This gives rise to WAR (Write after Read) data 

hazards as an instruction writes in a destination before this is read from another 

instruction resulting in the latter reading the new (incorrect) value. This violates program 

semantics [5]. 

An output dependence occurs when two instructions write to the same register or memory 

location. This type of dependence causes a W A W (Write after Write) data hazard which 

occurs when the value written in the destination was written from the wrong instruction. 

Again the order is important as the final value must be from the first (in chronological 

order) instruction. Both types of dependences are not true data dependences and the 

involved instructions can execute simultaneously or even be reordered as long as the 

common register name or the memory location are renamed statically by a compiler or 

dynamically by the hardware [5]. 

3.2.2 Control Dependences 

Control dependence determines the ordering of an instruction with respect to a branch in 

order for the instruction to execute the correct program order [5]. Hence an instruction 

that is control dependent on a branch (e.g. in the THEN statement of an IF conditional) 

cannot be moved before the branch so its execution is no longer controlled by this. In 

addition, an instruction that is not control-dependent on a branch (e.g. before an IF 

conditional) cannot be moved after the branch and its execution become controlled by the 

branch. Therefore, branches limit the ways that code can be re-arranged for optimum 



3. Software and Hardware Parallelism 41 

execution performance. According to Intel, 20-30% of the processor performance is left 

un-tapped due to branch mispredictions [8]. Branch prediction and predication are some 

of the methods to increase the parallelism without causing any exceptions or changing the 

data flow [5]. 

3.3 Types of Parallelism 

As mentioned above the objective behind exploiting parallelism at multiple levels is to 

maximise the execution performance of an application. Several architectural techniques 

have been employed to exploit effectively these forms of parallelism. Flynn's taxonomy 

(1986) [9] categorised computer architectures into four categories according to the 

parallelism in the instruction and data streams that they can handle: 

• Single instruction single data (SISD) 

• Multiple instruction single data (MISD) 

• Single instruction multiple data (SIMD) 

• Multiple instruction multiple data (MIMD) 

According to Flynn' s taxonomy a scalar uni-processor is classified as a SISD system as 

only one instruction is issued per cycle and that instruction operates on a single piece of 

data. MISD category hasn't been implemented in any commercial multiprocessor as it 

does not improve the performance of a system. However, it is expected to have 

application in fault-tolerant architectures for aerospace. Since it allows a degree of 

redundancy (it issues multiple instructions on the same dataset) it can be introduced in 

safety-critical systems. The other two categories correspond to the three different forms 

of parallelism: Data-Level Parallelism (DLP) is the case of SIMD where identical 

operations are applied in arrays of data. This form of parallelism is found typically within 

loops where the same transformations apply to arrays of data. Vector architectures are the 

most efficient means for exploiting this type of parallelism. Instruction-Level Parallelism 

(ILP) is a case of MIMD since it issues mUltiple instructions that operates in multiple 

data. This can be in the form of a number of microarchitectures differentiated by their 

instruction scheduling techniques and dispatch width. Finally, Thread-level parallelism 

(TLP) which is a different aspect of MIMD is regarded as one ofthe most profound forms 

of parallelism since it involves multiple processors operating in parallel. Within the TLP 



3. Software and Hardware Parallelism 42 

domain, separate instruction streams execute on separate functional units (processor 

contexts) on separate (multi-programming) or the same (multi-threading) datasets. 

Flynn's taxonomy does not apply precisely on today's architectures as modern embedded 

processors typically belong to more than one category in Flynn's taxonomy. It is a useful 

framework however in the processor design space. In the following sections an overview 

of the three different types of parallelism will be given along with the architectural 

techniques required to exploit these forms effectively. 

3.3.1 Instruction Level Parallelism 

Instruction-level parallelism (ILP) is the architectural technique that exploits the available 

parallelism at the instruction (operation) level and executes multiple such operations 

concurrently [2], [10]. This overlap in the execution of instructions is achieved by 

extracting independent instructions from a program sequence [11]. The idea of ILP 

appeared as early as 1960's in the IBM Stretch 7030 (1961) [4] and the Control Data 

6600 (1964) [6]. Even though Stretch was a commercial failure, it introduced ideas such 

as pipelining and dynamic instruction issue mechanism based on Tomasulo's algorithm 

[12] that are in use even today [4]. Pipelining is a primitive form oflLP as it allows the 

execution of multiple instructions in different stages of the processor simultaneously. 

Thus, different multicycle operations may share the same hardware by using different 

parts of it in different cycles. Nowadays pipelining is considered a low-level mechanism 

that has contributed significantly to the performance of modern computers and since 1985 

it is part of every processor architecture [5], [13]. Seymour Cray's CDC 6600 removed 

the instructions handling the memory and the I/O from the main CPU and implemented 

them in a set of peripheral processors. Additionally, it included ten functional units that 

performed arithmetical-logical instructions at the same time. In this way, the main CPU 

(arithmetical-logical instructions) and the peripheral processors (memory and I/O 

instructions) could operate in parallel improving considerably the performance and 

making it the world's fastest computer until 1969 [6]. In the following years there was a 

wide range of techniques that extended the idea of ILP and increased the amount of 

parallelism exploited among instructions. 



3. SoOlVare alld Hardware Parallelism 43 

A processor that employs [LP is typically ca lled multiple-issue and follows a simi lar 

execution model as a normal R1Se machine [10]. Resources operate in parallel and there 

may be a mu ltip licity of fun cti onal units that implement the same datapath functions in 

order to ena ble more para lle lism. Thus, ILP in volves twO ex tra factors to accelerate 

programs: multip le issue and ex tra functiona l units . More than one operation ca n be 

issued in a given cycle and executed by using replicated o r different functi ona l units. (LP 

is dependent on developments in hardware technology uch as c ircuit speed and power 

optimization 110] [ 14] . Since [LP is an architectu rd l technique fo r ac hieving hi gher 

performance by execUling mu ltiple low leve l operati ons (such as adds, multiplies, loads 

etc) at the same time it requires spec ial logic in the fetch stage of the processor ( 10). Thi s 

addi tional logic unroll the program equence and reschedu les the order of the 

instructions in order to arrange mu lti ple operations in a parallel manner be fore execution 

and avoid o r reduce the sta lls caused from data depe ndences while maintain ing the 

program data now [5]. 

Issue Slots 

Instructions wldtn.. 4 

ee 
~Ional~s~ 

Figure 3-2: Multiple-issuing of instructions in an ILP architecture 

These instructions are subsequently issued to the functional unil that operate in para llel 

[IS]. The number of the instructi ons that can be issued and executed each cycle 

determines the width of the proces or. Figure 3-2 shows mu ltiple-i ssue in a 4-wide lLP 

architeclllre. Special logic detects dependence, reorders the instruction sequence, 



3. Software and Hardware Parallelism 44 

unrolling loops, and ensures that instructions are committed in order to maintain a 

precise-exception environment to software [l0]. This is achieved using either dynamic or 

static scheduling [2]. The dynamic scheduling approach uses special logic to identify data 

dependences and rearrange the instructions dynamically in order to reduce stalls while 

maintaining the exception and data flow behaviour [2]. The disadvantage of this method 

is a large amount of extra hardware and thus, extra power consumption compared to an 

in-order processor. This approach is used in the superscalar and data flow processors [IO]. 

On the other hand, static scheduling uses the compiler instead of dedicated hardware to 

exploit the available parallelism and keep busy as many functional units as possible. 

Advances in compiler technology can achieve a similar result thus disposing with all 

these hardware structures. Very Long Instruction Word (VLIW) [15] [16] processors 

employ such static, compiler-intensive scheduling. A compiler's ability to perform static 

scheduling depends on the amount of the available ILP in the program, the latencies of 

the functional units in the pipeline and the number of registers (storage) in the processors. 

3.3.1.1 Superscalar Processors 

Superscalar processors are either statically scheduled (using compiler techniques) with in

order execution or dynamically scheduled (using techniques based on Tomasulo's 

algorithm) with out-of-order execution [2]. Superscalar processors began to appear in the 

mid-to-late 1980s and for many years they were viewed as the logical next step in RISC 

movement [14]. There is a wide range of superscalar implementations with different 

degree of complexity ranging from the DEC Alpha [17] which has a strictly RISC ISA to 

the Intel X86 [18] that is considered a CISC ISA [14]. The first commercial single-chip 

superscalar microprocessors were the Intel i960CA (1988) [19] and the AMD 29000-

series 29050 (1990) [20]. 

The statically scheduled approach was used in the early superscalar processors in which 

instructions were issued in order and all the types of hazards were checked at the issue 

time [2]. The pipeline control logic ·detects data or structural hazard only across the 

instruction packet currently at the decode stage. This type of superscalar processor 

employs hardware to perform the instruction issuing and hazard detection but scheduling 

uses software techniques. Sun UltraSP ARC WIll are statically scheduled superscalar 

processors. 



3. SoOwlIre alld Hardware Partl llelislII 45 

CPO 

~ -""-=''--_____ ...J 

Figure 3·3: Dynamic Instruction Scheduling 

Dynamicall y cheduled superscalar processors employ hardware to rearrange the 

instructi on execution to reduce stalls and imuhaneously dispatch muhiple instructions 

per cycle to multiple functi onal units [14] [2] . This technique handles data dependences 

unknown at compi le ti me (e.g. a memory reference) simplifying the compiler at the 

expense of hardware complex ity. Additionally, it can reschedu le an already compi led 

code to run on a different pipeline to increase the processor performance [2] . Figure 3-3 

depicts the dynamic instruction scheduling of a supersca lar processor. Dynamica lly

scheduled uperscalar proce sors don' t require any re-compilation of the source code as 

they adapt their execution behaviour dynamically according to the app lication binary. 

Such processors exhibit limited scalability due to their complexity. Superscalar 

processors employ speculati ve execution to overcome the limitation of control 

dependences caused by branches. Branch predicti on is not sufficient in rLP case as, for a 

wide issue processor, one or more branches may execute in every cycle. Speculati ve 

execution combines dynamic branch prediction to select the inslntction stream that will 

be fetched. There are hardware resources dedicated to undoing the effects of a 

misprediction and/or dynamic scheduling [2]. The dynamic schedul ing approach 

dominates the desktop and server markets and it is u ed in many uc essful processors 

such as Pentium II I and rv , MIPS R 10000/12000, AMD A thlon, PowerP etc [2]. 



3. SOfrwore and Hardware Parallelism 46 

3 .3. 1.2 VLlW Processors 

The alte rnative to the superscalar approach is to employ co mpiler technology to check for 

dependences across the instructions of a program sequence, reorder them to minimi ze the 

pote ntia l hazard sta lls and group them into fi xed-length packets that will be issued to the 

processor. Each fi xed-length packet resembles a very long instructi on that contains 

mul ti ple independe nt operati ons that can execute in paral lel and fo r thi s reason this type 

of architecture was named Very Long lnstructi on Word (VUW) [2]. Figure 3-4 illustrates 

static instructi on scheduling of a VLlW proces or. 

Figure 3-4: Static Instruction Scheduling 

An early fo rm of VLlW was processor usin g horizontal microcode, originally designed 

for signa l proce ing applications [10]. An exa mple of thi type of processor designed to 

accelerate fl oat ing-point computati ons was the Floati ng Po int Systems [2 1] FPS- I64 and 

FPS-264 CPUs. These processors were very fast but limited in programmability and 

applicati on a rea due to the ir complex ity. The term VLlW was introduced by J. Fi sher 

who developed a compi ler that relied on trace schedul ing in order to gene rat e horizontal 

microcode (LlWs) for ordinary programs [22J. Trace scheduling is an optimizing 

compiler teChnology that performs loop unrolling and stat ic branch predict ion and a llows 



3. Software and Hardware Parallelism 47 

the processor to exploit the available parallelism beyond basic blocks [22]. [2]. 

Additionally Fisher suggested the co-design of the compiler and the VLIW processor in 

order to simplify the scheduling algorithms. In 1980's they were three general-purpose 

VLIWs with varying degrees of parallelism [10]; TRACE from Multiflow Computers Inc 

[23]. Cydra 5 from Cydrome [24] and the Culler-7 from Culler Scientific Systems. These 

processors. though not commercially successful. developed methods and technologies 

that influenced the VLIW design philosophy. Current examples of contemporary VLIW 

CPVs include the TriMedia media processors [25] by NXP (formerly Philips 

Semiconductors). the SHARC DSP by Analog Devices [26]. the C6000 DSP family by 

Texas Instruments [27]. and the STMicroelectronics ST200 [28] family based on the Lx 

architecture. These contemporary VLIW CPUs are primarily successful as embedded 

media processors for consumer electronic devices. In addition. the new Intel 1A-64 [29] 

architecture utilizes VLIW techniques to create a scalable instruction-level parallel 

processor family. 

Because of the nature of VLIW processor instructions. they are generally statically 

scheduled by a compiler removing the need for a complicated scheduling logic. In 

addition they are highly scalable but require the source code re-compilation across 

implementations [2]. VLIW is more effective as the number of issues per cycle becomes 

larger [2]. In the case that they are not enough independent instructions to execute in 

parallel the fixed-length packet includes NOP instructions which can lead to oversized 

code. There are several solutions for this problem; Sun MAJC and Tensilica's Xtensa 

LX2 [30] processor for example utilise variable-length packets to issue per cycle. 

Trimedia TM3270 compress the code stream in memory and un-compress them when 

they are loaded in the instruction code and so on. 

An advanced form of VLIW that is not used in embedded processors and embodies new 

principles is the Explicitly Parallel Instruction Computing (EPIC) processors [2][16]. 

EPIC is a design philosophy that enhances instruction level parallelism and supports 

explicit parallelism. Explicit parallelism is supported by large parallel execution resources 

and large register files. EPIC architectures use the compiler to perform full speCUlative 

execution and instruction predication to increase parallelism in a program sequence. 

Speculation is a technique that reduces the effects of memory latency by performing 

speculative loading. Predication allows conditional execution without branches implying 



3. Software and Hardware Parallelism 48 

larger basic blocks [31]. Furthennore, this type of architecture aIIows some degree of 

scalability in issue-width implementation to accommodate the resource limits in various 

applications [16]. The ISA that implements the ideas embodied in EPIC is the lA-64; the 

first implementation of that ISA was the Merced processor. 

3.3.2 Data Level Parallelism 

Data Level ParaIIelism (DLP) is a very important leverage in high performance 

computing. This paradigm uses vectorization techniques to operate in a large amount of 

independent data by executing a single instruction (vector instruction) simultaneously on 

arrays of elements [5]. Multimedia-rich applications involve real-time processing of 

continuous data streams in the form of vectors of packet 8- 16- and 32-bits integers and 

floating point numbers and undergo identical processing such as filtering, transformation 

etc. The microarchitectures capable of extracting this fine-grained data-paraIIelism are 

different than those used in fine-grained instruction-level paraIIe1ism. The most efficient 

method to exploit this type of data is by employing machines with SIMD hardware units 

that can execute whole loops in parallel [1]. These machines are known as vector 

processors and their advantages over the other architectures are explained in the 

foJlowing sections. 

3.3.2.1 Advantages of vector architectures 

The exploitation of DLP by the use of vector instruction architectures has many 

advantages compared to a classic scalar system. First, a vector instruction performs a 

number of individual operations in paraIIe1 thus it contains higher semantic content. 

Hence the vector program exhibits better code density compared to an equivalent scalar 

program and therefore smaIIer instruction fetch overhead. Higher code density implies 

less instruction fetch bandwidth and thus reduced pressure in the instruction fetch engine. 

The smaIIer overhead is due to fewer address computations and loop counter increments 

as weII as branch computations. In addition, relatively simple control can dispatch a large 

number of operations every time and can better utilize the wide datapath [32]. Examples 

of the application kernels and the vectorization techniques employed in this work are 

described in more detail in Chapter 4. Another benefit that DLP machines deliver is 

better memory system performance than superscalar processors. Despite out-of-order 



3. Software and Hardware Parallelism 49 

execution, non blocking caches and pre-fetching mechanisms, the predictive model for 

the caches is inefficient. This happens because the retrieved data from the previous level 

in the cache are not necessarily needed. Furthermore, since load/store instructions are 

mixed with computation and/or conditional execution, possible dependences and resource 

constraints prevent a memory operation to be performed on every cycle. Therefore the 

superscalar CPU cannot utilise efficiently the data cache subsystem in vectorized kernels. 

These problems are avoided in vector memory operations as the requested data usually 

have stride 1 of the memory pattern. By requesting an array of data with a single memory 

address a DLP machine uses effectively the available memory bandwidth without 

requiring extra issue slots and complex decode hardware. Thus by sending a simple 

address it can achieve a bandwidth of approximately N words per cycle. Finally, the 

datapath control remains simple as a vector engine can be easily scaled to higher levels of 

parallelism by replicating the functional units and adding wider paths from the vector 

registers to the functional units [32]. DLP however, is the least flexible form of 

parallelism compared to the !LP and TLP. It is also interesting to note that the available 

DLP in an application can also be exploited from non-DLP architectures by scheduling 

multiple independent instructions to execute in parallel in a superscalar architecture (!LP) 

or by computing the elements in parallel instruction streams in a multiprocessor system 

(TLP) [3]. This inflexibility though makes DLP the easiest form of parallelism that can be 

exploited with vector machines. These machines are easily scalable to exploit varying 

amounts ofDLP in whole application domains. This is one of the greatest advantages of 

DLP over !LP since !LP architectures can't scale easily due to dependences between 

instructions which increase quadratically with the number of the parallel instructions 

loaded-up; TLP also requires duplicated instruction management logic for each 

instruction stream, duplicated processor state and suffers overheads from inter-thread 

synchronization and communication [3]. In addition, superscalar processors with wider 

issue (>4) exhibit diminishing performance and require large area dedicated to control 

rather than to datapath. Research has shown that vector processors are able to execute 

some highly parallel, integer based applications 1.5-7.3 times faster than superscalar 

processors [33]. Therefore vector processors with wide datapaths could lead to significant 

performance without increasing the hardware complexity of architectures that exploit the 

other forms of parallelism. 



3. Software and Hardware Parallelism 50 

3.3.2.2 Vector Processors 

In this section, the fundamental concepts of vector architectures are provided as this 

research is based on this processing paradigm. Vector processor architectures made their 

appearance in the late 1960s and early 1970s to support massive vector and matrix 

calculations. The first successful implementations of vector processors were the Control 

Data Corporation (CDC) STAR-lOO [34] and the Texas Instruments Advanced Scientific 

Computer (TI ASC) [35] in 1964. These architectures were memory-to-memory with 

high bandwidth memory systems centred on a vector processing unit. However, they were 

not commercially successful due to the long start up overhead of vector instructions and 

the deep pipeIining [36]. They did however presented several innovative ideas that 

influenced the design of vector supercomputers over the next years. A vector architecture 

with a different philosophy than the aforementioned was CRAY-1 computer system [37] 

which introduced in 1976 and it was the first commercially successful vector 

supercomputer. This machine was centred on scalar processing but it was using vector

register architecture and thus it had significantly lower overhead and less memory 

bandwidth requirements. CRA Y -I was the fastest processor of its time and its successors 

CRAY-2 and CRAY X-MP developed by two different groups ofCray Research were 

amongst the most successful vector machines until 1991. At the same period, CDC 

continued the development of memory-to-memory vector processors with the Cyber 200 

series that was using the same basic architecture as the CDC STAR but offered better 

performance and wider vector datapaths. Still their performance could not compete with 

the CRA Y machines since they had long memory latencies and could not handle 

efficiently non-unit strides [36] [38]. In 1980s, CDC created a group called ETA that built 

the supercomputer ETA-IO that again was based on the same memory-to-memory 

architecture of Cyber 200 series and had a configuration of up to 10 processors. This 

processor achieved a performance of 10 GFLOPS but its scalar performance was not as 

good and in 1989 its production stopped completely. In the 1980s smaller-scale vector 

processors appeared with the most successful designed by Convex and AlIiant. At this 

time Japanese supercomputers made their appearance starting with the Fujitsu VPIOO, 

Hitachi S810 and the NEC SXl2 that were vector-register architectures with similar 

performance to the CRA Y X-MP [36]. These computers continued to evolve with NEC 

SXl5 which was the fastest vector supercomputer in 200 I with a 16 processors 

configuration clocking at 312 MHz and Fujitsu VPP5000 with a 128 processors 



3. Software and Hardware Parallelism 51 

configuration clocking at 300 MHz. Historically, the fastest supercomputer was the 

eRA Y -4 with 64 processors running at 1 GHz but it was never completed as the company 

went bankrupt in 1995 [36]. After the appearance of superscalar architectures in the early 

nineties research was concentrated on superscalar and VLIW architectures as there was 

the prevailing belief that vector processing would be redundant [3]. Multimedia-rich 

applications becoming the dominant application domain however has changed the 

computer architecture and microprocessor design and the interest for vector processing 

has been revived [1]. 

Vector architectures can be either memory-to-memory or register-to-register based with 

the latter being the most dominant type. A typical vector processor consists of pipelined 

scalar and vector units. The scalar unit handles memory addressing and control where as 

the vector unit performs the actual processing. Vector architectures are similar to RISe 

architectures with instruction sets that include arithmetic and memory instructions but 

instead of processing scalar values they execute the same operation simultaneously on 

arrays of elements. In other words, a single opcode defines a large number of identical yet 

independent, operations on the elements of one or more arrays. The arrays of operands 

are stored in a vector register file in a similar way with the operands in RISe architecture. 

However the vector register file is a two-dimensional storage array where each row 

contains all the elements of a single vector [36]. The number of the elements per register 

is defined by the vector processor rSA/programmer model. A general vector processor 

architecture is depicted in Figure 3-5. It consists of a number of functional units that 

operate in parallel. Each unit is fully pipelined and can start a new operation every clock 

cycle. The vector functional units generate interim results that are used immediately 

without the time-costly memory references that slowed down the first vector computers 

[37]. This takes place in combination with the scalar unit which detects structural and 

data hazards and handles memory accesses. 



3. Software and Hardware Parallelism 

Main memory 

r Vecto 
Reglste rs 

t 
Vector 

Load-5tor. 

~ 

~ 

r---
r---
r---

Scalar r---Registers r---
r---
'--

f::1 FUs add/subtract 

~ FUs multiply 

~ FUsdlvlde 

~ FUs divide 

=: f::1 Integer 

-+ 
r+H Logical 

Figure 3-5: Basic Vector Processor Architecture 

52 

~ 

f--. 
f--. 
f--. 
~ I-

~ 

Each vector register has at least two read ports and one write port in order to allow RISe

like 3-operand execution. Another important component of a vector processor is the load

store unit responsible for loading vectors from and store to memory and it is fully 

pipelined [39) [36). A more detailed description of the vector processor architecture and 

microarchitecture developed in this work is given in Chapter 5 and 6. 

3.3.3 Thread Level Parallelism 

Another approach to achieve high execution performance is by exploiting the available 

parallelism at the thread/process level. Architectures that exploit this form of parallelism 

belongs to the MIMD category [2). Such architectures consist of a collection of 

interconnected single-thread processors, with each processor executing independent 

instructions streams operating on multiple data items. When the processors run 

independent tasks (programs) this is the case of a mUltiprogrammed environment. When 

the multiple processors execute different parts of the same program and share most of 

their address space this is known as multithreading. The independent parts or processes of 

the program are called threads. These threads execute concurrently and define another 

type of parallelism that is known as Thread-Level Parallelism or TLP [2). TLP is a 

coarse-grained type of parallelism since each processor works on a specific process and 



3. Software and Hardware Parallelism 53 

communicates with the other processors onl y if necessary. The theoretica l performance 

improvement on n-wide TLP processor is n-fo ld compared to a s ingle processor where n 

is the number of the processors that compri se the mUlti processor. 

There are two classes of M IM D multiprocessors dependin g on the number of the 

procesSors, the memory organi:Ulti on, and the type of their interconnection: The 

centralised shared-memory architecture and the di stributed-memory architecTure [2]. 

3.3.3 .1 Shared-Memory Architecture 

Shared-me mory architectures consist of a number of processors that share the same 

memory and are connected via some inte rconnect scheme typi ca lly a bus. When the 

single mai n memory has s imilar (sy mmetric) access time from a ll processors thi s is the 

case of Symmetri c Multiprocessing (SMP) or Uni form Me mory Access (UMA) [2). 

Processor Processor ---- Processor 
1 2 n 

Interconnection network 

Main tlO 
Memory System 

Figure 3-6: The basic architecture of a centralised shared-memory multiprocessor system 

[n shared-memory archi tectures it is easier to ba lance the processor workl oad efficientl y. 

T his class is the most popu lar organi zation with a reasonabl y simp le programmi ng model 

and it is used in tightly-coupled architectures [40). Support for SMP must be bu ilt into the 

operating system in order to take advantage of the additional processors. SMP was first 

implemented on the Burroughs B5500 in 196 1 and by 2006 has dominated the server a nd 

workstation market. With the introduction o f dual-core devices, it became preva lent in 

most new deskt ops and laptops such a In(e l's Xeon and Core Duo, AMO's At hl on64 X2 



3. SoOIl'(lre and Hardware Parallelism 54 

and Opteron etc that use the x86 instruction set; mher non-x86 architeclUres are Sun 

Microsystems UltraSPARC, Imel Itanium, Hewlett Packard PA-RISC etc and are used 

primaril y in the server domain. An alternati ve architeclUre is the Asymmetric 

Mult iprocessing or ASMP in which only spec ific locations in memory and spec ific task 

are allocated For each processor. A n example or this architecture can be round in the high

perFormance 3D chips in modern videocards. 

3.3.3.2 Distri bu ted-M emory Architecture 

The second class is known as Distri buted-Memory architectures in which the memory is 

phys icall y distributed among a number of processors. This approach CHn more easi ly 

support the bandwidth demands of the indi vidual processors as lhere is no need to access 

a centrali ed resource as the shared memory. 

Processor Processor Processor --- -1 2 n 

I I I 
Private Private Private 

Memory 1 Memory 2 ---- Memory n 

I I I 
tnterconnectlon network 

Figure 3-7: The basic architecture of a distributed-memory multiprocessor system 

The interconnecti on bet ween processors and memory can be direct (direct interconnection 

networks) using For example swilches or indirect using typicall y multidimensional 

meshes [2]. The disrributed-memory architecture can be implememed by using two 

differel1l approaches for communicating data among processors. In the first approach the 

communication takes place through a shared address space. This happens by addressing 

the physical separate memories as one logicall y shared address pace. T he 

multiproces ors that are using thi s approach are cal led Distributed Shared-Memory 

(DSM) multiprocessors. DSM multiprocessors are also known as on-Unirorm Memory 

Access ( UMA) since the access time depends on the data word location in memory. An 



3. Software and Hardware Parallelism 55 

alternative approach is when the address space of the processors consists of multiple and 

logically disjoint address spaces and the same physical address corresponds to two 

different locations of two different processors memories. Each processor-memory module 

is a separate computer and this type of architecture is called a multicomputer. 

Additionally, a multi computer can consist of separate computers connected in a local area 

network, known as a cluster. This approach is very cost effective when little or no 

communication is required [2]. 

3.3.3.3 Multithreading Architecture 

Multi-threaded processors are based on a hybrid approach that combines ILP and TLP 

and improve performance by exploiting the pipeline parallelism available through 

multiplexing independent threads. In this case, multiple threads execute concurrently and 

share the fimctional units of a single, wide processor. Each thread has a separate register 

file, program counter and memory page table that are duplicated in the processor 

(processor contexts). Multi-threaded processors hide the operation latency by switching 

threads at appropriate times or by interleaving operations from multiple threads at the 

same time using superscalar techniques. Apart from successfully hiding operation 

latency, multi-threaded processors improve processor utilization by keeping active many 

functional units on every cycle. There is special hardware to switch between different 

threads [2]. When one thread runs until it is blocked by an event that would cause a long 

latency stall such as level-2 cache miss (need to access an off-chip memory) execution 

switches to another thread that was ready to run. This technique is called blocked or 

coarse-grained multithreading [41]. This is the simplest type of multi threading that issues 

instructions from only a single thread per cycle and it is effective on high-cost stalls [41] 

[2]. Another alternative is when the switching between threads takes place on every 

instruction in order for the execution of multiple threads to be interleaved. This is called 

interleaved or fine-grained multithreading [4 I]. This type of switching occurs each clock 

cycle and eliminates control and data dependence stalls from the execution pipeline since 

threads are relatively independent from each other. In this technique the processor skips 

any threads that are stalled at that time and it has a very simple and fast pipeline. 

Similarly with the blocked multithreading, this type also issues from a single thread. 

When instructions can be issued from multiple threads per cycle this is the case of 

Simultaneous Multithreading (SMT). SMT is the most advanced type of multithreading 



3. Software and Hardware Parallelism 56 

and it is a variation of the fine-grained multithreading that applies to superscalar 

processors to exploit the available ILP and TLP across multiple threads [2]. Simultaneous 

multithreading improves utilization by sharing many of the resources within the processor 

and can enhance the performance of a superscalar when the available ILP is not enough 

[41]. This technique was first researched by IBM in 1968 and the first commercial CPU 

was the DEC 21464 [42]. In another architectural extreme lies the Chip Multiprocessing 

(CMP). CMP enables multiple cores to share chip resources such as the memory 

controller, off-chip bandwidth and the L2 cache improving this way the utilisation of 

these resources [43]. It is an integrated form of Symmetric Multiprocessing and in this 

configuration, instead of having separate processing units in the computing system, the 

individual processors (CPU cores) are integrated in a single high performance chip. 

3.3.4 Hybrid Approaches and Research 

The various forms of machine parallelism are not clearly separated and they can be 

combined to increase even further the computer performance. For example, the NEC SX-

4 vector supercomputer is a pipelined superscalar vector microprocessor architecture 

which can exploit ILP, DLP, and TLP [3]. Simultaneous multithreading processors 

employ TLP and ILP in the same time [44]. Another example that combines all the 

parallelism techniques is the SS _ SP ARC [45] which is a configurable, extensible, 

simultaneous multithreaded vector processor. More details of this processor are given in 

Chapter 7. There has also been a great amount of interest in the addition of extensions in 

existing instruction sets to accomodate vector processing. Examples of general-purpose 

microprocessors with vector extensions are Intel's MMX [46], PowerPC's Altivec [47], 

Sun UltraSparc's VIS [48] and Tarantula [49] that adds to Alpha (EV8) a vector unit. 

Another interesting combination is the merge of ILP and DLP paradigms in a single 

architecture [32] and the SMV architecture that combines simultaneous multithreading 

and DLP [50]. Research is currently underway into the potential performance benefit 

obtainable through the combination of different forms of parallelism within a single 

system-on-chip architecture. 



3. Software and Hardware Parallelism 57 

3.4 Summary 

This chapter presented an overview of parallelism and the performance advantages of 

exploiting it within given architectures. The limitations and the hazards caused by 

dependences across instructions in the application binary were also presented along with 

their main types. In addition, the three basic forms of parallelism were introduced and the 

processor architectures that exploit them together with their advantages and 

disadvantages. 



3. Software and Hardware Parallelism 

3.5 References 

[1) K. Diefendorff and P. Dubey, "How Multimedia Workloads Will Change 
Processor Design," in IEEE Computer. vo!. 30, September 1997, pp. 43-45. 

[2) Kevin W. Rudd, "VLlW Processors: Efficiently Exploiting Instruction-Level 
Parallelism," in Electrical Engineering: PhD Thesis, Stanford University, 
December 1999. 

58 

[3) K. Asanovic, "Vector Microprocessors," PhD Thesis, University of California at 
Berkeley, May 1998. 

[4) W. Buchholz, Planning a computer system: Project Stretch: McGraw-HiII Inc, 
1962. 

[5) John L. Hennessy and David A. Patterson, "Computer Architecture: A 
Quantitative Approach," 3 ed: Morgan Kaufinann, 2003. 

[6) J.E. Thornton, "Parallel Operation in the Control Data 6600," in Proceedings of 
the 26th AFIPS Conference, 1964, pp. 34-40. 

[7) R. Alien and K. Kennedy, "Automatic translation of FORTRAN programs to 
vector form," ACM Transactions on Programming Languages and Systems 
(TOPLAS), vo!. 9, pp. 491 - 542, October 1987. 

[8) John Crawford and Jerry Huck, "Motivations and Design Approach for the lA-64 
64-Bit Instruction Set Architecture," in Microprocessor Forum, San Jose, 
California, October 1997. 

[9) M. J. Flynn, "Some Computer Organisations and Their Effectiveness," IEEE 
Transactions on Computers, vo!. 21, pp. 948-960, 1972. 

[10) Joseph A. Fisher and Ramakrishna Rau, "Instruction-level Parallel Processing," 
Science, vo!. 253, pp. 1233-1241, September 13 1991. 

[11) Roger Espasa and Mateo Valero, "Simultaneous Multithreaded Vector 
Architectures Merging lLP and DLP for High Performance," in the Proceedings 
of the Fourth International Conference on High-Peiformance Computing, 
December 1997, pp. 350-357. 

[12) R. M. Tomasulo, "An Efficient Algorithm for Exploiting Multiple Arithmetic 
Units," IBM Journal of Research and Development, pp. 25-33, January 1967. 

[13) Ralph Duncan, "A Survey of Parallel Computer Architectures," in IEEE 
Computer, February 1990, pp. 5-16. 

[14) James E. Smith and Gurindar S. Sohi, "The Microarchitecture of Superscalar 
Processors," in Proceedings of the IEEE. vo!. 83, December 1995, pp. 1609-
1624. 

[15) Alexandru Nicolau and Joseph A. Fisher, "Measuring the Parallelism Available 
for Very Long Instruction Word Architectures," IEEE Transactions on 
Computers, vo!. 33, pp. 968-976, November 1984. 

[16) J. A. Fisher, P. Faraboschi, and C. Young, "Embedded Computing: A VLlW 
Approach to Architecture, Compilers, and Tools," Morgan Kaufmann, 2005. 



3. Software and Hardware Parallelism 59 

[J 7] R. L. Sites, "Alpha AXP Architecture," in Communications of the ACM. vol. 36, 
February 1993, pp. 33-44. 

[18] K. Diefendorff, "Pentium III = Pentium II + SSE: Internet SSE Architecture 
Boosts Multimedia Performance," in Microprocessor Report. vol. 13, March 
1999. 

[19] Steve McGeady, "Inside Intel's i960CA superscalar processor," in 
Microprocessors and Microsystems. vol. 14, July 1990, pp. 385-396. 

[20] Daniel Mann, "Evaluating and Programming the 29K RISC Family," Advanced 
Micro Devices (AMD), 3d edition 1995. 

[21] A. E. Charlesworth, "An Approach to Scientific Array Processing: The 
Architectural Design of the AP-120BIFPS-I64 Family," in IEEE Computer. vol. 
14, 1981, pp. 18-27. 

[22] Joseph A. Fisher, "Very Long Instruction Word architectures and the ELl-512," 
in Proceedings of the 1 Oth annual international symposium on Computer 
architecture, Stockholm, Sweden, 1983, pp. 140-150. 

[23] R. P. ColweII, R. P. Nix, J. J. O'DonneII, et aI., "A VLIW architecture for a trace 
scheduling compiler," in ACM SIGARCH Computer Architecture News. vol. 15, 
October 1987, pp. 180-192. 

[24] G. R. Beck, D. W. L. Yen, and T. L. Anderson., "The Cydra 5 
minisupercomputer: Architecture and implementation," The Journal of 
Supercomputing. vol. 7, pp. 143-180, May 1993. 

[25] J. W. Van de Waerdt, S. Vassiliadis, D. Sanjeev, et aI., "The TM3270 media
processor," in MICRO '05: Proceedings of the 38th International Symposium on 
Microarchitecture, November 2005, pp. 331-342. 

[26] Analog Devices, www.analog.com/processorsfsharcf. 

[27] "Processor Comparison: Texas Instruments C6000 DSP and Motorola G4 
PowerPC," http://www.pentek.com/dspcentralfpowerpc/articles.cfm. 

[28] Benoit Dupont de Dinechin, "From Machine Scheduling to VLIW Instruction 
Scheduling," ST Journal of Research Processor Architecture and Compilationfor 
Embedded Systems vol. I, September 2004. 

[29] Martin Hopkins, "A Critical Look at IA-64: Massive Resources, Massive ILP, 
But Can It Deliver?," in Microprocessor Report, February 2000. 

[30] R. E Gonzalez, "Xtensa: A configurable and extensible processor," in IEEE 
MIicro, March! April 2000, pp. 60-70. 

[31] R. Arno1d, R. Bhatia, and D. SoItis, "Reducing the Physical Cost of Large 
Register Files in EPIC Architectures with Stacked Register Aliasing," in 
Proceedings of the Workshop on EPIC Architectures and Compiler Techniques, 
Istanbul, Turkey, November 2002. 

[32] Francisca Quintana, Roger Espasa, and Mateo Valero, "A Case for Merging the 
ILP and DLP Paradigms," in 6th Euromicro Workshop on Parallel and 
Distributed Processing, Madrid, Spain, 1998, pp. 217-224. 



3. Software and Hardware Parallelism 

[33] C. G. Lee and D. J. DeVries, "Initial Results on the Perfonnanc and Cost of 
Vector Microprocessors," in the Proceedings of the 30th Annual International 
Symposium on Microarchitecture, 171-182, December 1997. 

60 

[34] R. G. Hinz and D. P. Tate, "Control data STAR-lOO processor design," in IEEE 
COMPCON, September 1972. 

[35] W. Watson, "The TI-ASC, A highly modular and flexible super computer 
architecture," in American Federation of Information Processing Societies 
AFIPS, 1972, pp. 221-228. 

[36] John L. Hennessy and David J. Patterson, Computer Architecture: A Quantitative 
Approach 2nd ed.: Morgan Kaufinan, 1996. 

[37] Richard M. Russell, "The CRAY-I computer system," Communications of the 
ACMvol. 21, pp. 63-72, 1978. 

[38] R. Espasa, M. Valero, and J. E. Smith, "Vector architectures: past, present and 
future," in Proceedings of the 12th international conference on Supercomputing, 
Melbourne, Australia, 1998, pp. 425-432. 

[39] C. Kozyrakis, "A Media-Enhanced Vector Architecture for Embedded Memory 
Systems," Technical Report: CSD-99-1059, University of California at Berkeley 
1999. 

[40] Rajkumar Buyya, High Performance Cluster Computing: Architectures and 
Systems vol. I, 1999. 

[41] T. Ungerer, B. Robic, and J. Silc, "A Survey of Processors with Explicit 
Multithreading," in ACM Computing Surveys (CSUR). vol. 35, March 2003, pp. 
29-63. 

[42] M. Meswani and P. J. Teller, "Evaluating the Perfonnance Impact of Hardware 
Thread Priorities in Simultaneous Multithreaded Processors using SPEC 
CPU2000," in 2nd International Workshop on Operating Systems Interference In 
High Performance Applications, Seattle, WA, September 2006. 

[43] L. SprackJen and S. G. Abraham, "Chip Multithreading: Opportunities and 
Challenges," in Proceedings of the 11th Intel Symposium on High-Performance 
Computer Architecture, 2005. 

[44] S. J. Eggers, J. S. Emer, H. M. Levy, et aI., "Simultaneous Multithreading: A 
Platfonn for Next-Generation Processors" in IEEE Micro. vol. 17, October 1997, 
pp. 12-19. 

[45] V. A. Chouliaras, K. Koutsomyti, T. Jacobs, et aI., "SystemC-defined SIMD 
instructions for high perfonnance SoC architectures," in 13th IEEE International 
Conference on Electronics, Circuits and Systems, Nice, France, December 2006, 
pp. 822-825. 

[46] A. Peleg and U. Weiser, "MMX Technology Extension to the Intel Architecture," 
in IEEE Micro. vol. 16, August 1996, pp. 42-50. 

[47] K. Diefendorff, P. K. Dubey, R. Hochspnmg, et aI., "AltiVec Extension to 
PowerPC Accelerates Media Processing," in IEEE Micro. vol. 20, March 2000, 
pp. 85-95. 



3. Software and Hardware Parallelism 61 

[48] Marc Tremblay, J. Michael O'Connor, Venkatesh Narayanan, et a!., "VIS Speeds 
New Media Processing," in IEEE Micro. vo!. 16, August 1996, pp. 10-20. 

[49] R. Espasa, F. Ardanaz, J. Gago, et aI., "Tarantula: A Vector Extension to the 
Alpha Architecture" in the Proceedings of the 29th Annual International 
Symposium on Computer Architecture (ISCA '02) Anchorage, Alaska, 2002, pp. 
281-292. 

[50] R. Espasa and M. Valero, "Exploiting Instruction- and Data-Level Parallelism," 
in IEEE Micro. vo!. 17, September 1997, pp. 20-27. 



CHAPTER 4 
METHODOLOGY AND ARCHITECTURAL RESULTS 

4.1 Introduction 

This chapter presents the optimization methodology and the architectural exploration of 

the !TU G.729A and G.723.l speech coders for a data parallel processor. The 

methodology addresses target-independent optimizations of both reference codes. Thus, 

these workload optimizations presented here can be utilised on any DSP code with data

parallel infrastructure for acceleration. As instruction level simulation was the base for 

the adopted experimentation methodology, the description of the software tools and their 

development to suit the purpose of this research is given in the following sections along 

with a briefly survey of computer systems simulators. Both speech coding algorithms 

were benchmarked using the SimpleScalar toolset [1], before and after the data

parallelization and optimization to obtain the instruction count (also called dynamic 

instruction count). The instruction count is the total number of instructions executed by 

an ideal scalar processor when running the codes. Using this information, the 

vectorization of the speech algorithms was performed and performance improvement 

recorded after every new vector instruction was introduced. Finally, the architecture of 

the coprocessor was defined. 

4.2 Simulation Infrastructure 

There is a growing need for efficient techniques to predict the performance of future 

computer systems and evaluate candidate, novel microarchitectures in the research phase 

of a new computer before implementing them in hardware [2]. Simulation has been 

essential for the research and design of processors, compilers or any hardware that 

comprises a computer system or platform. It accelerates the hardware development 

process by employing software models for the proposed hardware. Simulation can reveal 

the dynamic characteristics of the hardware model and the software system that executes 

on it and allows for rapid design space exploration. Such models can be implemented in 

62 



4. Methodology and Architectural Results 63 

traditional programming language such as C/C++ or hardware description language such 

as Verilog and VHDL and then, exercised with appropriate workloads to validate the 

performance and correctness of the proposed hardware at very early stage. In addition, 

computer system models allow the developing and testing of the software before the 

hardware is available [3), [4), [5). Typically, such software models are substantially 

slower than the equivalent hardware; however they can be built in very short time [I). 

The implementation of the software model can vary in the following quality 

features/requirements: 

Performance: The performance depends on the amount of the workload that can be 

exercised. The greater the number of workloads that can exercise the model, the more 

thorough the model study and verification can be, ensuring this way increased probability 

of correct-by-construction design. Performance has to do also with the speed (simulated 

MlPS) of the actual simulation model and therefore with the speed of each of the 

component that comprise the latter. 

Detail: The detail or simulation model accuracy determines the level of abstraction of the 

implemented model's components. It can describe the simulated system from a purely 

functional processor state level all the way to cycle-accurate timing including memory 

wait states and interrupt latency of all its components. Different levels of abstraction 

provide complementary amounts of information to the system designer however, at 

increased execution time. 

Flexibilitv: Flexibility indicates how well structured is the simulator to easily modify or 

add design variants of the simulated system in order to re-use it for slightly or completely 

different models. 

There is a trade-off between these three aspects of the computer system simulators. A 

highly detailed model can faithfully simulate all aspects of the system's operation but 

does so at low execution speeds and has reduced flexibility. On the other hand, a simpler 

model is less accurate but faster and certainly more flexible. Thus, there are several 

different simulator implementation models that meet different requirements in terms of 

performance, detail and flexibility. There is ongoing research in this area as researchers 

strive to achieve a reasonable trade-off [I, 6). 



4. Methodology and Architectural Results 64 

Certain types of simulators are described with an Architecture Description Language 

(ADL) [7], [8]. ADLs are computer languages designed specifically for representing and 

analysing system's microarchitecture. Such formal descriptions of architecture and 

microarchitecture have been the subject of research for years [9] and several models and 

techniques have been proposed on this front in an effort to facilitate architecture and 

microarchitecture description and space exploration. ADL-based simulators belong 

primarily to one of the two categories depending on whether the ADL captures the 

behaviour (instruction-set) or the structure (microarchitecture) of the system [10]. 

Recently, a third category has emerged which combines effectively both, behaviour and 

microarchitecture [7]. Behaviour-centric [7] also known as instruction set [10], [Il] 

simulators describe instruction functionality but don't allow detailed pipeline and control

path specification. They are primarily used during the development phase of architecture 

(before the actual hardware specification is written and implementation begins) providing 

an execution model of the system and thus, writing the first programs and testing the 

compiler code generation [I I]. Such ADLs are good for regular architectures and provide 

programmer's model but they are tedious for irregular architectures [8]. This type of 

simulators is simple, relatively fast (low MHz range) and can be easily retargeted to 

various ISAs. Examples of ADLs generated behaviour-centric simulators are nML [12], 

ISDL [13], ISPS [14]. nML is based on the concept that the majority of instructions share 

common properties. By exploiting these common properties, a hierarchy scheme is 

developed to describe instruction sets. The instructions are the topmost elements in the 

hierarchy and partial instructions are the intermediate elements. Each instruction 

definition in nML can be in the form of an AND-OR tree of intermediate elements that 

has a few attributes [10], [12]. The Instruction Set Description Language (ISDL) [13] was 

developed at MIT in order to express parallelism with explicit specification and it targets 

mainly VLIW processors [10]. The Instruction Set Processor Specification (ISPS) [14] 

appeared in the early 1970's and has been the basis for many design tools [15]. ISPS was 

used to model the architecture of processors and analyse their performance rather than to 

describe a complete computer system [15], [10]. On the other hand, structure-centric [7] 

also known as cycle-accurate [11] simulators simulate the microarchitecture of a system 

and provide performance metrics such as cycle counts, cache hit ratios and resource 

utilization statistics amongst others. Examples of structure-centric simulators are 

MIMOLA and VDLfI. MIMOLA [10] describes application programs with a Pascal-like 



4. Methodology and Architectural Results 65 

syntax while the processor model has the form of a component netlist. VDLlI (16) stands 

for the Unified Design Language for Integrated circuit. It is a Register Transfer level 

description language for simulation and logic synthesis. The techniques that are used in 

this ADL category to describe in detail the computer microarchitectures are very 

complex, quite slow and sometimes architecture specific (11). Mixed type of simulators 

such as LISA and EXPRESSION capture both the structure and behaviour of the 

architecture. The Language for Instruction Set Architecture (LISA) (17) explicitly models 

both the datapath and control that are necessary for cycle accurate simulation. This 

description comprises two types of declaration: resources and operations. Resources 

refers to hardware structures such as registers, pipelines and memory systems whereas 

operations are the basic objects that represent the programmer's view of the behaviour, 

structure and the instruction set of the architecture. EXPRESSION (8) describes a 

processor as a netlist of functional units and storage elements and automatically generates 

Reservation Tables (RT) based on that netlist. Thus netlist representation is at a higher 

level of abstraction, similar to a block-diagram level description. 

Simulators are also classified depending on whether they are trace driven (5) or execution 

driven (2),[15). Trace-based simulation is a more traditional simulation technique that 

uses a stream of pre-recorded instructions to drive a hardware timing model. It employs a 

variety of techniques, both hardware and software, in order to obtain the instruction 

traces. Such techniques include hardware monitoring, binary instrumentation that inserts 

probe functions at various location in the to-be-traced code in order to collect event traces 

or trace synthesis [I). Trace-based is faster than execution driven simulation but requires 

large amount for storage of traces and incurs large time overheads as traces can contain 

billions of references. In addition, it can be less accurate because of the difficulty in 

characterizing the behaviour of real programs stochastically meaning that it can capture 

only a part of processor behaviour e.g. cache misses. Since a trace is obtained from 

logical execution paths of a workload it can't model speculative execution such as branch 

directions or load addresses (2). On the other hand, execution-driven simulation permits 

greater accuracy as the execution of the program and the simulation of the architecture 

are closely related and interleaved. It can reproduce a device's internal operation by 

replicating the execution of instructions on the simulated machine. In this way it provides 

all the data produced or consumed inside all microarchitecture components. The typical 



4. Methodologv and Architectural Results 66 

output of this type of simulation is a large number of statistics that can help to understand 

how the components ofthe simulated system behave and a precisely-estimated execution 

time. Execution-based simulation can be also employed for dynamic power analysis as it 

can precisely record the change in the inputs of microarchitecture blocks and calculate 

relative dynamic power metrics accordingly. The drawbacks of the execution driven 

simulation are the high model complexity and the difficulty in reproducing experiments 

[I]. There is ongoing research to overcome these issues such as retargetable instruction 

set simulators [18], where the goal is to generate a simulator automatically from a 

machine description language. Additionally, traces can record the precise system state 

and can help to recreate the record-of-execution [I]. 

Finally, simulators can be classified depending on the amount of detail that they employ 

for system representation from Instruction-accurate simulators (1SS) [4], [18], [I] to 

Cycle-accurate simulators (CAS) [6], [19]. 1SS imitates the behaviour of a mainframe or 

microprocessor by "executing" instructions and maintaining internal variables which 

represent the processor's registers. The 1SS represents the system at a higher level of 

abstraction allowing the development of this simulator in short time. It is preferred from 

the cycle-accurate simulators in the early stages of a project to model fast the 

architectural features of the system but it can be also used in later stages to validate the 

functionality of the system since it can rapidly run the complete benchmark. The 1SS 

however can't be used for performance analysis as they don't contain pipeline detail or 

timing issues [4], [18]. The Cycle-accurate simulators on the other hand, can perform 

timing (Cpn analysis and give quite accurate performance estimates. They are more 

complex to develop because of the great amount of detail and thus more time-consuming 

and lower speed than the 1SS. Additionally, different CAS need to be developed for any 

new implementation of an architecture whereas the ISS undergo only minor changes 

between implementations of the same architecture [19]. 

4.2.1 Simple Scalar Toolset 

The pnmary architecture exploitation was carried out on the Version 3.0 of the 

Simple Scalar tool set that is publicly available. Since its release in the Opensource (1995) 

Simple Scalar has been widely used for research in the computer architecture community 

[18]. The toolset provides an infrastructure for simulation and architectural modelling that 



4. Methodologv and Architectural Results 67 

simplifies the implementation of hardware models for simulation of complete 

applications [I], [18]. It can perform program performance analysis, measure the dynamic 

characteristics of the hardware model and contribute to the software-hardware co

verification and co-optimization. It comprises of a compiler, assembler, linker and 

simulation tools for a range of modern processors architectures. SimpleScalar comprises 

several simulator models ranging from a simple functional instruction emulator (sim-safe) 

to a detailed microarchitectural model with dyoamic scheduling (sim-outorder). Table 4-1 

lists the seven simulators at different level of microarchitectural abstraction that are 

contained in the current release (version 3.0) of Simple Scalar. These simulator models are 

Instruction Set Simulators (ISS), also called functional, apart from the sim-outorder 

which is full cycle-accurate simulator and provides detailed microarchitectural timing [1]. 

Table 4-1: SimpleScalar baseline simulator models 

Simulator Description Code Lines Typical Speed 

sim-safe Simple functional simulator 320 6MIPS 

sim-fast Speed-optimized functional simulator 780 7MIPS 

sim-profile Dynamic program analyser 1,300 4MIPS 

sim-bpred Branch predictor simulator 1,200 5MIPS 

sim-cache Multilevel cache memory simulator 1,400 4MIPS 

sim-fuzz Random instruction generator and tester 2,300 2MIPS 

sim-outorder Detailed microarchitectural timing model 3,900 0.3 MIPS 

Figure 4-1 illustrates the SimpleScalar infrastructure and its main components. The 

behaviour of the simulator depends on the processor model that is defined at three levels: 

ISA, ABI (Application Binary Interface) and microarchitecture [13]. 

Simulators 

os 

Figure 4-1: SimpleScalar Infrastructure 



4. Methodology and Architectural Results 68 

Only two ISA's are supported in the current release, the Portable Instruction Set 

Architecture (PISA) and the Alpha instruction set architecture. The instructions have a 

specific format that comprises the assembly format, binary opcode, register source and 

destinations, execution unit, instruction class and enum opcode that are assigned from the 

infrastructure [13]. Each instruction is associated with a semantic action statement that 

provides a comprehensive mechanism for describing how the instructions modify the 

state of the registers and memory. The OS handles only the trap instructions with the help 

of the system cal1 simulation. The Application Binary Interface (AB!) establishes the 

communication between the simulated system and the external 110. The instructions are 

loaded on a binary file format of the machine code after they are linked and relocated 

statical1y as no dynamic linking is supported. SimpleScalar uses the provided COFF 

binary file loader or the GNU's binary file descriptor library [13]. Since the SimpleScalar 

toolset is an execution-driven simulator, there is no need for instruction trace files as al1 

the instructions are generated dynamical1y [1]. It models several microarchitectural 

components such as cache, memory, functional unit resource, scheduler and branch 

predictor. Its microarchitectural modelling ability can be extended easily due to its simple 

design that al10ws the addition of more components [13]. 

4.2.2 Customizing the Simple Scalar Toolset 

For this research the SimpleScalar PISA instruction set was used. This is an extension of 

Hennessy and Patterson's DLX instruction set [20] that it also includes a number of 

instructions and addressing modes from the MIPS-IV [21] and RS/6000 (IBM pSeries). It 

utilizes a 64-bit instruction encoding to provide an easily extensible, research 

environment for instruction-set and system design. This extended encoding can support 

modification or addition of instructions, variation of the number of the program used 

registers etc [22]. The simulation tool utilised was the sim-fast that is a speed-optimized 

functional simulator that provides instruction accurate simulation but no timing. It 

executes al1 the instructions serial1y without assuming the existence of a cache. Based on 

this simulation tool, sim-vector was created that incorporates apart from the existing 

PISA, a file with the proposed vector ISA (vector. def). The vector. def file contains 

the definition of al1 the instruction extensions (scalar and vector) of the proposed 

coprocessor. The development of the coprocessor ISA and its introduction in the 



4. Methodology and Architectural Results 69 

vector.def file are described in more details in section 4.3.7. The specific two target 

workloads (G.729A and G.723.1) run on the model using execution-driven simulation. 

They use the statistical package which tracks updates to statistical counters and produces 

a detailed report. Sim-system is another tool based on the sim-fast that was created to 

model a shared memory multiprocessor environment. The sim-system simulator also 

called a PRAM model (Parallel RAM), is multithreaded and allows the execution of 

shared-memory applications. Sim-system was not utilised in this research as sim-vector 

provided the entire infrastructure in terms of single processor and the ability to add 

scalar-vector extensions. It has however been part of another closely linked research 

project in which the identified scalar-vector extensions were implemented in SystemC 

and attached to the vector unit of a high performance configurable extensible processor 

[23]. This research project and its results are detailed in Chapter 7. 

4.3 Workload Optimization 

4.3.1 Profiling 

As mentioned previously, ITU-T provides reference C code for a number of speech 

coders. Every such reference implementation defines a set of universal, basic arithmetic 

operations (functions), essential for the implementation of speech coding algorithms. For 

the purpose of this research and in order to investigate the potential acceleration, the ITU 

G.729A reference code was profiled initially in native mode (Intel X86) in order to 

identify the computation workload distribution in these basic functions [24]. This was 

achieved by compiling the code with the compile flag -pg (for embedding profile 

instrumentation in the resulting binary) and running it with one of the ITU-T supplied test 

vectors, to produce a single profile data file. Subsequently, this was processed by the 

gprof Linux utility. Profiling revealed that the average relative amount of time spent 

outside the basic-op functions in reference code was 30.4% and 26.9% for the G.729A 

coder and decoder respectively as it shown in Table 4-2 [24]. The same profiling was also 

performed for the ITU G.723.1 reference code and the results are depicted also in Table 

4-2. 



4. Methodolof!!! and Architectural Results 

Table 4-2: Relative amount of time spent outside the basic instructions 

Algorithm Relative CPU Time (%) in Native Mode 

G.729A Coder 30.4 

G.729A Decoder 

G.723.1 Coder 

G.723.1 Decoder 

26.9 

31.3 

22.8 

70 

As general applicability and consistency of the profiling data were desirable, the 

workloads were profiled again in the SimpleScalar environment which is our simulation 

infrastructure. Table 4-3 depicts the highest percentage of the dynamic instruction count 

spent outside the basic operations of both the application codes, for encoding and 

decoding [25]. 

Table 4-3: Relative number of total instructions executed outside the DSP emulation 

instructions 

Algorithm 

G.729A Coder 

G.729A Decoder 

G.723.1 Coder 

G.723.1 Decoder 

Relative Instructions(%, simulated) 

34.2 

37.2 

34.5 

33.3 

Even though two fundamentally different instruction set architectures and profiling 

collection/execution environment were used, both respective profiling metrics of the 

codecs were within 5% of one another. Therefore the experiments were continued by 

using the simulated infrastructure as the produced results are reasonably independent of 

the sampling issues of profiling in native mode and closer to real implementations of 

RISCIDSP processing kernels for multimedia applications [25]. The profiling results, as it 

was expected, revealed that the workloads spend a significant amount of time/instructions 

executing the basic emulation functions. Table 4-3 reveals that a 66.7% of the total 

machine instructions executed is inside the set of basic functions. A further, very 

important observation relates to parallelism exploitation within the right DSP loops 

utilising these basic operations. In general, visual inspection of the code suggests a 

significant number of the basic operations appear in data-parallel loops [24]. It was 

apparent that efficient implementation of the basic operations via a configurable 

microprocessor with a targeted, data-parallel architecture, that closely matches these basic 



4. MetltodolOl!v alltl Architectural Results 71 

operalions, could lead to high performance. These basic instructi ons are listed in the chart 

of Figure 4-2 along with the number or the executed machine instnlctions that they need. 

Thererore the creation or vector instructions was ba ed primarily on the profiling 

informat ion electing the most machine instructi on consuming. 

,<0 

' 20 

"" ' 00 

eo " 72 

.. .. 
" " 33 38 

28 

20 

f igure 4-2: Machine instruction count for the IlASOP.C functions 

Additi onal acceleration of these computationall y ex pensi ve operations can be achieved by 

taking advantage of the Data Level Para llelism (DLP) to create vector operation , based 

on the DSP emu lation instructi ons, into a data paral lel form. As it was explained in the 

prev ious chapter vector instnlctions are a simple yet, very powerfu l mechan ism to 

significantly improve the performance of the system [26]. The unm dined speech coders 

0 .729A and 0.723.1 were profi led once more using the SimpleSca lar too lset for all ITU

T test vectors. T he results of the comprehensive proli l ing for both codecs are shown in 

Table 4-5 and Table 4-4 respectively. 



4. Methodology and Architectural Results 72 

Table 4-4: G.723.1 Unmodified Workloads Instruction Count 

Workloads Instruction Count Frames 
Encoder 

Dtx63.tin 10,159,684,865 864 

Dtx53mix.tin 925,852,798 120 
(r53) 
Dtx53mix.tin 1,062,686,614 120 
(mixed) 

Decoder 
Dtx63.rco 680,066,056 864 

Dtx53.rco 90,359,083 120 

Dtxrnix.rco 90,305,154 120 

Dtx63e.tco 925,852,811 120 

Dtx63b.tco 9,093,395 11 

These results were used as a baseline during the research and optimization phases of the 

scalar and vector ISA in order to precisely quantifY the benefit. 

Table 4-5: G.729A Unmodified Workloads Instruction Count 

Workloads Instruction Count Frames 
Encoder 

Algthrn 62,613,638 34 
Fixed 213,961,855 119 

Lsp 3,977,183,269 2231 

pitch 3,253,175,283 1834 

Tame 230,917,008 127 
Test 311,692,276 175 
Speech 6,656,624,952 3749 

Decoder 
Algthrn 13,456,279 34 

Fixed 45,865,491 119 

Lsp 865,256,672 2231 

pitch 706,161,011 1834 

Tame 49,456,050 127 

Speech 1,440,402,972 3749 

Erasure 114,722,597 299 

Overflow 148,851,504 383 

Parity 115,390,78 288 



4. Methodolof[V and Architectural Results 73 

Table 4-6 depicts the top ten most computationally intensive functions of the G.729A 

speech coder. As it can be seen the most demanding function is the cor_h_x that 

computes the correlation of the input response with the target vector. 

Table 4-6: Profiling the G.729A functions by using the speech workload 

Function No of "all 
Dynamic 

DLP Description 
Instruction Count 

15,000 247,349,024 High 
Compute correlation of 

Cor_h_x 
target vector 

Linear Prediction 
Syn_filt 30,000 236,497,500 High 

synthesis filter 

7,500 217,172,751 Low 
Algebraic codebook with 

D4i40_17_fast 
4 nonzero pulses 

3,750 213,394,987 High 
Compute the open pitch 

pitch_ol_fast 
lag 

Find autocorrelations of 
Autocorr 3,750 203,658,564 High 

signal with windowing 

7,500 199,979,638 High 
First stage quantizer 

Lsp-.pre_seleet 
using LSP codebook 

7,500 58,402,500 High 
Compute the LPC 

Residu 
residual 

7,500 43,319,433 Low 
Find Pitch period and 

pi t-.pst_filt 
perform Postfiltering 

63,755 41,693,130 High 
Copy input to output 

Copy 
vector 

7,500 25,141,988 High 
Scale postfilter output by 

Age 
automatic control 

The next function, Syn_fil t, implements the synthesis filtering [27]. Visual inspection 

of these functions identified the amount of the Data Level Parallelism (DLP) that can be 

effectively exploited and this is also shown in Table 4-6. Table 4-7 shows the top ten 

most computationally intense functions of the G.723.1 for the 6.3kbits/s workload. In this 

case, the most demanding function is the Find_Best that performs the fixed codebook 

search for the high rate encoder [28]. It contains a significant DLP and thus has high 

vectorization potential. The next function in the list, F ind_Acbk, computes the adaptive 



4. Methodolof!!! and Architectural Results 74 

codebook contribution in the closed-loop around the open-loop pitch lag. This function 

unfortunately does not posses sufficient DLP [28]. 

Table 4-7: Profiling the G.723.1 functions by using the 6.3kbits/s workload 

No of call 
Dynamic 

DLP Function Instruction Count Description 

Find_Best 4,408 1,370,009,644 High Fixed Codebook Search 

Find_Acbk 2,772 915,225,959 Low Adaptive Codebook 
Calculation 

Estim_Pitch 1,728 430,602,013 High Open-loop pitch 
estimation 

Lsp_Svq 926 141,876,220 Medium Search for the LSP 
indices 

Comp_Lpc 864 126,386,784 High Computes the LPC filter 
coefficients 

Upd_Ring 3,456 98,506,368 Medium Update memory of the 
filters 

2,772 78,871,716 Low 
Computes the zero-input 

Sub_Ring response and target 
speech vector 

2,772 78,048,432 Low 
Computes the combined 

Comp_Ir impulse response from 
the filters 

864 66,604,896 Low 
Implements the formant 

Error_Wght perceptual weighting 
filter 

Decod_Acbk 6,228 31,267,516 High Computes the adaptive 
codebook contribution 

Tlris functional profiling in conjunction with visual inspection indicates that a vector 

implementation of the basic operations can lead to a high performance processing 

platform for these workloads. This is the basic premise around which a vector ISA and 

microarchitecture have been defined in this work. 

4.3.2 Vector ISA Development and Experimentation Methodology 

This section describes the optimization methodology adopted for both !TU G.729A and 

G.723.l reference codes on the vector coprocessor software model. The main steps of the 

software optimization process are depicted in Figure 4-3. The selection of the kernels for 

optimization was based primarily on the profiling information for both !TU speech 

coding algorithms and focused on the most time/instruction-critical functions. 



4. Methodologv and Architect/l r£/l Results 

Profile Algori thm 

Architecture 
Specification 

Vector and Scalar 
Extensions 

Vectorize Oata 
Parallel Loops 

Run Tests 
(X86 Mode) 

Scalar optimization 
of non

vectorizable 
section 

Run Tests 
(X86 Mode) 

Tests O.K? 

Instructions in 
Inline Assembly 

Run Tests 
(SS Mode) 

AestsO.K? 

f 
Simulation 

Archtectural 
Resul ts 

Figure 4-3: Experimentation Methodology 

75 

The architectura l state of Ihe proposed veclor accele ralor was defined in Ihe architectural 

confi guration fi le vstate . h. Thai fil e precisely describes the extended processor state, 

on top of the ex isting one (S impleScal ar specifi ed processor state). Figure 4-4 illustrates 

the coments of the vstate.h that re lates to the ex tended vector state (vstateT 

structure). The #define directi ves spec ify the number of the vector and scalar registers, 

the vector accumu lat.ors and the predicati on and overfl ow fl ag bi ts. As the coprocessor is 

uniquely parametric, parameter VLMAX is defined at the beginning of the fil e and 



4. Methodology and Architectural Results 76 

determines the maximum vector length of the vector components. In this particular case 

VLMAX is equal to 8. This means that a vector register will include 8x 16-bit elements 

and a vector accumulator will have (8/2)x32-bit elements respectively. The structure 

vs ta teT encapsulates the total vector coprocessor state. It includes the definition of all 

the above mentioned programmer-visible registers as two dimensional arrays apart from 

the overflow flag that is a single dimension array. 

//***************** 
#define VLMAX 8 
//***************** 

typedef signed short int VECTOR[VLMAXJ; 

#define VECTOR_REGS 16 
#define VACCUMULATORS 2 
#define PRED_REGS 1 
#define SCALAR_REGS 16 

typedef struct 
{ 

II Vector length register 
int VLEN; 
II Vector register file 
signed short int VRF[VECTOR_REGSJ [VLMAXJ; 
II Vector accumulators 
signed int VACC[VACCUMULATORSJ [VLMAX/2J; 
II Predicate registers 
unsigned short int PRED[PRED_REGSJ [VLMAXJ; 
II Scalar registers 
signed int SRF[SCALAR_REGSJ; 
II Vector overflow 
unsigned short int V16[VLMAXJ; 

} vstateT; 

Figure 4-4: The extended processor state as defined in the configuration file vstate.h 

Subsequently, vector instruction extensions were developed that match the basic 

operations ofthe speech coding algorithms as these were proved to be the most critical. In 

order to check the coprocessor at the functionality level without the need to specify any 

underlying technology, C macros were created to represent the vector instruction 

extensions. This resulted in a new codebase which included these new instructions and 

thus can benefit from the power ofthe vector hardware. With this method, the instruction

accurate model of the coprocessor was verified with the help of the test vectors by 

mapping directly the output of the modelled coprocessor with that of the original scalar 

one. 



4. MethodoloIT and Architectural Results 77 

ill order to be able to run the algorithm in vector mode, it was essential to re-write the 

data level parallel loops of the code in vector assembly in such a manner that no semantic 

difference exists between the vectorized and the original code. At this point, it must make 

clear that the architecture specification and the ISA development are interlocked and both 

evolved during the vectorization of the workloads. The remaining (non-vectorizable part) 

of the code was also optimized by re-writing it in scalar assembly by using Scalar 

illstruction Set extensions. illitially, all the created instructions modelled in C and were 

included in the x8 6_ vi sa. h header file located in the source directory of the nu 
codecs. This step allowed for at-speed validation, in native mode, of the custom 

instructions with the original instructions replaced by the instruction extensions. An 

example of such instruction, as defined in the x86_visa.h file, is shown in Figure 4-5. 

#ifdef X86 
//Vector register shift right 
/*-------------------*/ 

#define vshri(vrf,amount)\ 
/*-------------------*/\ 
({\ 

extern vstateT vstate,\ 
int index,\ 
stats_start, \ 
update_stats('vshri'),\ 
for (index = 0, index < vstate.VLEN 
{\ 

putv\ 
if (vrf!=O)\ 

index ++)\ 

vstate.VRF[vrfl [index) =shr_simple (index,vstate.VRF [vrf) 
[index), (Word16)amount),\ 

} ) ; 

orvi\ 
)\ 
regv, \ 
stats_end,\ 

Figure 4-5: Example of a C macro Instruction Definition 

The pre-processor directive #ifdef x86 at the beginning of the instruction is used as a 

switch to enable or disable the C macros when executing Linux x86. The vshri 

instruction performs an arithmetic shift right of the source vector register, vrf, by as 

many positions as the variable amount defines. It calls the shr_simple function for each 

vector element, to perform the shift right operation. The result is stored in the destination 

register vrf. The shift is performed within a loop of vI en iterations, which is the 



4. Methodology and Architectural Results 78 

dynamic number of elements (16-bits each) that comprise the operand vector (vrf). This 

number is specified in the vlen_r register. A similar format was followed for all the 

instructions. The only main difference between the scalar and vector instructions is that 

the former does not contain a loop as the length of the scalar operands is constant while 

the length of the vector operands is parametric (run-time). After all the identified DLP 

loops were replaced with vector assembly the optimized workloads were validated by 

running the test vectors to ensure that there is no semantic difference between the 

vectorized and the original code. The remaining of the code was optimised by using 

scalar assembly and again it was verified by running the same ITV test vectors. When the 

optimization of the workloads was complete the vector and scalar instructions re-written 

in inline assembly and inserted in the SimpleScalar simulation infrastructure to extend its 

functionality and thus, the architectural simulation results. The steps that are mentioned 

above are described in more details in the following sections of this chapter. 

4.3.3 Identification of Data Parallel Loops 

As it already discussed, parts of both C reference codes had to be re-written in vector 

assembly in order to run efficiently on the vector accelerator. The replacement of scalar 

operations by vector extensions is called vectorization. Vectorization takes place in 

functions that can exhibit Data Level Parallelism (DLP). Such functions typically operate 

iteratively on blocks of data without the presence of data dependences (loop-carried 

dependences). By carefully examining the code it became apparent that the main area of 

interest is the loops as, in their overwhelming majority, perform DSP-type operations on 

arrays of data. These loops were therefore targeted and their bodies were replaced with 

vector operations semantically equivalent to the original code. Any mismatch in the 

output bitstreams between the original (ITU -1) and vectorized (as above) codes is 

attributed to loop-carried dependences which can't be eliminated [29]. In chapter 3 were 

described all the types of data dependences that can be detected in a program. In this case 

only the true dependences between statements in a loop were considered. More 

specifically, every loop was examined to determine whether a statement depends upon 

itself (loop-carried dependences) or if a statement that writes a memory location precedes 

a statement that uses that memory location as an input [29]. Figure 4-6 and Figure 4-7 

illustrate the case of data dependent loop (non-vectorizable) and a data independent loop 



4. Methodology and Architectural Results 79 

(vectorizable) respectively. In Figure 4-6 the loop calculates the Line Spectral Pair (LSP) 

coefficients in G.729A encoder and shows interstatement (iteration-carried) dependences. 

This loop can't be vectorized. As it can be seen statements S5 and S9 depend upon input 

values that were created by previous execution (iteration) ofS5 and S9 respectively. 

for (i = 0; i< NC; i++) 
( 

S2 to = L_mult(a[i+lJ, 8192); /*x=(a[i+lJ+a[M-iJ»>I*/ 
S3 to = L_mac(tO, a[M-iJ,8192); /*-> From Qll to QI0*/ 
S4 x = extract_h(tO); 
S5 fl[i+lJ = sub(x, fl[iJ); /*fl[i+lJ=a[i+lJ+a[M-iJ-fl[iJ*/ 
S6 to L_mult(a[i+lJ. 8192); /* x = (a[i+lJ-a[M-iJ) » 1 */ 
S7 to = L_msu(tO, a[M-iJ,8192); /*-> From Qll to QI0 */ 
S8 x = extract_h(tO); 
S9 f2[i+lJ = add(x, f2[iJ); /*f2[i+lJ=a[i+lJ-a[M-iJ+f2[iJ*/ 

} 

Figure 4-6: Example of a non-vectorizable loop as the statement 85 depends on a previous 

result of the 85 execution. The same dependency appears to the statement 89. 

Figure 4-7 presents a loop that subtracts the unquantized LSP frequencies for the current 

frame in order to compute the VQ weighting vectors. It selects the frequencies that are 

closer in value with each other in order to produce weights of greater precision. As 

shown, this loop is vectorizable as both statements (S2 and S3) are independent from 

previous results of their execution (producer/consumer iteration indexes are linear 

combination of one another and independent). The inputs of these statements are arrays of 

the currents frequencies that can be loaded from assigned pointers to the vector registers. 

for ( i = 1 ; i < LpcOrder-l ; i ++ ) 
{ 

S2 TmpO sub( CurrLsp[i+lJ, CurrLsp[iJ 
83 Tmpl = sub( CurrLsp[iJ, CurrLsp[i-lJ 
84 if ( TmpO > Tmpl ) 
85 Wvect[iJ Tmpl 
86 else 
87 Wvect [iJ = TmpO 

} 

Figure 4-7: Example of a vectorizable loop with statements 82 and 83 being independent 

from previous results of their execution. 

The same methodology was followed for all the loops in both C reference codes for both 

encoder and decoder, whenever iteration-carried data dependences didn't arise between 



4. Methodology and Architectural Results 80 

loop statements, loops were re-written in vector assembly as described in the following 

section. 

4.3.4 Implementation ofvector loop using custom ISA 

Figure 4-8 shows a loop that quantizes the difference between the computed and 

predicted coefficients at the first-stage vector quantizer in the LP analysis of the G.729A 

encoder. This vectorizable loop has M iterations (value is specified at compile time) that 

performs subtraction (sub) of two arrays, multiply the subtraction result with itself and 

adds the product to the accumulator (L_rnac), for the entire current frame M. As it can be 

seen these two operations are data independent as the iterated statements are not using 

values computed in some previous iterations. Therefore they can safely be replaced and 

directly converted to vector form. The pre-processor directive #ifded ORIGINAL selects 

the conditional compilation of the code to run this non-optimized part when the original 

mode is selected in the compile. h header file. 

/******************LOOP1*******************/ 
#ifdef ORIGINAL 

for ( j = 0 ; j < M ; j ++ ) 
( 

) 

tmp = sub (rbuf (j J, lspcbl (iJ (j J); 
L_tmp = L_rnac( L_tmp, tmp, tmp ); 

Figure 4-8: Example of loop with DLP within the original C code 

Figure 4-9 depicts the first part of the transformed loop with the introduction of vector 

assembly. Having identified that the loop is vectorizable, it is necessary to identify the 

inputs and outputs of the loop that have to be loaded or stored in vectors. By associating 

these I/O vectors with 16-bit or 32-bit pointers, this allows the data to be represented 

using the l6-bit elements of the vector registers or the 32-bit elements of the vector 

accumulators respectively. The newly created pointers point to the first values in both 

data arrays (inputs). All the intermediate values are stored temporarily into the vector 

registers or accumulators, depending on the instruction. When the pointers are set the 

vector length register (vlen_r) needs to be loaded with the maximum vector length 

(VLMAX). The last instruction vsplatacci ( ... ) in this code snippet loads the value 

zero to the vector accumulator zero in order to clear it before any calculations take place. 



4. Methodologv and Architectural Results 

#else 
( 

//Set Pointers 
signed short int *froml=rbuf; 
signed short int *from2=&lspcbl[iJ [OJ; 

//Load VLMAX into vlen_r register 
ldvlen_r(VLMAX); 
//Clear accumulator 
vsplatacci(O,O); 

Figure 4-9: Assign pointers and load the vlen] register 

81 

Figure 4-10 illustrates the main vectorized Joop (modulus part). This is true while 

executing the loop since the loop only deals with whole vector lengths. In the figure the 

original loop range is decreased by dividing the initial iteration number by the maximum 

number of vector elements available, VLMAX. Doing this, in combination with 

incrementing the vector pointers, froml and from2 by VLMAX, allows for each iteration 

of the loop the pointers to point to new set of vector data. This part of the code will be 

performed as many times as the quotient of this division. 

//Modulus Part 
for (i=O; i < M/VLMAX; i++) 

( 
//Load vector register from rbuf 

Si vldw(l, froml); 
//Load vector register from &lspcbl 

S2 vldw(2,from2); 
//Perform subtraction to vrl, vr2 

S3 vitu_sub_r(3,1,2); 
//Multiply even word and add to VACCO 

S4 vmace(0,3,3); 
//Multiply odd word and add to VACCO 

S5 vmaco (0,3,3) ; 
//Increase address. pointers 

S6 froml += VLMAX; 
S7 from2 += VLMAX; 

} 

Figure 4-10: Main vector loop 

Within this loop five custom vector instructions are executed. The first two (statements 

SI, S2) are vector loads which load the data from the pointer addresses froml and 

from2 and deposit them in the vector registers I and 2 respectively. The next three 

instructions (S3, S4, S5) perform the main functionality of the loop, that is vector 

subtraction and multiply-accumulate operations. First the subtraction is executed on 



4. Methodology and Architectural Results 82 

vector source registers 1 and 2 and the result is stored into vector register 3. The multiply

accumulate calculation is performed as a pair of instructions, for the even and odd 

elements respectively. Each of these instructions multiplies the register 3 with itself and 

adds the product to the corresponding even or odd elements of accumulator O. The last 

two instructions increment the pointers by VLMAX to prepare the data for the next loop 

iteration. 

Since the original loop parameter, in this case M, may not be exactly divisible by VLMAX 

a remainder section (loop strip mining code) is required to ensure that all the original data 

is processed. Strip mining is the process of running the loop with a number of iterations 

that does not divide exactly the VLMAX architecture constant. This code is only 

executed if there is a remainder from the modulus operation, M%VLMAX. If this is the case, 

the vlen register (dynamic vector length) is loaded with the new vector length M%VLMAX 

in order to indicate in which elements the vector instructions will be performed during the 

strip mined section. This loop is executed only once, for the specified vector elements and 

thus, only a subset of the vector datapath is achieved during this section. 

IIRemainder Part 
if (M % VLMAX) 
( 

SI ldvlen_r(M % VLMAX); 
IILoad vector register from rbuf 

S2 vldw(l, froml); 
IILoad vector register from &lspcbl 

S3 vldw(2,from2); 
IIPerform subtraction to vrl, vr2 

S4 vitu_sub_r(3,1,2); 
IIMultiply even word and add to VACCO 

S5 vrnace(O,3,3); 
IIMultiply odd word and add to VACCO 

S6 vrnaco(O,3,3); 
} 

S7 ldvlen_r(VLMAX); 
II Do ADD reduction of VACCO 

S8 vaccaddreduce(O); 
IIStore accumulator value in element ° to L_tmp 

S9 vstacc(O,O,&L_tmp); 
} 

#endif 

Figure 4-11: Strip mining loop 



4. Methodology and Architectural Results 83 

The last section of the code snippet in Figure 4-11 restores the dynamic vector length 

register to the maximum vector length for the vector accumulator to perform an add

reduce operation in all its elements and produce a final 32-bits scalar result. This result is 

deposited in the lowest element (element 0) of accumulator 0 and it is stored into memory 

at the pointer's address L_tmp with statement S9. In the vectorized code the arithmetic 

instructions calculating the displacement from the index base are reduced by 

(VLMAX + I) times as the number of iterations is divided with VLMAX plus the modulus 

calculation for loop strip mining. 

4.3.5 Scalar Optimization 

All the data-parallel loops constructs that didn't exhibit any data (iteration-carried) 

dependences were re-written in vector assembly, using vector instruction extensions and 

the techniques discussed previously. The remaining of the code that comprises non

vectorizable loops and parts that contain BASOP instructions was optimized through the 

addition of custom scalar instructions. Figure 4-12 depicts an example of scalar assembly 

that replaces part of the original code. This loop transforms back the LPC from the LSP 

coefficients. As it can been seen this loop presents data dependency as both statements of 

the original code depend upon input values that were created by previous 

execution/iteration (fl [i-I] and f2 [i-I]). Therefore this loop is not vectorizable and 

can be only optimized by replacing the BASOP operations with scalar instructions. The 

pre-processor directive #ifdef METHOD2 is used at compile time to allow this scalar

optimized part of the reference code to run and it is activated by the METHOD2 switch in 

the compile.h header file. In a similar manner with the vector-optimized loops, the 

operands are loaded to the coprocessor scalar registers. The difference is that these 

registers are scalar and the loop iteration is the same as the original one. The next 

instructions perform long addition (L_add) and long subtraction (L_sub) to the scalar 

registers and results are stored back to the memory. 



4. Methodology and Architectural Results 

for (i = 5; i > 0; i--) 
( 

/******************** METHOD2 ********************/ 
#ifdef METHOD2 

//Load variable fl[i) in register[l) 
m2sld32(1,fl[i]); 
//Load variable fl[i-I) in register[2] 
m2sld32(2,fl[i-I]); 
//Load variable f2[i] in register[3] 
m2sld32(3,f2[i]); 
//Load variable f2[i-l] in register[4] 
m2sld32(4,f2[i-l]); 
//Perform L_add 
m2sladd(I,I,2); 
//Perform L_sub 
m2slsub(3,3,4); 
//Store to f1[i] 
m2sst32(I,fl[i]); 
//Store to f2[i] 
m2sst32(3,f2[i]); 

#else //ORIGINAL CODE 

#endif 

f1[i] = L_add(fl[iJ. f1[i-I]); 
f2[i] = L_sub(f2[iJ. f2[i-l]); 

/* f1[i] += f1[i-l]; */ 
/* f2 [i] -= f2 [i-I]; * / 

Figure 4-12: Scalar optimization example 

4.3.6 Validation Tests 

84 

Every time a vector or scalar assembly instruction was added in one of the C reference 

codes, tests were run, using the test vectors provided by the ITU-T. This was to verifY the 

full algorithmic equivalence between the optimized and the original (reference) codes. 

The test vectors employed for both algorithms are listed in Table 4-8 below. 

Table 4-8: G729 Encoder Test Vectors 

Input vector 

Algthm.in 

Fixed.in 

Lsp.in 

Pitch.in 

Speech.in 

ITU Reference output 

Algthm.bit 

Fixed.bit 

Lsp.bit 

Pitch.bit 

Speech.hit 

Description 

Conditional parts of the algorithm 

Fixed codebook search 

Lsp quantization 

Pitch search 

Generic speech file 



4. Methodolorry and Architectural Results 85 

It is important to note that these vectors are not exhaustive and thus can only be part of a 

more comprehensive validation suite. 

Table 4-9: G729 Decoder Test Vectors 

Input vector ITV Reference output 

Algthm.bit Algthm.pst 

Fixed.bit Fixed.pst 

Lsp.bit Lsp.pst 

Pitch.bit Pitch.pst 

Speech.bit Speech.pst 

Tame.bit Tame.pst 

Erasure.bit Erasure.pst 

Overflow.bit Overflow.pst 

Parity.bit Parity.pst 

Description 

Conditional parts of the algorithm 

Fixed codebook search 

Lsp quantization 

Pitch search 

Generic speech file 

Tarniog procedure 

Frame erasure recovery 

Overflow detection in synthesizer 

Parity test 

Passing these vectors can be considered a minimum requirement, and is not a guarantee 

that the implementation is correct for every possible input sigoal. 

Table 4-10: G.723.1 Encoder and Decoder Test Vectors 

Input vector 

dtx63.tin 

dtx53mix.tin 

dtx53mix.tin I 

dtxmix.rat 

dtx63.rco 

dtx53.rco 

dtxmix.rco 

dtx63e.tcol 

dtx63e.crc 

dtx63b.tco 

ITV Reference output 

Encoder 

dtx63.rco 

dtx53.rco 

dtxmix.rco 

Decoder 

dtx63.rou 

dtx53.rou 

dtxmix.rou 

dtx63e.rou 

dtx63b.rou 

Description 

Encoder input I 6.3 rate 

Encoder input I 5.3 and mixed rate 

Encoder rate input 

Decoder input I rate 6.3 

Decoder input I rate 5.3 

Decoder input I mixed rate 

Decoder input I rate 6.3 with Cyclic 

Redundancy Check (CRC) input 

Decoder input I rate 6.3 

For the purpose of this research these ITV supplied test vectors were used to ensure 

compliance of the reference speech coders throughout the optimization phase. The 



4. Methodology and Architectural Results 86 

compiler used to compile the vectorized reference code was gee 3.3.2 (Hnux x86) [30] 

and the gee 2.7.3 [30] cross-compiler for the SimpleScalar ISA. 

4.3.7 The extended ISA (Scalar and Vector Extensions) 

This section, describes the modifications that took place in the core SimpleScalar toolset 

in order to emulate the coprocessor architecture under study. The sim-vector tool that was 

used is an extended simulator based on the sim-fast simulator but modified with added 

state (coprocessor scalar and vector state) and instructions (coprocessor scalar and vector 

instructions). This code includes the extra processor state and the instructions that operate 

on that extended state. The extended state specifies the additional registers on top of the 

existing architectural state (SimpJeScalar processor state). The vector. def file includes 

the definition of all the existing instructions of the SimpleScalar along with the extended 

instruction set architecture. The vector. def file contains the PISA. def which includes 

C macro implementations of all the basecase SimpJeScalar instructions. 

Vector.def example 

switch «inst.b» CATEGORY_LSB) & CATEGORY_MASK) \ 
{\ 

/**************************/\ 
case 2: /* CATEGORY 2 */\ 

/**************************/\ 
switch (OPCODE)\ 
{\ 
case 1:\ 

{\ 
switch «inst.b » EXT_OPCODE_LSB) & EXT_OPCODE_MASK)\ 

{\ 
case 3:\ 

{\ 
/* VSHRI */\ 
extern vstateT vstate;\ 
enum md_fault_type _fault;\ 
int index; \ 
Word16 amount;\ 
amount=GPR(IMM9_ADDR);/*(Word16)IMM8;*/\ 

for (index=O; index< vstate.VLEN; index++)\ 
{\ 
if (RD_ADDR !=o )\ 
vstate.VRF[RD_ADDRJ [indexJ=my_shr_simple 

(index,vstate.VRF[RSl_ADDRJ [indexJ, (Word16)amount);\ 
)\ 

break; 
Figure 4-13: Instruction Definition in Vector.deC 



4. Methodology and Architectural Results 87 

The vector. def file contains the opcode definitions of the whole extended instruction 

set. Extended opcodes are split into 3 parts; the opcode bits 20-24, category bits 25-28 

and the extended opcode bits 29-31. A typical opcode is implemented with 3 levels of 

switch statements. The first level is the category switch, the second level the opcode 

switch and the final level is the extended opcode switch. Figure 4-13 shows the C 

description of the vector shift right coprocessor command and, as it can be seen, is similar 

to the C macro definition of the instruction in Figure 4-5. The main difference is how the 

source/destination registers are decoded. They have been extracted from the instruction 

opcode in an earlier stage. Inside the loop the vector instruction is performed and every 

loop iteration represents a vector datapath lane. This replicates the functionality of the 

vector processor. When the extended Simple Scalar toolset is running, the extended vector 

instruction count is added to the default instruction count to derive precise execution 

statistics for the whole (base and extended) processor architecture. 

4.3.8 Inline Assembly 

The C representation of the extended instructions (macro-based) adds a lot of time

overhead as every opcode corresponds to a number of instructions and is thus used only 

to model the execution of these instructions. Therefore, in order to derive a final 

optimized implementation, the extended instructions were inserted with inline assembly. 

#endif 

#ifdef ss 
1/ sirnplescalar 
#define vshri(vrf,arnount) \ 
({\ 

asrn volatile ("addu $10,%0,$0" : :"r"(arnount):"$10");\ 
asrn volatile (".word Ox00010000");\ 
asrn volatile (".word \ 
3 « 29 I 1* EXT_OPCODE */\ 

2 « 25 I 1* CATEGORY *1\ 
1 « 20 I 1* OPCODE */\ 
"#vrf"« 15 1* VRD = VRF *1\ 
"#vrf"« 10 1* VRS1=10 *1\ 
10 « 5"); 1* RS2 = HOST REG */ \ 
} ) ; 

#else 
II Sparc 

#endif 

Figure 4-14: InUne Assembly Instruction Definition 



4. Methodology and Architectural Results 88 

With this method, every scalar/vector opcode corresponds to one instruction only and the 

added instructions can run in the Simple Scalar mode to produce reliable statistics. Figure 

4-14 illustrates an example of in line assembly for the vshri vector instruction; that its C 

macro was showed in Figure 4-5. The asm volatile statement is divided in three parts. The 

first part is the code section where the first (source) operand (%0) is added to source 

register 0 and stored into the target register 10 ($10) [30]. Since there are not output 

operands two consecutives colons are added on the place where the output operands 

would go. The "r" (amount) signifies that is the other input register operand. The "r" is a 

constraint string which indicates that the following C variable (amount) is placed in a 

general register. The last part of the asm instruction, the clobber list, is utilised to inform 

the compiler about which register is clobbered (modified) by the assembly code. In this 

example "10" indicates to the compiler that register 10 has been modified by the inline 

assembly. The next two assembly lines comprise a 64-bit opcode that will be dynamically 

decoded by sim-vector during run time. The first part of the opcode which is 32-bits 

(OxOOOIOOOO) represents the nap instruction annotation I (flag) whereas the second part 

builds the remaining 32-bits (word) which is the actual vector instruction [30]. This word 

is the binary pattern of the instruction set extensions. The compiler composes the opcode 

binary according to the above inline assembly statements. During runtime SimpleScalar 

encounters the nap opcode and checks the binary pattern. If it is an extended instruction, 

it performs the transformation on the processor state as specified by the extended opcode. 

4.4 Architectural Results 

As it was described in the previous sections, both workloads were optimized with the 

development of vector and scalar extended ISAs. Throughout the experimentation phase, 

the modified workloads were validated by using the ITU-T test bitstreams to ensure 

compliance with the reference speech coders. In order to study the optimization benefits, 

simulations were run for all ITU-T input vectors and for vector lengths of up to 128 16-

bit elements. During compile time, the user can select which mode the coprocessor will 

run. A special file (compile.h) contains all necessary switches for compilation in order 

to be able to select the mode that the code will run. By selecting x86 (native mode) or SS 

(SimpleScalar mode) the compiler is using the C-macros (Figure 4-5) or the inline 

assembly implementation (Figure 4-14) of the extended instructions respectively. The 



4. Me/hodalayv alld ArchirecflIral Res/llrs 89 

OR IGINAL switch selects if the code wi ll run In or iginal or vector mode while the 

METHOD2 adds the scalar features. The results are segmented in two major groupings 

with the first group showing the induced performance o f the vector ISA only. T he second 

group refl ects the performance of the full optimi zati ons and exposes the add iti onal 

performance benefits o f the sca lar ISA. Figure 4- I 5 and Figure 4- I 6 show the results of 

the ex tended, architecture-level performance simulation of the G.729A encoder and 

decoder respectively for vector opti mizat ions only. The performance metri c used is the 

relative dynamic instmction count which in both cases is approx imately 59. I % and 

60.7% respectively at a vector length of sixteen 16-bit elements. 

0 .. 

~ 
§ 0.4 
o 

" . ~ 
~ 0.4 .. 
E 
o 
·E 0.4 
• c 
~ 
o 

.~ 0.4 
• .. 
" 

0.3 

, 

~ t 

G.729A Encoder (Vector Onty) 

-algthm - fixed 

I" - pitch 

- tame - test 
speech 

" ~ ~ 
v 

,. 32 4. 64 60 96 '" " • 
Vector length (VlMAX) 

Figure 4-15: G.729A Encoder (Vector Only) Results 

Thi s essentiall y means that the vectori zed G.729A encoder executes 59. I % fewer 

instmctions compared to the reference C implementation when the vector ISA comes in 

effect , for a VLMAX of 16. In the case of the G.729A decoder, this fi gure is 60.7%. 



4. Merhodn!ogv llIU! Archile(:lllral Results 

G.729A Decoder (Vector Only) 

o~----------------------------------~~~~~ algthm li Ked 

20 ' 0 80 so 
Vector length (Vl MAX) 

lip pItch 
- Lame - &peecn 

lOO 

erasIJra -overllow 
pao~ 

120 

Figure 4-16: G.729A Decoder (Vector Only) Results 

90 

The slope of Ihe graphs c learl y demon Irates Ih at the most significant I erformllnce 

be nefit are realized at shorter vector lenglhs, in the range of 2 to 16 16-bit ele ments, 

while no further significant reduction is measured beyond that confi guration. T his 

observation has the benefit of restricting the microarchitecture design space to shorter 

vector lengths a confi gurations with vector lengthS greater than 16-bit e lement s are in 

practice unrealistic, due to the large silicon overhead incurred by such wide datapath and 

the need For very long cache fill bur ts [3 I] . 

G.729A Encoder (Full Optimization) 

o 
. Igthm I,,.. 

I,p - PItch - -test --
0. 

• \ .~ 
; 0 

~ 

~ ! 16 32 '8 .. so .. "' '.8 
o 

• Vector length (VlMAX) 

Figure 4-17: G.729A Encoder (Full O ptimizMion) Results 



4. Merllodnlogv lIud Archirectll rlll Results 91 

Figure 4- 17 and Figure 4- 18 de pict the re lati ve algorithmi c co mp lex it y of the G.729A 

e ncoder and decoder obtained with a ll the optimizm ions. 

G.729A Decoder (Full Optimization) 

0 4rr---------------------algthm - lJxed 

0'01 
2 

\ 
I. 32 48 64 80 

Veclor Lenglh (VLM AX) 

96 

Isp pitch 
- lame -speech 
- erasure -overltow 

paril)' 

11 2 ". 
Figure 4-18: G.729A Decoder (Full Optimization) Results 

In th is particular case, both the data-paral le l as we ll the non-vectori zable sections o f the 

code were optimized. The ac hieved performance metric improvement for the encoder and 

decoder is 76.2% and 65 .9% respecti ve ly for vector length of 16 (256 bits) and no furt her 

improvement appears for larger vector lengths. It is clear from the results that the re is 

s ignificant improvement in the dynamic instruction compared to the ori ginal execution. 

These data indicate that both speech coding standards benefit sub tantiall y from 

combined, scalar and vector accelera tor. 



4. M ethot!o[og\' lI11d ArchitecfIlral Results 

G.723.1 Encoder (Vector Only) 

o~----------------------------------o===~~~, 

1

:--(I1X53mIXlln tf53) ,J 
- dlX63lln (r63) 

O~ l , 

v 

y 

to 32 

v 

v 

"8 6f 80 

Vector Length (VLMAX) 

--dtx53rnlx.lin (mlxfl CI) 

I 

96 '" ". 
Figure 4- t9: C_723.1 Encoder V cctor O ptimization Results 

Y2 

Figure 4- 19 and Figure 4-20 ill uSlrate the relati ve dyna mi c instruction count reduction of 

the G.723. 1 encoder and decoder respecti vely for the vector optimi zation o nl y. 

G.723.1 Decoder (Vector Only) 

O~r-------------------------------------------------, 

- dbmux.rco - dtd)3e.ICO 

- dtx5Jb.ICO 

.. 32 .. ... 80 '" " . 
Vector Length (VLMAX) 

Figure 4-20: C.723.1 Decoder Vector O ptimiza tion Resul ts 

The performance metric for the encoder a nd decoder i approx imately 70% and 67% 

re pectively at a vector length of 16 16-bi t e lements. Th is maximum improvement 

appears at a vector length of 16 (256 bi ts) and no significant improvement emerges 

beyond that. Performance salll rati on clearly indicates that wider DLP confi gurati ons are 



4. Methodologv and Architecfll ra l Results 93 

not needed and that most of the inherent DLP of the a lgorithms can be ex pl oited by a 

256-bit wide vector coprocessor. 

G.723.1 Coder (Full Optimization) 

o~~------------------------------------------------, 

u 
·E 0.2 

[ 
o 
• 

.~ O. 
• .. 
a: 

-~I' I· ". 

'. 

-- dlx53rTl1x.tin (rf)3) 

a dt~63. lIn (1'53) 

• dlK53mlx,\In (mixed) I 

11\ . , .... ,. .... , • .. . .. .. .. ... ............... .. .................. -.. .......... .. ................. . ....... .. 
as .. I" 

'\ · .. ····V · . 
y •••• ········V ····························· 

o .• Eh-------- -------------_______ -l 
0, IS 32 '. .. eo 96 ", '" 

Vector length (VlMAX) 

Figure 4-21 : C.723.1 Encode)' Full Optimization Resul ts 

Figure 4-2 1 and Figure 4-22 depict the performance metri c of the 0 .723.1 encoder and 

decoder with fu ll scalar and vector optimi zati ons. In th is case , the dy namic instructi on 

cou nt is reduced approx imate ly to 79 .7% and 73.6% at a vector length of 16 (256 bits). 

0 

~ 0.3 
< , 
.3 0.3 
< 

:B 
~ 0.3 f 
" E 
u o. -'E 
• 
~ o.z 
• > 

~ 0.2 
a: 

o.,~ 

, 

G.723.1 Decoder (Full Optimization) 

--dlX63.fCO - dbr:53.rco 

- dtxmluoo - dbl:6Je.tco 

--dlX63b,tco 

\\ 

~ 
\....: 

\6 32 " eo 96 \I ' 128 

Vector length (VlMAX) 

Figure 4-22: C.723.1 Decoder Full Optimization Results 



4. Methodologv mid Architecfllral Results 94 

This add iti onal decrease in the dynamic instruction count of both speech codecs shows 

considerab le improvement with the introducti on of the scalar instructions. it is clear that 

the combinati on of sca lar and veClOr optimi zed code, via the two proposed extended IS As 

yields belter performance metrics and for thi s reason the design implementation includes 

both coprocessors. The nex t set of graphs (Figure 4-23 up to Figure 4-34) i llustrates the 

performance improvement of the most compute- intensive functi ons as they appear in 

Table 4-6 and Table 4-7, for both speech codecs. T hese resuits can be used to see the 

spec ific secti ons of the speech codec which have been improved. Figure 4-23 shows the 

resuits for the G.729A encoder function Cor h x under full -optimizat ion. Th is 

functi on computes the correlation of the input response w ith the target veClOr in the 

algebraic codebook (fi xed codebook) search procedure [27] . T he fracti onal performance 

improvement of the optimized codebook search at vector length of 16 16-bit elements 

(256 bits) is 75.5% and it reaches 78.5% at vector length of 2048 bit over the range of 

reference input bitstTeams. 

Cor_ h_x (Full Optimization) 

o .~-------------------------------------------. 
--Algthm -- Fixed I 

'i 
'E 04 , 
o 

" § 0 
't; 
2 
~ 0.3 
u 
'E 
• o 0 r; 
• . ~ 
.; 0.2 
• ex: 

16 

---Lsp - Pitch 

-- Speech -- Tame 

- Tesl 

32 46 64 eo 96 1>' ". 
Vector Length (VLMAX) 

Figu re 4-23: Cor _h_x (Full Optimization) Results 

Figure 4-24 presents the performance metric (relat ive instruction count) of the G.729A 

functi on Syn _ f i 1 t . This function implements the l Ot" order Linear Prediction (LP) 

synthesis fi lter ( I /A(z) [27] . The performance improvement of the synthesis fil ter at 

vector length of sixteen is 73.5% over the range of the reference input bitstreams. As it 

can be seen no further improvement is evident beyond this vector length . T his is 



4. MelllOr!% gv alld Archileclll ral Re,\'ulls 95 

explained frolll the fact tha! the nllmber of itermions for the internal loop of thi s functi on 

is 10. 

Syn_fill (Full Optimization) 

D. --AJgrtvn - Fixed 

- up - PitCh 

- Speech - Tame 
- T ... 

••• II ••• IIIIII.II.II.I.I •• ~ 

o~------------------------------------------~ oi ,. . , .. eo " '" '" Vector l ength (VlMAX) 

Figure 4-24 : $yn_lilt (Full Optimization) Resul ts 

Figure 4-25 depicts the relati ve instruction couo! of the G.729A functi on 

Pi tch _01_ fast under full-optimizmions. This funcrion estimates the open-loop pitch 

delay based on the perceptually weighted peech signal. T his open-loop delay is used as 

an indication from the closed-loop ana lysis to find the adapti ve-codebook delay and gain 

[27]. 



4. Mefhot/rJ logv find Architectural Results 

~ o 

§ 0 
o 
~ 0 

·2 2 0 

~ o . 
. " E 0 
~ 
~ O 

.~ 0 .. • a: 01 

" 32 

Pitch_oUast (Full Optimization) 

.. .. 80 

Vector length (VlMAX) 

--AlgtNn - Fixed 
- up - Pilch 
- Speech - Tame 
- Test 

96 112 

Figure 4-25: I'itch_ol_rast (Full Optimization) Resul ts 

96 

128 

In thi s case the performance-metri c reduction (relati ve dynamic instructi on count) is 

approx imately 78.7% at a vector length of sixteen 16-bit elements. The nex t graph in 

Fi gure 4-26 shows the relati ve performance improvement of the G.729A functi on 

Residu. This function computes the LP residual signal by filtering the input peech 

through the LP synthesi filter. The LP residual signal is lIsed to find the target vector for 

t he adapt i ve-codebook search [27]. 

Residu (Full Optimization) 

O.'IT-------------------
_A1g1hm • F,xscI 

lO.5 
C , 
8 o. 

~ o. u . 

~ 
E o. 
." 
~ 0'" 
~ 
~ 0.: 

:; 
~ 02 

1-
\ 

• 

Ls9 Pitch 

--Speech -- Tame 

- Tesl 

~ ........................................................ . 

" 32 .. 54 80 " 112 128 

Vector Length (VLMAX) 

Figure 4-26: Residu (Full Optimization) Results 



4. Methodologr (lnd Architectural Resulls 97 

In thi s case the achieved instruction count reduction for thi s functi on is of the order 

75. I %. 0 further improvement is evident beyond thi vector length a the number of 

iterations for the internal loop of thi s function i 10. Figure 4-27 depicts the performance 

improvement for the G.729A function Autocorr. T his fun ti on computes the 

autocorrelation of the signa l with a 30ms asymmetric window in order to perForm linear 

predicti on (short -term) analys is. Later the autocorrelation coefficients of the windowed 

speech are computed and converted to the LP coeflicient. using the Levinson algorithm 

[27]. 

Autocorr (Full Opti mization) 

0 
- AIgthm - Flxed 

~ 0.3 
E 

- Lsp - PitCh 

- Speech --Teme , 
0 0 
0 

-Tesl 

c 
0 

t :n 0.2 , 
>-• 0 £ 

•• ~ 01 t c 
> 
0 

• 0 
> 

'" • 1-£ 0.0 

oj ,. 32 '8 .. 80 .. 112 128 

Vector Length (VLMAX) 

Figure 4-27: AutocoH (Full Optimization) Resul ts 

This functi on demonstrates excellent performance stabi lity and experiences a dynamic 

instruction count reduction of approx imately 93.4% at a vector length sixteen. The 

Autocorr functi on contains a large number of data-parallel loops that were vectori zed 

uccessful ly. 

Figure 4-28 how the relati ve in truction count of the G.729A functi on 

Lspyre_select . This function implements the lirst stage quanti zer that quanti zes the 

difference between the computed and predicted LSF coefficients of the current frame. 

This quamizer is a IO-dimensional Vector Quantizer (VQ) that use a codebook w ith 128 

entries (7 bits) [27]. 



4. Methodologv alld Arcllitectural Results 

Lsp_pre_seleet (Full Optimization) 

0.,...,...------------------------, 
--Alg!hm - Fixed 

- Lsp - Pi1ch 

- Speech - Tame 

- Tes1 

.... __ .-._ .. _---.-. .. __ .... --........... _. . ....... .. 
O. I<1-,~----------------------------J 

o ,. 32 48 64 80 

Veclor l englh (VlMAX) 

11 2 

Figure 4-28: Lsp_pre_seleet (Full Optimization) Results 

12' 

98 

The improvemenl in performance under fu ll -optimizations is of the order o f 80.7%. After 

this veClor length an expected performance saturation is observed since the number of 

iterations for the interna l loop of th is functi on is 10. 

Figure 4-29 repre ents the resu lts of Ihe G.729A decoder functi on Age. This function 

implements the Automatic Gain Control (AGC) procedure Ihal lakes Ihe output of the 

adapli ve post filter and scales it to match the energy of the reconstructed signal [27]. 

Age (Full Optimization) 

o. 

l 0 

c , 
0 0 

1 .... ,---
" c 
.~ 0 

2 
~ o 

\~ 
"'-.:. ... . 

- ~- . -.-....,..-. ---.. -...... _ ......... ..... _ _ ..... ___ ..... ... ..- f'TT1o .~ .... 

. " 
~ 0 f c 
~ 
0 
• 0 
-" :; 
• 0 a: 

..... 
• --.. ... H _ ........ 

Y ~ ••••••••• ~ •••• .f! ••••• -•••••• '§ •••• _. ~."" ••• 

0 " 32 .. 64 80 ,. 11 2 128 

Vector length (VLM AX) 

Figure 4-29: Age (Full Optimization) Results 



4. Ml'tltot!ologv lInd ArchitecfIlrtll Results 99 

The dy namic instruction count reducti on ranges between 50.6% and 86.6'31 at vector 

length sixteen 16-bit e lements over the range of reference inpu t bi tstrea ms. 

Figure 4-30 illustrates the results of the full optim ization of the G.723. 1 Find Best 

fun cti on. This function implements the fixed co lebo k searc h for the high rate encoder 

by performing quantization on the res idual s ignal in the MP-MLQ bloc k [28]. 

Find_Best (Full Optimization) 

0 . .,....----------------------_---, .. .,-... ---".,--,,-. 

- 63 Rate 

I. 32 ' 8 .. 80 .. 112 128 

Vector length (VlMAX) 

Figure 4-30: Find_Best (Full Optimization) Results 

It is interesting to note that this graph onl y shows results for two workloads: Mi xed Rate 

and 5.3 kbits/s. This is because the codebook search is onl y done at lower bit rates. The 

quanti zation process is approximating the target vector (residual signal) and the excitation 

is made by positive or negati ve pul ses multiplied by a ga in a nd whose positi ons can be 

either all odd or even. The fractional instruction cout1l improvement of this codebook 

search is 66% at vector length of six teen (256 bits) . 

Figure 4-3 1 illustrates the results fo r the re lati ve algorithmic complex ity of the G.723. 1 

function Estirn_Pi tch. This fu nction implements the open-loop pitch estimati on that i 

performed twice per frame, one for the fi rst two subframes and one for the last two. The 

open loop esti mate is computed using the pe rcepl'ua ll y weighted speech that i elected by 

the maximizati on of the cross-correlation of the speech method [28] . 



4. M elhodnlogv and ArchileClllral ReSIIIIs 

_ 0." 

C-
c O. , 
o 
~ 0.2 
.2 
~ 02: 

j 0.1 

•• E 
! 0 1 

El 
~ 0.1 

.~ 

~ ME 

Estim_Pitch (Full Optimization) 

--MIKed Rote 
- SJRale 
- 63 Rale 

o.oi,------------------------' 
o ~ " 32 48 64 80 

Vector Length (VLMAX) 

96 11 2 

Figure 4-31: Estilll_Pitch (Full Optimization) Results 

'" 

100 

The overa ll improvement appears for a vector length sixteen and full -optimizations and is 

of the order of 92.3%. The next plot in Figure 4-32 shows the architecrure- Ievel results of 

the G.723. 1 encoder function Comp_Lpc that compute the 10'h order LPC fi lte r 

coeffi c ients for every frame. A Hamming-windowed bloc k is centred on the subframe and 

i. u ed to compute the eleven autocorrelation coeffi c ients that are inputs in the Levin on

Durbin algorithm that generate the LPC coefn c ients. The produced LPC set are 

constructing the short-term perceptual weight ing filter that performs the synthesis [28]. 

Thi s fun ction demonstrates excellent pe,formance scalabi lity and ex periences a reducti on 

in dynamic instruction count of approximately 88% at a vector length sixteen (256 bi t). 



4. Met!lOdnlogv {lil t! Architectural Reslt /ts 101 

Comp_Lpc (Full Optimization) 

o~--------------------------------------------------
-+- MIMed COde 

- 53Al'l1e 

- 63 Aaut 

• •• ...... _-
" 32 ' 8 .. 80 .. 112 128 

Vector Length (VLMAX) 

Figure 4-32: COlllp_Lpc (l' ull Optimization) Results 

Figure 4-33 shows the relat i ve algori thmic complex ity results of the G.723 .1 functi on 

Decod_ Acbk that computes the adapti ve codebook contribution from the previous 

exc itat ion vector in the pitch predictor [28] . 

Oecod_Acbk (Full Optimization) 

o~,~----------------------------------------------------_ 

~ 0 
c 
5 
o 08 
c 
:2 

! 0',1 
• c 
t; 0 

-+-Codenu 

-S3Rate 

---63 Aata 

~ I ~ 0.6 . ... _ _ _ ____ _ ____________ _ ___ -+ 

o. 0 I 
2 

18 32 46 64 80 

Vector Length (VLMAX) 

96 112 

Figure 4-33: Decod_Acbk (Full Optimization) Results 

128 

The reducti on in the dynamic instructi on count is 36% at vector length of sixteen (256 

bit) and full -opt imizations. As it can be seen there is no further improvement beyond 



4. Met/wt/olog\' alld Architectural Reslt/ts 102 

vector length of 6 (96 bi ts) as the number of i terations For the i11lernal loop of this 

Function is 6. 

Figure 4-34 depicts the simu lation results for the G.723 .1 functi on Comp_ Pw tha! 

computes the harmonic noise fi ller coefricie11ls. The optimal lag For thi fi ller is searched 

around the open loop pitch lag that maxi mise the positi ve correlation [28J. 

0 

~ 0_3 
C , 
0 
0 0 
c 
0 .f; 
2 0.2 
;; 

t 
.E 
.2 O. 
E • c 

'''1 .~ 
• 'ii o. 
a: 

0.0 , I 
O

2 
1. 

Comp_Pw (Full Optimization) 

48 601 80 

Vector Length (VLMAX) 

.. 

- MflllldAare 
- 53 Rate 
- 63 Aare 

112 

Figure 4-34: Comp_ Pw (Full Optimization) Results 

12 • 

The results show that the improveme11l in the dynamic in trnction count performance 

metric is of the order of 87.6% at a vector length of 16. In the following table are the most 

compute-intensive functions of G.732.1 in order to have an overall view of the 

performance improvement. 

4.5 Summary 

Thi chapter described the optimiz"tion met hodology and the performance improveme11ls 

that were achieved via custom vector and calar (SA ex ten ions and optimizations of both 

speech cod ing standard . During this process the work loads were profi led over a range of 

vector lengths to identi fy the enhancement the custom ISA ex ten ion have produced. 

The archi teclllral resulls are very promising, demonstrati ng a reduction in the dynamic 

instructi on count metric of 58% and 7 1 % for G.729A and G.723.1 speech coder 

respec ti vely when the vector instrncti ons were introduced and a Funher 18% and 9% 



4. Methodology and Architectural Results 103 

reduction in dynamic instruction count when the scalar instructions were applied. These 

results show the potential benefit of applying custom instructions and having associated 

coprocessor vector functional units. The overall simulation results indicate that the 

area/performance points of interest lie in between 64-bit to 256-bit wide configurations. 

ill addition both sets of results reveal that the maximum benefit is achieved by a 

combination of custom vector and scalar architectures. From this, the microarchitecture 

can be designed and attached to a generic RISC CPU. This is explained in more detail in 

the next chapters. 



4. Methodology and Architectural Results 

4.6 References 

[I] T. Austin, E. Larson, and D. Ernst, "Simple Scalar: An Infrastructure for 
Computer System Modeling," in Computer. vo!. 35 - no. 2, February 2002 pp. 
59-67. 

104 

[2] S. Dwarkadas, J. R. Jump, and J. B. Sinclair, "Execution-Driven Simulation of 
Multiprocessors: Address and Timing Analysis," ACM Transactions on Modeling 
and Computer Simulation (TOMACS), vo!. 4, pp. 314 - 338 October 1994. 

[3] J. L. Peterson, P. J. Bohrer, and e. aI, "Application of full-system simulation in 
exploratory system design and development," vo!. 50, pp. 321-332, March 2006. 

[4] S. Hangal and M. O'Connor, "Performance Analysis and Validation ofthe 
picoJava Processor," in IEEE Micro. vo!. 19, May 1999, pp. 66-72. 

[5] T. A. Diep, C. Nelson, and J. P. Shen, "Performance evaluation of the PowerPC 
620 microarchitecture," in Proceedings of the 22nd annual international 
symposium on Computer architecture, S. Margherita Ligure, Italy, 1995, pp. 163-
174. 

[6] L. Guerra, J. Fitzner, D. Talukdar, C. SchHiger, B. Tabbara, and V. Zivojnovic, 
"Cycle and phase accurate DSP modeling and integration for HW /SW co
verification," in in Proceedings of the 36th ACM/IEEE conference on Design 
automation, New Orleans, Louisiana, United States, 1999, pp. 964 - 969 

[7] P. Mishra, N. Dut!, and H. Tomiyama, "Architecture Description Language 
driven Validation of Dynamic Behavior in Pipelined Processor Specifications," 
CECS Technical Report #03-25, Center for Embedded Computer Systems, 
University of California, Irvine July 2003. 

[8] A. Halambi, P. Grun, V. Ganesh, A. Khare, N. Dut!, and A. Nicolau, 
"EXPRESSION: A languagefor architecture exploration through 
compiler/simulator retargetability," in in Proceedings of Design Automation and 
Test in Europe (DATE), 1999, pp. 485-490. 

[9] F. S.-H. Chang, "Fast Specification of Cycle-Accurate Processor Models," in 
Proceedings of the International Conference on Computer Design: VLSI in 
Computers & Processors, 2001, pp. 488-492. 

[10] G. Zimmermann, "The MIMOLA design system a computer aided digital 
processor design method," in in Proceedings of the 16th ACM IEEE Conference 
on Design automation San Diego, CA, United States, 1979, pp. 53-58. 

[11] M. Reshadi and N. Dut!, "Generic Pipelined Processor Modeling and High 
Performance Cycle-Accurate Simulator Generation," in Proceedings of the 
conference on Design, Automation and Test in Europe, 2005, pp. 786 - 791. 

[12] M. Freericks, "The nML machine description formalism," Technical Report 
1991115, Technische Fachbereich Informatik, Berlin University, Berlin 1991. 

[13] G. Hadjiyiannis, S. Hanono, and S. Devadas, "ISDL: An Instruction Set 
Description Language for Retargetability," in in Proceedings of the 34th annual 
conference on Design automation, Anaheim, California, United States, 1997, pp. 
299-302. 



4. Methodology and Architectural Results 105 

[14] M. Barbacci, "Instruction Set Processor Specifications (ISPS): The Notation and 
Its Applications," IEEE Transactions on Computers, vo!. 30(1), pp. 24-40, 1981. 

[15] G. Mulley, "Using Ismene to Debug and Predict the Performance of an 
Embedded System Device Driver," University of Glamorgan, Technical report 
2004. 

[16] T. Hoshino, "VDUI version Two: A New Horizon ofHDL Standards," IFIP 
Transactions: Proceedings of the 11th IFIP WG 1 0.2 International Conference on 
Computer Hardware Description Languages and their Applications, vo!. A-32, 
pp. 437 - 452 1993. 

[17] V. Zivojnovic, S. Pees, and H. Meyr, "USA-machine description language and 
generic machine model for HW/SW co-design," in IEEE Workshop on VLSI 
Signal Processing, pp. 127-136,1996. 

[18] W. S. Mong and J. Zhu, "A retargetable micro-architecture simulator," in 
Proceedings of the 40th ACM IEEE conference on Design automation, Anaheim, 
CA, USA, 2003, pp. 752-757. 

[19] G. Maturana, J. L. Ball, J. Gee, and e. ai, "Incas: A Cycle Accurate Model of 
UltraSPARC," in Proceedings of the 1995 International Conference on Computer 
Design: VLSI in Computers and Processors, Los Alamitos, California, October 
1995,pp.130-135. 

[20] J. L. Hennessy and D. J. Patterson, Computer Architecture: A Quantitative 
Approach 2nd ed.: Morgan Kaufman, 1996. 

[21] D. Martin, "Vector Extensions to the MIPS-N Instruction Set Architecture (The 
VIRAM Architecture Manual) Revision 3.7.5.," March 2000. 

[22] T. M. Austin, "SimpleScalar 3.0a pre-release," SimpleScalar LLC: 
http://www.simplescalar.com. 

[23] V. A. Chouliaras, K. Koutsomyti, T. Jacobs, S. Parr, D. Mulvaney, and R. 
Thomson, "SystemC-defined SIMD instructions for high performance SoC 
architectures," in 13th IEEE International Conference on Electronics, Circuits 
and Systems, Nice France, December 10-13, 2006. 

[24] V. A. Chouliaras and J. L. Nunez, "Scalar Coprocessors for accelerating the 
G723.l and G729A Speech Coders," IEEE Transactions on Consumer 
Electronics, vo!. 49, pp. 703-710, August 2003. 

[25] V. A. Chouliaras, J. Nunez, S. R. Parr, K. Koutsomyti, D. J. Mulvaney, and S. 
Data, "Development of custom vector accelerator for high-performance speech 
coding," lEE Electronics Letters, vo!. 40, pp. 1559-1561, Nov 2004. 

[26] K. Asanovic, "Vectorizing SPECint95," in Computer Science Division. vo\. 
Unpublished manuscript extracted from PhD Thesis California: Berkeley, March 
1998. 

[27] ITU-T Recommendation G.729A, "Coding of speech at 8 kbitls using conjugate
structure algebraic-code-excited linear-prediction (CS-ACELP)," 3/96. 

[28] ITU-T Recommendation G .723.1, "Dual Rate Speech coder for multimedia 
communications transmitting at 5.3 and 6.3 kbitls," 3/96. 



4. Methodology and Architectural Results 

[29] R. Alien and K. Kennedy, "Automatic translation of FORTRAN programs to 
vector form," ACM Transactions on Programming Languages and Systems 
(TOPLAS), vo!. 9, pp. 491 - 542, October 1987. 

[30] ''http://gcc.gnu.org/onlinedocs/.'' 

106 

[31] K. Koutsomyti, S. R. Parr, V. A. Chouliaras, andJ. Nunez, "Applying Data
Parallel and Scalar Optimizations for the efficient implementation of the G.729A 
and G.723.1 Speech Coding Standards," in Proceedings of the 7th lASTED 
International Conference, Signal and Image Processing, Honolulu, Hawaii, USA, 
August 2005, pp. 40-45. 



CHAPTERS 
VECTOR PROCESSOR ARCHITECTURE 

5.1 Vector Architectural State 

The vector-scalar coprocessor is attached to the Sparc-Vg compliant CPU core via a 

custom, pipelined coprocessor interface. The accelerator consists of two major unit 

microarchitectures: One parametric microarchitecture that implements the vector ISA and 

a second that implements the scalar ISA. The coprocessor attaches to the integer unit of 

the Leon CPU in the fifth pipeline stage which is the memory stage. It was not designed 

as a stand-alone AHB coprocessor because, though the workloads perform a lot of work 

on blocks of data (samples), there where many more instances where custom assembly 

code (scalar) needed to be inserted into irregular (non-iterative) blocks. Therefore a very 

tightly-coupled configuration was pursued which accommodates efficiently both cases 

[1]. The coprocessor is connected to the memory stage in order to avoid the majority of 

the exceptions and interruptions of the Leon CPU and to have enough time to transfer 

data to/from the main processor if requested. Therefore, when a valid vector coprocessor 

instruction is encountered and there is no exception or pipeline staU then the vector/scalar 

instruction along with a valid signal is sent to the first stage ( decode) of the vector 

coprocessor pipeline for execution. By defining coprocessor extension instructions 

instead of a fuU stand-alone instruction set aUows taldng advantage of any developments 

in the Leon architecture and use of the development tools available for the latter. In 

addition, the coprocessor can be imported into any other embedded CPU architecture with 

very little modifications. 

The vector pipeline is a SIMD array of functional units (FUs). The functional units are 

organised in four groups: Addition (vadd), multiplication (vmult), shift (vshift) and 

misceUaneous (vmisc). Each group has a parametric number of functional units equal to 

half the maximum vector length (VLMAXl2) where VLMAX can take values that are 

power of 2. On every cycle, only one of the aforementioned FU groups is active. The 

subdivision of the vector pipeline into the four vector FU groups is detailed in the next 

chapter in section 6.4. The VLMAXl2 vector FUs are driven by the corresponding slices 

107 



5 Vecwr Processor ArcllifeClilre J08 

of the operand registers (vector elements), stored in the vector register fi le. These sli ces 

provide, pe r unit, two read porlS (2 x 32-bi t ) and a write 1'011 (32-bits). Each functional 

un it has a dy namica lly confi gu rable 2-way S IMD or scalar organi sation, depending on 

whether the instruction produces 2x 16-b it resul t. or 32-bi t. The vector length is located in 

the vector length (vlen) register and defines the wiclth of the vector regi ters and the 

nllmbe r of FU that are utilised to perform 1111 operation. It does not a lter any of the 

hardware resources. All vector operations are governed by the current vector le ngth ancl a 

vector mask. The current vector length is taken from the vlen register and the vector 

mask is implemented by a combinational logic that differs for each specific instructi on. 

The FUs take their source operands from ei ther vector registers, scalar registers or vector 

accumulators and can perform both vector a nd scalar operati ons. Eac h functi onal unit of 

the group active in the current cyc le accepts 32-bit source operands and produces a 32-bit 

result except from the FUs of the vmult group that can hand le 16-bi t input operands ancl 

produce a 32-bit result. Figure 5- 1 ill ustrates an example of a vector operation that is 

performed in two source vector registers. 

Source 2 register 1
63 3 48

1
41 2 32 r ' 1 161'5 0 61 

Sourcel register r""--'==3=i'i
I

48iml'ir1 ='==2 ::::j:1 ;;;:32;;;;13,~==i=7I '6;rrI,r<=5 ='==0 ===i=1 :::;;6'1 -' 
qr1 

t3\ '611 opr2(31 16) I ~1!311'11 1~311'1 j I 
opr1(15 0) opr2{150) optl(15.0 opr2(15 

,, ' ++ :or + 
0) 

8888 8888 
r1l$(31 16) ~ res(ll 16) ~ reS(150).!, reS( 150)~ 

er r Destination regist 3 "'I' 2 ''I'' 1 '°1'0 0 "I 
Figure 5· 1: Example of an operation that is performed in two vector registers with vector 

length 64-l1i ts. Eaeh fun ctional unit is driven by the pair of the corresponding slices (,'ector 

elements) of the source Yector regis ters. The produced results are s tored back to the 

corresponding sl.ices (vector elements) of the destination vector register. 

In the case of scalar instructions onl y the first (FUO) functio nal unit fromlhe active group 

operates whereas the others do not change state (via clock gati ng and combi nationa l logic 

gating) in order to save power. The control! tatuS nag and register have two uses: to 

support pred icated execution and to store exception bits that are implicitly set by 

instructi ons that may produce the re leval1l exceptions [2] . 



5 Vector Processor Architecture 109 

5.2 Programmers Model 

The user programming model is shown in Figure 5-2. Along with the instruction set it 

completes the portion of the architecture that is visible to software. The programmer's 

model contains two types of registers, the general-purpose registers and the control/status 

registers. The general-purpose registers consist of the vector and scalar register files. The 

vector register file contains VREGS vector registers of statically-configurable length 

VLMAX of scalar 16-bits elements with two read ports and one write port. The VREGS 

configuration constant can take values from 2 to 32 and in this instance of the architecture 

that value is 16. The 16 vector registers are individually designated by the symbols VRO, 

VR1, ... , VR15 as illustrated. The scalar register file contains SREGS general-purpose 

scalar registers of 32-bits width and it has three read ports and one write port. The 

SREGS configuration constant is 16 in the current implementation but can be any value 

between of 2-32. The 16 scalar registers are individually designated by the symbols SRO, 

SRI, ... , SRI5, as illustrated in the model of Figure 5-2. The scalar registers can serve a 

number of purposes including use as address pointer registers, for scalar memory 

references, provide data values for vector and scalar operations, store final or 

intermediate results etc. 

Overflow Flag 

Ow 
1 bit 

Vector OVerflow 
Register 

,",=:==~I ov! 
~: . 
(VLMAXJ2}-1 bits 

Predication Registe 
j . Ipred 

CVLMAXbi~~ 

Vlen Register 
I Ivlen 
Cabits" 

::; 

'" 

f 

Vector Register File Scalar Register File 
Element 0 Element 1 Element 2 Element (VLMAX-1) 

c 
16 bits • 

Element 0 

I-_-IVRO 
VR1 

~==~.VR2 VR3 

i-_-lVR4 VR5 
i---iVR6 

i-_-lVR7 

i-_-iVR8 
VR9 

t:::~:VR10 
F'===jVR11 
,-_-:VR12 

I-r==~:VR13 I- VR14 
L-_--'VR15 

c 
Element 1 

32 bits 

Element (VlMAXI2-1) 

• 

SRO 
SR1 
SR2 
SR3 
SR4 
SR5 
SR6 
SR7 
SR8 
SR9 
SR10 
SR11 
SR12 
SR13 
SR14 
SR15 

·l=I~c~~~;;~.~1 ::::::jl :::! Y' I~~~~~ 
32 bits 

Figure 5-2: Vector and Scalar coprocessor programmer's model 



5 Vector Processor Architecture 110 

There are also ACC_NUMBER vector accumulators consisting of VLMAXl2 scalar 

elements (32-bit). The ACC_NUMBER configuration constant in this case is 2 (V ACCO, 

VACCl) but can be any value of the range of 2-32 with the restriction for the long 

instructions which access the accumulators, except the multiply-add/sub instructions, that 

can use only the flfst two accumulators (V ACCO, VACCl) as source operands. There are 

special move instructions that exchange data between the vector, scalar and Leon general 

purpose registers and the vector accumulators. The control/status registers include a 

vector length register (vlen), a predication register (pred), a vector overflow register 

(ovf) and an overflow flag (W). The vlen register has maximum value of VLMAX 

and defines the width of the data that will be processed by the vector datapath. The 

predication register is a type of mask register with VLMAX bits where each bit 

corresponds to a vector element. It is set when a comparison instruction takes place and it 

is utilised during merge operations to select the appropriate vector elements that comprise 

the vector comparison result (merge operation). The overflow flag (W) is a single bit and 

it is set whenever an overflow happens during arithmetic instructions. Internally, multiple 

overflow flags are generated where each such flag corresponds to one vector element, and 

they are combined in a single overflow flag by using an or-reduce operation. In addition, 

there is a vector overflow register (ovf) that is VLMAXl2-bit long where every bit is the 

overflow result of each functional unit of the group that performed the particular 

operation. The only vector mask register is the predication register that is employed for 

the comparison and merge operations. All the other masking processes are implemented 

on the run by combinational logic obeying the current vector length value. 

5.3 Vector Processor Instruction Set Architecture 

The instruction set defines the transformations the soflware component can perform in the 

architectural state, including both memory and register file. Instructions define one or 

more operations for a scalar set of data. The vector instruction set, on the other hand, 

allows soflware to express, with a single opcode, multiple independent operations on 

arrays of data [3]. This section describes the instruction set that implements most of the 

basic DSP operations on the target, G.729A and G.723.l, ITU-T speech coding 

algorithms. These operations are more complicated than the basic operations of a RlSC 

architecture and are described in this document in two levels of detail. The first level of 



5 Vector Processor Architecture III 

detail is presented in the remaining of the chapter which is divided into sections that 

present and briefly describe groups of instructions of similar types. Each group is 

expanded into a more detailed description for each instruction that comprises it. This is 

the second level of detail that is contained in the Appendix A and contains for every 

instruction, its format, a short description of the instruction's operation and a software 

example. In the proposed processor architecture all the coprocessors instructions are 22 

bits wide and include 2 and 3-address formats (1 or 2 source operand registers and the 

destination register, all independently specified). The instruction set is divided into two 

main categories; the vector instructions and the scalar instructions. 

5.3.1 Vector ISA 

The vector instruction set described in this document comprises 43 instructions which are 

divided into groups of instructions of similar types. Every type is detailed by showing 

assembly formats and giving a short description of the instruction's operation. More 

detail is contained in Appendix A, where each instruction is presented separately. The 

vector instructions can be grouped into five categories: load/store, move, arithmetic, shift 

and miscellaneous. The assembly language format of an instruction is written with a 

shorthand notation and few examples of the vector and scalar assembly are given. In 

vector mode the coprocessor can process in parallel VLMAX 16-bit operations or 

VLMAXl2 32-bit operations. 

5.3.1.1 Load/Store Instructions 

Vector load/store instructions are the only instructions that access memory via the Vector 

Load/Store Unit (VLSU) and are illustrated in Table 5-1. This table also includes the 

instruction that loads the vlen register (ldvlen_r) with an immediate even if it is not 

regarded as a load instruction in a typical sense. 



5 Vector Processor Architecture lJ2 

Table 5-1: Vector LoadlStore Instructions 

No Instruction Assemblv Brief Description 
1 IdvlenJ Idvlen_r(imm) Load Vector Length Register with immediate 
2 vldw vldw(vrd,srsl) Load vector register from memory address 
3 vldwn vldwn(vrd,srsl) Load vector register downward from memory 
4 vstw vstw( vrs2,srs 1) Store vector register back to memory address 
S vstwn vstwn( vrs2,srs 1) Store vector register downwards to memory 

6 vldaccw vldaccw( vaccd,srs 1) Load vector accumulator from memory 
address 

7 vstacc vstacc( vacc, velem,srs 1) Store vector accumulator element to memory 

Vector load/store operations use a scalar register (srsl) that contains the memory 

address in which data is loaded from/stored to. For the load instructions the destination 

can be a vector register (vldw) or a vector accumulator (vldaccw) while for the store 

instructions (vstw or vstacc) these registers are the data sources. The load/store 

instructions are strided. A strided load takes a base address, in this case the srsl, and a 

signed stride, and loads a vector of values starting at the base address, where each 

element is separated by the stride amount. The stride is in units of elements, not bytes and 

can take the values I (vldw) and -I for load downward (vldwn). A similar method 

applies for the strided store in which a vector of values is stored starting from the base 

address and be separated from I (vstw) or -1 stride for store downward (stwn) [2]. 

Store instructions have one cycle latency and are performed in the Vector Register Access 

(VREG) stage where the store data, along with the memory address, are sent to the VLSU 

unit. Load instructions have latency of two cycles as the VLSU unit has a cascade 

TAGIDATA configuration. During a load operation the load address is sent to VLSU unit 

at the VREG stage and the memory data are obtained at the second Vector Datapath 

(VDP2) stage. It is clear that the load/store latency depends on the VLSU 

implementation. A parallel TAGIDATA configuration for the VLSU microarchitecture 

will reduce the load instruction latency from two cycles to one cycle at the expense of 

increased power consumption. 

5.3.1.2 Move Instructions 

The vector move instructions are used to exchange data between the vector, scalar and 

Leon general purpose registers as well as the vector accumulators. They comprise move 

instructions (mvvr2gpr or mvgpr2vr) that transfer data between coprocessor's vector 

registers and the main CPU's (Leon) general-purpose registers. 



5 Vector Processor Architecture 113 

Table 5-2: Vector Move Instructions 

No Instruction Assemblv Brief Description 
8 vacccIr vaccclr( vacc) Set the value in the vector accumulator to zero 
9 vsplatacci vsplatacci( vaccd,srs I) Load vector accumulator with a scalar value 

10 vldacceli 
vldacceli Load immediate value into vector accumulator 
(vaccd,velem, value) element 

11 vsplat_hJ vsplat_ h J(vrd,srs I) 
Splat a 16-bit scalar value to all elements of 
vector register 

vmvacctre Extract high (amount=O) or low (amount= 16) 
12 vmvacctre (vrd, vacc I ,amount) 

the even elements of vector accumulator and 
load them to vector register 

vrnvacctro 
Extract high (amount=O) or low (amount= 16) 

13 vmvacctro 
(vrd,vacc1,amount) 

the odd elements of vector accumulator and load 
them to vector register 

vmvrtacce Deposit high (amount=16) or low (amount=O) 
14 vmvrtacce (vaccd, vrs I ,amount) 

the even elements of vector register to the vector 
accumulator 

vrnvrtacco 
Deposit high (amount= 16) or low (amount=O) 

15 vmvrtacco 
(vaccd,vrsl,amount) 

the even elements of vector register to the vector 
accumulator 

16 mvgpr2vr 
mvgpr2vr Moves a value (32-bit) from the general purpose 
(vrd,velem,grsl) register (Leon) to the vector register element 

17 mvvr2gpr 
mvvr2gpr Moves the vector register element to the general 
(grd, velem, vrs I) purpose register (Leon) 

Splat instruction (vsplat_h_r) "splats" a scalar value in a vector register and deposit 

instructions (vmvrtacce and vmvrtacco) deposit low or high data from a vector 

register to a vector accumulator. The extract instructions (vmvacctre and vmvacctro) 

are utilized to extract high or low data from vector accumulators into vector registers. 

Finally, they comprise instructions that set to zero (vaccclr), splat scalar data 

(vsplatacci) or load an immediate value (vldacceli) into a vector accumulator. All 

the move instructions are summarised in Table 5-2. 

5.3.1.3 Arithmetic Instructions 

The vector arithmetic instructions include short and long addition, subtraction and 

multiplication. All the arithmetic instructions are performed in a single cycle apart from 

the multiply-add (vmace/vmaco) and the multiply-sub (vmsue/vmsuo) which take two 

cycles. The short addition (vaddh) and subtraction (vitu_sub_r) take as inputs two 

vector registers and perform a l6-bit addition operation. The long addition (vaddacc) 

and subtraction (vsubacc) take as inputs vector accumulators and perform 32-bit 

addition operations. Figure 5-3 shows a vector addition for a vector length of 2 that 

specifies two vectors as input operands and produces a vector result by executing the 



5 Vector Processor Architecture 114 

same operation on each pair of elements from the input arrays. The multiply instructions 

are implemented as pairs for the even and odd elements of the vector registers as the 

multiplier for every vector functional unit takes as input two 16-bits and produces a 16-bit 

(short multiplication) or 32-bit (long multiplication) product. Figure 5-4 illustrates a short 

multiplication of two vectors with vector length 2. 

Vector Addition 

v",l vr.;2 

I I 0 

I I 

¥ ~ 

vrd I I 
1 I 0 I 

Figure 5-3: Vector Short Addition 

It takes as inputs the even elements of the pair of vector registers (elements 0) and the 

product is placed in the even element of the destination register. 

Vector Multiplication Even 

v",l v",2 
I I o 

I 

vrd I 
o 

Vector Multiplication Odd 

v",l 
o o 

vrd 

Figure 5-4: Vector Short Multiplication for even/odd elements 



5 Vector Processor Architecture 115 

Then it takes as inputs the odd elements of the pair of vector registers (elements I) and 

the product is placed to the odd element of the destination register. The short 

multiplication involves simple multiplication (rnult), multiplication with rounding 

(rnult_r) and integer multiplication (irnult). All these multiply instructions perform a 

signed or unsigned 16 x 16 -t 16-bit operation. The long multiplication performs a 

signed 16 x 16 -t 32-bit operation and, along with the multiply-add, is executed from the 

pair of instructions vrnace/vrnaco but without the accumulation part. The multiply-add 

(vrnace/vrnaco) and the multiply-sub (vrnsue/vrnsuo) instructions are performed in the 

even and odd elements respectively of the vector registers vrsl and vrs2 and add or 

subtract the product to the even and odd elements of the vector accumulator vacc. 

Vector Multiplication Even Vector Multiplication Odd 

vrs1 vrs2 vrs1 vrs2 

o c::::::I:~o=:J o o 

o ;:.va:cc:::r=:J-~ 
L + 

vace 

vrd vrd 

o 

Figure 5-5: Vector multiply-add/sub 

Finally, the vaccaddreduce is used after the execution of the pair instructions that 

involve the accumulator and perform add-reduce to the elements of the accumulator. With 

the use of an adder tree, a 32-bit final result is obtained and it is placed to the element 0 of 

the vector accumulator. All the vector arithmetic instructions are summarized in Table 

5-3. 



5 Vector Processor Architecture 116 

Table 5-3: Arithmetic Instructions 

No Instruction Assembly Brief Description 

18 vaddh vaddh( vrd, vrs I, vrs2) Vector short addition (16-bit) of 
vector registers 

19 vitu_subJ vita _sub J(vrd,vrsl,vrs2) Vector short subtraction (16-bit) of 
vector registers 

20 vaddacc vaddacc(vaccd, vacc I, vacc2) Vector long addition (32-bit) of 
vector accumulators 

21 vsubacc vsubacc( vaccd, vacc I, vacc2) Vector long subtraction (32-bit) of 
vector accumulators 

22 vaccaddreduce vaccaddreduce(vacc) Vector accumulator add-reduce 

23 vitu_mult_eJ 
vita mult e r Vector signed short multiply of the - --
(vrd, vrs I, vrs2) vector registers even elements 

24 vitu _ mult_ ° J 
vita mult 0 r Vector signed short multiply of the - --
(vrd, vrs I, vrs2) vector registers odd elements 

25 vitu_multJ_eJ 
vita_muItJ_e_r Vector short multiply with roundiog 
(vrd,vrsl,vrs2) of the vector register even elements 

26 vitu_multJ_o_r vita_muItJ_oJ Vector short multiply with roundiog 
(vrd, vrs I, vrs2) of the vector registers odd elements 

27 vitu_i_mnlt_eJ 
vita_i_mult_e_r Vector short ioteger multiply of the 
(vrd, vrs I, vrs2) vector registers even elements 

28 vitu_i_mult_oJ 
vita i mult 0 r Vector short ioteger multiply of the -- --

(vrd, vrs I, vrs2) vector elements odd elements 

29 vmace vmace (vacc,vrsl,vrs2) Vector mutliply-add (L_mac) of the 
vector registers even elements 

30 vrnaco vmaco (vacc,vrsl,vrs2) 
Vector mutliply-add (L _ mac) of the 
vector registers odd elements 

31 vrnsue vmsue (vacc,vrsl,vrs2) Vector mutliply-sub(L_msu) of the 
vector registers even elements 

32 vrnsuo vmsuo (vacc,vrsl,vrs2) Vector mutliply-sub(L_msu) of the 
vector registers odd elements 

5.3.1.4 Shift Instructions 

The shift instructions implement the 16 and 32-bit ITV shift operations. These operations 

have also the ability to specifY negative shift amounts resulting in a positive shift in the 

opposite direction. In addition they saturate the result in the range of Oxffff8000-

Ox00007fff in case of overflows or underflows. The short (16-bit) shifts are perfonned in 

a vector register with an immediate or with the shift amount being in the second vector 

register. The long (32-bit) shifts are implemented in vector accumulator with an 

immediate value or with the amount stored in a vector register. All the shift instructions 

are summarized in Table 5-4. 



5 Vector Processor Architecture 

Table 5-4: Vector Shift Instructions 

Paee Instruction Assemblv 
33 vshli vshli (vrd,vrsl,amount) 
34 vshri vshri (vrd, vrs 1 ,amount) 

35 vshlr vshlr (vrd,vrsl,vrs2) 

36 vshrr vshrr (vrd,vrsI ,vrs2) 

37 vlshlacc 
vlshlacc 
(vaccd,vacc 1 ,amount) 

38 vlshracc 
vlshracc 
(vaccd,vaccl,amount) 

39 vlshlaccr 
vlshlaccr 
(vaccd,vacc1,vrsl) 

40 vlshraccr 
vlshraccr 
(vaccd,vacc1 ,vrs2) 

--5.3.1.5 Miscellaneous Instructions 

117 

Brief Description 
Vector short (16-bit) shift left by amount 
Vector short (16-bit) shift right by amount 

Vector short shift left with register 

Vector short shift right with register 

Vector long (32-bit) shift left by amount 

Vector long (32-bit) shift right by amount 

Vector long (32-bit) shift left with register 

Vector long (32-bit) shift right with 
register 

The miscellaneous instructions for the vector ISA perform only comparison operations 

between vector registers (16-bit) or vector accumulators (32-bit) and comparison with 

zero. The compare instruction compares the two operands together by subtracting the one 

from the other. If the result is positive (flIst operand is greater than or equal to the second 

operand register, accumulator or zero) the predication flag (pred) is set to 'I'. If the 

result is negative (first operand is less than the second) the predication flag is set to '0'. 

Finally the merge instructions are utilised to select the vector register or accumulator 

value that satisfies the given equation, on a per-element basis. 

Table 5-5: Vector Miscellaneous Instructions 

Pa!!e Instruction Assemblv Brief Descrintion 

41 vcmp vcmp( vacc 1, vacc2) Compare vector accumulators and update 
Predication flag (pred) 

42 vrcmp vrcmp(vrs1 ,vrs2) Compare vector registers and update 
Predication flag (pred) 

43 vcmp_hJe vcmp_h_ge(vrsl) 
Check vector register if it is greater than or 
equal to zero and update Predication flag 

44 vmerge_t_hJ 
vmerge_t_hJ Merge two vector registers according to the 
(vrd,vrs1 ,vrs2) Predication flag value 

45 vmerge 
vmerge Merge two vector accumulators according 
(vaccd, vacel, vacc2) to the predication flag value 

This is a multiplexer-style operation that selects between two values which one to pass to 

the output result, according to the predication flag value. The miscellaneous instructions 

are depicted in the above table. 



5 Vector Processor Architecture lI8 

5.3.2 Scalar ISA 

The scalar instruction set comprises 36 instructions which are grouped into five 

categories: load/store, move, arithmetic, shift and miscellaneous. Each category is 

presented to the following sections whereas a more detailed description for every scalar 

instruction is given in Appendix A. In scalar mode the coprocessor can accommodate one 

l6-bit or 32-bit operation. 

5.3.2.1 Load/Store Instructions 

The scalar load/store instructions access memory via the VLSU unit. The load 

instructions can load 16 or 32-bit data from the memory location that is contained in 

scalar register (sisl) int()-the destination-register (srd).- The-store instructions store the- -----

16 or 32-bit data of the scalar register (srs2) into the memory location stored in scalar 

register (srsl). All the scalar load/store instructions are summarized to the Table 5-6. 

Table 5-6: Scalar LoadlStore Instructions 

Paee 
46 
47 
48 
49 

Instruction 
m2sld16 
m2sld32 
m2sst16 
m2sst32 

Assemblv 
m2sld 16( srd,srs I) 
m2sld32(srd,srsl) 
m2sstl6( srs2,srs I) 
m2sst32(srs2,srsl) 

5.3.2.2 Move Instructions 

Brief Description 
Load scalar register with 16-bit from memory 
Load scalar register with 32-bit from memory 
Store 16-bit word of scalar register to memory 
Store 32-bit word of scalar register to memory 

The scalar move instructions offer a flexible way to transfer data between the 

coprocessor's scalar registers and the main CPU's (Leon) general-purpose register file. 

These instructions comprise the address of the source register (srsl or grsl) and the 

address of the destination register (grd or srd) and are listed in Table 5-7. 

Table 5-7: Scalar Move Instructions 

Pa~e Instruction Assemblv Brief Description 

50 mvgpr2sr mvgpr2sr( srd,gpr I) Moves contents from general purpose register 
to scalar register 
Moves contents from scalar register to general 

51 mvsr2gpr mvsr2gpr(gprd,srs I) purpose register 



5 Vector Processor Architecture ]]9 

5.3.2.3 Arithmetic Instructions 

The scalar arithmetic instructions include short and long addition, subtraction and 

multiplication. All these arithmetic instructions take as inputs two scalar registers and 

perform a 16 or 32-bit operation. When the result exceeds the range of OxSOOOOOOO

Ox7fffffff an overflow bit is produced. In the case of multiply-add and multiply-sub the 

role of the accumulator is played by a third scalar register that is used both as a source 

and as destination register. This was also the reason that the scalar register file has three 

read ports instead of two as the main vector register file has. The scalar arithmetic 

instructions are listed in Table 5-8. 

Table 5-8: Scalar Arithmetic Instruction 

Paee Instruction Assembly 
52 m2sladd m2sladd( srd,srs I ,srs2) 
53 m2slsub m2slsub( srd,srs I ,srs2) 

54 m2sadd m2sadd(srd,srsl,srs2) 

55 m2ssub m2ssub( srd,srs 1 ,srs2) 

56 m2s1mac m2slmac(srd,srsl,srs2) 
57 m2slmsu m2slmsu( srd,srs 1 ,srs2) 
58 m2slmult m2slmult( srd,srs 1 ,srs2) 
59 m2smult m2smult( srd,srsl ,srs2) 
60 m2smultJ m2smult_r{srd,srsl,srs2) 
61 m2simult m2simult( srd,srs 1 ,srs2) 

5.3.2.4 Shift Instructions 

Brief Description 
Scalar Long (32-bit) Addition 
Scalar Long (32-bit) Subtraction 

Scalar Short (16-bit) Addition 

Scalar Short(16-bit) Subtraction 

Scalar multiply-accumulate (L_mac) 
Scalar multiply-subtract (L_msu) 
Scalar long (32-bit) multiplication 
Scalar short (16-bit) multiplication 
Scalar multiplication with rounding 
Scalar short integer multiplication 

Shift instructions are used to shift the contents of a scalar register left or right by a given 

amount. The shift amount can be specified by a constant (amount) in the instruction or 

by the contents of a scalar register (srs2). As with the vector shift instructions, short and 

long scalar shifts are supported. The scalar shift instructions are summarized in Table 5-9. 



5 Vector Processor Architecture 120 

Table 5-9: Scalar Shift Instructions 

Page Instruction Assembly Brief Description 
62 m2slshl m2slshl (srd,srs I ,amount) Scalar long 32-bit shift left by immediate 
63 m2slshr m2slshr (srd,srsl,amount) Scalar long shift right by inunediate 

64 m2slshlJg m2slshlJg (srd,srsl,srs2) Scalar long shift left with register 

65 m2slshr_rg m2slshrJg (srd,srsl,srs2) Scalar long shift right with register 

66 m2sshl m2sshl (srd,srs I ,amount) Scalar short shift left by amount 
67 m2sshr m2sshr (srd,srsl,amount) Scalar short shift right by amount 
68 m2sshlJg m2sshl_rg (srd,srsl,srs2) Scalar short shift left with register 
69 m2sshr rg m2sshr rg (srd,srsl,srs2) Scalar short shift right with register 

5.3.2.5 Miscellaneous Instructions 

The miscellaneous instructions perform the remaining instructions that comprise the basic 

operations of the ITU standard algorithms. They include short and long negate, absolute 

value, normalization, deposit, extract and rounding. 

Table 5-10: Scalar miscellaneous instructions 

Page 
70 
71 

72 

73 

74 

75 
76 
77 
78 
79 

Instruction 
m2slnegate 
m2slabs 

m2snorm_1 

m2sldeposiU 

m2sldeposit_h 

m2snegate 
m2sabs_s 
m2sextract_h 
m2sextract_1 
m2sround 

Assembly 
m2slnegate (srd,srsl) 
m2slabs (srd,srs I) 

m2snorm_1 (srd,srsl) 

m2sldeposiU 
(srd,srsl) 

m2sldeposit_ h 
(srd,srsl) 
m2snegate (srd,srsl) 
m2sabs _ s (srd,srs I) 
m2sextract_h (srd,srsl) 
m2sextracU (srd,srs I) 
m2sround (srd,srs I) 

Brief Description 
Scalar long negate (L_negate) 
Scalar long absolute value (L_abs) 

Scalar long normalisation (norm_I) 

Deposits 16 LSB into the LSB of scalar 
register the remain are sign extended 

Deposits 16 LSB into the MSB of scalar 
register the remain are zero extended 
Scalar short negate (negate) 
Scalar short absolute value (abs _ s) 
Extracts the 16 MSB from scalar register 
Extracts the 16 LSB from scalar register 
Rounds a 32-bit value to l6-bit 

They use one scalar register (srsl) as source operand and calculate the result that place 

into the destination register (srd). Table 5-10 lists all the miscellaneous instructions. 

5.4 Leon3 CPU 

Leon3 is an open-source synthesisable VHDL model of a 32-bit processor core 

implementing the SP ARC V8 architecture (standard IEEE-1754) [4). The model is highly 

configurable, and particularly suitable for system-on-a-chip (SoC) designs. It is designed 

for embedded applications that require a high performance, low complexity and low 



5 Vector Processor Architecture 121 

power consumption programmable engine. The Leon3 CPU has a 7 stage pipelined 

integer unit with a pseudo-Harvard architecture (separate instruction and data caches): 

• Fetch Stage: In this stage the instruction is fetched from the instruction cache if it 

is enabled else a request sent to the memory controller. In addition, the value of 

the program counter is updated. At the end of this stage the valid instruction and 

the value of the program counter are latched to the next stage. 

• Decode Stage: The instruction is decoded and extracts the addresses for both 

source operands and the destination operand. Also it generates the addresses for 

branch and CALL instructions and the control signals for the next stages. 

• Register Access Stage: The source operands are read from the register file or 

from bypassed intermediate results. 

• Execute Stage: All the arithmetical, shift and miscellaneous operations are 

performed. For memory load or store and jump/return operations the address is 

generated and sent to the memory unit. 

• 

• 

Memory Stage: At this stage the data cache is accessed and the store operation is 

performed. 

Exception Stage: All the traps and interrupts signals are processed and the data 

are aligned in the case of a data cache load. 

• Write Back Stage: The result from any arithmetical, logical, shift or cache 

operation is written back to the register file. 

It has an on-chip debug support unit and interfaces to a Floating-point unit (FPU) and a 

custom coprocessor. The Leon3 processor implements the full SP ARC V8 Reference 

Memory Management Unit (SRMMU) and its interrupt model recognises and handles 15 

asynchronous interrupts. The number of the registers in the register file is configurable 

within the range of 2 to 32 with a default value of 8. The cache system is highly 

configurable as well and is connected to two independent cache controllers for the 

instruction and data caches respectively (icache.vhd and dcache.vhd) [4]. In addition, 

there is an interface between the two caches controllers and the Amba AHB bus 

(acache.vhd). Both caches are configured to be direct-mapped or multi-set with set 

associativity of 2-4 sets, where every set can be 1-256 Kbytes and be divided into cache 

lines (blocks) of 16-32 bytes each. The Leon3 includes a hardware multiplier, with 

optional l6x16 bit MAC and 40-bit accumulator, and a divider. In this research, we will 



5 Vector Processor Architecture 122 

consider the integer unit of the Leon3 processor in which the vector processor is attached 

in a closely coupled configuration. Leon3 can be configured to provide a generic interface 

to a user-defined co-processor. The interface allows the operation of the coprocessor in 

parallel increasing this way the performance. The vector coprocessor is a hardware 

component that will run in parallel with the Leon3 and will exchange data with it. In 

order to perform this, the coprocessor-allocated opcodes must be ignored by the decode 

logic of the pipeline of Leon3. This means that the Leon3 should treat these instructions 

in a benign way, as is the case of a nop instruction. From the SP ARC architecture manual 

it can be seen that the instructions are encoded in three major 32-bit formats as illustrated 

in Figure 5-6. 

Format 1 (op = 1): CALL 

I op I disp30 

31 29 o 
Fonnat 2 (op = 0): SETHI & Branches (Bicc, FBfcc, CBccc) 

imm22 

disp22 

31 2928 24 21 o 
Fonnat 3 (op = 2 or 3): Remaining instructions 

op rd op3 rs1 i=O asi I rs2 

Op rd op3 rs1 i=O simm13 

Op rd op3 rs1 opf I rs2 
31 29 24 18 13 12 4 o 

Figure 5-6: Instruction Formats of Leoo3 

The format that can be used for the vector coprocessor and will demand only few 

modifications ofthe Leon3 decode logic is the unimplemented instruction (UNIMP). The 

values of the UNIMP instruction are not reserved by the architecture for any future use 

and the const22 value is ignored by the hardware [5]. The UNIMP instruction is an 

instruction with unimplemented opcode that causes an illegaUnstruction trap and its 

format is shown in Figure 5-7. 

Format 2 (op = 0): UNIMP 

I 00 I reserved I 000 I const22 

31 29 24 21 o 
Figure 5-7: Unimpiemented Instruction 



5 Vector Processor Architecture 123 

Because the UNIMP instruction causes an illegal_instruction trap at the exception 

detection stage additional decode logic and modifications in the existing decode logic 

prevent the exception process from setting the illegatinst signal. Furthermore, the Leon3 

was modified to perfonn add with zero when the allocated opcode is decoded. In this 

way, the Leon3 ID perfonns a nop instruction while the 22-bits of the UNIMP opcode 

(const22) are sent for further decoding in the vector coprocessor. Therefore the available 

22-bits are utilised for encoding the vector and scalar instruction set. More detailed 

description, for the Leon3 modifications and the way that the vector coprocessor is 

attached to it, is given in Chapter 6. 

As mentioned the UNIMP instruction cause an illegal_instruction trap. Traps are 

vectored transfer of program control caused from events that should not occur during 

normal program execution. Traps can be induced by an exception related to an instruction 

or by an external interrupt. If a defmed trap condition occurs, the system trap handler is 

invoked to handle the program interruption through a special trap table. The base address 

is defined in the trap base register (TBR) and the displacement within the table is 

calculated in combination with the trap ID. There are three trap categories: the precise 

trap that is caused from a particular instruction and takes place before any program

visible state is altered; the deferred trap that is like the precise one but occurs after the 

program-visible state changes and the interrupting trap that is induced by an external 

interrupt request. The default trap model that is implemented in Leon3 comprises precise 

traps apart from the FPU or coprocessor traps and the "Non-resumable machine-check" 

exceptions. The table that contains the 3-bit field (op2) that encode the fonnat 2 

instructions is shown in Table 5-11. 

Table 5-11: Enhanced op2 Encoding (Format 2) 

Op2 
o 
1 
2 
3 
4 
5 
6 
7 

Instructions 
UNIMP 
unimplemented 
Bicc 
unimplemented 
SETHI 
unimplemented 
FBfcc 
CBfcc 

Description 
Vector Processor Instruction 
unimplemented 
Branch on Integer Condition Codes 
unimplemented 
Set High 22 bits of an r register instruction 
unimplemented 
Branch on Floating-point Condition Codes 
Branch on Coprocessor Condition Codes 



5 Vector Processor Architecture 124 

5.5 Overall System Architecture 

The vector coprocessor microarchitecture is currently being implemented in RTL VHDL 

as a tightly coupled coprocessor for the Leon Sparc-VS CPU. It has private vector and 

scalar register files as this method promises significantly better performance. Detailed 

microarchitecture analysis followed by trial synthesis confirmed that all instructions can 

fit in a single high frequency cycle resulting in a latency of 1 and an initiation rate of I. 

Exceptions to this are the Multiply-add/subtract instructions and the short divide with 

latency/initiation rate of 211 and 17/17 respectively. In particular, it was decided that due 

to the very low improvement, the iterative divider block would not be utilized [6]. The 

overall system architecture is depicted in Figure 5-S. 

PCI 

Host 

DMA 
Unit 

SoC I/F 

Processing Unit 
r-----------------------------~ 
1 1 
1 1 
1 Coprocessor Lean 1 
1 1 
1 1 

: VlSU icache I acache Idcache : 
1 1 
"------ ------------- 1'--______ 1 

AHB 

PCII/F Memory I 
Controller 

J L 
I APB Bridge I 

I 

Timers I 1/0 11 System 1 
Registers 

I SDRAM I SRAM I 
Figure 5-8: Overall system architecture 

It consists of the backbone interconnect (32-bit AHB bus), a configurable number of 

processor-coprocessor units, a DMA (Direct Memory Access) unit, a PCI IIF (peripheral 

Component Interconnect Interface), the external memory controller a low-speed (non

streaming) peripheral bus (APB) subsystem which houses miscellaneous units such as 

timers, interrupt controllers, I/O and memory-mapped registers. 



5 Vector Processor Architecture 125 

5.5.1 Processor-co processor programmable unit 

The main processing unit is the vector processor (Leon3/vector coprocessor 

combination). This unit has two AlIB taps, one used for refilling the scalar processor 

caches (Instruction, Data) and the second for refilling the coprocessor data cache. Both 

main processor and coprocessor caches remain consistent via i) using a write-through 

configuration and ii) uses a write-invalidate mechanism which ensures that writes to a 

cache block from either processor invalidates the same block in the other processor. Thus 

the latter processor will have to go to the main memory if it accesses that location and 

recover the up-to-date contents instead of using its own stale data. 

5.5.2 DMA taps 

These are the input ports to the SoC. An external agent requests the DMA unit for 

transferring PCM (frames) data into the SoC address space. The DMA unit has ARB 

mastering capability and is also used to transfer the compressed bitstream (processed 

frames) from the SoC address space to the environment. 

5.5.3 PCI IIF 

An Opencores [7] PCI IIF is used to transfer data between the host system (host PC) and 

the FPGA board. 

5.5.4 External Memory Controller 

This unit is responsible for all memory accesses in the SoC addresses space. It directly 

interfaces to a 133MHz DDR (Double Data Rate) memory component and a standard 

asynchronous RAM component. These external memories are address-range enabled 

(Ox60000000 for SDRAM, Ox40000000 SRAM). The optimized speech coder and the 

frames to be processed are transferred with DMA from the host PC to the SDRAM 

memory of the RISC/Coprocessor FPGA board. After that, the RISC CPU/coprocessor 

combination processes the frames and stores the compressed frames in local memory 

(SDRAM). The compressed frames are transferred back to the PC memory for 

comparison with the ITU-T test vectors [6]. 



5 Vector Processor Architecture 126 

5.5.5 APB Subsystem 

The final subsystem includes all non-streaming components (internal and external) such 

as timers, I/O ports, interrupt controllers and UARTS. This subsystem also houses 

memory mapped registers. 

5.6 Summary 

This chapter introduced the architectural state and programmer's model of the vector 

processor. The vector and scalar instruction extensions were presented, divided into 

groups of instructions of similar types. Every type was detailed by showing assembly 

formats and giving a short description of the instruction's operation. More details of the 

instructions are contained in Appendix A. Finally a description for the overall system 

architecture was given. 



5 Vector Processor Architecture 127 

5.7 References 

[I] K. Koutsomyti, S. R. Parr, V. A. Chouliaras, J. Nunez, D. J. Mulvaney, and S. 
Data, "Scalar and parametric vector accelerators for the G.729A speech coding 
standards," in Proceedings of IEE/ACM SoC Design, Test and Technology 
Postgraduate Seminar, Loughborough University, September 2004, pp. 53-57. 

[2] D. Martin, "Vector Extensions to the MlPS-JV Instruction Set Architecture (The 
VIRAM Architecture Manual) Revision 3.7.5.," March 2000. 

[3] C. Kozyrakis, "Scalable Vector Media-processors for Embedded Systems," in 
Computer Science University of California: Berkeley, 2002. 

[4] "GRLffi IP Core User's Manual, Version 1.0.7," Gaisler Research February 
2006. 

[5] "The Spare Architecture Manual Version 8 ", www.sparc.com. 

[6] V. A. Chouliaras and J. L. Nunez, "Scalar Coprocessors for accelerating the 
G723.1 and G729A Speech Coders," IEEE Transactions on Consumer 
Electronics, vo!. 49, pp. 703-710, August 2003. 

[7] http://www.opencores.org/. 



CHAPTER 6 
VECTOR PROCESSOR IMPLEMENTATION 

6.1 Overview 

This chapter describes the vector processor along with a number of implementation 

details and the general principles of its operation. In addition, it details the way that the 

vector speech coprocessor is attached to the main Leon3 scalar processor. The vector 

processor consists of the Vector Datapath (VDP) and the Vector Load/Store Unit 

(VLSU). In the sections that follow only the Vector Datapath is discussed in detail as the 

VLSU is addressed as part of another thesis [I]. The vector processor fully implements 

the Vector and Scalar ISAs that were described in the previous chapter. The vector 

pipeline comprises four-stage pipeline: the Vector Decode Stage (VDEC), the Vector 

Register Access Stage (VREG) and the Vector Datapath Stage (VDP) which consists of a 

two stage pipeline (VDPI and VDP2). All vector/scalar instructions are fully-pipelined 

with a latency of one and an initiation rate of one instruction per cycle, with the exception 

of multiply-add and multiply-sub instructions which have a latency of two cycles and an 

initiation rate of one. 

The organization of the speech coprocessor with the 4-stage pipeline is depicted in Figure 

6-1. The vector coprocessor is parameterised along both the architecture and the 

microarchitecture axes. The architectural parameterisation refers to the number of 

registers including accumulators and the extensible vector ISA. The micro architectural 

parameterisation refers to the extensible, non programmer visible state of the processor. 

This includes the number of scalar datapaths (functional units), maximum data width and 

internal flop-based state. This parameterisation is defined from a number of compile-time 

parameters that specifY the various architectural and microarchitectural characteristics of 

the coprocessor. 

128 



6 Vel.'for Processor /mv/emelllatioll 129 

IIJ2vcop_09C_valid iU2vcop_opc: leorujout 
• 

VDEC Stage ~OECSTAGE 

I I I c::::., 

VREG Stage 
byp ... 

VDP1 Stage 

VDP2 Stage 

- - - - - -~-'-----' 

Figure 6- 1: The vector speech cop roccssor microa rchitcctu re with the four-stage pipeline: 

Vector Decode Stage (VDEC), Vector Register Access Stage (VREG) and two stages for the 

Vector Datapath Stage (¥OP I a nd VDP2) 

The choice of compile-time configurali on putS the combined proces or/vector 

coprocessor firm ly in the domain of confi gurable, ex tensible CPUs. The compi le-time 

parameters are listed in Tab le 6- 1. 

This table indicates the valid values and the maximum number of the vector/scalar 

registers, the accumulators and the Vector units (VLMAXl2) . Exceedi ng these limits or 

choosing other va lues than the va lid will generate errors during the RTL simul ation. 



6 Vector Processor Implementation 130 

Table 6-1: Compile-time vector processor parameters for its architectural aud 

microarchitectural state that are coutained in gxx_ config.vhd file 

Parameter 
VLMAX 
VREGS 
SREGS 
ACC_NUMBER 
ACC WIDTH 

Allowed ran!'e 
2,4, 8, 16,32,64,128 
4,8,16,32 
4,8,16,32 
2,4,8, 16,32 
(VLMAXl2)*32 

Default 
2 
16 
16 
2 
(VLMAXl2)*32 

Description 
Maximum Vector Length 
Number of Vector Registers 
Number of Scalar Registers 
Number of Vector Accumulator 
Width of Vector Accumulator 

The code is parameterised as to target a number of technologies easily. This has been 

achieved through the use of fully technology independent VHDL constructs as well as 

using generic RAM components. The allowed silicon technologies are listed in Table 6-2. 

Table 6-2: The allowed silicon technologies that are used for synthesis and place and route 

contained in gxx_config.vhd file 

Parameter 
GEN 
XST 

TSMCOl8 

TSMC013 

Description 
Technology independent RAM macros 
Xiling FPGA Technology (Spartan3) 
Taiwan Semiconductor Manufacturing Company 
(TSMC) O.18J.UU standard-cell technology 
TSMC O.13J.UU standard·ceIl technology 

6.2 Vector Decode Stage (VDEC) 

This is the first stage of the pipelined vector coprocessor datapath. In this stage the 

instruction from the Leon3 opcode register is decoded and all the datapath control signals 

for the following pipeline stages are produced. The instruction for the decoding is coming 

pipelined from the Decode stage of the Leon3 to the Memory stage where the coprocessor 

is attached along with few control signals. More specifically in this stage the following 

operations are performed: 

• The opcode is decoded and control signals are produced ready to be pipelined in 

subsequent stages. 

• The addresses for the source and destination register operands are produced and 

access of the vector and the scalar register files starts (split over two stages). 

• The write enables for all the pipeline registers of the vector pipeline are 

produced. 



6 Vector Processor Im plementation JJ J 

The electrica l interface o f the VDEC stage is depicted in Figure 6-2. The input ignals are 

coming frol11 the Leon3 processor and veClOr 10ad/slOre unit (VLSU). The output signa l 

tha! are of vdec2vregs type are go ing to the input of the VREG stage. 

VDEC 
etk d 2 

j 
clk vdec2vregs __ v ee vregs 

reset.....-- reset 
gxx_hold h Id . --0 0 

ope 10Pcode 

ope_valid l opcvalid 

ki ll iki ll 
vlsu2vdp 

--0

1 
vlsu2vdp 

lean din d' 
- --0 gp_ III 

t...:....:=---:--,--:--' 
F igure 6-2: The electrical interface of the VDEC Stage 

As men tioned in the previous chapter, the selected instructi on format r r the vector 

processor is incl uded in the Unimplemented Instruction [2] of the Sparc VB architeclUre 

and it is depicted in Figu re 6-3 . Thi s instruction is architeclUrally not implemented and 

generate an exception if encou ntered. 

In the Leon3 the collsI22 bitfie ld is complete ly ignored by the decoding logic of the 

processor. Additi onal combinationa l logic has been insen ed in Leon3 to extract the 

COIISln fi eld and sent it to the vector coprocessor decode unit as the in put vector opcode. 

Format 2 (op = 0): UNIMP 

I 00 I reserved I 000 I const22 
31 29 24 21 o 

Figure 6-3: The Uni mplemented inslruction format of lhe Sparc VS a rchilecl",'e 

In the decode stage oflhe coprocessor the opcode-valid s igna l is assened if the 22 bi ts are 

a valid vector instruction and datapath control signals, addres e for the vector/sca lar 

register opemnds and enables are produced. In the case of a 3-address format (Figure 6-4) 

the extracted addre ses fields a long wi th the produced read enable signa ls are used to 

access the synchronou registe r fi le, in parallel with lhe decoding of the latched 

instruction. In thi s way, the depth of the pipeline of the co processor is reduced by one 

stage compared to a purely cascade decode/register access organisation and this has an 



6 Vector Processor Implementation 132 

additional beneficial effect during the transfer of data from the coprocessor to and from 

the scalar processor. 

3-address format 

I opcode rd r51 r52 I 
21 14 9 4 0 

4-address format (4th is the accumulator implicitly 

I opcode vaccd vr51 vrs2 I 
21 14 9 4 0 

2-address format with immediate data 

I opcode vaccd vrsl amount I 
21 14 9 4 0 

3-address format with vector element 

I opcode vrd vaccelem I 9r51 I 
21 14 9 4 0 

Figure 6-4: Different types of instruction formats of the vector processor ISA 

A similar process is perfonned in the case of multiply-add and multiply-sub instructions 

that are a 4-address fonnat instructions (the accumulator is an implicit source and 

destination operand). In this case the accumulator address and read enable are sent during 

the decoding of the latched instruction in order to obtain the accumulator operand for the 

next stage. Another difference for these instructions is that they are always implemented 

in pairs of even and odd elements. A combinational logic (evod16_en) asserts the 

appropriate read enable bits for the even or odd operands. In the case that one of the 

source operands is immediate data, this is included in the instruction field [4:0] which is 

extracted and sent to the next stage where it is zero extended to 32-bits. A detailed 

description of the extension process will be given in the VREG stage. In the case where 

one register operand is used to select a vector element (vaccelem) for load or store 

operations then the instruction field [9:5] is extracted and used to calculate the write or 

read enables respectively for the specific vector element (\ 6-bit word). The same method 

is followed in the case of the move from or to Leon3 instructions to or from an element of 

a vector register. When a move from Leon3 instruction is perfonned, the operand is 

coming from the main scalar CPU register file and it is pipelined to the next stage 

(VREG). At that stage it is selected as a source operand and enters the appropriate lane of 

the coprocessor vector pipeline to finally commit to either the coprocessor scalar or 

vector register file. In the case of a move to Leon3 instruction, the selected 16-bit element 



6 Vector Processor Implementation /33 

of the vector register is zero extended to 32-bits and it is sent to the Leon3 register file. 

More detail description is given in the VREG stage. The custom instruction formats for 

the previously mentioned cases are depicted in Figure 6-4. All the datapath data and 

control signals are latched at the end of the VDEC stage to the set of registers of type 

vdec2vregs. The pipeline enable (reg_enl) of these registers is asserted when the 

following conditions are true: 

• the main CPU is not halted (holdn=' l' ) 

• no exception takes place in the main CPU (ikill=' 0' ) 

• there is no cache miss in VLSU (vlsu2vdp. hold=' 0') 

• the coprocessor instruction is valid (opcval id= ' 1 ' ) 

6.3 Vector Registers Stage (VREG) 

The Vector Registers Access Stage selects the source operands from the vector/scalar 

register files or from the accumulator file or from the bypassed results of the first and 

second stage of the vector datapath. In the latter case, the results are made available, from 

any of the other downstream stages, to the VREG stage in order to be used as source 

operands if this is required. This bypassing of intermediate results is established practice 

in CPU architecture [3] and is the only way to resolve data dependences without stalling 

the pipeline. As mentioned in Chapter 3, data dependences happen when an instruction 

needs to use the result of a previous instruction prior to its commit to the register file [4]. 

In addition, it is the stage where store instruction takes place and the memory address for 

the load instruction is sent to the VLSU unit in order for load data to be ready and be sent 

to the second stage of the VDP. Furthermore the vector length (vlen_r) register and the 

overflow and predication (pred) registers are updated. The detailed schematic of the 

VREG stage is illustrated in Figure 6-5. 



(i Vector Processor Implemelltation 

DECOOE lOGIC ) 
I 

l r ' l T-' 
VRF ~- -. SRF 

vrs'_douI_1 1 .1 vrs2_douU SfSl_douul .,,2 
ta vbpass' res vdp2vregs eta 

vdp2\ltegs aa la Wpass2_res ( 
,.,.... ..,.. .. 

res",_sopr,_, r resv 
resv_...opr1_, r",,_v0pr2_t 

l oon do " sptaU1alV ' ~plal_daIV 

~ 1'-' "j" 'r=r SCC,_f "'81_ 
'\ 

flnaLvoprU '--, 
r8Q..en2 } --, J' finsLv0JX2_' 

~ ! 

douU srsl_douU 
vdolvregs data sbpassl 

1 \ldp2vregs data sbpass2 

"'P'2_, 

~ 
(SpIa,-",~ 

r lmm_value 

/ 
reg_en2 

~ 

"" ... 

vregs2vdp data vrC0pr2J vregs2vdp 

Figure 6-S : Vector Register Access Stage (VREG) microarehi tecture 

6.3.1 Reverse Data Process 

134 

, eg enl r 

, 

When a load or store instruction with a negati ve stride is perfonned a special con trol 

ignal (vdec2vregs . l st_neg_r) i asserted. In the case of a negati ve stride store 

(vstwn) the data to be written to the memory that come from the bypass logic of the 

second register fi le read port (resv _ vopr2_i) need to be reversed. 

vector register 

3 

63 

vector operand 
for store in vlsu 

o 
63 

2 
47 31 

• • 
2 

47 31 

Figure 6-6 : Rc\'er e Dutn Process 

o 
15 o 

• 
J 

15 o 

This is performed with the use of the reverse data functi on logic (reverse_data) whi ch 

swaps the order of the e lements as they are placed within the final vector, from the most 

significa nt element to the least sign ificant e lement. The output of this functi on is sent to 



6 Vector Processor Implementation 135 

the input of the VLSU (sregs2vlsu.data_in) as the data that will be written to the 

vector data cache. The data-reversing process is shown in Figure 6-6. The reverse process 

for the load instruction is the same but it is performed in the VDP2 stage of the vector 

processor. For this reason is described in section 8.4.5. 

6.3.2 SpJat Data Process 

There are instructions that need to replicate a 16-bit (vsplat_h_r) or 32-bit 

(vsplatacci) scalar value to all the elements of a vector register or accumulator 

respectively. This "splat" operation is performed in the splat function (splaCdata) in 

the VREG stage. The splat logic takes as inputs a 32-bit word and the width of the vector 

operand in which the value will be copied. If the value that is to be "splated" is 16-bit, it 

is duplicated in order to produce the necessary 32-bit value that acts as the 32-bit input of 

the function. The resulting vector is sent to the multiplexer responsible for the first 

operand selection in the VREG stage. The schematic for this function is depicted in 

Figure 6-7. 

splat value 

15 o 

3 
63 47 31 15 

Figure 6-7: Splat Data Process 

6.3.3 Masking Process 

There are two masking processes that are implemented in the VREG stage: these are the 

mask_width and the mask_extract. The mask_width logic takes as an input a value 

that indicates the width of the vector to be processed and produces a mask bit-vector that 

is VLMAX* 16 bits long. The produced mask defines a set of bits that are used as a 

selector in order to extract the desired scalar elements from the vector that the mask is 

applied. The input value (width) gives the number of the mask's bits that will be' I' while 

the remaining bits will be '0'. The functionality of this masking operation is depicted in 



6 Vector Processor Implementation 136 

Figure 6-8. This type of mask is used in the bypass logic for the selection and formulation 

of the input operands to the vector ALU stage. 

unmasked vector 

I::::n::::::::::::::::::nn::::::::::::\::::()::::::::::::::::::':::::::::n:nl 
VLMAX'16 0 

AND 
mask width 

100000000 .......... 000 1111111111111111111111111111111111 .............. 11111111111 
VLMAX'16 vlen_ value "16 0 

masked vector "" VLMAX'16 v/en_value"16 0 
Figure 6-8: Mask width function 

The mask_extract logic (function) takes as an input a value that indicates which vector 

element of 32-bits should be selected and produces a mask that is VLMAX* 16 long. This 

second mask comprises sets of 'O's and 'l's that are structured in a way to extract the 

desired 32-bits from a given input vector. The input value to this function resembles a 

"read-enable" that selects the 32-bits element that will be extracted from the vector in 

which the mask is applied. The mask_extract functionality is illustrated in Figure 6-9. 

unmasked vector 

VLMAX'16 0 
AND 

mask extract 

100000000 .......... 0001111111111111 ...... 1111000000000000000000000000 ... ....... 0000 I 
VLMAX'16 (i+1)"32-1 i"32 0 

masked vector "" ~----------------------, 000000000000000000000000 .......... 0000 I 

Figure 6-9: Mask extract function 

This type of mask is used to select a scalar element from an accumulator register for load 

or store operations. 



6 Vector Processor Implementation 137 

6.3.4 Bypass process 

The bypass process is critical for the efficient operation of pipelined processors. In the 

VREG stage it selects the operands from the vector/scalar register files, the vector 

accumulators or the intermediate results produced in the vector datapath (before they are 

written to the register files) from the first and second stages of the VDP. There are 

actually two bypass processes: the vector_bypass and the scalar_bypass. In the 

vector_bypass process, the two vector-operand read addresses 

(vdec2vregs. vrsl_rdaddr_a, vdec2vregs. vrs2_rdaddr_a) for the vector 

register file are compared respectively with the write address 

(vdp2vregs. ctrl. vbpassl_vwr_addr_r) of the instruction currently executing at 

the first VDP stage (VDPl). If either of them is equal with the VDP write-back address 

and the valid signal (vdp2vregs. ctrl. vbpassl_valid) of the bypass result is 

asserted, the vector length of the bypassed result (vdp2vregs. data. vlen_cvalue_r) 

is compared with the current (architected) vector length (vlen_r) of the coprocessor that 

is located in the vlen register. In the case that the result from the VDPl stage has a vector 

length smaller than the vector length of the resolved operand, then the bits from 0 to 

vdp2vregs.data.vlen_cvalueJ*16-l are containing In the bypassed result 

(vdp2vregs .data. vbpassl_res) while the remaining bits up the vlenJ*16 are filled 

with the outputs of the corresponding read ports (vrsl_dout_i or vrs2_dout_i) of the 

vectorregister file. If the vector length of the bypassed result is larger then the operand's 

(resv_voprl_i or resv_vopr2_i) bits are filled with one of the outputs of the read 

ports (vrsl_dout_i or vrs2_dout_i) from bits 0 to vlen_r*16-1. In the case that both 

vector lengths are equal, the resolved operand comprises the bypassed result of the first 

VDP stage. The same process is followed for the bypassed result of the second VDP stage 

(VDP2) and both read ports of the vector register file in the case where there is a 

mismatch in the target register of the first VDP stage and the source register in VREGS in 

order the appropriate operands to be selected. The formulation of the resolved operands is 

always performed with the use ofthe masking process (maSk_width). The schematic for 

the vector bypass process for one of the vector source operands and the intermediate 

result of one of the two VDP stages is illustrated in Figure 6-10. 



6 \lector Processor /m"lememllljofl 138 

000 .. 0 ~ 000 .. 0 
1"l.MAA'0" ",,,_, .,.n_CViIIlw_, 

OR OR 

< > 

..L 

Figure 6~IO: Vector bypass process for onc of the vector source operands and the 

intermediate result of one of the t\l'O VDP stages 

The scalar bypass process is much simpler than the vector bypass as there is no need for 

masking of the operands. The three scalar read addre ses (srsl_rdaddr_a, 

srs2_rdaddr_a and srs3_r daddr_a) For the scalar register fi le are compared 

respecti vely with the write address of the bypassed scalar result 

(vdp2vregs . ctrl . sbpassl_swr_addr_r) of the first VDP stage. Lf they are the same 

and the valid signal (vdp2vregs. ctrl. sbpassl_valid) of the result i assened, the 

corresponding resolved operand (resv_soprl_i, resv_sopr2_i, resv_sopr3_i) is 

assigned from the scalar bypas ed result (vdp2vregs. data. sbpassl_res) else with 

the output of the correspondi ng read port of the scalar register fi le (srsl_dout_i or 

srs2_dout_i or srs3_dout_i) . The same process is foll owed for the bypassed scalar 

result of the second VDP stage and the three read ports of the scalar register fi le. Figure 

6- 11 depicts the scalar bypass process for one of the scalar operands. 

;:.5':.:5"" ______ -, sbypass1 _res 

Figure 6-11 : Scalar bypass process for the selection of onc of the scalar operands (firs t) 



6 Vector Processor Implementation /39 

6.3.5 Operands Selection 

The two source operands (vector or sca lar) are selected after the bypass process, prior to 

the end of the VREG stage and committed to the output registers of vregs2vdp type. in 

the case of a move-from-coprocessor instruction, the requested 32-bit data from the 

Leon3 are extracted from the selected first source operand prior to committing and sent 

back to the main CPU write-back stage via the coprocessor-CPU custom interface. The 

third operand, that is always scalar, is driven directly from the output of the third read 

port (srs3_douCi) of the scalar register file to the corresponding output register. The 

selection of the two operands is perfomled via two large mu ltiplexers as they depicted in 

the detailed schematic in Figure 6-5 . The first operand (f inal_voprl_i) can be the 16-

bit (vdec2vregs. sel_width_r ; '1') or 32-bit output of the scalar bypass process 

(resv_sopr1_i) or the output of the vector bypass process (resv_vopr1_i). It can 

also be one of the vector accumulator file hardwired read ports 

(vdp2vregs. data. vacc1_r or vdp2vregs. data. vacc2_r) or the Leon3 general 

purpose registers (gpdata) or the "splated" data fomlUlated from the splash function using 

data from a scalar register. Similarly, the second operand can come from the output (16-

bit or 32-bit) of the scalar bypass process (resv_sopr2_i) or the output of the vector 

bypass process (resv_vopr2_i) or one of the hardwired read ports of the accumulator 

file or the immediate data (imm_va1ue) that have been extracted from the coprocessor 

instruction at the decode stage. 

6.3.6 Register enable 

The register enable (reg_en2) for the output registers of the VREG stage is asserted 

when both hold signals that are coming from the Leon3 (hold) and the VLSU unit 

(vlsu2vdp. hold) are not asserted. In addition, the pipelined register enable 

(vdec2vregs. reg_en2_r) should be asserted and the signal vdec2vregs. sel_st_r 

must be set to zero in order to prevent any store instruction from taking place. The later 

condition is necessary because the store instruction is performed and completed at the 

VREG stage so the next stages are not used for this instruction. Therefore, when the store 

i completed no change in the state of the following datapath stages flip flops should take 

place in order to avoid unnecessary power consumption. The reg_en2 is the pipeline 



6 Vector Processor Im plementation 140 

enable of the output registers (vreg2vdp) in which all the datapath data and control 

signals of the VREG stage are latched. 

6.3.7 Vector Register File (gxx_vreg_fiIe) 

The co processor stores the results of the vec tor computations in a vector register file that 

is a two-dimensional storage array where every row holds all the scalar elements of a 

single vector. The vector register file is parametric so its dimensions are specified from 

compile-time parameters in both axes. The width is defined from the number of the vector 

elements (l6-bits each) and is equal to the maximum vector length (VLMAX) while the 

number of such entries is VREGS, equal to the architectural vector registers. The vector 

register fi le provides two read ports and one write port that translates to two vector read 

and one vector write operations per cycle. 

6.3.7.1 Parameterisation 

The vector register file is ful ly-configurable design. The number of register windows 

(VREGS) is within the range of2 to 32, with a default setting of 16. These parameters are 

specified in gxx_config.vhd and are shown in Table 6-3: 

Table 6-3: Compile-time vector register file parameters for its architectural and 

microarchitectural slate that are contained in gxx_config.vhd file 

Parameter 
VLMAX 
VREGS 
Teclmolo.y 

Default 
2,4,8, 16,32, 64, 128 
16 
GEN, TSMCO 13 

6.3.7.2 The vector register fi le implementation 

The electrical interface of the vector register file is shown in Figure 6- I 2. 



6 Vector Processor /lIlolemelllotion 141 

It has 

gxx vreg file 
elk 

.--. elk vrs1_dout 
reset I 

.--. reset vrs2 dout 
vdec2vregs.vrs1 rdaddr a I 1 d dd 

- - --. vrs r a r 
vdec2vregs.vrs1 rden a I -

- - --. vrs 1 rden 
vdec2vregs.vrs2 rdaddr a I -

- - --0 vrs2 rdaddr 
vdec2vregs.vrs2 rden a I -

- - --. vrs2 rden 
vdp2vregs.ctrLvrd waddr r i d -dd - - --. vr a r 

vdp2vregs.ctrt.vrd wen r I d-
- - --. vr wen 

vdp2vregs.data.vdp vres I d-d' 
- -- vr _ In 

vrs1_douU 

vrs2_douU 

Figure 6- 1.2: Electrical I nlerface of Veclor RegisIer File 

two read address ports (vdeC2vregs.vrsl_rdaddr_a, 

vdec2vregs. vrs2_rdaddr_a) that are dri ven unlatched from the vector decode s tage 

in paralle l wi th the decoding of the latched opcode, in order to in itiate the register fi le 

access which in mrn, will return the operands before the end of the VR EG stage. The 

write address port (vdp2vregs. ctrl. vrd_waddr_r) i coming pipelined frolll the 

end of the second stage of the VDP in order to commit the vector re ult. The register fi le 

is technology-i ndependent and allows two reads and one write to be performed on the 

ame cyc le. In the case where a read of a register is req uired at the same cyc le that it is 

written, a RfW connict occurs. When thi s condit ion i detected the read-port is disabled 

and the data are bypassed from the wri te-port write-data. This ensures that the memory 

cell does not get corrupted when doing a si mu ltaneous RJW operati on at the same 

ad dress. This behaviour ha been observed in the TSMC O. 1 3~Lm dual-port RAMs and the 

above solution en ures that thi s extreme case never cau es corrupt ion of data. Figure 6- 13 

details th organisation of the vector register fi le with RJW connict avoidance. This 

performed by the conflictyrocess logic in which each read add. e s is compared 

with the incoming write address and if are the same and any of the bits of the read or 

wriLe enable signals are asserted then a connict signal is produced. Becau e there are two 

read ports there are two connict signals (conflictl_i, conflict2_i) and when one of 

them is asserted the output data are comi ng from the write-port data via the output 

multiplexer. 



6 Vector Proce,\'sor Implementation 

'II'$ , _rdadcl' 

IIfSl_rden 
vrd_waddr 

YJd_wen 

------""'----""--

. . 
I 

I 

confllCtl • 

I l' 'Vf' f contltd..,Pl'OCOS'l 

I" 

eonftic:t2 I 

./ '\, 1'den2_1 

<."'''-''''''"''' ) 
'---. 

142 

'1' 
+I~ 

yrd_dtn 

J'~on_rf_c.1I 
-

IIfS'_douU - "'" douI 

"""" 
,den 

- wdk -w",", 

don 

I IXM'If"Ct2_1t 

,J" 
yrd dlf'l 1 wdata_, 

J2.J10n_rf_cen 

Yfs2_dout I -- <cl< <lout 

/' 

""" 
- """ w_ 

wden 

." 
Figure 6·13: Detailed mjcroarchitecture of tbe Veclor Regis!er File wilh R/W confli ct 

avoidance 

In addition, there are two read enable pon s (vdec2vregs. vrsl_rden_a, 

vdec2vregs. vrs2_rden_a) that a re co ming fro m the decode stage althe same lime as 

the read addresses. The read enable signa l is a bit vector in whi ch every bi t enables the 

read operation al byte-granularity from Ihe e lected registe r. In this specilic case every 2 

bil of the read enable s ignal c rrespond to a 16-bit e leme nt from Ihe source vector 

regisler. When the read add resses are valid and Ihe read enables are sel to ' I' , the 

corresponded dala are read and sent 10 Ihe oUlpulS of Ihe regisler li le (vrsl_dout_i, 

vrs2_dout_ i). The write enable SI robes (vdp2vregs. ctrl. vrd_wen_r) arri ve 

pipelined from the end of Ihe VD P2 slage and are based in Ihe ame pri nc iple as Ihe read 

enable strobes. When Ihe wrile address is valid and Ihe write enable is asserted Ihe inpuI 

data (vdp2vregs. data. vdp_ vres) are wrillen to Ihe selecled regisler. 



6 Vector Processor llll olemelllOlio" 143 

6.3.8 Scalar Register File (gxx_sre~fiIe) 

T he scalar operands are stored to the scalar regi ter lile that is again a two-di mensional 

storage array. It contains sixteen registers o f 32-bi t wid th and it supports th ree reads and 

one wri te operati ons per cycle. 

6.3.8. 1 Parameteri sati oll 

The scalar register file has SREGS registers that can be in the range of 2 to 32 and wi th 

defau lt setting o f 16. The compile-t ime parameters wilh their default values thal specify 

Ihe IruClUre of Ihe scalar regisler are shown in Table 6-4: 

Table 6-4: Compi le·time scalar regis ter file parameters for its archi tectu ral sta te that a rc 

contained in gxx_config.vhd file 

Pa rameter 
SREGS 
Technotogy 

Default 
t6 
GEN. TSMCOt3 

6.3.8.2 Scalar register file implementation 

The electrical interface of the scalar regisler li le is depicted in Figure 6- 14. 

elk 

resel srs2 _ douU 
.-- reset srs2_dout 

vdec2vregs.srs1 rdaddr aj d dd srs3_douU - - srs1 r a r srs3_dout - -
vdec2vregs.srs1 rden a I - d 

- - -- . srs1 r en 
vdec2vregs.srs2 rdaddr a-I -

- ---~ srs2 rdaddr 
vdec2vregs.srs2 rden a I --- --W srs2 rden 

vdp2vregs.srs3 rdaddr a 3- dd 
- - -- srs a r 

vdp2vregs.srs3 rden a 3- d 
- - -- srs r en 

vdp2vregs.ctrLsrd waddr r d -dd - - sr a r 
vdp2vregs.ctrLsrd wen r I d-

- - sr _wen 
vdp2vregs.data.vdp sres d d' =--- sr _ In 

Figure 6- 14: Electr ical Inle rfa ce of Scalar Register File 

The sca lar register fi le has Ihree read address ports (vdec2vregs.srs I_ rdaddr_a, 

vdec2vregs.srs2_rdaddr_a, vdec2vregs.srs3_rdaddr_a) and th ree read enable POrlS 

(vdec2vregs.srs I_rden, vdec2vregs.srs2_r len, vdec2vregs.srs3_rden) Ihat are coming 



6 Vector Processor Implementatioll 144 

unlatched from the vector decode stage (VDEC). This happening in order the scalar 

register fi le to be accessed during the decoding and produce the scalar operands before 

the end of the VREG stage in time for bypass ing. It was decided 10 anach an addi ti onal 

read port to the scalar register fil e as a third operand was needed to play the role of the 

accumulator for the multiply-add/sub instructions. 

"SI . 'daCldr!Iog,,(SAEGSj 
SlII _'esen(. ) 

5Id wldf.lr(tog,(SAEGS) 
s rd wOn(. J 

ar'~Udlddl(IOQl(SAEGSI 
1112_'don(. ) 

ard_wllkI/(Iog,lSAEGS) 
,'d_won(A) 

.fs3 ,dlC!dl(lOll,(SAEGS) 
al13. ld&n(. ) 

5Id_waddl(log>lSAEGSj 
.rd_wan!A) 

.--

eonllictl I 

~"den I 

,CQnl\lcull'ocoss :J 
I 

eonlllc12 • 

./' ' "CJe112. 1 

conrllcLPlocauj 

I 

eonHlc13 • 

~den:u 

~onIIIcLP,oces:J 

I 

l conHIct1 il 

. '-"".. 
"-d_tIIn i wdala_, 

I L-
J I gon_'1 coU 

f-l!-srsl_doul_1 
r- ",. d. 

"d" 
"M 

C- .,Ok 
WI CldI 

wileI'! 

d. 
ICOnHIct2_1r 

lid_din 'I wdala r 

J 2_IIon le ceH I 

f-l!-- srs2_douU ". d< . . S152 dout 

laOdI 

.d .. 
:--wl eldr 

.,," 
~" 

Iconlllct3 I1 

.,d dlf\ 'I wdaULI 

Jl_lIon " c.H I 

f-l!-sls.3 . douU 
:- ". .. 

,add, -- welk 

wldd! 

wdon 

d. 
Fig"re 6-1 5: Detailed Ill,croarch,lectur. of the Sca lar Reglst. r File with R/W connict 

avoidnncc 

The write addre s (vdp2 vregs.ctrl.srd_ waddr _r) and the write enable 

(vdp2vregs.ctrl. rd_wen_r) are coming pipelined from the end of the VDP2 stage. The 

calar register tI le is described in a technology-independent way and supports three reads 

and one write operations per cycle. R/W contlict avoidance happens with three conflict 

signals (contlict U , contlict2_i, connict3_i) that are produced from the conflict_process 

I . 2, 3 in order to prevent a re'ld and write operati on to happen simultaneously 10 the 



6 Vector Processor Implementation 145 

same register address. In this case the particular read-port is disabled and the data are 

coming instead bypassed from the write-port data. The detailed schematic is depicted in 

Figure 6-15. 

6.3.9 Vlen register 

The degree of data-level parallelism that the vector coprocessor can exploit on every 

cycle is defined by the vector length register (vIen_r). This control regi ster stores the 

value of the dynamic vector length that determines the number of the 16-bit elements in 

which the vector operations will be performed. For example, a vector short addition with 

vector length of four wi ll only add the first four pairs (4x 16-bit) of elements of the input 

vector registers and will ignore the rest. The va lue of the vector length is stored to 

vIen_r regi ster before any other instruction takes place in order to reconfigure the 

hardware. The vector length can take any value that is multiple of two; 2, 4, 16, 32, 64 up 

to the maximum vector length (VLMAX) that in this case is 128 (2048 bits). If the data

level parallelism in a particular loop of the speech algorithm, which corresponds to the 

number of times a loop body is executed, is greater than the VLMAX then the vlen_r is 

loaded with the maximum value and performs a sequence of identical operations that 

comprise the loop. At the end the vIen_r is loaded with the remaining of the modulus 

di vision of the number of repetitions of the loop with the VLMAX (loop strip mining) 

and one more iteration of identical operations is perfomled but this time with a shorter

than-VLMAX vector length. The instruction that is responsible for loading the vIen_r 

register with a value for vector length is ldvlen_r (value) . When thi s instruction is 

encountered, the value is extracted fiom the instruction opcode and the vlen_r write

enable (vdec_i . vI en_wen) is set at the decode stage. Subsequently they are latched to 

the VREG stage as vdec2vregs. vIen_nvalue_r and vdec2vregs. vIen_wen_r 

respectively and pipelined to the following stages of the vector datapath coprocessor. At 

the VREG stage the pipelined write-enable (vdp2vregs. ctrI. vlen_wen_r) is 

checked and if asserted the pipelined va lue of the vector length 

(vdp2vregs . data . vlen_nvalue_r ) from the VDP2 stage is committed to vIen_ r. In 

every cycle the vlen_r IS read and the current value 

(vregs2vdp . data. vlen_cvalue_r) is pipelined to next stages to dynamically 

reconfigure tbe vector pipeline [5]. 



6 Vector Processor Implemelllatioll 146 

6.3.10 Overflow and Pred Flags 

Whcn an arithmetic instruction produces a result that is greater than the value a register 

can store or represent then an overflow bit is asscrted and written to the ovcrflow flag. 

The overflow flag is set to indicate a problem so the software can be aware of this 

condition and act accordingly to compensate or mitigate the error. More specifically, both 

ITU-T speech coding algorithms that execute on the coprocessor deal with this problem 

by using the saturation instruction that limits the output to the allowed range for 16-bit or 

32-bit numbers. The coprocessor has a vector overflow register (ovE) and an overflow 

flag (w). The vector overflow register (ovE) is VLMAXl2 bits long, one overflow bit per 

32-bits of the vector length, and it is updated at the VREG stage when the overflow 

cnable (vdp2vregs . ctrl. ovE_wen) that is forwarded from the end of the second stage 

of VDP is set. In this case, the vcctor ovcrflow register takes the new value 

(vdp2vregs . data . over) that is coming pipclined from the VDP2 stage. The 

overflow flag (w) is I-bit and it changes when the same overflow enable as before is 

asserted. The new value of the overflow flag is the or-reduce resul t of the vector overflow 

value (vdp2vregs . data. ovE_r) . In the case of a vector comparison instruction the 

predicate bits are set according to the result of the comparison and written to the pred 

flag. The comparison is performed on pairs of vector operand elements and every 

produced predicate bit corresponds to a 16-bit comparison. The pred register is VLMAX 

bits long. The pred register is updated at the VR£G stage when the predicate write

enable (vdp2vregs . c t rl. pred_en) that is coming pipelined from the end of the 

VDP2 stage is set and the pred regi ster can take the result predicate bits 

(vdp2vregs . data . pred_r) from the comparison. 

6.4 Vector Load/Store Unit (gxx_ vlsu) 

At the VR£G stage the Vector Load Store Unit (VLSU) is accessed and the load/store 

instruction along with the store data (in the case of store) and the control information are 

sent from the vector coprocessor to the fomler. The electrical interface of the VLSU is 

illustrated in Figure 6-16. 



6 Vector Processor Im pleme1ltatioll 

c1k. __ 
clk 

reset 
• rst 

ahbi 1 
---~ahbi 

addr dd --. a r 

VLSU 

addr valid 1 -. --"I addr_valid 
datajn __ °

1 

dataJn 
vlen --. vlen 

read --J read 

read 

data 

miss 

hold 

vi en 

ahbo 

addr_out 

addr_valid_out 

read 

data 

miss 

hold 

vlen 

ahbo 

Figure 6-16: VLSU Electrica l Interface 

147 

In the case of a load instruction (sregs2vlsu. read=' 1'), the VLS U takes the read 

add res (sregs2vlsu . addr) for the memory along with the valid signal 

(sregs2vlsu. addr _ val id) and the vector length (sregs2vl su. vlen) that 

determines the width of the vector data in order to prepare that vector and return it to the 

second stage of VDP. When a store instruction (sregs2vlsu. read=' 0 ' ) is performed, 

again the address wilh the control signals a re sent from the VREG stage to the VLSU 

along with the data fo r storing (s r egs2vlsu . data_in). The VLSU has a cascade 

TAG/DATA confi guration resulting in one latent Load-Use cyc le through the bypass 

logic of the vector coprocessor. This means that the TAG array is checked one cycle 

before accessing the DATA array, on the foll owing cyc le, resulting in the load data being 

ready at the second stage of the VDP. Even though this configurati on results in increased 

latency than the more traditional paral lel TAGIDATA organi zati on, it leads to 

substantially lower power consumpti on; in a multi-way confi gurati on, all TAG and one 

(selected) DATA arrays are powered up in consecuti ve cycles whereas in the para lle l 

TAGIDATA case, all TAG and all DATA arrays are powered up concurrentl y, resulting 

in higher power consumpt ion. Whereas in the cascade TAG/ DATA confi gurat ion all 

TAG RAMs are power-u p during cycle I but only the selected way of the DATA RAM is 

powered lip on cycle 2. 



6 VeClOr Processor Implememat;ol/ 148 

Parallel TAG/DATA Configuralion Cache 

address 

L-------------------~~~_r--J 

• returned data 
Cascade TAG/DATA Configuration Cache 

address 

i 

Figure 6-17: Parallel TAGIDATA configura tion and Cascade TAG/DATA configuration 

caches 

For exa mple, a cascade 4-way set associati ve data cache has four TAG RAMs (cycle I ) 

and onc DATA RAM (cycle 2) powered li p whi le a paralle l data cache will have four 

TAG RAMs and four DATA RAM that makes e ight RAMs in Iota I powered up . Figure 

6-17 depicts parallel TAGIDATA confi guration and cascade TAGIDATA confi gurations 

caches. 



6 Vec({)r Processor Il1lvlemell1{1fioll 

addr valid addr .. • 

TAG 

. • . 
T ..-_.., 

- r- - - _:=-'- --r-alid address data_ alid way miss Ir 
-..0.1. 

I 
DATA 

"" ... 
1 • • • • addt_valkUlt.ll addr_ou1 data_valid data 

dala • ...!n "ad , 

miss 

-r- - r-

• miss 

data_In read 

• ,e" 

-"eo 

• .en 

~ 

149 

-. AHBJN 

FSM 

-

Figure 6-18: MicroarchHeclure of VLSU in cnscnde TAG/DA TA configuration 

The microarchi tecrure or the VLSU is parameterised and is depicted in Figure 6- 18. 

There are a number of compile-time parameters that spec ify rhe number of ways and the 

size of each cache and are defined in the coprocessor configurati on fi le (gxx_config.vhd). 

In addi tion, there is a Finite-State-Machine (FSM) that handles the communication with 

the AMBA bus (6). 

6.5 Vector Datapath Stage (VDP) 

The Vector Dmapath Stage forms the execut ion core of the vector coprocessor and is the 

most complicated piece or logic. The VDI' is divided in two stages: Stage one performs 

all the ,u·ithmetic, hift and miscellaneous vector operati ons that lire of single cycle 

latency and the multiplication part of the multiply-add and mult iply-sub instructi ons. 



6 VecTOr Processor Im plemelltation 150 

vr8gs2vdp nop type vregs2vdp elf! sel VI,I r vregs2vdp etrt 
' I T • - -

'\ ' 0 

r 
r 1 1 

VADD VMULT VSHIFT VMISC 

1add
_

out '.we, I vmull OUI I vres T vshifl_OUI I vres 1 vmlsc_oul_i vres 

I I 
, 

~ L ~::2'dPct'''.'_'U_' • • • 
egs d31a.sbpaul_ res \ / \ vregs2vdp ctrl seLvs_r 

• VbpaSS1J85 sbpassl res 

• ovCstl pred_stl 
rags data vbpass I_ res 

I s\agel_res_r 

''9_ 
r 

.03 

maskJlfocess 
v8dd2_ou\ wes 

staget res_, 

~UII vlsu_res I 

vaocreduce res \ / VLSU 
l vacc Impelala vaccreduce 

"-' 'f 
~vaCC_dala 

I-~ 
~oprl srffpr3_ r _w.., 

v~egs Patava =r VACC '" '/ 
FILE [Vrf_opt1 r VADD2 

stagel_ res_r 

vlsu res I ! vadd2 oul vres 

'------L.....J', 

vaccreduce_re5 1 vbpass2_res_tmp 

vdp2 vrags dala vtJpass2 1'8$ "-
• I • vbpass2 res ,'''-'" 80S data sbpasS2_res [::r SRF 

Figure 6-19: Microarm iteclure of the VDI' stage 

The second stage accepts returning loads from the VLSU and performs the 

addition/subtraction part or the l11ultiply-add/sub as well as the setting-up of the write data 

to the register fi les. At the end of each of the VDP stages and right before they are latched 

in to the corresponding output (VDP l stage) or architectural (VDP2 stage) registers, the 

results are bypassed to the VREG stage in order to be availab le to dependent instructi ons 



6 Veclor Processor ImplemelllOlioll 151 

and avoid stalls due to Read-After-Write (RAW) dependences. The detailed schematic of 

the VDP stage is showll in Figure 6-19. Stage one consists of four vector data path units: 

The vector adder (vadd), the vector multiplier (vrnult), the vector shifter (vshift) and 

the vector miscell aneous (vrnisc) unit. Each such vector unit consist of VLMAXl2 

replications of their corresponding scalar unit that produces a 32-bit resul t. At lhe input of 

the vector units there are multiplexers that select which vector unit will accept the input 

operands and the control signals that are coming from the output registers of the VREG 

stage. The vector units not participating in the current computation cycle execute a nop 

instruction . This input operand gating is applied to eliminate redundant switching activity 

in the multiple functional units of the vector datapath. This ensures that unused functional 

units are kept in a quiescent state by maintaining constant inputs. This minimizes 

switching activity and as a result, dynamic power consumption. In the case that the 

coprocessor is performing a scalar instruction, the scalar operands along with the signal 

(vregs2vdp . c trl. sel_vs_r ;' 0') that indicates that it is a scalar operation are the 

inputs to the vector units. Special logic activates scalar lane (lower 32-bits) of the 

particular unit that comprises the selected vector path instead of implementing a 

dedicated scalar datapath. This results in reduced silicon area and control logic overheads 

and also to less verification effort [6]. At the output of the vector units there is another 

multiplexer that selects the vector result (vbpassl_res) or the scalar result 

(sbpass l _res) to be passed on to VDP2 stage, depending on the operation . At the same 

time, the result is bypassed to the VREG stage as an intermediate result and also it is 

written to the output registers of the first stage (reg_s tl) . At the second VDI' stage the 

latched result from stage one (stagel_res_r) or the load data (vlsu_res) re turned 

fTOm the VLSU, are sent directly for writing back at the end of the cycle. In the case of 

the multiply-add/sub instruction the latched result from stage one (stagel_res_r) is 

used as the second input operand to the vector adder unit (vadd_snd_stage) of the 

second stage for the addition/subtraction part of the operation. When other instructions 

that employ accumulators occur, the registered result (stagel_res_r) is dri ven as the 

input data to the accumulator file with the exception of lhe vaccreduce instruction 

where the latched result of stage one is sent as an input to the adder tree (red uction unit). 

At the end of the second VDI' stage, there is a multiplexer that selects the fina l result 

from the vector adder, the adder tree, the vector accumulator file , the load data from the 

VLSU or the pipelined result from the previous stage to commit to the vector/scalar 



6 Vector Processor ImplemellTatioll 152 

register Fi les. The Final resull is bypassed as di scussed previously to the VR EG tage, in 

order that depe ndent instructions don' t stall the vector pipeline. 

6.S.1 Vector Adder Unit (gxx_vadd_dp) 

The vector adder unit (vadd) is an array of VLMAXI2 ide ntica l units, whe re every such 

functional unit rakes [WO 32-bit operands and produce a 32-bit resull . The vadd unit can 

perform short (l6-bit) or long (32-bit) addition, subtractio n, comparison or 32-bit to 16-

bi t round operation. The electrical interface of the vector adder unit is depicted in Figure 

6-20. As shown , every such fun ctional unit takes 'IS operands the correspondent ele ment 

of the input vector and produce a 32-bit vector resull along with the overflow and 

predicate bits. 

I VL~AX12 --vadd_out.vovf(i) 

r2==~==;~3 . o--vadd_out.vpred(i) 
2 .-vadd_out.vres(32"i) 

clko-- -'; 

vadd_in . SIMD( i)--~ 
vadd_in.seLsub(i) --~ 

vaddJ n.sel_sfctn(i) --. 

vadd_ln.seUound(i) --, 
vadd_in.seLcmp(i) --_I 
vadd_in.vrCovCr(i) __ 

vadd_in.vrC opr1_low_r(1 S0i) --~ 
vadd_in.vrf_opr1_high_r(15·i) --, 
vaddJn. vrCopr2_low _r(1S-i) --. 

vadd_in.vrf_opr2_high_'(15·i) --J 
'--------' 

Figure 6·20: Electrical interface of the vector adder unit 

The vadd unit co mpri. es two mirrored combinati onal logic blocks that are call ed the 

"Iow" and "high" part of the unil. The low pan ca lcul ates the least-signi\1cant 16-bits of 

the 32-bit resull and the hi gh part ca lcul ates the most-significant 16-bits. Additional logic 

exists between the low and hi gh pan that combines the m in order to perform a long (32-

bit) instruction. When a shon operation is performed (vadd_in. S I MD (i) =' 0') the two 

blocks work in parallel and produce tWO 16-bit results along with separate overfl ow and 

predicate bits. When a long operation takes place then the two blocks are linked together 

e.g. the carry out of the low pan is driven to the carry in of the hi gh pan of the fun cti onal 

un il. A detail ed schemati c of the vadd functi onal uni t's mi croarchitec[ure is ill ustrated in 



6 Vector Pro(,essor Implementation 153 

Figure 6-2 1. The remaining control s ignals that define which operati on the vector adder 

unit will execute are described in more detail in Appendi x B. 

Figure 6·2] : Microarchi tecture of a fun ctional unit of the vector adder 

6.5.2 Vector Multiplier Unit (gxx_vrnuICdp) 

The vector multiplie r unit (vmult) is an a rray of VLMAX/2 identica l datapath units, 

where each such datapath takes two 16-bit ope rands and produces a 32-bit result. The 

vmult Oln execute all kinds of multiplicati ons that the target speech codi ng work loads 

requi re. The electrical interface o r the vrnul t i illustrated in Figure 6-22. 



6 VecfOr Procl'JSOr Imvlemelflatioll 154 

I V:~AXl2....-- vmu lt_out .vOvf(i) 

,c!:~=~2(13 ~.-- vmulL oul.vres(32 ' 1) 

clk .'--~ 

vmultjn.seLmult(i) --. 

vmuIUn.sel_mult_r(i) ---.I 
vmuIUn,vrCovU (i) ---I 

Figure 6-22: Eleclrical inlerface of Ihe \'eclor mulliplier unil 

Every functional uni t takes as in puts the corresponding 16-bit e lement s. even or odd , of 

the full input vector operands and produces a 32-bit result for long multiplicat ion or a 

zero extended 16-bit result for result consistency with the other types of multiplication 

along with an overflow bit. This is because every such unit comprises a 16x 16 igned 

multiplier ,md every mult iplication operation executes in instruction pairs for the even 

and odd elements of the input vector operands. The reason behind th is choice comes from 

previous simulation studies which showed an improvement in the dynamic instruction 

count metric of the order of 2 - 4% when multiplying the even and odd elements of the 

input operand in parallel. Therefore by uti lising a single mult iplier per 32-bit sca lar 

datapat h, the nu mber of multipliers is halved and at the same time the performance 

penalty is very litt le. The complete schematic of the microarchitecture of a functi ona l unit 

of the vector multiplier is shown in Figure 6-22. 



6 Vector ProcessfJ r l l1l(}lemell lalioll / 55 

""""-' lres2...mu~ 

""'-" o· ., 
""""0001. 

U Ul_1ftI1 M' II" . ..I1i 

.oxOOOO71n\. 

" 
mull.Ju_' 

Figure 6-23: Microarchitecture of a functional unit of the vector multiplier 

6.5.3 Vector Shifter Unit (gxx_vshift_dp) 

The vector shifler unit (vshift) is an array of VLMAXI2 identical un its, where each 

such functi ona l unit takes as inputs two 32-bit operands and produces a 32-bi t resull and 

overflow bit. The vshif t can perform hon and long shift left and shi ft right operati ons 

to all or the even/odd elemel1ls of the input vector operand. The electrica l interface of the 

vector hifter un it is depicted in Figure 6-24. 



6 Vector Processor Implemelllarioll 156 

I VUy1AX/2 _ __ vshift_ou! vovf(i) 

,r:~=~==~2~3~ vshift_out.v,es(32'J) 

elk ~ 
vshifU n.SIMD(i) --J 

vshiftJ n.cmd_shift (i} --, 

vshiftJ n.vn_ovLr(l) --. 

vshifUn.vrCopr1_'ow_r(1S·i) --, 

vshifUn.vn_opr1 _high_r(1S"j) --, 

vshifUn.vn_opr2_low_r(1S"i) --.I 
vshift_in.vrt_ opr2_high _,( 15 'i) I 

Figllre 6-24: Electrical interface of the vector shifter unit 

Every functional unit compri es twO mirrored combinati onal logic blocks for the "Iow" 

and "high" pan for the input vectors. The corre ponded 16-bit e lements of the input 

vector operands drive each of them respecti vely. Additional logic links the two pans of 

the unit in order to execute the long shin (S IMD_ i= '1'). Each o f the logic blocks 

contains a specialised barre l shifler that impleme lll s the core functionality of the tTU-T 

shift operations. A barrel shifter i a common digital c ircuit that can shi ft or even rotate a 

data word by any number of bits in a single cycle [7] . For this panicul ar de ign, a 16-bit 

bi -directi onal barre l shifter is implemented that compri ses a network of multiplexers and 

can shiflup to 15 positions on either direction. Each fun ctional unit comain two such 16-

bit barrel shiflers that are connected in series in order to execute two shon hifts or one 

long shift. Figure 6-25 shows the connecti ons of the two barre l shifters ports. 

Barrel Shifte, 

Isi= O rso = lsi rso = OPEN 

'\.. 
_ high --=-./ ) low 

Iso = OPEN rsi = Iso ,si = 0 

Figure 6-25: Two Barrel Shifters connected in series for short or long shift operations 

The right shift output (rso) for the " Iow" barrel shifter and the le fl shi ft output (150) for 

the "high" barrel shi fter are left open as no rotation is spec ified in the coprocessor IS A. 

Due to this re.1son the right shift inpu t (rsi) of the " Iow" shifter and the le ft shift 



6 Vector Processor Implementation 

.. 
;; 
5 
t 

" 

I . 1 

! 
t' 

! 
0' 
I 

} 
i' -, 
~ 

,-

f igure 6-26: Microa rchitecture of a functional unit of the vector shifter 

157 



6 Vector Pmcessor Impiemellltlfioll 158 

input (lsi) of the "high" shifter arc permanel1l ly ti ed to va lue zero. The remaining pon s 

are l inkcd together in order to execute the long shins. The additional combinationa l logic 

around the barrel shifter salllrates the shin result in case of unc1erflows or overnows and 

checks if the shirt amou nt is negative in order to perform the oppos ite-directi on shirt . A 

detailed schematic of the microarchitecture of a functional unit of the vector hifter i 

shown in Figure 6-26. 

6.5.4 Vector Miscellaneous Unit (gxx_vmisc_dp) 

The vector miscellaneous unit (vmisc) cOl1lains the logic that implements the 

miscellaneous vector operati ons of the coproce sor [SA . Every functi onal uni l of the 

vmisc accepts two 32-bil input vector operands in case or vector operati ons or one 32-bit 

sca lar operand for sca lar operations and produces a 32-b il resuh (or 16-bit result zero

eX lended to 32-bits). The electrica l interface of the vmisc is depicted in Figure 6-27. 

elk 

vmisc_in.sel_misc(i) --0 

vrnisc_in.pre<Un(i) --. 

vmisc_in.srCopr1 _r(32"i) --j 
vmisc_in,vrCopr1 Jow_r(32"i) I 

vmisc_in.vrCopr2_low_r(32*i) --

Figlll"C 6·27: Electrica l intcrrncc of the vector miscellaneous unit 

6.5.5 Reverse Data Logic 

As previously mentioned for the case of store operations with a negative stride, the store 

data are reversed in the YREG stage prior to sending them to the YLSU. The same 

operation is performed for data that retum from the YLSU (vlsu2vdp. data) in the case 

of a load instructi on with negative stride (vldwn). This is achieved with the reverse data 

logic ( functi on). The function (reverse_data) output dri ves a multiplexer which elects 



6 Vector Processor /mplelll emarioll 159 

amongst the reversed (load with negati ve stride) and no reversed (standard load) for the 

returning result at the end of the second VDP stage. 

6.5.6 Masking Process Logic 

The masking process logic that is implemented in the second VDP stage selects the 

appropriate elements of a vector input and places them in the target vector accumul ator. 

The input control signal (reg_stl . ctrl . sel_evod_r) defi nes which elements, even 

or odd, should be extracted from the vector in put and be pl aced at the corresponding even 

or odd elements of the vector accumulator. T he second input operand 

(reg_stl.ctrl. vrf_opr2_r) determines whether the sixteen bi ts of the even or odd 

elements o f the vector in put should be placed at the MSB (deposit high operation) or LSB 

(depos it low operation) of the 32-bits elements of the vector accumulator. 

Mask for even e lements 

unmasked ament vector unmasked current vector -o VLMAX"6~ ~ 0 

r-----~f-------r_----~~----~ ~m~a=sk~e~d~v=e=ct~or~----_r------~~-------
000 .... 0 1111 ... 1 

VLMAX"t6 47 16 o VLMAX·t6 4 7 16 o 

=0 

o 

st1_result 

Figure 6-28: Masking process logic for low (vrCopr2J='1') or high (vrCopr2J='O') deposit 

ror the even elements of the input vectors to the accumulator 

This is implemented by shift ing le ft by the am unt speci fi ed in the second operand of the 

16-bit scalar elements (within the vector input) t.hat will be placed inside the 

corresponding 32-bit e lements of the vector accumul ator; the amount can take onl y the 



6 Vector Processor Im plementation 160 

values of zero or sixteen. The remaining bits of each element of the accumulator are fi lled 

with zeros. Figure 6-28 depicts the masking process for the even elements of a vector 

value with the second operand being zero and sixteen respectively. 

6.5.7 Bypassing network of the fi rst VDP stage 

At the end of the first stage and prior to clocking the results into the VDP2 input registers, 

the intermediate vector and scalar results from the first execution stage 

(vdp2v regs . data . vbpass l _r es and vdp2vregs . data . sbpassl_res) are 

forwarded to the VREG stage as inputs to the bypass logic process for the source vector 

and scalar operands selection. In addition, the destination write-addresses for the vector 

(vdp2vregs . ctrl . vbpassl_vwr_addr_r) and the scalar 

(vdp2vregs . ctrl . sbpassl_swr_addr_r) register fi les are sent along with the valid 

signals. The bypass-valid vector and scalar signals 

(vdp2 vregs .ctrl .vbpassl_valid, vdp2vregs . ctr l . sbpass l _valid) are 

asserted in the same way as the register enable signals. For the vector bypass result, the 

current vector length (vdp2 vregs . da ta . vbpassl_vlen_r) is also sent to the bypass 

logic to determine the extend that the intermediate result will comprise the source 

operand. The bypass logic for the second VDP stage is described in section 6.4.15. 

6.5.8 Register Enable for the input VDP2 registers 

The register enable (reg_en3) for the registers of the first VDP stage is asserted when 

both hold signals that come from the Leon3 (hold) and the VLSU unit 

(v l su2vdp . hold) are set to zero. In addition, the latched register enable of the previous 

stage (vregs2vdp . ctrl. reg_en3_r) should be asserted. The registers at the end of the 

first VDP stage is of reg_stl type. 

6.5.9 Second stage adder 

When a multiply-add or a multiply-sub is executed, the multiplication is performed at the 

first VDP stage while the addition or subtraction part of the instruction is perfomled in 

the vector adder in the second VDP stage. 



6 Vector Processor Implementation 

VADD2 

~~ elk 
'1' j 
- . SIMD 

reg st1 .ctrl.sel sub r -I I b 
- - ~se su 

'00· 1 -
-- sel sfetn 
'0' -I -
--~I sel_round 
'0 ' 
--. sel cmp 

pred_out 

reg st1 .data.vrf ovf r I -
reg st1 .data.srf OPr3~ - - ---J vrf_vv_r - - - 1 

1------jC 1 vrf_oprUow_r 
vacc opr1 -I vrf_opr1_high_r 

- 0 stage1 res r(15:0) rf 2 
- - --. v _opr _Iow_r 

stage1_reS_r(3~11 vrf_opr2_high_r 
' 00' 
--. pred_in 

161 

vadd2_out.vres 

vadd2_out.vovf 

"00· 

Figure 6-29: Electrica l interface of the second VDP stage vector adder 

Thi s vector adder is identical to the vector adder unit of the previous stage apan from the 

fact that the control signal s are pre-set to perform long addition or subtraction , Thi s 

pipeline scheme was chosen to all ow single cycle operations in VDPI stage and at the 

same time compound (pipelined) operations such as multipl y-add and multipl y-sub to be 

full y pipelined by us ing the multiplier in the first stage and the second instance of the 

vector adder in the second VDP stage since the vector adder unit is reasonabl y cheap, The 

first input operand comes from a vector accumulator (vacc_oprl) or a scalar register 

(reg_stl , data. srf_opr3_r), depending if the instmcti on is a vector or scalar one. 

The second input operand is t.he registered multipli cati on result from the previous stage 

(stage l _res_r) . T he result from the vector adder (vadd2_out, vres) is written in the 

target vector accumulator and is also bypassed to the end of the second stage for the 

dependent instmctions. 

6.5.10 Vector Accumulator File (gxx_vaccs) 

When the coprocessor is exec uting long ope rations (32-bits elements) or instnlctions that 

access the accumulator, one or two vector operands are read from the vector accumu lator 

fi le , The vector accu mulator fil e is a Iwo-d imensional storage array parameteri sed as to 

Ihe number of accumu lators and their width . The number of the elements per accumu lator 

is always equal to hal f the maximum vector length (V LMAX), 32-bit e lements and the re 

are ACC_ NUMBER vector accumu lators. In thi s parti cular in stance of the architecture 



6 Vector Processor [m p[emelllation 162 

the number of vector accumulators is set to 2 but can increase till 32, as the avai lable 

opcode bits a llow, for the multipl y-add and multipl y-sub operations. 

ctk 
reset .--reg_st1 etrl vacc1_rdaddr_r I 

--. acc1_rd_addr 
reg st1 ctrl. vacc1 rden r I 

- - - acc1 rden 
reg st1 .ctrl.vacc2 rdaddr r I -

- - ---.acc2 rd addr 
reg st1 .ctrl.vacc2 rden r I --

- - - --.:acc2 rden 
reg st1 .ctrl.vacc waddr r I -

- - ----Iacc_wr_addr 
vacc wen - --jacc wen 
vacc data -

- --.:acc_din 

aCC1_doutr-- vacc_opr1 

acc2_dout -- vacc_opr2 

Figure 6-30: Elcclricallnterface of Vector Accumulator File 

The onl y restriction is that the rema ining long operati ons can use for source opera nds 

on ly the accumulator zero and accu mulator one as these are hardwi red to VREG stage for 

the source operands selection. The vector accumu lat.or fil e imple me ntati on is flip fl ops

based and has two asynchronous read ports a nd one sync hronous wri te port . In addition, 

the re are an extra two hardwired read port s wi th the accumu lators that are used in the 

VREG stage to retrieve the source operands when an accumulator source is specifi ed. The 

accumulator fil e is located physicall y in the second stage of the VDP and its e lectrical 

interface is depicted in Figure 6-30. 

6 .5. 10 . I Parameterisatio n 

The vector accumulator fi le is a full y-configurable design. T he number of accumulators 

(ACC_NUMBER) is within the range of 2 to 32, with a defa ult setting of 2 . The 

accumulator width (ACC_ WIDTH) is always eq ual to half the maximu m vector le ngth 

(VLMAX), 32-bit eleme nts. The compile-time parameters with their default va lues that 

s pecify the structure of the vector accumulator are specified in gxx_confi g. vhd and are 

li sted to the Tab le 6-4. 



6 Vector Processor Imp/emelltatio" 163 

Table 6-4: Compile-time vector acclIlllulator file parameters for its architectural and 

microa rchileclural state that arc co ntained in gxx_collfig.vhd file 

Parameter 
VLMAX 
ACC_NUMBER 
ACe WIDTH 

Dcfaull 
2, 4,8. 16,32,64, 128 
2 
(VLM AXJ2)*32 

6.5.10.2 The veclor accumulator implementation 

In the vector accumu lator fi le both read addresses (reg_stl. ctrl. vaccl_rdaddr_r, 

and read-enable strobes 

(reg_st l. ctrl. vaccl_rden_r, reg_st l. ctrl . vacc2_rden_r) are coming 

pipelined from the vector decode stage as well as the write add ress 

(reg_stl. c trl . vacc_waddr_r) . The write enab le (vacc_wen) is set when the 

register enable (reg_en) of thi s stage is set in order to implement the sync hronous wri te 

when the result is ready at the end of the second VDP stage. T he accumulator write data 

(vacc_data) are coming from the seco nd vector adel unit when multiply-add/sub 

operation is perfonned or from the VLSU unit in the case of load or from the adder tree. 

vacc_dala 

Figure 6-31: Write data and write-enable selection logic for the "eelor accumulalor fil c 

Otherwi se, the wri te daLa o ri gi nate from the masked vector output (stl_result) of the 

VDP I . The masked value is formu lated with the use of a masking logic to implement the 

pair of in stmct'ions, even and odd , for deposit high (amount 16) and deposit low (a mount 

0) operations and it is descri bed in more detail in secti on 6.5.6. In the case of ot her long 



6 Vectnr Prnce,fsor I lIIp/emellflltioll 164 

instructi ons the veCIQr OtJlput is unchanged. Figure 6-3 1 ill ustrates the selectio n logic for 

the write data and write-enabl e for the vector accumulator fil e. 

6.5.11 Vector Adde.· Tree (gxx_adde.·_tree) 

The adder trec is utili sed in the vaccreduce instructi on in which all the scalar clemcms 

in an accumu lator are add-reduced IQ a fi na l 32-bit result The adder tree is a 

paramcteri sed two-dimensional matri x of adders 10g,(VLMAX ) rows deep and 

VLMAX/2 adders at the row zero that are decreased by half in every row. Figure 6-32 

hows an adder tree configuration for vector length of 256-bi t elements (VLMAX 16). At 

the begi nning (row zero) there are four (VLMAX/4) adders that perform 32-bit add iti on . 

T he 33-bit results are added in pairs from two adders that compri se the second row 

(row I). The two 34-bit result are added with each other to form the final 35-bit result 

whose least-signi ficant 32-bits are passed to the output (adder_tree_out) of the adder 

tree, 

rowO 

row1 

row2 

adder_lree_out 

Figure 6·32: Adder tree configuration ror VLMAX 16 

The inplll operand (adder_tree_in. data. vrf_oprl _r) is masked to the current 

vector length (adder_tree_in.data.vlen_cvalue_r) in order only the neces ary 

vector elemems to be processed as the remaining vector element s till VLMAX are set to 

zero. This process is performed for reducing power consumpti on as the non used fl ops are 

not swi tching. 



6 Vector Processor Implemematioll / 65 

6.5.12 VLSU unit interface with VDP2 

When a load instruction is perfornled (reg_s tl. c trl. s el_vu_r=vl oad) the 

requested data from the memory is returned, ifvalid (vlsu2vdp .data_va lid=' l ' ), by 

the VLSU in the second VDP stage as shown in Figure 6-14. As previously mentioned 

the VLSU has a cascade TAG/DATA configuration which translates to a minimum of 2-

cycle load/use latency if no cache miss takes place. The returned data (vlsu_res) has 

vector length ofVLMAX* 16 bits for vector load or 32 bits zero extended to VLMAX*16 

bits for the scalar load. 

6.5.13 Overflow and Predicate Flags 

At the end of the first VDP stage a multiplexer selects the result overflow (ovf_stl) 

from the vector unit that executed the co processor operation. In the case of a 

miscellaneous or shift operation, the overfl ow takes the pipelined va lue of the overflow 

register (vregs2vdp . da ta . vrf_ov f_r) as no new overflow value is produced by 

either operation. In the second VDP stage another multiplexer selects the overflow 

(ovCst2) from the latched overflow of the previous stage 

(reg_stl. data. vrf_ovCr) and the produced overflow (vadd2_out. vovf) of the 

second vector adder in the case of multiply-add/sub operation. The write enable signal 

(vdp2vregs . ctrl . ovf _wen) for the overflow fl ag/regi ster is asserted when the 

instruction is valid and no exception is detected (reg_en=' 1 , ) and it is pipelined along 

with the overflow val ue to the VREG stage to update the overflow flag/regi ster. A 

predicate value is produced only in the first VDP stage from the vector adder unit (vadd) 

in the case of a comparison instruction. A mu lti plexer selects, at the end of the first stage, 

the predicate value (pred_stl) from the pipelined value of the predication register 

(vregs2vdp.data.pred_r) or the predicate result of the vadd. At the second stage the 

latched predicate value (reg_stl.data. pred_r) along with the write enable 

(vdp2vregs. ctrl. pred_wen) are sent to the VREG stage in order to update the 

predicate register. The write enable of the predicate register is controlled by the same 

conditions that apply to the overflow flag/regi ster write enable signal. 



6 Vector Processor Imolemet1fa liOIl 166 

6.5.14 Bypassing network of the second stage 

Prior to writing back to the register files, the results (vdp2vregs . data. vbpass2_res 

and vdp2vregs . data. sbpass2_res) are forwarded again to the VREG stage as inputs 

to the bypass process for source operands selection. The valid signals 

(vdp2vregs. ctrl . vbpass2_valid and vdp2vregs. ctrl . sbpass2_valid) that 

are sent along with the bypassed results and the target register write addresses are 

asserted when the instruction is valid and no exception is detected from the previous 

stages (reg_en=' 1' ). Again the current vector length 

(vdp2vregs. data. vbpass2_vlen_r) is sent to detennine which part of the source 

operand will contain the forwarded vector result. 

6.5.15 Write Back 

This is the final stage prior to committing a result to the vector or scalar register files or 

the vector accumulators. This stage is actually incorporated in the end of the second VDP. 

It includes combinational logic that selects the results of the operations that took place in 

the second stage of the vector data path along with the results from the previous stage. The 

result thus can be derived from the VLSU unit Goad operation) or from the accumulator 

file (L_mac/L_msu operation) or the adder tTee unit (vaccareduce operation) or the 

registered result of the first stage of the vector datapath. The pipelined addresses and 

write enables are sent to VREG stage to select the destination registers for the results. 

6.6 Output Register Bunch 

At the end of each stage of the vector coprocessor pipeline, there are the output registers 

which contain the control and data signals that enter into the following stage. The signals 

for all the pipeline stages are li sted analytical ly in Appendix B. 

6.7 Leon3 

As discussed in the previous chapter, the vector coprocessor is tightly-coupled to the 

Leon3 32-bit CPU which was chosen as the basecase CPU. A number of modifications 

took place in the Leon3 pipeline in order to attach the vector coprocessor and its control 



6 Vector Processor Implemematioll 167 

and data channels. These changes will be described in the order they appear in every 

stage of the pipeline of the Leon3 in the following paragraphs. 

6.7.1 Decode Stage 

In the Decode stage the latched instruction ITom the Fetch stage (de_inst) is decoded in 

parallel from both the CPU and an additional combinational logic that inspects if the 

current instruction is for the vector processor or not. As mentioned above the instruction 

opcode that is targeted for the vector processor is the one embedded in the lower 22 bits 

of the UNIMP instruction (Figure 6-3). The additiona l combinational logic checks the bits 

31:30 and 24:21 of the latched instruction and if equal to zero an opcode va lid signal 

(v. a. opc_valid) is asserted and the bits 21:0 are pipelined as the coprocessor opcode 

(v . a. opc). In the case of a move data instruction from Leon3 to coprocessor (mvsr2gpr 

or rnvvr2gpr) a data enable signal (v. a. vcop_data_en) is also asserted. Additionally 

in this stage, the addresses of the source and the destination operands are extracted from 

the latched instruction in parallel with decoding. This allows the concurrent access of the 

regi ster file in order to prepare the operands for the next stage. When the address of the 

first source operand is calculated additional logic checks ITom which field to extract it 

depending on whether it is a move instruction from the main CPU to co processor or not. 

Similar combinational logic selects the destination address and sets the write enable 

signals according to whether a move instruction 5'om the coprocessor to the CPU has 

been decoded or not. 

6.7.2 Register Access stage 

In this stage the operands are read from the register file or from intennediate data bypass 

networks. When a coprocessor instruction is perfOlmed the selected default operation in 

Leon3 will be addition. This in combination with the zero operands passed to the next 

stage, will cause Leon3 to perform a NOP operation when the executed instruction is 

targeting the coprocessor. However, this is sti ll a valid instruction packet and can be 

interrupted like any other Sparc V8 instruction. In the case of a move from the CPU to the 

coprocessor instruction the first source operand (v . e . opl) is pipelined as data input 

(v . e .leon_data) to the latter. The opcode (v . e . opc), the opcode valid 

(v. e. opc_valid) and the data enable (v . e. vcop_data_en) signals for the 



6 Vector Processor Implementation /68 

coprocessor are pipelined to the next stage if there is no exception and the opcode valid of 

the previous stage (r. a. ope_va lid) is asserted. In addition, at the exception_detect 

process, the VCOP logic was added to deactivate the illegal_inst signa l when the 

Leon3 decoder detects the UNlMP format that is the case of a coprocessor instruction. 

This ensures that all UNlMP opcodes are "hijacked" and passed to the coprocessor for 

execution. 

6.7.3 Execute Stage 

In the Execute stage all the arithmetic, logical, shift and miscel laneous operations are 

performed along with the load/store address calculation. When a coprocessor instruction 

is executed the source operands are set to zero. Therefore, the Leon3 will perform an 

addition with zero operands and this will emulate a nop instruction. Similarly to the 

prevIOus stage, the coprocessor signals (v. In. opc, V . In . opc_val id, 

v . m. vcop_data_en) are pipelined to the next stage in the case of no exception and the 

opcode valid of the previous stage (r. e. opc_valid) is asserted. 

6.7.4 Memory Stage 

In the Memory stage the data cache is accessed and the store operation is perfomled. It is 

this stage where the vector coprocessor is attached to the Leon3 pipeline in order to avo id 

the majority of the exceptions and intemlptions of the Leon3 and to have enough time to 

transfer data to/from the main processor (write stage) if requested. Therefore, when a 

coprocessor instruction is performed and there is no exception and the opcode val id of the 

prevIOus stage (r . In. opc_valid) IS asserted the vector/sca lar instruction 

(iu2vcop_opc) along with the valid signal (iu2vcop_opc_valid) is sent to the decode 

sta ge of the vector coprocessor. In addition, the other control signals (v. x . opc_ valid 

and v. x. vcop_da ta_en) are pipelined to the next stage. 

6.7.5 Exception Stage 

~1 this stage, all the traps and interrupts are resolved and the data are aligned for data 

cache read. Even though the full functionali ty of Leon3 supports single issue, seven stage 



6 Vector Processor !lJIplelllelllatioll 169 

pipeline, in thi s applicati on the wri te back (7'" stage) is no t imp lemented and the outputs 

from the exception stage are go ing straight to the register Fi le . 

. , ~ 

-- v "'r 1110 

'''''' 

"""""" . 

• .• ",,1 

',-

--
,"-

,. ___ 0' 

_," 
"~ 

IQIIJ o'O' 

"~ 
,.~ ... IiII'T 

)r ,,,,~ ..... -

Figure 6·33: Leo"3 integer unit and vector coproccssor datapath diagram 

The write data, prior to commit to the register fil e (rfi . wdata), is the output of a fin al 

multiplexer wh ich se lects the result from the main CP U (xc_result) or the coprocessor 

data (leon_din) from the VREG stage in the case o f a move instructi on from the veop 



(j Vector Prncessor /IIIJJ!emelllatioJ/ 170 

to the Leon3. The laller is performed only if there is no exception and the opcode va lid of 

th e previous stage (r.x.opc_valid) is assened . The detailed schemati c of the Leon3 

wi th the <luac hed vector coproces or i. illustrated in Figure 6-33. 

The vector processor was added in the proc3 hierarchy and connected with the in terface 

of the integer unit. In thi s hi erarchy, the Leon3 processor core with the integer unit and 

the co mp lete cache sub-system with controllers and ra ms arc contai ned. It also comprises 

the multiply and divide uni ts hardware. Figure 6-34 depicts the proc3 hie rarchy thm 

inc ludes the vector processor. 

P" 0C3 

CACHE .. .... 
dc.o 0 dc.o 

Ihbo o· 1Ibo 
Cf1I rnl of;ntrll 

6.8 Summary 

Figure 6-34: Leon3 processor core block diagram 

In thi s c hapter, the design and imple mentati on of the vector datapath was described . T he 

pipeline organizati on and its constituent components were presented along with a brief 

lescripti on of the VLSU. In addition, the modifications 10 the Leon3 pipeline to enable its 

tight-coupl ing to the vector processor were detailed . 



6 Vector Processor Im plementation 

6.9 References 

[1] S. R. Parr, "High Perfonnance Load/Store Unit for a highly configurable, 
embedded vector processor," in Electronic and Electrical EI/.gineering: 
Loughborough, 2007. 

[2] "The Sparc Architecture Manual Version 8 ", www.sparc.com. 

[3] J. L. Hennessy and D. A. Patterson, "Computer Architecture: A Quantitative 
Approach," 3 ed: Morgan Kaufmann , 2003. 

/71 

[4] S. Furber, "ARM: System·on·Chip Architecture," Second ed: Addison-Wesley, 
2000, pp. 80-81. 

[5] C. Kozyrakis, "Scalable Vector Media-processors for Embedded Systems," in 
Computer Science University of Cali fornia: Berkeley, 2002. 

[6] S. R. Parr, K. Koutsomyti, and V. A. Chouliaras, "A High Bandwidth 
Configurable Load/Store Unit for an Embedded VectorProcessor," in 
Postgraduate Workshop on Embedded Systems Binningham, UK, 2006. 

[7] P. A. Beerel, S. Kim, P .-c. Yeh, and K. Kim, "Statistically optimized 
asynchronous barrel shifters for variable length codecs," in In ternational 
symposium on Low power electronics and design , San Diego, California, 1999, 
pp. 261 - 263. 



CHAPTER 7 
VECTOR PROCESSOR VLSI IMPLEMENTATION 

7.1 Design Verification 

The vector datapath was verified using test vectors that were produced by recording the 

inputs operands, the state of the global overflow flag and output results from each of the 

C macros that implement the basic operations. The recording process was performed by 

inserting pre-processor directives to every basic operation in their definition fi le as it is 

shown in the code snippet of Figure 7-1. The figure depicts the C macro of the basic 

operation L_mult and as it can be seen the pre-processor directive (#ifdef 

GEN_TVEC_L_MULT) uniquely identifies the name of the operation under test and 

selects the inputs and the outputs for recording which are then piped to a file. The whole 

process was controlled by a Perl script. 

Word32 L_mult(WordI6 varl ,Wordl6 var2) 
{ 
Word32 L_ var_out; 

#ifdefGENJVEC_ L_MULT 
int Overflow _in=Overflow; 

#endif 
L _ var _out = (Word32)var 1 • (Word32)var2; 
if(L_var_out != (Word32)Ox40000000L) { 

L_var_out *= 2L; 
} 

} 

else { 
Overflow = I ; 
L_ var_out = MAX_32; 

#ifdef GEN _ TVEC _ L _ MUL T 
fprintf(tv,"%x,%x,%x,%x,%x\n" ,varl ,var2, Overflow_in , L_var_out , Overflow); 

#endif 
retum(L_ var_out); 

} 

Figure 7-J : Exa mple of recording the inputs a nd the outputs of the L_ mult operation C 

macro 



7. Vector Processor VLSllmpiemelllatioll 173 

The two scripts for producing test vectors for the speech coding algorithms run the 

workloads by using the architecture-level simulator for all the ITU-supp lied bitstreams. 

The produced test vectors are subsequently applied to the vector datapath via a FLI-based 

testbench. The testbench is a self-contained VHDL model in a testing system and is 

designed to perform an automatic sequence of operations to validate the functionality of a 

design-under-test. The latter is instantiated and driven with a long sequence of the test 

vectors, created during the normal execution of the ITU-T workloads. These vectors are 

imported into the testbench and read by a Foreign Language Interface (FLI)-based 

stimulus process. The FLI provides a way for software components written in a high-level 

language, sllch as C, to interact with components written in VHDL or Veri log. In this 

particular case, the FLI allows for the C code, which reads in the test vectors from the 

stimulus file, to be used within the VHDL simulation environment and for each variable 

in the test vector to drive the correct signals of the VHDL testbench. The designs were 

simulated and verified with Mentor Graphic's ModelSim [2]. This software package 

allows for the event driven simulation of a VHDL or Veri log design and performs direct 

comparison between the outputs from the design-under-test and the expected (golden) 

results, stored also in the stimulus file . From the comparison an error report is produced 

that is used to validate the functionality of the design-under-test. 

d tb--9xx_mult_ p 

elock...,proce55 -~ JVL 

tesler mull gxx mull do check...,process -.- ..... _ ..... _~ ........ J 

.... - ........ ' error repor1 

--",,-, ~ - --., /' -.... 
"'N ",,-.,.~. t'--. ./ lest vectors ""_GJIt1-"""-" ~: ""_"""-"""J 

/' -..., 
~-"""-' ... .J'PC2_~ 

t'--. ./ '. r "- ./ ~-~. I ""' __ J 

1 "'" --' __ J 

Figure 7-2: Test bench for the vector mul! unit of the vector data path 

The functionality is based on the specifications imposed on the design and can be 

confirmed by producing the expected results. The vector datapath testbench consists of 

four testbenches, one for each vector unit. Each such testbench was designed for the 



7. Vector Processor VLSllmplemefltatioll 174 

particular datapath blocks and their functionality was validated on a per-workload basis. 

Figure 7-2 shows the configuration of the testbench for the vrnult unit. It comprises the 

clock process, the stimulus process (tester _ffiult) that reads the test vector from the 

stimu lus file via the FLI (tdp_ini t. c), the vrnult unit (design-under-test: 

gxx_ffiult_dp) and the check process that performs the comparison of the outputs of the 

vrnul t unit and the expected golden results fTom the FLI. The testbenches for the other 

vector units of the data path have similar configurations. This kind of verification is call ed 

block-level verification. After the block-level verification, system level verification was 

performed. Figure 7-3 depicts the configuration of the testbench for the overall design of 

the vector coprocessor. 

tb gxx YCOP - -
clock...,Pfocess 

... 
JUl... 

-l~ ·..JL gxx YCoP 

stlmulusJ>rocess - --"'fIIIM-.. VH11 
_J~_ ............ -,. OUI 

....,r----. .. ..... .wJr--" .... WId 

IOI!..-J~"""" 1III_'r----. .. 
-"" r----. ....... ...... --, r----. ...... -

""",-_J rc- '""--
..... --'~- .,...-

Figure 7-3: Vector coprocessor testbench configuration 

The full coprocessor testbench consists of the clock process that generates the periodic 

clock signal, a hardwired stimulus process and the VHDL simulator output. The 

hardwired stimulus process drives the inputs of the vector coprocessor interface and the 

produced response is observed on the VHDL simulation environment. 

7.2 Synthesis and Place & Route Design Flow 

The design flow of the vector coprocessor is completed via a fully-automated 

synthesis/place-and-route campaign . This process is driven by using a grand (master) 

script whose pseudocode is depicted in Figure 7-4. This script runs Design Compiler for 

logical synthesis (statement S9), Cadence SoC Encounter for place and route (S 10) and 

aga in DC (SI I) for statistical power analysis. These are performed for different vector 



7. Vector Processor VLSl lmplemelltatiol1 175 

lengths (VLMAX) and different periods in order to have a complete view of the vector 

coprocessor. 

Main driver script 
{ 

S3 for each VLMAX 
{ 

SS for each period 
{ 

Change period; 
58 Modify processor conf iguration; 
S9 DC run1 : Logical Synthesis; 
510 Encounter run: Place and Route; 
Sll DC run2 : Power Analysis; 

} 

} end; 

Figure 7-4: Script in a pscudocode for the design now of the veclor co processor 

These steps of the master script and the produced results are described in more detail in 

the following sections. 

7.2.1 Design Compiler Stage (Logical Synthesis) 

After the design verification the next step is the synthesis phase. Synthesis is the 

automatic transformation of a Register Transfer Level (RTL) design description to a gate 

level netlist implementation. The synthesis process takes as inputs the RTL HDL 

description, timing constraints and attributes for the design and a technology library and 

produces a fully-mapped gate level netlist. Synthesis is an iterative process that starts by 

defining the constraints for each RTL block of the design and optimising the gate-level 

netlist for area, timing and power [I]. The synthesis tool that was used for the coprocessor 

design is the industry standard Synopsys Design Compi ler (DC) [3]. The target standard

cell technology chosen for the design was Taiwan Semiconductor Manufacturing 

Company 's (TSMC) O.13lJm standard-cell library (IPoly, 8 Copper) [4]. Using this 

technology, each design was synthesised varying both VLMAX and target clock 

frequency (period). The design constraints that contain the timing and the area 

information are defined in the design compiler's TCL (Tool Control Language) driven 

script. This script is used to guide the synthesis and optimization process of the design 

with the ultimate aim of meeting the user-specified constraints. The output of the DC run 



7. Vector Processor VLSllmplemelllatioll 176 

are design timing constrains in Synopsys design constraints (*'sdc) fom1at in addition to 

the new netlist representing the mapped and optimised design . 

7.2.2 SoC Encounter script Stage (Place and Route) 

After Logical Synthesi s with Design Compiler, it is the turn of the Place-and-Route 

encounter script to run . This script dri ves the place and route process which produces the 

necessary files for statistica l power analysis . The script starts by running Cadence First 

Encounter (FE) [5] in batch mode and by reading in the physical view of the RAMs and 

the library along with their timing view. The optimised verilog netlist (*'v) from the 

previous stage and the Synopsys Design Constraints (*'sdc) file that specifies the timing 

constraints are then imported. The place and route tool performs floor planning, power 

grid specification (power/ground ring and stripes), placement of RAM macros and 

standard cells, and clock tree synthesis. These are followed by global and detail routing 

(multithreaded mode), extraction of RC data and post clock tree synthesis timing 

optimization to fix the setup time. This is achieved by the tool inserting to the setup

violating paths buffers or inverters and doing gate resizing (including flip-flops) and 

instance cloning. After that step, filler cells (dummy cells) are added to fill the area 

between the placed and routed standard cells and connect their VDD and VSS rai ls to the 

power ring. Wl,en the final layout is ready it needs to be checked against the veri log 

netlist (Layout vs. Schematic L VS). In addition, Design Rule Check (ORC) takes place 

that checks the enforcement of the technology library design rules in the final layout. The 

outputs from this stage include area, and maximum frequency reports, of the design along 

with path delays, timing constraint values, interconnect delays in standard delay format 

(*'sdi) fi le, standard parasitic extraction format (*'spei) file and a new gate-level netli st 

representing the very final placed-and-routed design . These outputs are then read back 

into DC for the final stage of statistical power analysis. 

7.2.3 Statistical Power Analysis Stage (Design Compiler) 

Power analysis in stati stical mode is run immediately after the end of place and route. The 

post placed-and-routed verilog netlist is loaded along with the timing constraints ('*sdc) 

and the standard parasitic extraction format (* .spei). When the stati stical power analysis 

is performed several fil es are created which include average power di ssipation, area, 



7. Vector Processor VLSllmp/emellftllioll 177 

worst LR drop etc. The fin al such results for the vector datapat h, coprocessor and the 

overall syste m are presented in the fo llowin g secti ons. 

7.3 Implementation Campaign for Vector Datapath 

For the vector datapath three different metrics we re obtained, namely power, area and 

max imum operati ng frequency f"m. Figure 7-5 depi cts the stat istical power consumption 

observed for varying VLMAX and clock period of the vector datapath des ign. Here each 

requested period is pl a ned against its corres pondin g power. Observing thi s set of result s it 

is obvious that the general shape of the graph is of a simil ar nature. It can be seen that as 

VLM AX increases the amount of power inc reases proporti onall y. T hi s is due to the fact 

that the higher the VLMAX the hi gher becomes the phys ica l number of gates placed on 

the silicon. This rise in the number of the gates inevitabl y leads to an increase in the 

power consumption. Ln addit ion, this pl ot reveals how the consumed power has a di rect 

relati onship with the speed that the design can operate. As the des ign is pushed into 

operat ing at higher frequencies the power di ssipated at these frequencies increases as 

well. This is an ex pected result as the design's clock frequency affects the number of 

switching gates thu s leading to a ri se in dynamic power. 

300 

250 

200 

l< ,. 
i 150 

• 0 
"-

lOO 

50 

0 
0 50 100 

Statistical Power Results 

150 200 250 

Requested Frequency (MHz) 

-

300 350 

• vlmax4 

- . - vlmaxS 

• vlmax16 

vlmax32 

Figure 7-5: St.atistical power resulls of vector datapath for different vector lengths 

Another interesting observation is the signi fica nt di ffe rence in power consumption that 

observed fo r a ll VLM AX and max imum frequencies . At a vector length of 4 and a 



7. Vector Processor VLSllmplellleflllllioll 178 

frequency range of 100 to 333MHz the vector datapath power consumption ranges from 

9.94 to 82. 17mW whereas for vector length 32 at the same frequency range the power 

consumption ranges between 33.69 to 272.96mW. T his can be seen as a fairly constant 

three fold increase in power consumption. In addition to study ing the power consumption 

or each design methodology the physica l area of each design was recorded. Figure 7-6 

shows how this area changes for different va lues or VLMAX and at different frequencies 

(periods) for the vector datapath design. 

3SOOOOO 

300000O 

2500000 

g- 2000000 

= • ~ 1500000 

"" 
1000000 

500000 

0 
0 50 

Post-Synthesis Area (no wireload) 

_0-
- " .--- -

0 
_ - 0 

~ . " + 

lOO lOO 200 250 

Requested Frequency (MHz) 

300 350 

• vlmax4 

• vlmaxS 
• vlmax16 
-- vlmax32 

Figure 7-6: Statistical area results of vector datapath for d ifferent vector lengths 

A s it can be observed from the graph the required area for a given VLM AX shows a 

marginal change for the srudied frequency range. The vast maj ority of the sili con area 

within the chip is used by the logic gates that perform the functionality of the design. A s 

the frequency requi rement increases vari ous synthes is optimi zation methods are 

automatically appl ied to allow for the des ign to operate at thi s higher frequency. These 

methods often lead to an increase in silicon area as they employ faster and larger buffers 

for timing optimization of the crit ical paths and consequently affect the whole system 

layout. A ll these methods for pushing the design to achieve ever increasing speeds have 

an adverse affect on both power and area. Another observation that can be made from the 

above graph is that the area of the device is directly related to the vector length (VLMAX). 

This is due to the effect of the vector length on the quanti ty of the des ign logic as each 

increase in VLMAX in volves additiona l vector elemenl instanliations. T he increase in area 



7. Vector Processor VLS llmplemell tatioll 179 

required for higher vector length completely overshadows Ihe increase due 10 Ihe 

operation at higher frequencie . Thi s effect of the operating frequency on the area of a 

device is less apparenl as the effect of Ihe dramatic increase in logic required for each 

change in VLM AX. Due to Ihese reasons the graph shows a near parallel set of lines for 

the veClor datapal h. 

Post-Synthesis Frequency Results 

300 .-----------------------------------------------, 

250 

• 

----.--
50 -

oL-----------__________________________________ ~ 

50 ''''' '" 12. ' 43 200 250 333 

Requested Frequency (MHz) 

• ~max4 

• 'llmax8 

vlma;.:1 6 

- - vlmsIC32 

Figure 7-7: Frequency results of vector datapath for different vector lengths 

Figure 7-7 illustrates the maximum achievable frequency against the requested frequency 

for different vector lengths. It is observed Ihm Ihe relati onship between the achieved 

frequency and the requested is near- linear for frequencies up to 333 MHz and veclor 

lengths frolll 4 to 16. For VL M AX 32 and frequencies below 200 MHZ the same near

linear relationship is observed. As the requested frequency is increased above 200 MHz, 

the achieved freqllency becomes more unpredictable due to Ihe enormOllS size of the 

netl ist optirnised by DC in a top-down mode. 

7.4 Implementation Campaign for Vector Coprocessor 

The stat istical power analysis was performed for the vector coprocessor as a whole. Thi s 

includes the vector datapath (previous seclion) and the VLS U (other proj ecl !) unit. Figure 

! This is a parallel running projec!, addressing the design of the Veclor Load/Store Unit of the 

processor. 



7. Vector Processor VLl)/llIIp/emelllafioll 180 

7-8 illustrates the power consumpti on for different VLMAX and peri ods (frequencies). 

From the results it ca n be seen that as the requested peri od (frequency) increases the 

amount of the power di ssipated increases proporti onall y. This direct relationship is due to 

the number of switching ga tes and their size, as the la tter is affected with increas ing the 

requested cloc k frequency. The hi gher the frequency, the hi gher the capac ity load 

switching, whic h leads to the rise in the dynami c power. 

Statistical Power Results 

OOOr-----------------------------------------------. 

500 

--vtmax4 
• vtmaxB 
• vlmax16 

100 

oL-----------------________________________ ~ 
o 50 100 150 200 250 300 350 

Powe ... (~W) 

Figure '·8: Statistical power results of vector coprocessor for different vector lengths 

For different VLMAX the graph shows a margina l change for the dissipated power. This 

is because the size o f the VLSU is much larger than the vector coprocessor and 

consequentl y the power it di ssipates. At low requested periods the difference in statistical 

power between VLMAX 4 and VLMAX 16 is approximately 12.3 0/0 which see ms 

constant over the frequency range. The stati stica l power results were obtained up to 

VLMAX 16 and reveal tlwt the power consumpti on increase is a fairly constant 6.6 fo ld 

for the period range of 20ns (50MHz) to 3ns (333 MHz). No results were obtained for 

higher VLMAX as the des ign was too large for the synthesis run to complete 

successfully. Apart from the power consumpti on the physica l area of the vector 

co processor design was also recorded. Figure 7-9 depicts the area for different values of 

VLMAX and for various requested peri ods (frequenc ies) for the vector coprocessor 

des ign. Again the required area for a given VLMAX show a marginal change for all the 

freque ncy range, as the silicon area is propOlliona l to the number of gates that perform 



7. Vector Processor VLSI Implemell tatioll 181 

the functionality of the design. A s the frequency increases however there is a slight ri se in 

the si licon area as the timing optimization methods affect the whole design layout. 

Post-Synthesis Area (no wireload) 

'500000 

' 000000 ... .. .. ~ 

'500000 

300000O .., 
~ 
• 2SOOOOO --vlmax4 
.: 
::l 2000000 . - - -.-. ~-- .- . __ • • vlmaKS 

.. vlmax1 6 
;; 

ISOOOOO 

1000000 

SOOOOO 

0 

0 50 100 ISO 200 2SO 'SO 
Requested Frequency (MHz) 

Figure 7-9: Stntistical area results of vector coprocessor for different vector lengths 

Additi onally from the graph it can be seen that the area is directl y related to the vector 

length (VLMAX). Thi s was expected as the vector length affects the number of the 

functi onal units in the vector datapath along with the size of the register files and the 

VLS U unit. The last graph in Fi gure 7- 10 il lustrates the achievable frequency against the 

requested frequency for different vector lengths of the whole vector coprocessor. A s it 

can be seen the achievable frequency matches or even is higher than the requested for 

frequencies up to 200 MHz and vector lengths from 4 to 16. For higher frequencies 

however logical synthesis is unable to achieve the requested frequency an effect 

exacerbated at higher vector lengths. This is due to the increased design size which can ' t 

be handled efficientl y by the ynthes is tooi. 



7. Vector Processor vLr; //Jl/p/ellle1llcuioll 182 

Post-Synthesis Frequency Results 

300 

250 

N" 200 
:I: 

~ 
~ 

- - vimax4 

g 150 - """"" • , • Ylmax16 

l '00 
• 

50 

0 

50 67 '00 '" 125 200 250 333 

Requested Frequency (M Hz) 

figure 7-10: Frequency results of vector coprocessor for different vector lengths 

From the graph it can be observed thm the maximum operati ona l frequency for the vector 

coprocessor is 256 MH z for vector lengths up to 8 and 208 MH z for a vector length o f 16. 

These fi gures fa ll well within the acceptable range of high performance industrial-l evel 

AS IC design for the given silicon technology. 

7.5 VLSI Layout 

T ile foll owin g secti ons present the resulting VLSI macrocell s a long wit h their phys ical 

characteri sti cs for the Vector Datapath and the Vector Processor designs respecti vely. 

7.5.1 Vector Datapath Layout 1'0." VLMAX 16 

The vector datapath with VLMAX= 16 (256-bit length) was take n through the full front 

e nd (l ogical synthesis) and the back end (Place and Route) fl ows. The des ign was read 

into Synopsys des ign compi ler and synth esized for a target frequency of 250 MH z, 

targeting the TSMC 0 . 1 3~m ( I Po ly, 8 Copper) process. A top-down fl ow and no 

wireload models were used. Thi s fl ow was chosen as our ex pe rience shows that the back 

end too l (Cadence SoC Encounter) is capabl e of very advanced netli st re-sylllhes is thus 

maki ng the use of front end wireload model unnecessary. After synthesis the optimized 

ne tl ist of the vector datapath wit h length 256 bits was imported into SoC Encounter and 



7. Vector Processor VISllmplementation 183 

the flat ph ysica l fl ow was carried ou!. The phys ica l characteri stics of the VLSI cell are 

given in Table 7- 1. 

Table 7-1: VLSI Layoul physical paramelers for VDP willt VLMAX 16 

Pnrameters 
X dim (pm) 
Y dim (1Im) 
Area (nll11 sq) 
Ce lls (RAMs) 
Cell rows 
Speed (MHz) 

Value 
10 10 
10 10 
1.02 
63945 (7) 
279 
186.2 

The VLSI resuhs show a worst case (O.9V, 125 C) maximum frequency of 186.2 MHz 

post-route. The achieved frequency is well within the domain of high performance 

implementati ons of wide parallel processors. 

Figu re 7-1 



7. Vector Processor VLSl lm plementatiol1 184 

It is anticipated that further work at the back-end will result in a substantially faster cell. 

The power consumption based on statistical activity (not workload-based) of the cell is 

also moderate; at 61.3 mW when optimized for 4ns period. The design includes 

approximately 64 K gates, 7 RAM macros in 279 standard cells rows. The cell area is 

1.0 I by 1.0 I mm'- The resulting VLSI macrocell is shown in Figure 7-1 I. 

7.5.2 Vector Datapath Layout for VLMAX 32 

The same methodology was fo llowed for the vector datapath with VLMAX=32 (512-bit 

length). The design was synthesized for a target frequency of 200 MHz, targeting the 

TSMC 0.13 iJ m (I Poly, 8 Copper) process. The physical characteristics of the VLSI cell 

are given in Table 7-2. 

Table 7-2: VLSI Layout physical pa ra meters for VDP with VLMAX 32 

Pa rameters 
X dim (~m) 
y dim(~m) 

Area (mm sq) 
Cells (RAMs) 
Cell rows 
Speed (MJiz) 

Va lue 
180 1 
1800 
3.24 
209809 ( 11 ) 
453 
126.7 

Again no wireload models were used and the physical fl ow was carried out for the vector 

datapath with length 512 bits. The resul ting VLSI macrocell is shown in Figure 7- 12. 



7. Vec/or Processor VLSllmplemellla/ioll 185 

The design achieved a much lower frequency of 126.7 MHz post-route, worst case (0.9V, 

125 C) max imum frequency when optimised for 5ns peri od . Thi s discrepancy between 

logical synthesis (200MHz) and final post-route speed (126 .7M Hz) is attributed to very 

wide datapath (5 12 bit s) which resulted in a substantially congested VLSI mac ro. The 

VLSI macro includes approximately 2 10 K gates, II RAM macros in 453 standard cells 

rows. The cell area is 1.8 by 1.8 mm2
• 

7.5.3 Vector Processor Layout for VLMAX 16 

Finally, the Full vector processor (incorporating the Vecto r Datapath and the VLS U) with 

VLMAX= 16 and Vector Data Cache confi guration 4-way, 8Kbytes, 128 bytes block 

length and 2 sub-blocks per block, was taken through the full front end (logical synthesis) 

and the back end (Place and Route) fl ows . The design synthesized for a target Frequency 

of 200 MHz, targeting the TSMC 0 . 1 3~m ( I Poly, 8 Copper) process . 



7. Vector Processor VLSi i lllplemellfClrioll 

Table 7-3: VLSI Layout physical parameters for VCOP with VLMAX 16 

Parameters 
X dim (~m) 

y di m (~m) 

Area (mm sq) 
Cells (RAMs) 
Cell rows 
Snced (MHz) 

Value 
1802 
349 1 
6.29 
257308 (22) 
92 1 
182 

186 

A top-down fl ow and no wireload mode ls were used. AFter synthesis the optimized netlist 

was imported into SoC Encounter and the physical fl ow was carried out with the two 

majo r pal1itions being the vector data path and Vector LoadlS tore Unit (VLSU). T he 

resulting VLSI macrocell is shown in Figure 7- 13. 

Figure 7-13: Layoul for the whole veclo r processor (veclor dalapalh and VLSU uni t) 



7. Vector Processo r VLSlllllplelllellfatioll 187 

The physical characteri stics of the VLSI cell are given in Table 7-3 . The des ign includes 

approx imalely 257 K gates, 22 RAM macro in 92 1 standard cell rows. The ce ll area is 

1.8 by 3.5 mm2 T he design ac hieved 182 MH z post-route, worst case (O.9V, 125 C) 

maX 1111Um frequency that clearly indicates that the critica l path lies withi n the Vector 

Datapath. 

7.6 ESL Implementation 

This section discusses briefiy the SystemC-based methodology, whi ch alllomalica ll y 

generates a technology independent Veri log netli st from the vector in structi ons of a 

vectorized applicatjon. This applicati on involves bot h ITU-T speec h coders, G.729A and 

G.723. 1. The vector instruction set extensions, which were described in Chapter 5, were 

formed by C-source vector mac ro-opcodes and were introduced to a nex t-gene rat ion 

multi -paralle l, configu rable application-specific processor known as SS_SPARC. The 

SS_SPARC platform along with the ES L methodology and the statisti cal power analy is 

results obta ined from the SystemC-accelerator synthesis and the handed-code RTL 

synthesis are presented in tJle fo ll owing ecti on [6]. 

7.6.1 SS_SPARe Platform 

SS_SPARC is a configurab le, extensible, chip multi -processor where each processor is a 

5-issue, simultaneous multithneaded vector processor [6]. A hi gh-level view of a 3-

instance SS_SPARe kernel is depicted in Figure 7- 1. 

Coofogur.Wle 
nun~of 

SS_SPARe 
SMT COfes 

Streaming 
SWKlalone 

"""" ... te'" 

I 
I 
I 
I 
I 
I 
I 

Banked L2 Cache 

"[ 
~ 
m 
:z: 
§ Channel • 
~ 

'-c'liiliI",,"'''le system 
memory port 

Figure 7-14: High level view of a 3-instance SS_SPARe kernel 

The SS_SPARC platform cons ists of a confi gurab le number of SMT processing un it s, a 

number of user-de fi ned, loosely-coupl ed coprocessors, a pipe lined switch matri x, and a 



7. Vector Processor VLSllmplemelllatiol/ 188 

multi-banked, level-2 memory system with a standard AI-IB interface. Additionally, a 

generic, transaction-Ieve l-pipelined memory interface which connects to the next 

generation AMBA 3 Advanced eXtensible Interface (AXI) [7] standard is availab le. The 

design is parameterized as to the number of SMT processing units, the number of 

contexts per processor unit, the vector infrastructure, the instruction and data caches 

configuration and buffering schemes and the switch matrix configuration [6]. Figure 7-15 

illustrates the schematic diagram of the superscalar pipeline of a SMT processing unit. It 

comprises the instruction Front-End (!FE), the scalar core (SCORE), the vector core 

(VCORE) and the load/store unit (LSU). 

VCORE 

Figure 7-15: Superscalar SMT pipeline organisation 

The !FE consists of a configurab le, multi-way instruction cache (ICache) and supplies an 

instruction block (5 instructions) per cycle to the per-context instruction buffers. A 

programmable arbitration mechanism is employed to select one of the non-blocked 

contexts. The lCache services one block request per cyc le and supports pipelined 

transactions to the main memory. In case of a cache miss only the particular context is 

blocked whi le the remainder are allowed to proceed. The employed branch predictor is 

configurable as to the numbers of branches it can predict per cache block and it is 



7. Vector Processor VLSllmplemelllatioll 189 

relati vely simple with good prediction rate 111 the computationa ll y intensi ve loops 

dominant work loads of the teleco l11 domain. A fter the instructi on buffers there is a 

dispatch logic which checks the buffered instructi on per process ing unit to resolve data 

dependences and prepare the instruction packet for execution. T he instructi on packet is 

dispatched to the register/bypass stage in the SCORE block, for subsequent cOlllex t 

prioriti zation and transfer to the execution block [6]. 

The sca lar core (SCORE) block consists of the microarchitectural units equal with the 

number of supported cOlllexts, the context selecti on un it (CCU) and a 3-stage pipeline 

that implements the Sparc V8 ISA [8] . The instructi ons that were dispatched in the 

previous cycle access per-context the register files. These instructi ons are prioriti zed by 

the CCU, and progress to the registers of the execution datapat h. T he datapath compri ses 

two 32-bi t integer ALUs in a cascade conf iguration. Figure 7- 16 illustrates the SCORE 

pipeline organi zati on [6] . 

-------

Figure 7-16: Scalar core (SCORE) pipeline orga nization 

The dual -pipeline vector core (VCORE) is highly configurable and extensible for the 

architecture (programmer's model and ISA) as well as the microarchitecture (width of 

vector registers, number of stages of the vector pipeline, bypassing etc) and it i s the 

primary DSP engine [6] . In the first pipeli ne, custom instructi ons can be easily inserted 

as 'plug- in datapaths' in the vector core by using the exposed interface of the latter. The 

second pipeline is dedicated to returning vector loads from the high-bandwidth LSU and 



7. Vector Processor VLSllmplementation 190 

it is not accessible from the system architect. As shown in Figure 7-17 the vector core 

comprises the architected state (one per context), the vector bypass logic, and a 

configurable number of vector execute stages for the custom datapath. In a multi-context 

configuration, multiple threads access the architected state of the processor. In the case 

that there are no regi ster or resource dependences, multiple contexts are prepared to be 

dispatched to the single-issue vector data path. The CCU arbitrates the ready CPU 

contexts by using context arbitTation algoritlm1 and issues one to the vector pipeline. The 

results are made available (via bypassing) to dependent vector instructions . The exposed 

microarchitecture allows the system architect to design and implement custom 

instructions using a number of methodologies including RTL-based and, ESL-based. The 

interfaces that facilitate this are: a) the Dispatch IF that is the input interface to the user 

defined vector datapath b) the Bypass IF consists oflhe vector result buses, one per stage, 

vector masks and valid stTobes to determine the bypass paths c) the LSU return path IF is 

the entry point of the return vector load from the LSU d) the write-back IF is the point 

where the produced vector results (two per cycle) from the vector datapath are passed to 

the vector register file of the specific context for writing [6]. 

CS" 

-~2?1 "~I 

""" 

IGgJ 

Figure 7-17: Dml l-pipcli ne vector unit organization 



7. Vector Processor VLSllmplementation 191 

7.6.2 ESL Methodology 

The input of the flow of the developed methodology is the vectorized source code of the 

ITU·T G.729A and G.723.1 speech coders. The vectorization was perfonmed by using a 

number of assembly-like C-macros. The C-Ievel macros define precisely the vector 

instruction set extensions that were described in Chapter 5. The custom flow parses these 

C-macros and creates a SystemC module that instantiates these SIMD instructions. The 

SystemC model is verified by using the test vectors that were produced by running the 

vectorized algori thm in order to ensure that this "packing" of the SIMD ISA hasn' t 

change the functiona lity of the operations. A number of pipeline registers and the bypass 

taps are specified in the synthesis tool. The SystemC datapath is then synthesized to 

technology independent gates RTL-YHDL using a commercial SystemC synthesizer. 

Afterwards the RTL model is validated again by the same test vectors (as they applied 

before) to ensure that the SystemC-RTL transfonmation was successful. The resulting 

RTL datapath is instantiated in the exposed vector unit of the SS_SPARC processor and 

further decoding logic is added to the core processor to enable the execution of these 

extensions [6] . The combined RTL (vector extensions and SS_SPARC platfonm) goes to 

the standard design flow which was described in sections 7.2.1 to 7.2.3. The results from 

the statistical power analysis results for both the SystemC-accelerator and the RTL

accelerator synthesis along with a YLSI layout are presented in the following section. 

7.6.3 Micro-Architecture Results 

In thi s work the statistical power consumption and the area were obtained for the 

SystemC-defined accelerators as well as the RTL-accelerators. Figure 7-18 depicts the 

power consumption of both implementations for al1 the configurations: vector length 256-

bit (YLMAX 16) and 512-bit (YLMAX 32), vector contexts 1, 2,4 and 8 for different 

clock periods. In thi s fi gure each requested period is plotted against its corresponding 

power. From the set of the results it is obvious that the general shape of the graphs is of a 

similar nature. 



7. Vector Processor VLS//lllplemell ta tiol/ 

ITU Vector Engine Power Consumptlon 

, 
CL 

/ i 
, 

~ ~ • • iJ; 

""""'" 

Figure 7-18: ITU Veore Power Results 

+ 

-, 
n 

~ ~ 
~ • iJ; 

~ • iJ; 

- , .. · .. .. 
7m 

· .. · .. 
". 

- b 

192 

The SystemC-accelerators shows a pre-route overhead of 3% to 15% compared to the 

hand-coded (RTL) des igns over the sy nthesis campai gn. These results demonstrate that 

the SystemC synthes is is fairl y reli able and can achieve power consumpti on c lo e to the 

traditi onal RTL synthesis [6]. Additionally, from the RTL results it can be seen that the 

power consumption is affected signifi cantl y from the vector length (VLM AX). The 

power consumption shows a 4 fo ld increase for context I between VLMAX 16 and 

VLMAX 32 whereas the increase for context 8 is 2 fold between these vector lengths. 

Figure 7-1 9 shows the pre-route area of both sets of acce lerators al 0 for all 

configurati ons. In this case, the SystemC-implementati on ex hibited even better area usage 

cha racteri stics with a reduction in the range of 2% to 18% compared to the hand-coded 

(RTL) des igns. Thi s is due to the fact that the SystemC synthes izer that makes more 

inte ll igent resource allocation compared to the traditi onal RTL design fl ow [6]. 

Additionall y from the graph it can be seen that the area is directly related to the vector 

length (VLMAX). From the results it can be seen that the re is a fairl y constant two fo ld 

inc rease in area allocati on between VLMAX 16 and VLMAX 32 and for all the range of 

contex ts. Thi s was ex pected as the vector le ngth affects the number and the width of the 

vector datapath s that for VLMAX 32 is double. 



7. Vector Proc;essor VLSllmp/elllellfClrioll 

""""'" 
""''''''' 

i "'''''''''' t tSOOOOO 

! 
f """"'" , 
-I ItOOOXl 

i . ""'" 

ITU Vector Engine Arn v, D. lay 

1 I I j 
Contt gur.llon 

Figure 7·19: ITU VCore Arca·Delay Resul ts 

· , .. · .. .. 
,~ · .. · .. ... 

- .. 

193 

The SystemC-<lefined datapat h configurat ion (VLMAX=32, T" .,,=250 MHz) was 

through the enti re fl ow to a VLS r macro. The resulting VCORE (includ ing the datapath, 

the vector contexts. all ITIu lti plex ing/bypassing and the LSU return path ) is shown in 

Figure 7·20. The design includes approx imately 70K gates and six 16x 128·bit dual, p0rl 

RAM macros, three for each vector register fi le of the two CPU contexts. A two·stage 

pipelined architecture was speci fi ed which resulted in a worst-case (0.9V, 12SC) 

max illlulll frequency of 2 13 MHz [6]. 

Figure 7·20: Two·context, 256·bit ITU vector engine 



7. Vector Processor VLSllmplemellfatioll 194 

7.7 Summary 

This chapter discussed the verification methodology used to validate the vector processor 

and its associated units along with the synthesis and back-end now of the vector data path. 

Statistical power/area/frequency results were presented for the vector datapath and the 

vector coprocessor as a whole for different configurations (VLMAX, frequency) after a 

scripted synthesis/place-and route campaign. The VLSI layouts and their physical 

parameters of the vector datapath and the vector processor were also illustrated. This was 

followed by the description of the SS_SPARC ASIC platfonn, the SystemC modelling of 

the vector instruction set extensions and their subsequent synthesis to low-level RTL. The 

ESL-implemented of the vector extensions was inserted after to the exposed vector 

engine of the SS_SPARC processor and statistical power analysis resu lts for both the 

SystemC-accelerator and the RTL-accelerator data paths were presented and compared. 



7. Vector Processor VLSllmplementGtio" 195 

7.8 References 

[I) S. Akella, "Guidelines For Design Synthesis Using Synopsys Design Compiler," 
Department of Computer Science Engineering, University of South Carolina, 
Columbia, December 2000. 

[2) G. R. Beck, D. W. L. Yen, and T. L. Anderson., "The Cydra 5 
mtntsupercomputer: Architecture and implementation," The JOllrnal of 
SlIpercomplltillg. vol. 7, pp. 143-1 80, May 1993 . 

[3) "Design Compi ler 2003 .06," Synopsys Inc. , 2003. 

[4) "Advanced Logic Technology - 0 . 13~," Taiwan Semiconductor Manufacturing 
Company, 2006. 

[5) . Kozyrakis, "A Media-Enhanced Vector Architecture for Embedded Memory 
Systems," Technical Report: CSD-99-1059, University of California at Berkeley 
1999. 

[6) V. A. Chouliaras, K. Koutsomyti, T. Jacobs, et aI. , "SystemC·defined SIMD 
instructions for high SystemC·defined SIMD instructions for high," in i3th IEEE 
international Conference on Electronics, Circllits alld Systems, Nice, France, 
2006, pp. 822-825. 

[7) "AMBA AXl Specification," http://www.aml.comJarmtechlAXl. 

[8) "The Sparc Architecture Manual Version 8 ", www.sparc.com. 



CHAPTER 8 
CONCLUSIONS 

The aim of this thesis was to study the potential acceleration of both speech coding 

algorithms, namely 0.729A and 0 .723.1, through their efficient implementation on a 

configurable extensible vector embedded CPU architecture. The outcome of this work 

was the optimization of both C reference codes and the design and implementation of a 

parametric (configurable) vector processor, to explore the effects of different 

configurations (VLMAX, number of regi sters and accumulators) and thus, probe the 

microarchitecture space. The optimized reference codes and the vector architecture were 

fully validated with the use of the ITU-supplied test vectors. This chapter presents the 

main contributions of this research and proposes further work which leads on from this 

project. 

8.1 Contribution of this thesis 

At the beginning of thi s work and in order to investigate the potential acceleration of both 

speech codecs, the proliling of both C reference codes was performed to identify the 

computation workload distribution. This revealed that the most CPU-intensive parts of 

the codes were in the DSP emulation functions (e.g. in 0.723.1 decoder 66.7% of the 

total machine instructions) of the reference implementations. Additionally, these 

algorithms exhibited a large amount of data-level para llelism. Therefore it was decided 

that efficient implementation of these basic operations in the foml of a configurable 

vector processor with a targeted, data-parallel architecture, could achieve a leading 

area/power/cost result. 

An optimization methodology was developed, in which custom vector and scalar ISA 

extensions were identified and inserted into both reference codes in place of the DLP

loops and other non-vectorizable pal1s of the codes respectively. The optimized codes 

were verified and run on the SimpleScalar tool set for aIlITU-T test vectors, over a range 

of vector lengths, to evaluate the performance of the vector architecture prior its 

implementation in hardware. For this purpose the simulator was modified and extended to 



8. Conclusions 197 

include the added state (coprocessor scalar and vector state) and the scalar and vector 

extensions. 

The architectural results were very promising, demonstrating a reduction in the dynamic 

instruction count metric of 58% and 71% for G.729A and G.723 .1 speech coders 

respectively when the vector instructions were introduced and a further 18% and 9% 

reduction in dynamic instruction count when the scalar instructions were applied . The 

overall simulation results indicated that the area/performance points of interest lie in 

between 64-bit (VLMAX 4) to 256-bit (VLMAX 16) wide configurations as there was 

not much more improvement over a vector data length of 16 (256 bits) due to the size of 

the speech frames. These speech codecs operate on frames (blocks) of 240 samples and 

these frames are also divided into subframes of 60 samples and hence fast performance 

improvement can be seen for lower vector lengths. At vector length of 4, the coprocessor 

would save 7 I .6% of the dynamic instruction count of the G.729A encoder and almost 

75% for the G.723.1 encoder. For vector length 16, the coprocessor would only save 

another 4.4% and 5% for G.729A and G.723.1 respectively and no significant 

improvement emerges beyond that. In addition both sets of results revealed that the 

maximum benefit is achieved by the combination of custom vector and scalar 

architectures. These results conclusively showed the potential benefit of applying custom 

instructions and having associated coprocessor vector functional units. 

Another aspect of this work was the SystemC modelling of the vector instruction set 

extensions and their subsequent synthesis info low-level RTL. This work was undertaken 

to explore faster routes to silicon for SIMD extensions, compared to the established RTL 

now. These ESL-implemented vector extensions were inserted into the exposed vector 

engine of the SS_SPARC ASIC processor and statistical power analysis results, for both 

the SystemC-accelerator and the RTL-accelerator datapaths, were presented and 

compared. From the synthesis results it was shown that the SystemC synthesis was fairl y 

reliable and achieved power consumption close to the traditional RTL synthesis. 

The main contribution of this research project was the full design and implementation of 

the proposed vector datapath of the vector processor. The vector pipeline is a SIM D array 

of functional units with a configurable 2-way S IMD or sca lar organization. It has a four 

stage-pipeline organization and it is parameterised along both the architecture and the 



8. COl/clusions 198 

microarchitecture axes. Few modifications took place to the Leon3 pipeline to enable its 

tight-coupling to the vector processor. 

The vector datapath was verified by using an FLI-based testbench that applied the ITU

supplied test vectors. Finally, statistical power/area/frequency results were obtained for 

the vector datapath and the vector coprocessor as a whole for different configurations 

(VLMAX, frequency) after a scripted synthesis/place-and route campaign. In addition, 

the VLS[ layouts and their physical parameters of the vector datapath and the vector 

processor were obtained. From these results, the vector datapath with VLMAX= 16 

configuration showed a worst case (0 .9V, 1 25C) maximum frequency of 1 86.2MHz, area 

1.02 mm2 and power of61.3 mW. The whole vector coprocessor with VLMAX= 16 and 

vector data cache configuration 4-way, 8Kbytes, 128 bytes block length and 2 sub-blocks 

per block achieved maximum frequency of 182MHz, area of 6.29 mm2 and power of 

74.97 mw. 

8.2 Suggestions for future research 

The vector processor was developed to efficiently execute the G.729A and G.723. 1 

speech coding standards in an embedded application. Since its vector and scalar lSA are 

based on the basic operations of these algorithms, all the rru G.7xx speech coding 

standards which share the same (or a subset) emulation operations such as G.711 , G.726, 

G.727 , G.728 and G.729 can also be accelerated by adapting them for this vector 

processor. This adaptation involves optimization with the insertion of vector and scalar 

extensions. 

The developed vector processor can be attached to any scalar CPU with very little 

modifications in its interface. This gives it the great advantage of being able to interface 

to different architectures and ASIC platfoffils. Thus al lows further research on novel 

multimedia architectures that incorporate VoIP/speech coding functionality . 

Since the VLSU unit is also parametTic, several different configurations can be 

implemented and their perfomlance in terms of area and power di ssipation investigated. 

In addition, entirely different VLSUs can be attached to the vector datapath with cascade 

or parallel TAGIDATA organization with few modifications to their interface with the 



8. Conclusions 199 

vector datapath. As the current VLSU has cascade TAGIDATA organization an extra 

signal in the output multiplexer of the VDP I stage needs to be added. This signal will 

select the return load data from the VLSU at the end of the VDPI stage as the load takes 

on ly one cycle for a paralle l TAG/DATA configuration instead of two which is the case 

for the cascade configuration. 

As already di scussed, the vector coprocessor implementation is technology independent 

therefore it can be re-targeted to different silicon technologies. The multiple 

configurations (VLMAX, number of registers and accumulators) lead to different 

statistical power/area/frequency points thus covering a large part of the implementation 

spectrum. 

Another area of research would be to investigate the bene'fits of ESL techniques instead 

of programmable architectures by coupling the ESL-implemented vector datapath to other 

ESL defined architectures. 

As multimedia applications consist of more than one time-critical execution threads there 

is a significant amount of coarse-grained paralleli sm. Therefore by attaching the vector 

coprocessor to a multi threaded architecture could accelerate even more multimedia-rich 

applications that incorporate speech coding [I) . 

Another interesting approach will be an architecture that combines the best of LLP and 

DLP techniques for an optimal implementation . This architecture would combine vector 

instructions with out-of-order execution with register renaming and even simultaneous 

multithreaded execution. Such implementations are very promising according to Espasa 

[2) and Quintana [3] and the Tarantula project [4] in which a vector unit is attached to the 

superscalar Alpha engine. This is also the domain of the SS_SPARe processor [5] . 



8. Conelusions 

8.3 References 

[I] K. Diefendorffand P. Dubey, "How Multimedia Workloads Will Change 
Processor Design," in IEEE Computer. vol. 30, September 1997, pp. 43-45. 

200 

[2] R. Espasa and M. Valero, "Exploiting Instruction- and Data-Level Parallelism," 
in IEEE Micro. vol. 17, September 1997, pp. 20-27. 

[3] Francisca Quintana, Roger Espasa, and Mateo Valero, "A Case for Merging the 
!LP and DLP Paradigms," in 6th Euromicro Workshop on Parallel and 
Distributed Processing, Madrid, Spain, 1998, pp. 217-224. 

[4] R. Espasa, F. Ardanaz, J. Gago, et aI., "Tarantula: A Vector Extension to the 
Alpha Architecture" in the Proceedings ojthe 29th Annual fntemotionol 
Symposium 0 11 Computer Architecture (fSCA '02) Anchorage, Alaska, 2002, pp. 
281-292. 

[5] V. A. Chouliaras, K. Koutsomyti , T. Jacobs, et aI. , "SystemC-defined SIMD 
instructions for high performance SoC architectures," in 13th IEEE flll em alional 
COlljerellce 0 11 Electrollics, Circuils and Systems, Nice, France, December 2006, 
pp. 822-825. 



APPENDIX A VECTOR AND SCALAR ISA 

Idvlen r 

Instruction Format 

Idvlen r format 

0000000 
21 15 

Syntax 

where: 
imm is a numeric constant 

Description 

o imm 
8 

The vlen_r instruction loads an immediate into the Vector Length Register 

Example 

Idvlen_r(16) ; //Vector Length Register is set to 16 

vldw 

Instruction Format 

vldw format 

0000001 vrd srs1 
21 15 10 

Syntax 

vldw(vrd, srsl) 

is the destination vector register 
where: 
vrd 
srs1 is the address of the variable in memory 

Description 

o 
5 

o 

o 

The vldw instruction loads the vector register vrd from memory address given in scalar 
register srs1 . 

201 



Avpendix A Vector and Scalar ISA 202 

Example 

vldw(2, 3); //Load vreg2 from address given in sreg3 

vldwn 

Instruction Format 

vldwn format 
0000010 vrd srs1 

21 15 10 

Syntax 

vldwn(vrd, srsl) 

is the destination vector register 
where: 
vrd 
srsl is the address of the variable in memory 

Description 

o 
5 o 

The vldwn instruction loads vector regi ster vrd downward from memory address given 
in sca lar register srsl . 

Example 

vldwn(2 , addr); //Load vreg2 downwards from address given 
in sreg3 

vstw 

Instruction Format 

vstw format 
0000011 o 

21 15 

Syntax 

vstw(vrs2, srsl) 

where: 
vrs2 
srsl 

is the source vector register 
is the memory address 

Description 

vrs2 srsl 
10 5 

The vstw instruction stores the vector register vrs2 to memory address given from 
scalar register srsl. 

o 



Appelldix A Vector alld Scalar ISA 

Example 

vstw(3, 1) ; II Store vreg3 to memory addre ss 

vstwn 

Instruction Format 

vstwn fannat 

I 0000100 I 0 
21 15 

Syntax 

v s twn (vrs2, srsl ) 

where: 
vrs 2 
s r sl 

is the source vector register 
is the memory address 

Description 

vrs2 
10 

given in 

I srs1 
5 

The v s twn instruction stores a vector register downward to memory address 

Example 

vstwn (3, addr) ; II Store vreg3 downwards to addr 

vldaccw 

Instruction Format 

vtdaccw fannat 

0101000 vaccd srs1 
21 15 10 

Syntax 

vldaccw(vaccd, srsl) 

is the destination vector accumulator 
where: 
vac cd 
srsl is the address of the variable in memory 

Description 

5 
o 

203 

s r egl 

I 
0 

o 

The vldaccw instruction loads 32-bit word to the vector accumulator [Tom memory 

Example 

vldaccw( O, addr); II Load vacc O from addr 



Appendix A Vec/or alld Scalar ISA 

vstacc 

Instruction Format 

vslacc format 

0010100 vacc vaccelem 
21 15 10 

Syntax 

vstacc(vacc, vel em, srsl) 

is the source vector accumulator 
where: 
vacc 
velern 
srsl 

is the element of the source vector accumulator 
is the memory address 

Description 

srs1 
5 

The vs tacc instruction stores a vector accumulator element (32-bit) to memOlY 

Example 

vstacc(l,O,addr); I I Store element 0 of vaccl to addr 

vaccclr 

Instruction Format 

vaccclr format 

0010000 vacc 

21 15 

Syntax 

vacclr (va c c) 

where: 
vacc is the vector accumulator 

Description 

o 
10 

204 

o 

o 

The vaccclr instruction sets the value in the vector accumulator vac to zero (clear) 

Example 

vaccclr(l); IISe t vacc l t o zer o 



Appelldix A Veclor alld Scalar ISA 

vsplatacci 

Instruction Format 

vsplatacci format 

I 0010001 vaccd srs1 o 
21 15 10 5 

Syntax 

vsplatacci(vaccd, srsl) 

is the destination vector accumulator 
where: 
vaccd 
srs1 is the value (32-bits) that is splated into the vector accumulator 

Description 

The vsplatacci instruction splats the 32-bi t word sca lar va lue into the vector 
accumulator. 

Example 

vsplatacci (O, 3) ; IISplat vaccO with the value of the 
scalar register 3 

vldacceli 

Instruction Format 

vldaccoli format 

0010010 vaccd vaccelem 
21 15 10 5 

Syntax 

v ldacce1i (vaccd, vel em, imm) 

is the destination vector accumulator 
where: 
vaccd 
velem 
imm 

is the destination element of the vector accumulator 
is the immediate to be loaded 

Description 

imm 

205 

o 

o 

The vldacceli instruction loads an immediate value into a vector accumulator element 

Example 

vldacceli(1,O,16); IILoad immediate 16 into element ° of 
vacc l 



Appelldix A Vector alld Scalar ISA 206 

Instruction Format 

I 0100010 vrd 

21 15 10 

Syntax 

vsplat_h_r(vrd, srs l) 

where: 
vrd 
srsl 

is the destination vector register 
is the scalar register value 

Description 

srs1 o 
5 

The vsplat_h_ r instruction splats a 16-bit word of scalar register srsl to all the 
elements of vector register vrd. 

Example 

vspla t_h_r(1 , 3) ; IISplat 16-bit value of sreg3 t o v r egl 

vmvacctre 

Instruction Format 

vmvacctre format 

0011000 vrd 

21 15 10 

Syntax 

vrnvacc tre (vr d, vacc l, amo unt) 

where: 
vrd 
vacc 
amount 

is the destination vector register 
is the vector accumulator 
is the shift amount 

Description 

vacc1 amount 
5 

The vrnvacctre instruction extracts high (amount=O) or low (amount= 16) the even 
elements of vector accumulator and loads them into the even elements of the vector 
register vrd 

Example 

vrnvacctre (2 , 1, 16 ); I IExt ract s h igh the eve n elements of 

o 

o 



Appelldh A Vector alld Scalar ISA 

vaccl and loads them to vreg2 

vmvacctro 

Instruction Format 

vmvacctro format 

0011001 vrd 
21 15 10 

Syntax 

vrnvacctro(vrd, vaccl, amount) 

where: 
vrd 
vacc 
amount 

is the destination vector register 
is the vector accumulator 
is the shift amount 

Description 

vacc1 amount 
5 

The vrnvacctro instruction extracts high (amount=O) or low (amount= 16) the odd 
elements of vector accumulator and loads them into the even elements of the vector 
register vrd. 

Example 

vrnvacctro(3,0, 0) ; //Extract s low the odd elements of 
vaccO and loads them to vreg3 

vmvrtacce 

Instruction Format 

vmvrtacce format 

0100110 vaccd 
21 15 10 

Syntax 

vrnvrtacce(vaccd, vrsl, amount) 

where: 
vaccd 
vrsl 
amount 

is the destination vector accumulator 
is the destination vector register 
is the shi ft amount 

vrs1 amount 
5 

207 

o 

o 



Appendix A Vector and Scalar ISA 208 

Description 

The vmvrtacce instruction deposits high (amount=16) or low (amount=O) the even 
elements or vector regi ster to the vector accumulator. 

Example 

vmvrtacce(O,3,16); IIDeposits high the even e l ements of 
vreg3 to vaccO 

vmvrtacco 

Instruction Format 

vmvrtacco format 
0100111 vaccd 

21 15 10 

Syntax 

vmvrtacco(vaccd, vrsl, amount) 

where: 
vaccd 
vrsl 
amount 

is the destination vector accumulator 
is the destination vector register 
is the shift amount 

Description 

vrsl amount 
5 

The vmvrtacco instruction deposits high (amount=16) or low (amount=O) the odd 
elements or vector register to the vector accumulator. 

Example 

vrnvrtacco(1,3 ,O ); IIDeposits low the odd elements of 
vreg3 to vaccl 

mvgpr2vr 

Instruction Format 

mvgpr2vr format 

I 1001101 vrd 
21 15 10 

Syntax 

mvgpr2vr(vrd, vel em, grsl) 

where: 
vrd is the destination vector register 

velem grsl 
5 

o 

o 



Appendix A Vector and Scalar ISA 209 

velem 
grsl 

Description 

is the destination element orthe vector register 
is the source general purpose register (Leon) 

The mvgpr2vr instruction moves the scalar contents (32-bit) of the general purpose 
register to the vector regi ster element. 

Example 

mvgpr2vr(1,2,5); //Move the contents of the general 
purpose register 5 t o the 2nd element 
of vregl 

mvvr2gpr 

Instruction Format 

mvvr2gpr format 

I 1001 11 0 grd velem 

21 15 10 

Syntax 

mvvr2gpr(grd, velem, vrsl) 

where: 
grd 
velem 
vrsl 

is the destination general purpose register (Leon) 
is the vector register element 
is the source vector register 

Description 

vrs1 
5 

The mvvr2gpr instruction moves the contents of the vector register element to tile 
general purpose register (Leon) . 

Example 

mvvr2gpr(2,3,5); //Move the contents of the 3d e lement 
of vre g5 to the general purpose 
registe r 2 

vaddh 

Instruction Format 

vaddh format 

0011010 vrd vrs1 vrs2 
21 15 10 5 

o 

o 



Appendix A Vector and Scalar 'SA 210 

Syntax 

vaddh(vrd, 

where: 
vrd 
vrsl 
vrs2 

Description 

vrsl, vrs2) 

is the destination vector regi ster 
is the first source vector register (operand I) 
is the second source vector register (operand 2) 

The vaddh instruction performs short addition ( 16-bit) of source vector registers vrsl 
and vrs2 and places the result to the destination vector register vrd. 

Example 

vaddh(5,2,3); //vreg5=vreg2+vreg3 (16-bits) 

Instruction Format 

vitu_sub r format 

001101 1 vrd vrs1 

21 15 10 

Syntax 

is the destination vector regi ster 
where: 
vrd 
vrsl 
vrs2 

is the first source vector reg ister (operand I) 
is the second source vector register (operand 2) 

Description 

vrs2 

5 

The vi tu_sub_r instruction performs short subtTaction (16-bit) of source vector 
registers vrsl and vrs2 and places the result to the destination vector register vrd. 

Example 

vitu_sub_r(5,2 , 3); // vreg5=vreg2 -vreg3 (16-bits) 

vaddacc 

Instruction Format 

vaddacc format 

0010111 vaccd vacc1 vacc2 

21 15 10 5 

o 

o 



Appelldix A Vector alld Scalar ISA 

Syntax 

vaddacc (vaccd, vaccl, vacc2) 

where: 
vaccd 
vaccl 
vacc2 

Description 

is the destination vector accumulator 
is the first source vector accumulator (operand I) 
is the second source vector accumulator (operand 2) 

211 

The vaddacc instruction performs long addition (32-bit) of source vector accumulators 
vaccl and vacc2 and places the result 10 the destination vector accumulator vac cd. 

Example 

vaddacc(O,O,l); //vaccO=vaccO+vaccl (32-bits) 

vsubacc 

Instruction Format 

vsubacc format 

0100101 vaccd vacc1 
21 15 10 5 

Syntax 

vsubacc(vaccd, vaccl, vacc2) 

is the destination vector accumulator 
is the first source vector accumulator (operand I) 

where: 
vaccd 
vaccl 
vacc2 is the second source vector accumulator (operand 2) 

Description 

vacc2 

The vsubacc instruction performs long subtraction (32-bit) of source vector 
accumulators vaccl and vacc2 and places the result to the destination vector 
accumulator vaccd. 

Example 

vsubacc(O,O,l); / / vaccO=vaccO-vaccl (32-bits) 

o 



Appelldix A Veclor alld Scalar ISA 

vaccaddreduce 

Instruction Format 

vaccaddreduce fonnat 

0010011 vacc 

21 15 

Syntax 

vaccaddreduce(vacc) 

where: 
vacc is the vector accumulator 

Description 

o 
10 

The vaccaddreduce instruction add-reduces all the elements orlhe vector 
accumulator vacc to a 32-bit val ue that is placed to its zero element. 

Example 

vaccaddreduce(l); //Add-reduce vector accumulator 1 

Instruction Format 

vitu mult e r format 

0011110 vrd vr51 

21 15 10 

Syntax 

is the destination vector register 
where: 
vrd 
vrsl 
vrs2 

is the first source vector register (operand I) 
is the second source vector regi ster (operand 2) 

Description 

vr52 

5 

ZIZ 

o 

o 

The vi tu_mul t_e_r instruction performs signed short mUltiplication (16-bit) to the 
even elements of the source vector registers vrsl and vrs2 and places the result to the 
even elements of the destination vector register vrd. 

Example 

vitu_mult_e_r(3 ,l, 2); //vreg3=vregl*vreg2 (even elements) 



Appelldix A Vector alld Scalar ISA 

Instruction Format 

vitu mult 0 r format 

0011111 vrd vrs1 

21 15 10 

Syntax 

is the destination vector register 
where: 
vrd 
vrs1 
vrs2 

is the fi rst source vector register (operand 1) 
is the second source vector register (operand 2) 

Description 

213 

vrs2 

5 o 

The vi tu_mu 1 t_o_r instruction perfomls signed short multiplication (16-bit) to the 
odd elements of the source vector registers vrs1 and vrs2 and places the result to the 
even elements of the destination vector register vrd. 

Example 

vi tu_rnu 1 t_o_r (3 , 1 , 2 ) ; //vreg3=vreg1*vreg2 (odd elements) 

Instruction Format 

vitu mult r e r format 

0011100 vrd vrs1 

21 15 10 

Syntax 

is the desti nation vector regi ster 
where: 
vrd 
vrs1 
vrs2 

is the first source vector regi ster (operand I) 
is the second source vector register (operand 2) 

Description 

vrs2 

5 o 

The vi tu_mu 1 t_r_e_r instruction perfonns signed short multiplication (16-bit) with 
rounding to the even elements of the source vector registers vrs1 and vrs2 and places 
the result to the even e lements of the destination vector register vrd. 



Appelldix A Vector alld Scalar /SA 

Example 

vitu_mult_r_ e_ r(3,1,2); //vreg3=vreg1*vreg2 (with 
rounding - even elements) 

Instruction Format 

I 0011101 I vrd vr51 
21 15 10 

Syntax 

is the destination vector register 
where: 
vrd 
vrs1 
vrs2 

is the first source vector register (operand I) 
is the second source vector register (operand 2) 

Description 

vr52 
5 

2 /4 

o 

The vi tu_mu 1 t_r_o_r instruction performs signed short multiplication (16-bit) with 
rounding to the odd elements of the source vector registers vrs1 and vrs2 and places 
the result to the odd elements of the destination vector register vrd. 

Example 

vi tu_mu1 t_r_o_r (3 , 1 ,2) ; //vreg3=vreg1*vreg2 (with 
rounding - odd elements ) 

Instruction Format 

vi!u i mult e r format 

21 

Syntax 

where: 
vrd 
vrs1 
vrs2 

0101001 vrd vr51 
15 10 

is the destination vector register 
is the first source vector regi ster (operand I) 
is the second source vector register (operand 2) 

5 
vrs2 

o 



Appendix A Vector and Scalar ISA 2 15 

Description 

The vi t u_i_mul t_e_r instruction performs integer short multiplication (16-bit) to 
the even elements of the source vector registers vrsl and vrs2 and places the result to 
the even elements of the destination vector register vrd. 

Example 

vitu_i_mult_e_r(3,l , 2 ); Ilvreg3:vregl*vreg2 (integer
even elements ) 

Instruction Format 

vi tu mult 0 r format 

0101010 vrd vrs1 
21 15 10 

Syntax 

is the destination vector regi ster 
where: 
vrd 
vrsl 
vrs2 

is the first source vector register (operand I) 
is the second source vector register (operand 2) 

Description 

vrs2 
5 o 

The vi tu_i_mult_o_r instmction performs integer short multiplica60n (16-bit) to 
the odd elements of the source vector registers vrsl and vrs2 and places the result to 
the odd elements of the destination vector register vrd. 

Example 

vitu_i_mult_o_r(3,l,2) ; Ilvreg3:vregl*vreg2 (integer
odd elements) 

vmace 

Instruction Format 

vmace format 

0001100 vaccd vrs1 vrs2 
21 15 10 5 

Syntax 

vrnace(vaccd, vrsl, vrs2) 

o 



Appelldix A Vecroralld Scalar ISA 

where: 
vaccd 
vrsl 
vrs2 

Description 

is the destination vector accumulator 
is the first source vector register (operand I) 
is the second source vector register (operand 2) 

216 

The vrnace instruction performs long multiplication (32-bit) to the even elements of the 
source vector registers vrsl and vrs2 and adds the product to the even elements of the 
destination vector accumulator vaccd. 

Example 

vmace(O,1,2); // Perform mac to even elements of vaccO, 
vregl and vreg2 

vmaco 

Instruction Format 

vmaco fonnat 

0001101 vaccd vrs1 

21 15 10 

Syntax 

vrnaco(vaccd, vrsl, vrs2) 

is the destination vec tor accumulator 
where: 
vaccd 
vrsl 
vrs2 

is the first source vector register (operand I) 
is the second source vector register (operand 2) 

Description 

vrs2 

5 o 

The vrnaco instruction performs long multip lication (32-bit) to the odd elements of the 
source vector registers vrsl and vrs2 and adds the product to the odd elements of the 
destination vector accumulator vac cd. 

Example 

vrnaco(O,1,2); //Perform mac to odd elements of vaccO, 
vregl and vreg2 



Appendix A Vector and Scalar ISA 

vmsue 

Instruction Format 

vmsue fonnat 

0001 110 vaccd vrs1 
21 15 10 

Syntax 

vmsue(vaccd, vrsl, vrs2) 

is the destination vector accumulator 
where: 
vaccd 
vrs l 
vrs2 

is the first source vector register (operand I) 
is the second source vector register (operand 2) 

Description 

217 

vr52 

5 o 

The vmsue instruction performs long mu ltiplication (32-bit) to the even elements of the 
source vector registers vrsl and vrs2 and subtracts the product to the even elements of 
the destination vector accumulator vaccd. 

Example 

vmsue(O,1, 2 ); // Perform multiply-subtrac t to even elements 
of vaccO , vregl and vreg2 

vmsuo 

Instruction Format 

vmsuo fonnat 

0001111 vaccd vrs1 

21 15 10 

Syntax 

vrnsuo(vaccd, vrsl, vrs2) 

is the destination vector accumulator 
where: 
vaccd 
vrsl 
vrs2 

is the first source vector register (operand I) 
is the second source vector register (operand 2) 

Description 

vrs2 

5 o 

The vrnsuo instruction performs long multiplication (32-bit) to the odd elements of the 
source vector registers vrsl and vrs2 and subtracts the product to the odd elements of 
the destination vector accumulator vac cd. 



Appelldix A Vector nud Scalar {SA 218 

Example 

vrnsuo(0,1,2 ) ; /IPerforrn multiply-subtract to odd elements 
of vaccO, vregl and vreg2 

vshli 

Instruction Format 

vshli format 

0001010 vrd vrsl 
21 15 10 

Syntax 

vshli(vrd, vrsl, amount) 

is the destination vector register 
where: 
vrd 
vrsl 
amount 

is the vector register (operand I) to be shifted 
is the shift amount (immediate) 

Description 

amount 

5 o 

The vshli instruction performs short shift left (IG-bit) to the vector register vrsl by 
immediate (amount). 

Example 

vshli{3,1 ,4); I/Shift left vregl by 4 and put result to 
vreg3 

vshri 

Instruction Format 

vshr; format 

000101 1 vrd vrs 1 
21 15 10 

Syntax 

vshri(vrd, vrsl, amount) 

is the destination vector register 
where: 
vrd 
vrsl 
amount 

is the vector register (operand I) to be shifted 
is the shift amount (immediate) 

amount 
5 o 



Appendix A Vector mui Scalar ISA 219 

Description 

The vshri instruction performs short shift Tight (16-bit) to the vector register vrsl by 
immediate (amount). 

Example 

vshri (3.1 . 4); //Shift right vregl by 4 and put resul t to 
vreg3 

vshlr 

Instruction Format 

vshlr format 
0100001 vrd vrs1 vrs2 

21 15 10 5 

Syntax 

vshlr (vrd. vrsl . vrs2 ) 

is the destination vector regi ster 
is the vector regi ster (operand I) to be shifted 

where: 
vrd 
vrsl 
vrs2 is the vector register (operand 2) that contains the shift amount 

Description 

o 

The vshlr instruction performs short shift left (16-bit) to the vector register vrsl by 
the amount of the vector register vrs2. 

Example 

vshlr (5.1 . 3 ); / /Shift left vregl by amount that is in 
vreg3 and put result to vreg5 

vshrr 

Instruction Format 

vshrr format 
0100000 vrd 

21 15 10 

Syntax 

vshrr(vrd, vrsl, vrs2 ) 

where: 
vrd is the destination vector register 

vrs1 vrs2 

5 o 



Appelldix A Vector alld Scalar ISA 

vrsl 
vrs2 

Description 

is the vector regi ster (operand I) to be shifted 
is the vector regi ster (operand 2) that contains the shift amount 

220 

The vshr r instruction performs short shift right (16-bit) to the vector register vrsl by 
the amount of the vector regi ster vrs2 and places the result to the destination scalar 
register vrd. 

Example 

vshrr(5,l,3); IIShift right vregl by amount that is in 
vreg3 and put r esult to vreg5 

vlshlacc 

Instruction Format 

vlshlacc format 

0010110 o 
21 15 

Syntax 

vlshlacc (vacc, amount) 

where: 
vacc 
amount 

is the vector accumulator 
is the shift amount 

Description 

vacc amount 
10 5 o 

The vlshlacc instruction performs long (32-bit) shift left to the vector accumulator 
vacc by amount (immediate) . 

Example 

vlshlacc ( 1,3) ; //Long shift left vaccl by 3 and put result 
to vaccl 

vlshracc 

Instruction Format 

vlshracc format 

I ~ ~ __ 0~O_10~1~0_1 __ ~~I ____ ~o~ __ ~I ____ ~va~cc~ __ ~IL-~a~m~0~un~t __ ~1 
21 15 10 5 0 

Syntax 

v l shracc (vacc, amount) 



AppelldLr A Vector alltl Scalar ISA 221 

where: 
vacc 
amount 

Description 

is the vector accumulator 
is the shift amount 

The vlshracc instruction performs long (32-bit) shift right to the vector accumulator 
vacc by amount (immediate). 

Example 

vlshracc(1,3); //Long shift right vaccl by 3 and put 
result to vaccl 

vlshlaccr 

Instruction Format 

vlshlaccr format 

0100100 o vacc 
21 15 10 

Syntax 

vlshlaccr (vacc, vrs2) 

is the vector accumulator 
where: 
vacc 
vrs2 is the vector register with the shi ft amount 

Description 

vrs2 

5 o 

The vlshlaccr instruction performs long (32-bi t) shift left to the vector accumulator 
vacc by the amount of the vector register vrs2. 

Example 

vlshlaccr(1,2); //Long shift left vaccl by amount that is 
in vreg2 and put result to vaccl 

vlshraccr 

Instruction Format 

vlshraccr format 

0100011 o vacc vrs2 

21 15 10 5 o 



Appendix A VecTOr and Scalar ISA 

Syntax 

vlshraccr (vacc, vrs2) 

where: 
vacc 
vrs2 

Description 

is the vector accumulator 
is the vector register with the shift amount 

222 

The vlshraccr instruction performs long (32-bit) shift right to the vector accumulator 
vacc by the amount of the vector register vrs2. 

Example 

vlshraccr(1,2); / / Long shift right vaccl by amount that is 
in vreg2 and put result to vaccl 

vcmp 

Instruction Format 

vcmp format 
I 0000101 o vacc1 
21 15 10 5 

Syntax 

vcrnp (vaccl, vacc2) 

is the fi rst source vector accumul ator (operand I) 
where: 
vaccl 
vacc2 is the second source vector accumulator (operand 2) 

Description 

vacc2 
o 

The vcrnp instTuction compares two vector accumulators (vaccl, vacc2). Ifvacc l 
is greater than vacc2 then the predication fl ag becomes I (true) else ° (fa lse). 

Example 

vcrnp(O,l); //Cornpares vaccO with vaccl 

vrcmp 

Instruction Format 

vrcmp format 

I 0000110 o vrs1 vrs2 

21 15 10 5 o 



Appendix A Vector and Scalar ISA 223 

Syntax 

vrcmp (vrsl . vr s 2) 

where: 
vrsl 
vrs2 

Description 

is the fi rst source vector regoister (operand I) 
is the second source vector register (operand 2) 

The vrcmp instruction compares two vector registers (vrsl . vrs2 ) . If vrsl is 
greater than v r s2 then the predication fl ag becomes 1 (true) else 0 (false). 

Example 

vrcmp(1.2) ; //Compares vregl with vreg2 

Instruction Format 

vcmp h-lle formal 
0000111 o 

21 15 10 

Syntax 

where: 
vr sl is the vector register to be compared 

Description 

vrs1 o 
5 o 

The vcmp_h_ge instruction checks ifvector register vrsl is greater than or equal to 
zero and if it is true sets the predication nag to 1 (tTue) else 0 (false) . 

Example 

vcmp_h_ge(2) ; //Compares vreg2 with zero 

Instruction Format 

vmerge I h r formal 

I 0001000 I vrd vrs1 vrs2 

21 15 10 5 o 



AppendLt A Vector and Scalar ISA 

Syntax 

where: 
vrd 
vrsl 
vrs2 

Description 

is the destination vector register 
is the first source vector register (operand I) 
is the second source vector register (operand 2) 

224 

The vmerge_t_h_r instruction merges two vector registers (vrsl, vrs2) 
according to the predication flag value. Ifpred is I then vrd=vrsl else vrd=vrs2 . 

Example 

vmerge_t_h_r(3,4,2); Il if pred=l vreg3=vreg4 else vrd=vreg2 

vmerge 

Instruction Format 

vmerge fonnat 

I 0001001 vaccd vacc1 
21 15 10 5 

Syntax 

vmerge (vaccd, vaccl, vacc2 ) 

is the destination vector accumulator 
is the first source vector accumulator (operand I) 

where: 
vaccd 
vaccl 
vacc2 is the second source vector accumulator (operand 2) 

Description 

vacc2 
o 

The vmerge instruction merges two vector accumulators (vaccl, vacc2) according 
to the predication flag value. If pred is I then vaccd=vaccl else vaccd=vacc2 . 

Example 

vmerge(O,O, l ); Il if pred=l vaccO=vaccO else vaccO =vaccl 

m2sld16 

Instruction Format 

m2sld1 6 format 

I 0101011 srd srs1 o 
21 15 10 5 o 



Apeelldix A VeclOr alld Scalar ISA 

Syntax 

m2s1d16(srd, srsl) 

where: 
srd 
srsl 

Description 

is the destination scalar register 
is the address of the variable in memory 

The m2 sld16 instruction loads a 16-bit value to scalar regi ster srd from memory 
address given in scalar register s r sl. 

Example 

215 

m2s1d16(2 , 3 ); I ILoad (16-bit) to sreg2 from address that 
i s i n sreg3 

m2sld32 

Instruction Format 

m2sld32 fonnat 

I 0101100 srd srs1 

21 15 10 

Syntax 

m2s1d32 ( srd, srsl ) 

is the destination scalar register 
where: 
srd 
srsl is the address of the variable in memory 

Description 

o 
5 

The m2s1d32 instruction loads a 32-bit value to scalar register srd from memory 
address given in scalar register srsl. 

Example 

o 

m2sld16 (4, 3) ; II Load (32-bit) to s r e g4 from address that 
is in sre g 3 

m2sst16 

Instruction Format 

m2sst16 fo nnat 

I 0101101 o srs2 srs1 

21 15 10 5 o 



Appelldix A Vector alld Sca/ol' /SA 

Syntax 

m2sst16(srs2, srsl) 

where: 
srs2 
srs l 

Description 

is the source scalar register 
is the memory address 

The m2 ss t16 instruction stores a 16-bit va lue of scalar register srs2 to memory 
address given from scalar register srsl. 

Example 

m2sst16(4, 3); //Store (16-bit) sreg4 to memory address 
that is in sreg3 

m2sst32 

Instruction Format 

m2sst32 format 

0101110 o 
21 15 

Syntax 

m2sst32 (srs2, srsl) 

where: 
srs2 
srs1 

is the source scalar register 
is the memory address 

Description 

SIs2 515 1 

10 5 

The m2 ss t3 2 instruction stores a 32-bit va lue of scalar register srs2 to memory 
address given from scalar register srsl. 

Example 

m2sst32(2, 1); // Store (3 2-bi t) sreg2 to memory address 
that i s i n sreg1 

mvgpr2sr 

Instruction Format 

mvgpr2sr format 

I 1001011 srd o 9,s1 
21 15 10 5 

226 

o 

o 



Appelldix A Veclor alld Scalar ISA 117 

Syntax 

rnvgpr2sr(srd, grsl) 

where: 
srd 
grsl 

Description 

is the destination scalar register 
is the source genera l purpose register (Leon) 

The rnvgpr2 sr instruction moves the scalar contents (32-bit) of the general purpose 
register grsl to the scalar register srd. 

Example 

rnvgpr2sr(1,2); / / Move the contents of the greg2 to sregl 

mvsr2gpr 

Instruction Format 

mvsr2gpr format 

I 1001100 grd o 
21 15 10 

Syntax 

rnvsr2gpr(grd, srsl) 

where: 
grd 
srsl 

is the destination general purpose register (Leon) 
is the source vector regi ster 

Description 

srs1 
5 o 

The rnvsr2gpr instruction moves the contents of the scalar register srsl to the genera l 
purpose register (Leon) grd. 

Example 

mvsr2gpr(2,3); //Move the contents of sreg3 to greg2 

m2sladd 

Instruction Format 

m2sladd format 

0101111 srd srs1 srs2 
21 15 10 5 o 



Appendix A Vector and Scalar ISA 

Syntax 

m2s1add(srd, srsl, srs2) 

where: 
srd 
srsl 
srs2 

Description 

is the destination scalar register 
is the first source scalar register (operand I) 
is the second source scalar register (operand 2) 

228 

The m2s1add instruction perfOlms long addition (32-bit) of source scalar registers srsl 
and srs2 and places the result to the destination scalar register srd. 

Example 

m2s1add(4 . 2.3); // sreg4=sreg2+sreg3 (32-bit) 

m2slsub 

Instruction Format 

m2slsub format 

0110001 srd srs1 srs2 

21 15 10 5 o 

Syntax 

m2s1sub(srd, srsl, srs2 ) 

where: 
srd is the destination scalar register 
srsl is the first source scalar register (operand I) 
srs2 is the second source scalar register (operand 2) 

Description 

The m2 slsub instruction performs long subtraction (32-bit) of source scalar registers 
srsl and srs2 and places the result 10 the destination scalar register srd. 

Example 

m2s1sub(4.2.3); // sreg4=sreg2-sreg3 (32-bit) 

m2sadd 

Instruction Format 

m2sadd format 

I 0110000 srd srs1 srs2 

21 15 10 5 o 



Appelldix A Veclor alld Sctt/ar ISA 

Syntax 

m2sadd(srd, srsl, srs2) 

where: 
srd 
srsl 
srs2 

Description 

is the destination scalar register 
is the fi rst source scalar register (operand I) 
is the second source scalar register (operand 2) 

229 

The m2 sadd instruction perfonns short addition (16-bi t) of source scalar registers srsl 
and srs2 and places the result to the destination scalar register srd. 

Example 

m2sadd(4,2,3); //sreg4=sreg2+sreg3 (1 6-bit) 

m2ssub 

Instruction Format 

m2ssub format 

1000000 s rd srs1 

21 15 10 

Syntax 

m2ssub(srd, srsl, srs2) 

is the destination scalar register 
where: 
srd 
srsl 
srs2 

is the first source scalar register (operand I) 
is the second source scalar register (operand 2) 

Description 

srs2 

5 o 

The m2 ssub instruction perfonns short subtraction (16-bit) of source sca lar registers 
srsl and srs2 and places the result to the destination scalar register srd. 

Example 

m2ssub(4,2,3); //sreg4=sreg2-sreg3 (16-bit) 

m2slmac 

Instruction Format 

m2stmac format 

0111011 srd srs1 srs2 

21 15 10 5 o 



Appendix A Vector Gild Scalar ISA 

Syntax 

m2s1mac(srd, srsl, srs2 ) 

where: 
srd 
srsl 
srs2 

Description 

is the destination sca lar regis ter 
is the first source scalar regis ter (operand I) 
is the second source scalar register (operand 2) 

230 

The m2s1mac instruction performs long mu ltiplication (32-bit) to source scalar registers 
srsl and srs2 and adds the product to the destination scalar register srd. 

Example 

m2s1mac(4 . 2.3); Il sreg4=sreg4+(sreg2*sreg3) 

m2slmsu 

Instruction Format 

m2slmsu format 

01 11 100 srd srs1 
21 15 10 

Syntax 

m2s1msu(srd, srsl, srs2) 

is the destination sca lar register 
where: 
srd 
srsl 
srs2 

is the first source scalar regi ster (operand I) 
is the second source scalar register (operand 2) 

Description 

srs2 
5 o 

The m2s1msu instruction perfomls long multiplication (32-bit) to source sca lar registers 
srsl and srs2 and subtracts the product to the destination scalar register srd. 

Example 

m2s1msu(4.2.3); II sreg4 =sreg4-(sreg2*sreg3) 

m2slmult 

Instruction Format 

m2slmult format 

0111111 srd srs1 srs2 

21 15 10 5 o 



Appelldix A Vector alld Scalar ISA 231 

Syntax 

m2s1mult(srd, srsl, srs2) 

where: 
srd 
srsl 
srs2 

Description 

is the destination scalar register 
is the first source scalar register (operand I) 
is the second source scalar register (operand 2) 

The m2s1mul t instruction perfonns long multiplication (32-bit) to source scalar 
registers srsl and srs2 and places the result to the destination vector register srd. 

Example 

m2s1mult(4,2,3); //sreg4=sreg2*sreg3 (32-bit) 

m2smult 

Instruction Format 

m2smult format 

1000101 srd srs1 
21 15 10 

Syntax 

m2smult(srd, srsl, srs2) 

is the destination sca lar regi ster 
where: 
srd 
srsl 
srs2 

is the first source scalar register (operand I) 
is the second source scalar register (operand 2) 

Description 

5 

srs2 
o 

The m2 smul t instruction perfonns short mUltiplication (16-bit) to source scalar registers 
srsl and srs2 and places the result to the destination vector register srd. 

Example 

m2smult(4,2,3) ; //sreg4=sreg2*sreg3 (16-bit) 

m2smultJ 

Instruction Format 

m2smult r format 

0111110 srd srs1 srs2 
21 15 10 5 o 



Appendix A Vector and Scalar lSA 232 

Syntax 

m2smult_r(srd, srsl, srs2) 

where: 
s rd 
srsl 
srs2 

Description 

is the destination scalar register 
is the first source scalar register (operand I) 
is the second source scalar register (operand 2) 

The m2smu l t _r instruction performs short multiplication (16-bit) with rounding to 
source scalar registers srsl and srs2 and places the result to the destination vector 
register s r d . 

Example 

m2smult_r( 4 , 2,3) ; //sreg4=sreg2*sreg3 (with rounding) 

m2simult 

Instruction Format 

m2simult format 

1001010 srd srs1 

21 15 10 

Syntax 

m2simult( s rd, s rsl, srs2 ) 

is the destination scalar register 
where: 
srd 
srsl 
srs2 

is the first source scalar register (operand I) 
is the second source scalar register (operand 2) 

Description 

srs2 

5 o 

The m2 s i mul t instruction performs short integer multiplication ( I 6-bit) to source scalar 
registers srsl and srs2 and places the result to the destination vector register srd. 

Example 

m2simult(4,2,3); //sreg4=sreg2*sreg3 (integer) 



Appendix A Vector and Scalar ISA 

m2slshl 

Instruction Format 

m 2515hl format 

0110101 srd srs1 

21 15 10 

Syntax 

m2s1shl(srd, srsl, amount) 

is the destination scalar register 
where: 
srd 
srsl 
amount 

is the scalar register (operand I) to be shifted 
is the shift amount (immediate) 

Description 

233 

amount 

5 o 

The m2 slshl instruction performs long shift left (32-bit) to the scalar regi ster srs 1 by 
immediate (amount) and places the result to the destination scalar register srd. 

Example 

rn2slshl(3,l,4); II Long shift left sregl by 4 and put 
result to sreg3 

m2slshr 

Instruction Format 

m2slshr format 

0110111 srd 5(51 

21 15 10 

Syntax 

rn2slshr(srd, srsl, amount) 

is the destination sca lar register 
where: 
srd 
srsl 
amount 

is the scalar register (operand I) to be shifted 
is the shift amount (immediate) 

Description 

amount 
5 o 

The m2 slshr instruction performs long shift right (32-bit) to the scalar register srsl 
by immediate (amount) and places the result to the destination scalar register srd. 



Appelldix A Vector alld Scalar /SA 

Example 

rn2slshr(3,1,4 ); //Long shift right sregl by 4 and put 
result to sreg3 

m2slshlJg 

Instruction Format 

m2slshl r9 format 

I 011 011 0 I srd srs1 

21 15 10 5 

Syntax 

rn2slshl_ rg(srd, srsl, srs2) 

is the destination scalar register 
is the scalar register (operand I) to be shifted 

where: 
srd 
srsl 
srs2 is the scalar register (operand 2) with the shi ft amount 

Description 

srs2 

234 

o 

The rn2slshl_rg instruction perfonns long shift left (32-bit) to the scalar register 
srsl by the amount of the vector register srs2 and places the result to the destination 
sca lar register srd. 

Example 

rn2slshl_rg(3,1,4) ; // Long shift left sregl by amount that 
is in sreg4 and put result to sreg3 

m2slshrJ9 

Instruction Format 

m2slshr r9 format 

I 0111000 I srd srs1 

21 15 10 5 

Syntax 

rn2s1shr_rg(srd, srsl, srs2) 

is the destination scalar register 
is the scalar register (operand I) to be shifted 

where: 
srd 
srsl 
srs2 is the scalar register (operand 2) with the shift amount 

srs2 

o 



Appelldix A Veclor alld Scalar ISA 135 

Description 

The m2slshr_rg instruction perfonns long shift right (32-bit) to the scalar register 
srsl by the amount of the vector register srs2 and places the result to the destination 
scalar register srd. 

Example 

m2slshr_rg(3,1,4); //Long shift right sregl by amount that 
is in sreg4 and put result to sreg3 

m2sshl 

Instruction Format 

m2ssht format 

I 1000010 srd srs1 

21 15 10 

Syntax 

m2sshl(srd, srsl, amount) 

is the destination scalar register 
where: 
srd 
srsl 
amount 

is the scalar register (operand I) to be shifted 
is the shift amount (immediate) 

Description 

amount 

5 o 

The m2sshl instmction perfonns short shift left ( 16-bit) to the sca lar register srsl by 
immediate (amount) and places the result to the destination scalar register srd. 

Example 

m2sshl(3,1,4); //Short shift left sregl by 4 and put 
result to sreg3 

m2sshr 

Instruction Format 

m2sshr format 

1000011 srd srs1 amount 
21 15 10 5 

Syntax 

m2sshr(srd, srsl, amo unt) 

where: 

o 



Appendix A Vector and Scalar ISA 

srd 
srsl 
amount 

Description 

is the destination scalar register 
is the scalar register (operand I) to be shi fted 
is the shift amount (immediate) 

236 

The m2sshr instruction performs short shift right ( 16-bit) to the scalar register srsl by 
immediate (amount) and places the result to the destination scalar register srd. 

Example 

m2sshr(3 , l,4) ; IIShort shift right sregl by 4 and put 
result to sreg3 

m2sshlJ g 

Instruction Format 

m2sshl rg format 

I 01 11 101 srd srs1 

21 15 10 5 

Syntax 

m2sshl_rg(srd, s rsl, srs2) 

is the destination scalar regi ster 
is the scalar register (operand I) to be shifted 

where: 
srd 
srsl 
srs2 is the scalar register (operand 2) with the shift amount 

Description 

srs2 

o 

The m2 sshl_rg instruction performs short shift left ( 16-bit) to the scalarregister srsl 
by the amount of the vector register s r s2 and places the result to the destination sca lar 
register srd. 

Example 

m2sshl_r g(3,l,4) ; IIShort shift left sregl by amount that 
is in sreg4 and put result to sreg3 

m2s shrJg 

Instruction Format 

m2sshr rg format 

I 1000100 I srd I srs1 I srs2 I 
21 15 10 5 0 



Appendix A Vector and Scalar ISA 

Syntax 

m2sshr_ rg(srd, srsl, srs2) 

where: 
srd 
srsl 
srs2 

Description 

is the destination scalar register 
is the scalar register (operand I) to be shifted 
is the scalar regi ster (operand 2) with the shift amount 

237 

The m2 sshr_ rg instruction performs short shift right (16-bit) to the scalar register 
srsl by the amount of the vector register srs2 and places the result to the destination 
scalar register srd. 

Example 

m2s s hr_rg (3 ,1,4); IIShort s h ift righ t sregl by amount that 
is in sreg4 and put result to sreg3 

m2sinegate 

Instruction Format 

m2s lnegate format 

I 0110010 I srd srs1 

21 15 10 

Syntax 

m2slnegate(srd, srsl) 

is the destination scalar regi ster 
where: 
srd 
srsl is the source scalar register (operand I) 

Description 

o 
5 

The m2 sln ega te instruction negates the 32-bit value in scalar register srsl with 
saturation and stores the resu lt to the destination sca lar register srd. 

Example 

m2slnegate(3,1); I INegates (32-bit) value sregl and put 
result t o sreg3 

o 



Appendix A Vector and Scalar ISA 

m2slabs 

Instruction Format 

m2slabs fonnat 

011001 1 

21 15 

Syntax 

m2slabs_s(srd, srsl) 

srd 

10 

is the destination scalar regi ster 

srs1 

where: 
srd 
srsl is the source scalar register (operand I) 

Description 

o 
5 

The m2 slabs instruction produces the absolute value of the 32-bit value in scalar 
register srsl and places the result to the destination scalar register srd. 

Example 

m2slabs(3.1); //Absolute (32-bit) value of sregl and put 
result to sreg3 

Instruction Format 

m2snorm I format 

0110100 srd srs1 

21 15 10 

Syntax 

rn2snorm_l(srd. srsl) 

is the destination scalar regi ster 
where: 
srd 
srsl is the source scalar regi ster (operand I) 

Description 

o 
5 

238 

o 

o 

The rn2snorm_l instruction produces the number of left shifts needed to normalise the 
32-bit va lue in scalar register srsl and places the result to the destination scalar regi ster 
srd. 

Example 

m2snorm_l(3.1); //Normalise value (32-hit)of sregl and put 



Apoendix A Vector alld Scalar ISA 

result to sreg3 

m2s/deposiC/ 

Instruction Format 

m2sldeposit I format 

I 0111001 I srd srs1 
21 15 10 

Syntax 

m2sldeposit_l(srd, srsl) 

is the destination sca lar register 
where: 
srd 
srs1 is the source scalarregister (operand 1) 

Description 

239 

o 
5 o 

The m2sldeposi t _ l instruction deposits the 16 LSB of sca lar register srs1 into the 
LSB 32-bit of destination scalar register srd. The 16 MSB of srd are sign extended. 

Example 

m2sldeposit_l(3,1); //Deposit 16 LSB of sregl into 16 LSB 
of sreg3 

m2s/deposit_h 

Instruction Format 

m2sldeposit h format 

I 0111010 I srd srs1 
21 15 10 

Syntax 

m2sldeposit_h(srd, srsl) 

is the destination scalar regi ster 
where: 
srd 
srsl is the source scalar register (operand 1) 

Description 

o 
5 o 

The m2sldeposi t_h instruction deposits the 16 LSB of scalar register srsl into the 
MSB 32-bit of destination scalar register srd. The 16 LSB of srd are zero extended. 



Appelldix A Vector alld Scalar/SA 240 

Example 

m2sldeposit_h(3,1); IIDeposit 16 LSB of sreg1 into 16 MSB 
of sreg3 

m2snegate 

Instruction Format 

m2snegate format 

I 1000110 I srd srs1 

21 15 10 

Syntax 

m2snegate(srd, srsl) 

is the destination scalar register 
where: 
srd 
srs1 is the source sca lar register (operand I) 

Description 

o 
5 o 

The m2 snega te instruction negates the 16-bit value in sca lar register srs 1 and places 
the result to the destination scalar register srd. 

Example 

m2snegate(4,2); II Negate value (16-bit)of sreg2 and put 
result to sreg4 

Instruction Format 

m2sabs s format 

1000001 srd srs1 

21 15 10 

Syntax 

m2sabs_s (sr d, srsl) 

is the destination sca lar register 
where: 
srd 
srs1 is the source scalar register (operand I) 

o 
5 o 



Appendix A Vector alld Scalar ISA 

Description 

Thcm2sabs_s instruction produces the absolute value orthe 16-bit value in scalar 
regi ster s rs1 and places the result to the destination scalar register srd . 

Example 

m2sabs_s (4,2 }; //Abs olu te value (1 6-b i t} o f sreg 2 and pu t 
r e sult t o sreg 4 

m2sextracCh 

Instruction Format 

m2sextract h format 

10001 11 srd srs1 o 
21 15 10 5 

Syntax 

m2 sex trac t_h( srd , srsl ) 

where: 
srd is the destination scalar register 
s r s l is the source scalar regi ster (operand I) 

Description 

241 

o 

The m2 sextract_h instruction extracts the 16 MSB orlhe 32-bit value of scalar 
regi ster srs 1 and places them into the 16 LSB orthe destination scalar register s rd. 
The 16 MSB of srd are zero extended. 

Example 

m2sextract_h(4 ,2 }; //Extract 16 MSB of sreg2 and put 
them to sreg4 

m2sextract_' 

Instruction Format 

m2sextra ct I fo rmat 

1001000 srd srs1 o 
21 15 10 5 

Syntax 

m2sextract_l (srd, srsl } 

o 



Anpendix A Vector and Scalar ISA 

where: 
srd 
srsl 

Description 

is the destination scalar register 
is the source sca lar register (operand \) 

242 

The m2 sex tract_l Instruction extracts the 16 MSB of the 32-bit value of sca lar 
register srsl and places them into the 16 LSE of the destination scalar register srd. 
The 16 MSB of srd are zero extended. 

Example 

m2sextract_l(4 , 2 ); //Extract 16 LSB of sreg2 and put 
them to sreg4 

m2sround 

Instruction Format 

m2sround format 
1001001 srd srs1 

21 15 10 

Syntax 

m2sround(srd, srsl) 

is the destination scalar register 
where: 
srd 
srs1 is the source scalar register (operand I) 

Description 

o 
5 

The m2 sround instruction rounds the 16 LSB of the 32-bit value of scalar register 

o 

srs1 into its most significant 16-bits with saturation. The result is shifted right by 16 and 
placed in the destination scalar register srd. 

Example 

m2sround(4,2) ; //Round 32-bi t value of sreg2 and put 
the result to sreg4 



APPENDIX B SIGNAL DESCRIPTION 

Signals for Vector Datapath 
Signal Type Width Brief Description 

SfMDJ Control I bit 
Selects two 16-bit (when - '0') operations 
or one 32-bit (when = ' I ') 

sel_subJ Control I bit 
Selects addition (when='O') or subtraction 
(when=' I ') 

sel_sfctnJ Control 2 bits Selects function fo r vadd unit 
sel_ round_ r Control I bit Selects round operation (when= ' I ') 
sel_cmpJ Control I bit Selects compare operation (when=' I ') 
sel_ muHJ Control 2 bits Selects multiplication type for vmult unit 
scl_muH_r_r Control I bit Selects mult (wben='O') or mult_r (' I ' ) 
cmd_shiftJ Control cmd_shift_type Selects shi ft operation 
scl_misc_r Control 4 bits Selects rrllscellaneous operation 
sel vu r Control sel_vu_ type Selects vector unit for operation 
vrs l _rdaddr_r Control Log2(VREGS) Source I vector register address 
vrs l - rden r Control VLMAX*2 Source I vector register read-enable 
vrs2Jd.dd rJ Control Log2(VREGS) Source 2 vector register address 
vrs2_rdco_ f Control VLMAX*2 Source 2 vector register read-enable 
vrd_addr Control Log2(VREGS) Destination vector register address 
vrd_wen Control VLMAX*2 Destination vector register write-enable 
srs1 - rdaddrJ Control Log2(SREGS) Source I scalar register address 
srs1 - rden r Control 4 bits Source I scalar register read-enable 
srs2JdaddrJ Control Log2(SREGS) Source 2 scalar register address 
srs2 _rdcn_ r Control 4 bits Source 2 scalar register read-enable 
srs3Jdadd rJ Control Log2(SREGS) Source 3 scalar register address 
srs3 _rden _ r Control 4 bits Source 3 scalar register read-enable 
srd waddr r Control Log2(SREGS) Destination scalar register address - -
srd_wen_f Control 4 bits Destination scalar register write-enable 

vacel rd addrJ Control 
Log2 

Source I vector accumulator address - (ACC_NUMBER) 
vace l - rtlCIl_ f Control ACC_ WIDTHJ32 Source I vector accumulator read-enable 

vacc2 rdaddr r Control 
Log2 

Source 2 vector accumulator address - - (ACC_NUMBER) 
vacc2_rd cn_r Control ACC WIDTHJ32 Source 2 vector accumulator read-enable 

vacc waddr r Control 
Log2 

Destination vector accumulator address - - (ACC_ NUMBER) 

Control ACC_ WIDTHJ32 
Destination vector accumulator write-

vacc_wcn_r 
enable 

vlen wcn r Control I bit Write enable for the vlen register 
ovf_wen Control I bit Write enable for lhe overnow register 
prcd_wen Control I bit Write enable ror the predicate register 
vi en nvalue Data Log2(VLMAX) ew value for the vlen register 

Ist_neg Control I bit 
Selects load/store negative stride 
(when=' I ' ) 

opc_valid Control I bit Valid signal for ule register output 
"ddr_va lid Control I bit Signal to indicate the address is valid 
read Control I bit Selects load (' I ') or store ('0 ') instruction 
sel vs Control I bit Selects vector (' I') or scalar ('0') ruction 

243 



Appendix B Signal Descrintioll 

Sienal Type Widlh 
scl_width Control I bit 
sel_evod Control even_add_type 
sel_opr) Control opr_type 
sel_opr2 Control opr_type 
slg2_ vadd Control I bil 
sel vaccred Control I bil 
gpdala Data 32 bi ls 
sel_sl Control I bit 
sel mask Control I bit 

Control signal for Vadd Unit 
sel sfcln Instruction 
00 
01 
10 
11 

Control signal for Ymult Unit 
scl mull 
00 
01 
10 
II 

sel mull r 
o 

Contro l si 7lal for Vrnisc Unit 
sel misc 
0000 
000 1 
00 10 
00 11 
0100 
0101 
011 0 
0111 
1000 
1001 
1010 

addlsub/vrcmp 
vcmp_h_ge 
vcmp 
round 

lnstruction 
L mult 

mull 
mull r 

Instruction 
mult 
mult r 

Instruction 
L_negate 
negate 
nonnJ 
L_abs 
abs_s 
eXlr3ct_1 
cxtr3ct_h 
l_deposil_1 
1_ deposi t_ b 
merge 
merge t h 

244 

Brief Description 
Selects 16 (' I ' ) or 32 ('0') bits data width 
Selects even or odd or nomlal operation 
Selects the Iype of Ihe first operand 
Selects the type of tbe second operand 
Stage 2 vadd tmit enable 
Vaccreduce unit enable 
Data from Leon register fil e 
Selects store instruction (whcn=' I') 
Selects to mask Ille result (when=' I ') 



APPENDIX C G.729A AND G.723.1 FUNCTION 
RESULTS 

This section presents the resulis fro 111 the G.729A speech codec showing the improvemelll 

made from a functi on perspecti ve. 

Acetp_Code_A (Full Optimization) 

-Alg!hm - Fixed 

'" - Pitch -- -T~ ~ 
0 

c - Tesl , 
0 0 

<.> 
c .g 

0 u 

Iv--, 
~--v ~ .AV" 

V" 

~ r 
' ,..."...." ..... V 

.A 

~ -----, 
le 

~ ~ IF"" v- IP" .... .... 
-"v .A 

~ \1"-- - A ...,... 
. y 

y 

5 • E 0 u 
'E 
• c 
~ o. c 
• > ';; o. .. 
a: 

0 
0 " 32 . , .. 80 .. 112 12' 

Vector l ength (VLMAX) 

Copy (Full Optimization) 

- Algd'IJn Fbled 
Lsp Puch 

- Speed'! Tame 
T.~ 

0.3 

l 
E 0,:> , 
0 

<.> 
c 0.2 0 

.~ 

I 2 
02 ;; 

E 
.~ 0,1 ': • c 
~ 
C 0.1 • ,< 

V-.. 
OO! .. 

er: V 
0, 

0 16 32 . , .. 80 .. 11 2 128 

Vector Length (VLMAX) 

245 



ApIJendix C G.729A and G. 723. 1 Functio1l Re.wlts 246 

Corr_xy2 (Full Optimization) 

o. 
• -"",lhm • F.", 

l 0.4 "" PItch 
-- Speech - - Tame 

E Tesl , O • • 0 
<.> I g 0,3 

'" I 0 

2 o. ;; 
E • 
,~ 0.2 \ E 
• e O. \ ~ 
0 
• • > 0. ' • i 

l \ .. • o. • a: ......•.• 
• •• ••• •• •••••••••• • ••••••••••••••••••••••••• 

0.0 
0 •• 32 .. .. 60 .. ." '" Vector Length (VLMAX) 

G_pitch (Full Optimization) 

0.' --Alglhm • Fixed 

~ O. 
u, PI tch -- - - Tame 

C - Tesl , 
0.' 0 I <.> 

e O. 0 g 
.;; O.l! r-
E 

0· 1-+-0 'e • §. 02 ~ 
0 

• O. > 
.~ 

£ 0.1 r--

0.1 
V 

0 " 32 .. .. 60 .. "' '" 
Vector Length (VLM AX) 

Gain_predict (Full Optimization) 

.. 
Alglhm -. ""," 

l , 
~ 

up Pitch 
- --Speech _ Tome 

C - Teo< , 
0 
0 I . 
e 

\ 
0 

n 
2 
;; 
E 

\~ 0 o. E • e 
~ 

'. 0 0 . • •• .. ..... ... . ... ;; 
...... e.. ~ .. _ . " __ . ::.. • r . .... --..... ____ . ---. _ . ......... .. .... ~ ;; 0 

a: ........... ~ ....... -.... --. ,,~ ................ -............. 
o. 

0 16 32 ., " eo .. "' '" 
Vector Length (VLMAX) 



AopelldLr C C.729A alld C.723. 1 Fllllet ioll Results 247 

GeC wegt (Full Optimization) 

o. -- • Filt8d 

~ 0.7 
c., """ ....... - Speech r .... 

E o. r .. , 
0 
0 I ~ 0.6 

.£ 
O. 

2 
j a.S! 

.~ 
E 0 ~ 
• e 
1; 0 .• 

• i > o. :; 
;; 
C< 0.3 

O. 
0 ,. 32 .. 54 60 go 112 <2' 

Vector Length (VLMAX) 

InCqlpc (Fu ll Optimization) 

0 
-- AI9,hm . Filled 

~ 0 ,4 
Cs, ~ PITch 

E - S""",,, - Tama 
0 Tes! 
0 O. 

" g 
t; 0.3 

S • 0 ---.E 
.~ ~ 5 0.2 
e ,.. 

j " • 0 
> 
~ • 
~ 01 _ .•.. _ ..................... -..................... _ ............. 

O. 
0 ,. 32 48 64 '0 .. 112 <2. 

Vector Length (VlMAX) 

Lag_window (Full Optimization) 

<2 -_m . F • ..., 

i! 1. 1 - -- .... PiTch 
- -8""",,, - _ Tame 

§ 10 I-
--Tes! 

0 

~ 09 
0 'r-
~ g 0.8 
~ 

E 0.7 
u 

. ~ 0." r-
e 
0 0.5 • 
~ 0." t \..· ....... • ......... -... --. ................................. ;; 
a: 0_3 . l.F-'- . 

• 
0.2 

0 ,. 32 •• 54 .0 96 1<2 ,28 

Vector Length (VLMAX) 



Aopelldix CC. 72911 " lid C. 723. 1 Fllllctioll ReslI!ts 248 

lSP-get_quant (Full Optimization) 

0 
-Alglhm . Fixed 

l Up PilCh 

E o. I -" -T . ... 

0 Too' 
0 
U 
c o. 0 
'U 
2 
;; o. ,. 
•• ..... ~ .•..•........•...........••.....•..•.......•........... 
E • 
~ o. 
0 

• •• ;; 0 .. ... .. -_ .. ..-...... . . . . ..-.. .. _._ .... ,.,- _ ... ....-.. ..-. ..... - .. .. ...-...... ~--
a: 

o. 
0 " 32 4. 64 80 96 '" 12. 

Veelor Length (VLMAX) 

lsp_geU dist (Full Optimization) 

os 
Afglhm . Fixed 

o. up . Pitch 

l ~s_ --Tame 

E 0.4 
T,,, 

0 
0 
U O. • 
~ 
5 

0.3 

• o. " u 
'E 02 • c 

·t ~ 0, 0 

• 
~ 0' • .. . .....................•.............•..•.................. a: 0. ' 

0, 
0 " " .. .. .. .. "' '"~ 

VKtot Lenglh IVLM,u) 

lsp_prev_compose (Full Optimization) 

o. 
--A1gthm • FiKed 

! o Up Pitch 

E -- Speech - T,me 
0 
0 T .. , 
U O. 
c 
0 

n 
2 o. 
;; 

" u 0 t 'E 
• c 
~ 

0 0, 

• 

.~ ....................................................... 
. ~ 
• .. 0 
a: 

0 
0 ,. 32 4. .. so 98 '" 12. 

Vector Length (VLMAX) 



Appendix C G. 729A and G. 723.1 Function Results 249 

lsp_prev_extract (Full Optimization) 

\ -- Algthm • Fixed 
0 

~ 
.... Pitch . s_ · Tom. 

E o. T", , 
0 
U 
c 0 .2 
U 
E o. , • £ 
u 
'e 0 C-o 
c 
~ 
C o. ., 
• Z 
;; 
0; o. \ 0: • •.........................•..•••.•.....•..•.•.•••.•..•••.. 

0 
0 ,. 32 .. .. 80 96 112 128 

Vector length (VLMAX) 

l sp_select_, (Full Optim ization) 

o. 

1 
-Algthm · Fixed 

l O.5 
.... Pilch 

E -. Speech ---- Tame , 
0 Tesl 
U 0 -- ~ 

~ 
u 
2 o. 
;; 
£ 
u o. 'e • c 
~ 

C 03 
• Z 
;; .-.......................... _ ...... _ ........ _ ................. .. o. t-o: 

0' 
0 ,. 32 .. 54 80 96 ", 128 

Vector Length (VLMAX) 

lsp_select_2 (Full Optimizati on) 

o. 
Algthm • Fixed 

C O,S 
.... Pitch 

E --- Tomo , 
t 0 . T", 

U 0 
c 
.2 
U 
E o. 
• £ 

." o. 
E • c 

l-~ 
C 03 
• Z 
;; •• a -II- ••••• 11- .... a.a-_ ....... a -II- •• 11- ............. _. __ •••• _ ••••• 11-.11-.. 0 
0: 

0' 
0 16 32 .. 54 80 96 ", 128 

Vector l ength (VLMAX) 



Appelld;x C C.729A alld C.72J.1 Fllllct;OIl Reslllts 250 

Pitch _lr3_last (Full Optimization) 

o. 
--Algtnm • fiJted 

ii' Up ~)'" 

::- . -- - - Tame 
0 

i 
, T", 0 

<.> 
0 o. 
~ 
2 • E O. 

"" E • 
;' 0 f 
0 

.~ 
j o. .. \-• I a: 

~..I - ... __ .... _ .... . ............ ---_ ..... _ .. - .. -. 
0 ,s 32 .. .. eo .. 112 12. 

Vector Length (VlMAX) 

Relspwed (Full Optimization) 

0." 

1 

- ..... A1glhm - 0 FI)(ed 
.... , PilCh 

l - ....... Speech - - Tame 

E - Test ---
~ 

" < o. ,g 

j 
• E 
~ 
ti 0.7 -
• .• 
~ .... --' .. _ ...................... -............................. 
~ 

o. 
0 '" 32 ... .. 80 96 112 '2. 

Vector Length (YlMAX) 

Set_zero (Full Optimization) 

Alglhm • Fixed 

l 0 .... , Pitch 

C - -Speech - Tame , 
- Test • <.> • < • ~ 

u 

~ 2 o. • E 
.2 
E • o. < 
~ 

"" 
0 

11 • ~ .. ~ > 
j 0.1 ~. 

• a: 

• " 32 48 64 80 .. 112 12. 

Vector Length (VLMAX) 



AppeJ/dix C G.729A lInd C. 723. / Fllllcrioll Re.m/IS 251 

Decod_ACELP (Full Optimization) 

0.' 
Alglhm • Fixed 

O. '" Pitch 

t ..... Speech ~·~ Tame 

] 05 I 
j 

i 0 

• • 1 O~ T 

j ~ 
Q.3! 

0 
0 " 32 •• .. 60 .. 112 ". 

Vector Length (VLMAX) 

Post_Filter (Full Optimization) 

--A/g1hm ~_ Flxed 

lo.sl "" Pitch 

<0.'" - 0 Speech - - Tame ---
~ 
g 0.." 1 ~ 

'ii 
5""" • c 
~ 0..31 -0--

E • ;. 0.26 ~-

0 

~ 0.21 l-" 
~ 
~ 0.16 ~ 

O.lt 
0 16 32 .. .. 60 .. 112 12. 

Vector Length (VLMAX) 



Appelldix CC. 729A "lid C.723.1 FUIIClioll Resull.' 252 

Th is section presents the results from the G.723. 1 speech codec showing the 

improvement made from a functi on perspecti ve. 

Acelp_Lbc (Full Optimization) 

o. 
- Mue Code Aale to.7 
--Code Rate 53 

E o. . , 
0 
0 0.6 
< 
0 o. -:g 
2 ;; 0.5 

~ 
E 
u 0 
'e 
~ 0.4 
~ 
C O • • > 
:; 0.3 
;; 

'" O. 

0.2 

0 ; " 32 " " 80 " 1t2 128 

Vector length (VLMAX) 

Calc_Exc_Rand (Full Optimization) 

, 
- MixB(! Rate 

lo ... - 53Rale 
-&3Ae!. 

< ---63bRate 

.3 0·9< 1 
--,,- 63e Rate 

< 
.g 0.9< 
~ . 

t~\ 
~ o ] 

o. 
0 16 32 " " 80 96 1t2 128 

Vector Length (VLMAX) 



Appelldix C G.729A (l lId G.723. J FlIlICl ill ll ReslIll.\' 253 

Coder (Full Optimization) 

o 1\ 
-MtlledAate 

t -~3R8te 

C O. I - 63 Ratfl , 
0 
U 
c o. 0 

I ~ 

~ o . 
.E 
0 

'E o. 
• c ,. 
C o. ---• > 
~ .. o. .... .,,-a: 

ol 16 32 .. .. eo 96 '12 '2' 

Vector Length (VLMAX) 

COd_cng (Full Optimization) 

'l~ 
--Cooe Mix 

t • 53 Aale 

C 63Al!lle , 
0 

[L u 
g 
~ o. 
;; 

'\, .E 

•• E o. 
• •• c •••••••••••...•..•...•................ .................••• ,. 
C 

• .~ 0 
• .. 
a: 

o. 
0 16 32 •• .. eo 96 112 '2' 

Vector Length (VlMAX) 

Comp_Vad (Full Optimization) 

0., 
_Mlqd~ 

~O.6 -53R11te 

C -63R11te , 
0 o. I u 
c 
.2 

o.~ U 
g 
• o . .E 

.~ 

~ . 0." 
c ,. 
0 ) 
~ o. 

.~ , 
~ 0.3 a: 

o )! 
0, 16 32 .. 64 .0 96 '12 128 

Vector Length (VLM AX) 



Appelldix C.729A 1I 11d C.72J. / FUllctioll Resu/t., 254 

Cor_h_x (Full Optimization) 

o. 
-Mjnd Coc» 

~ 0 -SS R.t. 

C , 
0 

" c 0.3 

.g 
u 
2 o. 
;; 
E 
u 02 E • c 

+-~ 
c 0 
• > 

~ .. • a: 

0." ! O
2 

,. 32 '8 .. 80 96 112 '28 
Vector length (VLMAX) 

Find_' (Full Optimization) 

0.' - MIlled Rate ~53A8te 

l O. 
~63R8t8 63b Rate 
--63& Rale 

C , 0.3 
0 

" c 

'e 
O. -

2 0' ;; 

jl 
E . ~ o . -
E • 
;. 0.1 
C 

.~ 0 -
;; .. a: 0,0 

0 ,. 32 .. .. 80 .. 112 '28 
Vector Length (VlMAX) 

FilC Pw (Full Optimization) 

0.' I -MiltedRate 

l - 53 Rale 
0 - 63 Aale 

C 
0.3< , 

0 

" c 03 
0 

'" 0.2 u , 
" 0.2 • E 
.~ o. 
E 
~ 0.1 
~ 

~ 01 i t 
~ o.~ 
• a: 0." I --

oj ,. 32 '8 .. 80 9 • 11 2 '28 

Vector Length (VlMAX) 



Apvelldix CC. 729A (/lid C. 723. 1 FlIll ctioll ReslIlts 255 

G_Code (Full Optimization) 

0.' --MIl(edRate 

l 0 .• - 53 Aale 

C 
~ 0.55 

" c os 0 
'D 
U 

E 0.45 
• E 
u 0.' 'f 
• ~ 0.35 
0 

• 0.' ,~ 
• £ 025 --

o~ ! 
" 32 •• 2 

.. OD os 112 128 

Vector length (VLMAX) 

tniC Cod_Cnd (Full Optimization) 

0'1\ 
-MI~edRote 

l - 53 Ral& 

C -63 Rale , O. I 
0 

" 
.~ O. 
;; 
2 
;; 0 
E 

.~ 0 
• c 
~ 
0 0 • •• <; .. o. ..........., ... a: , .1.,-

O. , 
0 " 32 '8 54 BD 96 112 128 

Vector length (VLMAX) 

tnit_Coder (Full Optimization) 

-Mlx&dRale 

l 0 -53 Rat& 

C - 63 Rale , 
0 

" o. 
c 
0 

Z 
~ o. 
E 
u 
'f 
• 0 c 
~ 
0 

• •• 0 <; .. 
a: 

o. 
0 " 32 •• .. OD 96 112 128 

Vector Length (VLMAX) 



Appelldix C G. 729A alld G.723. / FlIllcrioll Re.I"II/1.f 256 

IniC Dec_Cng (Full Optimization) 

o. 
-Mixed Rale 

.!! -$l ABIa 

~ O. - &lAala , 
0 
U 

g o 
.~ 

u 

E 
~ o . 
. ~ 
• 
~ O. 
0 

• > 
i o. 
• a: . "'" .--... _-_ ....... , ..... --

0 
0 ,. 3' 48 .. eo 96 "' '" Vector Length (VlMAX) 

IniC Oecod (Full Optimization) 

o. 
- Milled Aate 

~ o.7 - 53Ra!e 

" o. - 63 Rate , 
.3 0." 
c 
.g o. i u , 
~ 0.5 
E 
u o. ·e 
~ 0 4 
~ 

0 o. • > 
'-; 0.3 .. I. 11" 11, •• " " '. a: o. 

0.' 0 " 32 . , .. eo .. '" '28 
Vector l ength (VlMAX) 

Init _Vad (Full Optimization) 

o. ---
- M1U1d Rale 

l O.7 I-Sl Aale 

-&JRa!e 

" o. 

i 0:', f 
~ oJ 
E 
u o. ·e 

t :! 0,4 
~ 
0 o. 
~ 
~ 0.3 .. , , 
a: o. j 0.' I 

0 " 3' .. " 80 96 "' '" 
Vector l ength (Vl MAX) 



Appelldix C G.729A alld C.723. 1 FUllctioll Resltlts 257 

Lsp_lnt (Full Optimization) 

-MIx.dRat. 
__ 0.7 

- S3Aa1. 10 
C - S3RBle 

~ 0.6 

" c 
.g 
ti 0.5 
2 
;; 
c 
- 0 4 
' ~ 
• .,. c 
O O.~ 

• 
~ -i 0.2 .. .. -. ... 51' , --" •• I r . I •• .- •••••• -. - , ,- •• , -. . ' -~'FI-' " --'- , .-': 

a: 

01 
0 " 32 4' .. 80 go '" '" 

Vector l ength (VLMAX) 

LPCDiff (Full Optimization) 

0.6 j ~MI .. d Cod, ' 

" 0 .• 

- 53 Rate 
!".. O. - S3Rale 
C 8 0.5-

g o . 
." 
U 
2 OA 
;; 

" 0.' 
u 
] 0.31 -...-
c 
II o.~ 

I~\-.! o. 
• 
" er 0.2 1 ' 

o. 
oj " 32 ., .. 80 96 '" '" Vector Length (VLMAX) 

Lsp_int (Full Optimization) 

o. 
--+-Mixed Rata ~53 Rale 

l 
__ 63 Rata - 63bRala 

C O. 
- 63eRate 

, 
0 

" a o. z 
~ 
.E O. T 
u 
E 
• 

+--~ ~ o. 
0 

• > 

1+- 1,-'" • 0 " a: 

o. 
0 " 32 48 64 so 96 112 12' 

Vector Length (VLMAX) 



Apoendix C C. 729A and C.723. ! Function Resu!ts 258 

Mem_Shifl (Full Optimization) 

:~ 
-Mixed Rate _ 0 
- 5JAB1S 

C. o. - 63Rale 

~ 0~ 1 ~ OA 
~ 0J 
'; o. 
E 0 u 
.~ 0.2 , \ c 
~ ~ 0 

~---
.~ 0.1 .. O . .. 
0: 

00 , , 
•• I • I I 1I "'--... 

0 16 32 .. .. 80 g. "' , .. 
Vector Length (VlMAX) 

Wght_Lpc (Full Optimizat ion) 

o. 
-Mbo:.ed Rale 

_ o.7 - S3Aa!. 
C O. - B3Aets 
C 
5 0.6 

<.> 
8 o. 
·il 0.0 
2 
in o. 
c 
~ 0.4 
·e o . • c 
~ O.3 

t • o . . < 
~ 0.2 
0: 

O. .. ..... • •• 1 ••••• "' 

0.' 0 ,. 32 .. .. 80 96 11 • 12. 
Vector Length (VLMAX) 



AUTHOR'S PUBLICATIONS 

The following are the publications that have resulted from the work in this thesis. 

[I] V. A. Chouliaras, J. L. Nunez, S. R. Parr, K. Koutsomyti, D. J. Mulvaney and S. 
Datta, "Development of custom vector accelerator for high-performance speech 
coding", lEE Electrollic Letters, vol. 40, November 2004, pp.1559-156 1. 

[2] K. Koutsomyti, S. R. Parr, V. A. Chouliaras, J. L. Nunez, D. J. Mulvaney and S. 
Dalta, "Scalar and Parametric Vector Accelerators for the 0.729A Speech Coding 
Standard", in Proceedillgs of IEE/ACM Soc Desigll. Test alld Techllology 
Postgradllate Semillar, Loughborough University, September 2004 , pp. 53-57. 

[3) K. Koutsomyti , S. R. Parr, V. A. Chouliaras, J . L. Nunez, D. J. Mulvaney and S. 
Datta, "Configurable Scalar and Vector Accelerators for the G.729A and 0 .723.1 
Speech Coding Standards", in Proceedillgs of Postgraduate Research COllf erellce 
ill Electrollics. Photollics. Commllllicatiolls alld NellVorks. alld Comp"lillg Sciellce 
(PREP2005), Lancaster University, March 2005, pp. 62-63. 

[4) S. R. Parr, K. Koutsomyti , V. A. Chouliaras, J. L. Nunez and D. J . Mulvaney, 
" onfigurable scalar and Vector Coprocessors for accelerating the 0.723.1 and 
0 .729.A speech coders", in Proceedillgs of the IlItematiollal COllferellce 011 

Sigllal alld Image Processillg, Novosibirsk, Russia, June 2005, pp.340-344. 

[5) K. Koutsomyti, S. R. Parr, V. A. Chouliaras and J. L. Nunez, "Applying Data
Parallel and Scalar Optimizations for the efficient implementation of the 0.729A 
and 0.723.1 Speech Coding Standards", in Proceedillgs of the rh lASTED 
llllematiollal Conferellce 0 11 Sigl/al alld Image Processillg (SIP 2005), Honolulu, 
USA, August 2005, pp. 40-45. 

[6) V. A. Chouliaras, K. Koutsomyti, T. R. Jacobs and S. R. Parr, D. J. Mulvaney and 
R. Thomson, "SystemC-defined SI:MD instructions for high performance SoC 
architectures", in 13th IEEE IlIIerl/atiollal COllferellce 011 Electrollics. Circuits alld 
Systems , Nice, France, December 2006, pp. 822-825. 

[7) V. A. Chouliaras, K. Koutsomyti, T. R. Jacobs, S. R. Parr, D. J. Mulvaney and R. 
Thomson, "SystemC-defined Sf MD instructions for a MPISMT ASIC platfom,", 
in Proceedillgs of the 24th IEEE Norchip cOllferellce ill ASIC desigll , Linkoping, 
Sweden, November 2006, pp. 285-288. 

[8) K. Koutsomyti, V. A. Chouliaras, S. R. Parr, J. L. Nunez and S. Dalta, 
"Accelerating speech coding standards through System synthesized SlMD and 
Sca lar accelerators", in Proceedillgs of the IEEE IlItematiollal COllferellce 011 

COllsumer Electrollics (lCCE06), Las Vegas, USA, pp. 279-280. 

[9) S. R. Parr, K. Koutsomyti , V. A. Chou \iaras, "A High Bandwidth 
Con figurab \e Load/Store Unit for an Embedded Vector Processor", in 
Postgraduate Workshop 011 Microelectrollics alld Embedded Systems, 
Bim,ingham, UK, October 2006. 






