Loughborough University
Browse
Manuscript_revised (1).pdf (3.7 MB)

A coupled hydrological and hydrodynamic model for flood simulation

Download (3.7 MB)
journal contribution
posted on 2019-03-15, 14:45 authored by Zhanyan Liu, Hongbin Zhang, Qiuhua LiangQiuhua Liang
This paper presents a new flood modelling tool developed by coupling a full 2D hydrodynamic model with hydrological models. The coupled model overcomes the main limitations of the individual modelling approaches, i.e. high computational costs associated with the hydrodynamic models and less detailed representation of the underlying physical processes related to the hydrological models. When conducting a simulation using the coupled model, the computational domain (e.g. a catchment) is first divided into hydraulic and hydrological zones. In the hydrological zones that have high ground elevations and relatively homogeneous land cover or topographic features, a conceptual lumped model is applied to obtain runoff/net rainfall, which is then routed by a group of pre-acquired ‘unit hydrographs’ to the zone borders. These translated hydrographs will then be used to drive the full 2D hydrodynamic model to predict flood dynamics at high resolution in the hydraulic zones that are featured with complex topographic settings, including roads, buildings, etc. The new coupled flood model is applied to reproduce a major flood event that occurred in Morpeth, northeast England in September 2008. While producing similar results, the new coupled model is shown to be computationally much more efficient than the full hydrodynamic model.

Funding

The study is partly supported by the National Key R&D Program of China (2017YFC1502703, 2017YFC1502706).

History

School

  • Architecture, Building and Civil Engineering

Published in

Hydrology Research

Volume

50

Issue

2

Pages

589-606

Citation

LIU, Z., ZHANG, H. and LIANG, Q., 2018. A coupled hydrological and hydrodynamic model for flood simulation. Hydrology Research, 50 (2), pp. 589-606.

Publisher

© IWA Publishing

Version

  • AM (Accepted Manuscript)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Acceptance date

2018-11-06

Publication date

2018-12-13

Notes

“©IWA Publishing 2019. The definitive peer-reviewed and edited version of this article is published in Hydrology Research, 50 (2), pp. 589-606, 2019 and is available at www.iwapublishing.com.

ISSN

0029-1277

eISSN

2224-7955

Language

  • en