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A cross-analysis of existing methods for modelling household appliance 1 

use 2 

This paper presents a cross-analysis of the existing methods for modelling the use of household 3 
appliances and aims to provide insights into modelling approaches for researchers and 4 
designers. Five factors regarding appliance use modelling that have a significant impact on the 5 
modelling performance are defined: consideration of the intra/inter-household variation, 6 
consideration of the influence of socio-demographic conditions, time resolution of the data, 7 
quantification of model calibration parameters and applicability to a variety of modelling 8 
contexts. Four existing modelling methods commonly used in literature for modelling appliance 9 
use are studied to address these factors. Monitored data of 333 multi-family buildings in Japan 10 
and a Japanese time use survey are used in the cross-analysis to simulate the switch-on time 11 
profiles for the case of washing machines. The design of future research studies (including 12 
monitoring strategies, modelling and sample sizes) are discussed to further improve the ability 13 
to model home appliance use. 14 

Keywords: Occupant behaviour; activity modelling; appliance use; residential building; 15 
stochastic modelling 16 

 17 

1. Introduction 18 

Modelling residential electricity demand has received significant interest from 19 

researchers worldwide for use in building simulations. Researchers have published their 20 

methods developed to predict the temporal evolution of the electricity demand with 21 

different time and space scale considerations (Grandjean et al., 2012). Several examples 22 

of residential electricity demand models are used for the studies of i) better prediction of 23 

the time variations of the demand and the peak power demand to analyse the impact of 24 

energy efficiency schemes or demand response (Paatero and Lund, 2010; Gottwalt et 25 

al., 2011; Fujimoto et al., 2017); ii) planning and performance of local energy systems 26 

and emerging technologies (Yao and Steemers, 2005); iii) building performance for 27 

low-carbon buildings due to heat gains from the appliances (Hoes et al., 2009) and (iv) 28 
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the impacts of Electric Vehicle charging and discharging on residential demand profiles 1 

at specific times (Grahn et al., 2013). 2 

Household electrical appliances can be classified into three groups according to 3 

their use by occupants (Firth et al., 2008). Appliances in the first group operate for all 4 

day without any intervention by occupants such as refrigerators and network routers.  5 

The second group involves appliances that are operated by the occupants when they 6 

perform certain activities. These appliances deliver a function or service necessary for 7 

activities. Examples include washing machines for laundry activity, microwave and 8 

oven for cooking, and TV for entertainment. The third group involves, heating, air-9 

conditioning and lighting that are operated to control the indoor environment depending 10 

on the presence of household members. Using electrical appliances impacts on the 11 

timing and magnitude of a household’s overall electricity consumption. Electricity 12 

consumption of individual appliances depends on the different operation modes such as 13 

ON, OFF and stand-by, and the electricity consumed during each mode. Wet appliances 14 

such as washing machines and dishwashers have cycles with several high peaks during 15 

different stages of the cycle. Air-conditioners have time-varying electricity consumption 16 

as they have a function to control delivered service depending on the indoor 17 

environment. 18 

The structure in which residential electricity demand can be modelled 19 

hierarchically consists of the following four levels of inputs: 1) the whole household 20 

electricity demand; 2) electricity consumption of each appliance; 3) the mode and 21 

power demand of appliances; and 4) the activity and presence of household members.  22 

Data-driven models are used to model the electricity consumption of the residential 23 

sector when the input is the whole household electricity consumption or that of each 24 

appliance in which the behaviour of electricity demand observed in the measured data is 25 
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reproduced by using statistical techniques (Swan and Ugursal, 2008; Fischer et al., 1 

2015). Several studies model the electricity consumption of the residential sector in a 2 

more detailed bottom-up approach using the latter two inputs. These models use 3 

numerous engineering and stochastic methods to account for the electricity consumption 4 

of individual appliances and model the activity and/or presence/absence of household 5 

members to determine which and when appliances are used (Grandjean et al. 2012).  6 

A considerable variation is found in the methodology of modelling the 7 

occurrence of appliance switch-on events. Each model is unique in terms of statistical 8 

representation, input data necessary for modelling and resultant model performance.  9 

However, these models have not been evaluated under the same application conditions 10 

(Gaetani et al. 2016). The purpose of this paper is to compare the existing methods 11 

which us the detailed bottom-up approach that has been developed and to describe 12 

issues and challenges in appliance use modelling considering the second group of 13 

appliance types mentioned above. The washing machine is chosen as an example from 14 

the second group appliances. Cross-analysis using washing machines is useful because 15 

their appliance use can be accurately extracted from measured data, the relationship 16 

between appliance use and activity driving the use is relatively clear, and the washing 17 

machine itself has been recognised as an important appliance with great potential for 18 

demand response and energy management (e.g. Kobus et al. 2015, D’hulst et al. 2015). 19 

When doing cross-analysis, it is important to test the different methods using the same 20 

underlying data. In this case for cross-analysis, the models are calibrated using two 21 

datasets which are monitored data of 333 multi-family buildings in Minamisenrioka and 22 

the Japanese time use survey. Switch-on time profiles are simulated and results from the 23 

simulations are analysed and compared to evaluate the strengths and limitations of the 24 

presented models and provide insights into the future development of appliance use 25 
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modelling. The existing methods for modelling appliance use are described in Section 2; 1 

issues for modelling appliance use are raised and evidence from literature is given in 2 

Section 3; datasets used to develop the models, model performance indicators and 3 

methods used to evaluate the modelling performance are presented in detail in Section 4 

4; Section 5 presents the evaluation of these issues using the existing methods and by 5 

using our own dataset; Section 6 provides discussion and Section 7 concludes the paper. 6 

2. Modelling approaches for appliance use 7 

In this paper, appliance use modelling methods used in the literature are categorised 8 

based on how the switch-on of appliances in households is modelled. It is divided into 9 

four categories, as illustrated in Figure 1, which are 1) the empirical data based time-10 

dependent switch-on probability model; 2) the TUD (time use data) based time-11 

dependent switch-on probability model; 3) the household occupancy based switch-on 12 

probability model and 4) the individual agent activity based appliance use model. Model 13 

types 1 and 2 use switch-on probability depending on the time of day to which a 14 

uniform random number is generated to determine the occurrence of an appliance 15 

switch-on event. However, they use different types of datasets to quantify switch-on 16 

probability, namely; empirical data (recorded power demand) and TUD. In model types 17 

3 and 4, the presence or activity of occupants are explicitly simulated. In model type 3, 18 

the number of active occupants, who are at home and awake, is randomly generated, 19 

and is then used to quantify appliance switch-on probability. In model type 4, switch-on 20 

probability is not quantified. Instead, activity of household members is first 21 

stochastically generated. Then, the activity is converted to the occurrence of a switch-on 22 

event. 23 
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 1 

Figure 1. Procedure for modelling appliance use according to model types 2 

 3 

Examples of studies in literature for each model type and their methodology are 4 

presented in detail below:  5 

Model type 1: The empirical data based time-dependent switch-on probability 6 

model  7 

In the probabilistic empirical model, a switch-on event is defined as the start of the use 8 

of an appliance and is considered as a time-dependent quantity. The switch-on times are 9 

identified from power demand measurements of appliances. For each time step the 10 

switch-on probability would be the sum of measured "switches on" observed divided by 11 

the total number of days. Example studies using this approach are Paatero and Lund 12 

(2006), Page (2007), Gruber et al. (2014) and Yilmaz et. al. (2017). The method of 13 

Yilmaz et al. (2017) constructs a cdf (cumulative distribution function) for the number 14 

of switch-on events for every household. Then the number of switch-on events is 15 

assigned individually for every day using this cdf.  This improves the accuracy of 16 

modelling in terms of the daily number of switch-on events and also includes the 17 

variation of the number of switch-on events during different days within the same 18 
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household. 1 

Model type 2: The TUD based time-dependent switch-on probability model 2 

Fischer et al. (2015) developed a method to calculate the switch-on probability based on 3 

TUD that determines how frequently an appliance is operated at each time of day. This 4 

probability is used in the same manner as the model type 1. López-Rodríguez et al. 5 

(2013) also developed a similar model. 6 

Model type 3: The household occupancy based switch-on probability model 7 

Richardson et al. (2010) proposed a discrete time Markov chain that generates the 8 

number of active people for a day. The switch-on probability is assumed to be 9 

proportional to the probability of occurrence of activity corresponding to the considered 10 

appliance (e.g. cooking for microwave) and the so-called calibration scalar. The 11 

probability of activity occurrence is quantified for each time of day based on TUD 12 

corresponding to the number of active people in the household. The calibration scalar is 13 

used to adjust the total number of switch-on events per year to replicate the annual total 14 

electricity consumption of the appliance. This approach has a number of applications 15 

(Baetens et al. 2016, Cao and Sirén 2015, Evins, Orehounig, and Dorer 2015, Good et 16 

al. 2015, McKenna, Krawczynski and Thomson 2015). One of the weaknesses of 17 

Richardson’s model is that the variation in the number of switch-on events per day 18 

cannot be replicated because switch-on events occur as a result of random trials made at 19 

each time step. Flett and Kelly (2017) overcome this weakness by first determining the 20 

number of switch-on events on the simulated day based on empirical data. The switch-21 

on events are then allocated to the timeline by considering occupancy.  22 
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Model type 4: The individual agent activity based appliance use model  1 

This model type explicitly simulates the activity of household members. The activity is 2 

then converted to the occurrence of switch-on events. There are two studies which can 3 

be considered for this model type. First, Widén at el. (2010, 2012) proposed a discrete-4 

time Markov chain model in which a number of activities are defined as transition 5 

states. Secondly, Wilke et al. (2013) proposed a discrete event model in which the 6 

activity of household members is simulated by repeating the following two processes: 7 

the selection of an activity starting from the examined time of day and the selection of 8 

the duration of the selected activity. For the selection of activity, the starting 9 

probability, at which each considered activity starts, is calculated by multinomial logit 10 

models developed for each time of day. Yamaguchi et al. (2017) and Tanimoto et al. 11 

(2010) developed a similar discrete event model. The occurrence of an appliance 12 

switch-on event is examined in relation to the stochastically determined activity. We 13 

consider the activity-based switch-on probability that indicates how frequently a switch-14 

on event occurs when an activity is undertaken. This has not been discussed in the 15 

previous papers. For example, Widén et al. (2010, 2012) assumed the probability to be 1 16 

as the washing machines are switched-on when the activity finishes. In addition to such 17 

discrete-event modelling, the probability can be defined for discrete-time trials in which 18 

the occurrence of a switch-on event is examined at each time step while the activity is 19 

being undertaken. 20 

3. Application context and factors in appliance use modelling 21 

This section classifies the application context of appliance use models and related 22 

factors that could have a significant impact on the model performance. Table 1 lists the 23 

papers based on their application context. In order to classify the application context, we 24 
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studied papers using one of the four model types. Application contexts of the appliance 1 

use models were classified by (A) availability of empirical data by which models were 2 

developed. Empirical data is available in terms of time series, hourly mean and annual 3 

total.  The second classification is (B) application target to which developed models 4 

were applied. The application target was classified as internal or external. For internal 5 

application, target households were those from which empirical data was collected. For 6 

external application, some papers normalized influences of factors that significantly 7 

affect appliance use (e.g. socio-demographic conditions), so that the effect of 8 

influencing factors can be taken into account in simulation results when models were 9 

applied to an external context. Thus, the availability of influencing factors of 10 

households from which empirical data is collected (C), and those to which developed 11 

models are applied was recognized as an important aspect of application. The final point 12 

is the importance of specificity of individual households (D). In community/urban-scale 13 

modelling, the models might be applied to model the group behaviour of appliances 14 

used in a number of households without specifying individual households (Taniguchi et 15 

al. 2016). On the other hand, individual specificity might be important when models are 16 

applied to a specific household.  17 

Based on this understanding of application context, we derived five factors 18 

which are i) consideration of the intra/inter-household variation; ii) consideration of the 19 

influence of socio-demographic conditions; iii) time resolution of the data; iv) 20 

quantification of calibration scalar or activity-based switch-on probability and v) 21 

applicability to a variety of contexts.  The first factor dealing with intra/inter-household 22 

variation is related to (D) importance of household specificity (i.e. characteristics of an 23 

individual household). The second factor focuses on households’ socio-demographic 24 

conditions as one of the most important influencing factors (C). The third and fourth 25 
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factors are related availability of empirical data (A). The fifth factor considers external 1 

application (B). This section presents these five factors in detail and provides evidence 2 

from the literature. 3 

Table 1. Classification of the models by their application context 4 
Reference 
study 

Model 
type* 

(A) Availability 
of empirical 
data 

(B) Application 
target 

(C) Availability of 
influencing 
factor 

(D) Importance 
of 
household 
specificity** 

Paatero and 
Lund 2006 

Type 1 Hourly mean External Season and various 
socio-demographics 

No 

Page 2007 Type 1 Hourly mean Internal Individual 
specificity 

Yes 

Gruber et al. 
2014 

Type 1 Time series External Appliance 
ownership 

No 

Yilmaz et al. 
2017 

Type 1 Time series Internal Individual 
specificity 

Yes 

Armstrong et 
al. 2009 

Type 1 Mean hourly External Appliance 
ownership 

No 

Ortiz et al. 
2014 

Type 1 Time series Internal Region No 

Fisher et al. 
2015 

Type 2 Not used External Household size, 
household 

composition, age, 
housing time and 
working pattern 

No 

López-
Rodríguez et 
al. 2013 

Type 2 Not used External Household size No 

Richardson et 
a. 2010 

Type 3 Annual total External Household size No 

Cao et al. 
2015 

Type 3 Annual total External Household size No 

McKenna et 
al. 2016 

Type 3 Annual total External Household size No 

Evins et al. 
2016 

Type 3 Annual total External Household size Yes 

Good et al. 
2015 

Type 3 Annual total External Household size No 

Baetens et al. 
2015 

Type 3 Annual total External Household size and 
occupancy pattern 

Yes 

Flett and 
Kelly 2017 

Type 3 Time series External Various socio-
demographic 

Yes 

Widén et al. 
2010 

Type 4 Not used External Household size and 
housing type 

No 

Wilke 2013 Type 4 Time series External Various socio-
demographic 

Yes 

Taniguchi et 
al. 2016 

Type 4 Not used External Various socio-
demographic 

Yes 

* Model types are explained in Section 2.  5 

** No: not important; Yes: important 6 
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3.1 Intra/inter-household variation 1 

Here we define intra-household variation is the difference in occupant behaviour within 2 

the household whereas inter-household variation as the difference in daily occupant 3 

behaviour among households.  The difference between intra- and inter-household 4 

variation is often ignored in modelling of energy demand (O’Brien et al., 2016).  This 5 

might be because individual specificity has not been considered as an important aspect 6 

of modelling as shown in Table 1. However, consideration of intra-household variation 7 

is important in some applications, such as the planning of micro-generations (Cao and 8 

Siren, 2015), because time dependent characteristics of energy demand unique for 9 

individual households are created due to intra-household variation.   10 

It is difficult to replicate intra-household variation in the occurrence time of 11 

activities in modelling types using TUD (Torriti, 2014).  TUD is usually collected from 12 

a large number of people and for a limited number of days (Table 2). Therefore, TUD 13 

based models fail to capture intra-household variation (Yamaguchi and Shimoda, 2017). 14 

In contrast to that, TUD based models are capable of producing inter-household 15 

variation generated by socio-demographic conditions. However, Flett and Kelly (2017) 16 

revealed that the inter-household variation that can be generated considering 17 

socio-demographic conditions is smaller than the variation observed in empirical data.  18 

In contrast, the empirical data based time-dependent switch-on probability 19 

model analyses the measured data for an extended period to obtain the frequency and 20 

time of occurrence of a switch-on event. This model type is able to capture the 21 

intra/inter-household variation as the household has been observed for an extended 22 

period and therefore is able to replicate household specific characteristics in appliance 23 

use. Table 3 gives several examples of monitored datasets collected using electrical 24 

power sensors to develop residential energy demand models.  25 
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Table 2. Examples of TUD used to develop residential energy demand models.  1 

Study Dataset used and year 
collected 

Number of 
participants 

Collection details 
(resolution)  

Yun-hang 
Chiou et al. 
(2009) 

American Time-Use 
Survey (2008) 

13,000 individuals One weekday and  
weekend. 
(10-minute ) 

Richardson 
et al., 
(2010) 

UK Time Use Survey 
(2000) 

10,000 individuals One weekday and 
weekend.  
(10-minute ) 

Widén et 
al., (2012) 

Statistics Sweden (SCB) 
(1996) 

463 individuals in 
179 households 

One weekday and 
weekend.  
(5-minute)  

Wilké et al., 
(2013) 

French Time Use Survey 
(1999) 

15,441 individuals 
from 7949 
households 

One weekday and 
weekend.  
(10-minute)  

Neu et al., 
(2013) 

National Time-Use 
Survey of Ireland (2005) 

1089 individuals 
from 567 
households 

One weekday and 
weekend. 
(15-minute)  

 2 

Table 3. Examples of empirical datasets used to develop residential energy demand 3 

models. 4 

Study Collected data Monitored households 
and appliances 

Monitoring 
period  

Paatero and 
Lund (2006) 

Finnish Load 
Research Project 

702 households 365 days 
1,082 households 143 days 

Page (2007) Own dataset 8 households 8 weeks 
Brog et.al. 
(2011) 

REMODECE,  60 households, 778 
appliances 

2 weeks 

Yilmaz et al. 
(2017) 

Household 
Electricity Survey 

225 households, 1,076 
appliances 

1 month 

  5 

 6 

This section also shows empirical evidence of the existence of intra/inter-7 

household variation. Figure 2 (a) shows the distribution of households for the mean 8 

number of switch-on events of washing machines per day on weekdays over the entropy 9 

values of switch-on time that were observed in 333 households living in a multi-family 10 

building located in Osaka, Japan throughout a year (see Appendix A for the detailed 11 

explanation).  12 
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 1 

 2 
Figure 2 (a) Distribution of mean of the number of switch-on events per day over the 3 

entropy of switch-on time of washing machine observed in Minamisenrioka Electricity 4 

Use (N = 333, see Appendix A); (b) cdfs of switch-on probability of four representative 5 

households with different entropy value of switch-on time 6 

 7 

Kwac et al. (2014) used entropy to represent intra-household variation. The 8 

definition is given by Equation (1) where p(t) is the pdf (probability distribution 9 

function) of switch-on probability at each time of day, t, summarised using 15-minute 10 

interval.  11 
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variation cannot be reproduced by TUD based models. In contrast, empirical data based 1 

models are capable of replicating both intra/inter-household variations.  2 

3.2 Consideration of the influence of socio-demographic conditions 3 

Several studies show that the socio-demographic conditions give rise to significant 4 

differences in time use of household members (López-Rodríguez et al. 2013; Santiago 5 

et al. 2014; Jones et al., 2015; Fisher et al. 2015; Sekar et al., 2016; Matsumoto 2016). 6 

Thus, the normalisation of developed models by the socio-demographic conditions 7 

improves the model performance when models are applied to an external context. The 8 

models using TUD are capable of considering the influence by using TUD classified by 9 

the condition to be considered. Richardson et al. (2010) classified households by 10 

household size. Fischer et al. (2015) and Baetens and Salenes (2016) classified 11 

households by household size and occupancy pattern (Aerts, 2014; Widén et al. (2010) 12 

considered the housing type (detached house or apartment). Wilke et al. (2013) 13 

considered various socio-demographic conditions as predictor variables of their 14 

regression models. For empirical data based models, the previous studies simply divided 15 

their data points into groups to reflect the difference in the switch-on probability due to 16 

the day of week, household socio-demographic condition (Paatero and Lund, 2006; 17 

Ortiz et al., 2014).  However, due to the high cost of monitoring, the sample sizes of 18 

these studies are too small to perform meaningful statistical comparisons. Therefore, it 19 

is difficult for the empirical data based models to capture behavioural diversity among 20 

different socio-demographic groups. 21 

3.3 Time resolution of data 22 

The data time resolution is important in order to accurately represent peak demands and 23 

cycling of individual appliances (Wright and Firth, 2007). There is a considerable loss 24 
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of detail at lower time resolutions such as 5 and 15-minutes (Richardson, 2010).  For 1 

example, kettles and microwaves have high demands for a short time period, while for a 2 

washing machine the power demand is not constant throughout the cycle.  The cycle 3 

shows a high peak at the start (up to 2000W) and an increase at the end of the cycle 4 

while spinning (Bilton et al., 2014). It is important to determine the precise appliance 5 

switch-on times to allocate the peaks and cycles accurately in the high-resolution 6 

electricity models. The models which use TUD cannot identify the switch-on times 7 

precisely as users write down their daily activities every 10 or 15 minutes. In addition, 8 

the laundry activity in TUD could consist of different sub-activities such as sorting out 9 

the clothes, loading the machine and so on. Therefore, it is not possible to derive the 10 

exact switch-on time of the washing machine, which could hinder the model accuracy. 11 

Widén and Wäckelgård (2010) assume that the washing machine switches on at the end 12 

of the laundry activity, which may not be the case in reality.  13 

3.4 Quantification of calibration scalar and activity-based switch-on probability 14 

The calibration scalar of the household occupancy based switch-on probability model 15 

shows the ratio between the occurrence of a switch-on event over the probability at 16 

which an activity is being undertaken under simulated occupancy conditions. The 17 

activity-based switch-on probability of the individual agent activity based appliance use 18 

model indicates the frequency of use when an activity is undertaken. Both are quantified 19 

by using empirical data of appliance switch-on.   20 

Although both factors are important for modelling appliance use accurately, less 21 

attention has been paid to them. This might be due to unavailability of time series data 22 

as shown in Table 1. Studies such as Widén et al. (2010) assume that every time an 23 

activity is performed, the appliance related to that activity is switched-on (activity-based 24 
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switch-on probability =1) as mentioned above. Richardson et al. (2010) takes an 1 

approach where a constant calibration scalar for each appliance is allocated which is 2 

used to calibrate the switch-on probability to ensure that each appliance is used a 3 

particular number of times per year to meet its contribution level to the overall annual 4 

total number of uses and electricity consumption. However, this may not be the case. 5 

Yamaguchi et al. (2016) carried out a questionnaire survey in which the 6 

respondents were asked to report their time allocation for laundry related activities on 7 

typical weekdays.  Figure 3 shows the survey format and the composition of laundry 8 

related activities collected from 167 women.  In the format, laundry related activities are 9 

listed in the first column and the timeline of a day is indicated horizontally with 1-hour 10 

intervals. As can be seen from the composition, an activity for laundry does not always 11 

imply the use of a washing machine especially in the afternoon. The results show that 12 

washing machines are more often operated in the morning than in the afternoon. After 13 

the use of the washing machine, most respondents reported hanging clothes outside and 14 

laundry activity more associated with folding and ironing the washed clothes in the 15 

evenings. This indicates that the constant factor suggested by Widén (2010) and 16 

Richardson et al. (2010) can be improved so as to have more accurate factors 17 

representing activities throughout the day to match the switch-on probabilities with the 18 

daily profile.  19 

 20 
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 1 

 2 

Figure 3. Survey format (left) and composition of laundry activity (right) (Yamaguchi et 3 
al. 2016) 4 

3.5 Applicability to a variety of contexts 5 

This last factor is an issue of external application of developed models. As listed in 6 

Table 1, most models in the table are applied externally. As mentioned in Section 3.1, 7 

the empirical data based models are capable of replicating intra/inter-household 8 

variation in appliance use. However, empirical data cannot be simply extended because 9 

the number of households from which empirical data is provided is usually limited 10 

(Table 3). On the other hand, TUD based models might be applicable to various 11 

contexts as TUD is usually collected so that it represents the entire population in a 12 

region or nation. This is a useful advantage in community/urban-scale energy demand 13 

modelling. However, TUD based models require households to be simulated. The TUD, 14 

households, and calibration scalar or activity-based switch-on probability should all be 15 

consistent to replicate appliance use accurately.  16 
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4. Method  1 

4.1 Datasets 2 

Table 4 gives a detailed description of the three datasets that were used as input for the 3 

modelling approaches presented. A detailed explanation of the Minamisenrioka 4 

Electricity Use data is provided in Appendix A.  5 

Table 4. Description of datasets 6 
Dataset name Dataset variables Description 
Minamisenrioka 
Electricity Use 
(2014) 

Power demand of 
washing machines 
and of total house 

5-minute resolution 
333 households monitored between January 
2012 to December 2014 (3 years) 
All home-owners and families.  
 

Japanese TUD 
(2006) 
 

Diaries of activities 
Demographic 
condition of 
respondents 

Time use survey conducted in 2005. 
18,291 diaries collected from people aged 10 
or older in 3,866 households. 
Survey participants were asked to describe 
their main activity at 15-min intervals over 
two sequential days 
Activity described in diary was converted to 
activity code  

Japanese Census 
(2010 and 2015) 

see Table 5. Data collected in National Census conducted 
in Year 2010 and 2015 was used. 

 7 

Japanese TUD was used to apply the TUD based models. For TUD based models, it was 8 

necessary to assume socio-demographic conditions of simulated households.  The data 9 

listed in Table 5 collected by the Japanese Census is used for this study. The first three 10 

data items are available for Minamisenrioka, while the others are for Settsu city and 11 

Osaka prefecture in which Minamisenrioka is located. Based on this data, 877 12 

households were randomly sampled to represent the households living in 13 

Minamisenrioka. The methodology to define the households is given in Appendix C. 14 

 15 

 16 

 17 
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Table 5. Data items developed from on the Japanese Census used for assuming socio-1 

demographic conditions of households in Minamisenrioka. 2 

Item Contents Area 
1 Pagem,y 

Pagef,y 
Pdf of number of male (m) and female (f) within 
age groups (y). 

Minamisenrioka 
 

2 Phsn Pdf of households larger than 3 classified by the 
household size (n) 

3 Phc Number of households classified by the 
household composition 

4 Pca Pdf of households with the combination of 
children classified by age 

Settsu city 
 

5 Pflfk,ac Labour force participation ratio of female with 
children classified by the number of children (k) 
and the age of youngest child (ac). 

6 Ppak,am,af Two dimension pdf considering the age of 
couple (am and af) when their youngest child 
was born classified by k  

Osaka prefecture 

7 Plfst,am 
Plfst,af 

Labour force status (st: fulltime, part time, and 
unemployed) distinguished by am and af. 

8 Padd Pdf of the age difference between married 
couple.  

 3 

4.2 Model performance indicators 4 

In this section, indicators to evaluate the model performance are summarised.  The 5 

performance is evaluated by comparing the switch-on probabilities, which indicates the 6 

ratio of households that start using a washing machine to the total number of households 7 

at each time of day, and the number of switch-on events per day. The model can serve 8 

different purposes therefore some indicators had to be defined to evaluate the model 9 

performance as summarised in Section 4.3. 10 

4.2.1 Indicator 1: Mean relative population share deviation 11 

The value of this indicator lies in showing how well/adequately the model performs 12 

regarding total predictions of the population average. A similar approach to Wilke et al. 13 

(2013) is taken to calculate the indicator. The indicator in Equation 2 shows the 14 



20 
 

magnitude of the differences between the result estimated by the models (Xsim) and 1 

reference value (Xref).  2 
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When switch-on probabilities are compared, switch-on probability quantified with 15-4 

min intervals is used as Xsim and Xref  where m = 1 to 96. This “deviation” (D) is referred 5 

to as the “deviation in probability” (DP). When the number of switch-on events is 6 

compared, the cdf of households developed from the mean number of switch-on events 7 

per day is used as Xsim and Xref.. This “deviation” (D) is referred as the “deviation in 8 

switch-on events” (DS). The cdf is quantified with an interval of 0.1 times per day. Xsim 9 

and Xref  of three times per day or more is summarized (m = 1 to 30).  The possible range 10 

of the value set of deviations (both “DP” and “DS”) is bounded between zero and one. 11 

The value of D is a measure of the performance of the model (the higher the value, the 12 

greater the deviation from the measured value).  13 

4.2.2 Indicator 2: Entropy 14 

Entropy defined by Kwac et al. (2014) shown by Equation (1) in Section 3.1 is used as 15 

an indicator to show how well the model performs regarding the representation of the 16 

intra-household variation in the measured dataset. A histogram is formed from the 17 

entropies calculated for the simulated households.  18 

4.3 Method to evaluate the model performance 19 

Firstly, the performance of the models is evaluated by comparing the switch-on 20 

probabilities and the number of switch-on events per day of the simulation to those 21 

monitored in 333 households in Minamisenrioka. Mean relative population share 22 
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deviations defined in Section 4.2, DP and DS, are used as performance indicators.  1 

The second part evaluates the model performance on the five factors presented in 2 

Section 3. Table 6 shows the linking of the modelling methods, datasets used, and 3 

indicators for each factor. Model type 2 is not chosen as its methodology is the same as 4 

model type 1 (see Section 2). For model type 3, Flett and Kelly’s (2017) model was not 5 

developed for this study because empirical data with detailed household information 6 

was not available. The hourly defined calibration scalar used for Richardson et al. 7 

(2010) and hourly defined activity-based switch-on probability used for Widén et al. 8 

(2010) and Wilke et al. (2009) are explained in Section 3.4. For Wilke’s model, 9 

modifications are explained in Appendix B. Switch-on probabilities are calculated 10 

directly from the readings of power demand. Calibration scalar is quantified by using 11 

household mean of switch-on times per day and hourly switch-on probability. Activity-12 

based switch-on probability is quantified in the same manner as for model type 3. 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 
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Table 6. Linking the factors to existing modelling methods, datasets used, indicators as 1 

well as modifications done to the models.  2 
Factors Methods compared Modifications done 

to model 
Dataset used Indicators 

Consideration of 
intra/inter-
household variation 

Empirical model : 
Yilmaz et al. 2017 
(Type 1) 

- Minamisenrioka 
Electricity Use 

Entropy 
and DS 

TUD based models: 
Richardson et al. 2010 
(Type 3);  

Hourly defined 
calibration scalar 

 
 
Japanese TUD,  
Japanese Census Widén et al. 2010 

(Type 4); 
Wilke et al. 2013 
(Type 4) 

Hourly defined 
activity-based 

switch-on 
probability 

Consideration of 
the influence of 
socio-demographic 
condition 

Wilke et al., 2013 
(Type 4) 

Hourly defined 
activity-based 

switch-on 
probability 

Japanese TUD,  
Japanese Census 

DS 

Time resolution of 
data 

Empirical model: 
Yilmaz et al. 2017 
(Type 1) 

- Minamisenrioka 
Electricity Use 

DP 

Quantification of 
calibration scalar or 
activity-based 
switch-on 
probability 

Activity based model:  
Richardson et al.’s 
2010 (Type 3) 

Hourly defined 
calibration scalar 

Japanese TUD,  
Japanese Census 

DP 

Applicability to a 
variety of contexts 

Wilke et al., 2013 
(Type 4) 

Hourly defined 
activity-based 

switch-on 
probability 

Japanese TUD,  
Japanese Census 

DS 

4.3.1 Intra/inter-household variation 3 

The entropy of the switch-on probabilities simulated by these modelling methods is 4 

calculated using Equation 1 to represent the intra-household variation provided by these 5 

models. DS is used to represent the inter-household variation.  6 

4.3.2 Consideration of the influence of socio-demographic conditions 7 

Minamisenrioka Electricity Use does not contain any socio-demographic condition of 8 

households.  Thus, the change of appliance use due to demographic conditions cannot 9 

be considered for the empirical data based model. In contrast, the TUD based models 10 

can take into account the influence of socio-demographic conditions. Wilke’s regression 11 

model is most adaptable as it considers 16 predictor variables related to socio-12 



23 
 

demographic conditions as explained in Appendix B. Contrary to this, Richardson’s 1 

model only considers the household size and Widén’s considers the housing type. To 2 

evaluate the influence of socio-demographic conditions, Wilke’s regression model is 3 

developed only considering household size as predictor variable1 and the result is 4 

compared with the model fully considering all demographic conditions. DS is used as an 5 

indicator. 6 

4.3.3 Time resolution of the data 7 

Two ways of switching on the appliance are modelled with Model Type 1 using 8 

empirical data of Minamisenrioka Electricity Use. First, the switch-on time is 9 

determined using the empirical data (5-minute interval). Second it is resampled to a 10 

15-minute interval by assigning the activities to the end of each period. For example, if 11 

the switch-on time of a washing machine occurs at 09:05, we assigned a switch-on time 12 

of 9:15. This is done in order to treat the empirical data as TUD data with a resolution 13 

of 15 minutes and the effect of the data time resolution on the accuracy of the model can 14 

be shown. Power demand profiles of washing machines at a 5-minute resolution were 15 

calculated using the method of Yilmaz et al. (2017). 16 

4.3.4 Quantification of calibration scalar and activity-based switch-on probability 17 

The TUD based models use the calibration scaler or the activity-based switch-on 18 

probability. To quantify them, Minamisenrioka Electricity Use is used. Two cases are 19 

assumed to evaluate the influence of the availability of empirical data. The annual data 20 

                                                 

1 Dummy variables indicating 1-, 2- and 4-member households and 5 or more-member 

household were used as predictors so as to model the difference in activity starting 

probability from 3-member household.  
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case assumes that only the mean number of switch-on events per day is available. The 1 

hourly data case assumes that the hourly mean number of switch-on events is available.    2 

4.3.5 Applicability to a variety of contexts 3 

The models are assumed to model appliance use in a city or larger scale area. All 4 

models were applied to 34,579 households living in Komae city, Tokyo, Japan, 5 

generated based on Japanese census by the method explained in Appendix C. The 6 

empirical data based model cannot consider the influence of the difference in household 7 

composition between Minamisenrioka and Komae city. The switch-on probability 8 

observed in each of 333 households is extended by the scaling factor of 11, the ratio of 9 

the number of households in Minamisenrioka and Komae city. Figure 4 shows the 10 

proportion of the size of households assumed for Komae city and those assumed for 11 

households from which Minamisenrioka Electricity Use was collected. The most 12 

significant difference is in the percentage of single households and households with pre-13 

school child (see Appendix C). The empirical data based model developed on 14 

Minamisenrioka Electricity Use data might overestimate the switch-on probability for 15 

single households. To address this issue, the model of Wilke et al. (2013) is used. DS is 16 

used as the indicator. Xref in Equation 2 is given by the model result for Komae city 17 

while Xsim is as estimated for Minamisenrioka. 18 

 19 

Figure 4. Composition of households in Minamisenrioka and Komae city. 20 
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5. Result 1 

5.1 Comparison of the switch-on time profiles and the number of switch-on 2 

events 3 

The hourly probability of switching on of washing machines for the 877 households 4 

estimated by Yilmaz et al. (2017), Richardson et al. (2010), Widén et al. (2010) and 5 

Wilke et al. (2009) on 10,000 weekdays are compared with empirical data is shown in 6 

Figure 5. All models agreed well with the empirical data. Table 7 lists the DP of the 7 

models. Yilmaz et al. (2017) has the smallest DP followed by Richardson et al. (2010), 8 

Widén et al. (2010) and Wilke et al. (2013). The difference between Richardson et al. 9 

(2010) and the remaining two TUD based models is in the flexibility of the calibration 10 

scalar that can be greater than 1 for Richardson et al. (2010) but is not allowed for the 11 

activity-based switch-on probability of Widén et al. (2010) and Wilke et al. (2013). The 12 

range is from 0:00 to 4:00. This point is further discussed later for the evaluation of 13 

quantification of calibration scalar and activity-based switch-on probability. 14 

 15 

Figure 5. Comparison of measured (denoted by Empirical) and simulated (with the four 16 

models) switch-on probability (TUD based models using hourly calibration scalar and 17 

activity-based switch-on probability). 18 

 19 
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Table 7. DP and DS of the four models. 1 

Model DP DS 
Yilmaz 0.0009 0.031 
Richardson 0.0018 0.158 
Widén  0.0033 0.107 
Wilke 0.0037 0.118 

 2 

Figure 6 shows the cdf of households with the number of switch-on events per day 3 

shown on the horizontal axis. Yilmaz et al. (2017) agreed well with empirical data. The 4 

three TUD based models have a large discrepancy. Empirical data shows that the 5 

number of switch-on events changes from 1 to 7 times during the monitored days with 6 

some days showing no appliance use (0 switch-on events). Such intra-household 7 

variation cannot be replicated by TUD based models.  8 

The most notable difference among the TUD based models is that Richardson et 9 

al. (2010) and Widén et al. (2010) have a few jumps in cdf corresponding to the 10 

household size. Contrary to their cdf, Wilke et al. (2013) showed wider distribution in 11 

the switch-on times per day resulting from the consideration of socio-demographic 12 

conditions. The differences among the models are represented by the DS of the models 13 

listed in Table 7. Yilmaz et al. (2017) agreed well with empirical data having the lowest 14 

DS.  15 

 16 

Figure 6. Comparison of cdf of the number of switch-on events per day on weekdays.  17 
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5.2 Evaluation of the modelling performance of the existing methods for five 1 

factors 2 

5.2.1 Intra/inter-household variation 3 

Figure 7 shows the entropy calculated for simulations by the four models under 4 

consideration. The results show that the distribution of Yilmaz et al. (2017) well 5 

replicates empirical data distribution while the TUD based models cannot replicate it.  6 

 7 

  8 

Figure 7. Comparison of cdf with the number of switch-on events per day on weekdays  9 

 10 
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number of switch-on events per day by adopting the above-mentioned approach of 1 

Yilmaz et al. (2017). 2 

5.2.2 Consideration of the influence of socio-demographic conditions  3 

Figure 8 shows switch-on probability estimated for the representative households using 4 

Wilke’s model with distinct household socio-demographic conditions listed in Table 8. 5 

Figure 8(a) shows the results estimated by the model considering all the 16 predictors, 6 

while Figure 8(b) shows those estimated by the model only considering household size. 7 

As shown in the figures, the socio-demographic conditions, especially occupation and 8 

existence of children, have a significant influence on switch-on event occurrence.  9 

Figure 9 shows the pdfs of the number of switch-on events per day estimated by 10 

Wilke’s model. The result of the model considering only household size has only five 11 

variations in the number of switch-on events per day corresponding to the household 12 

size. Contrary to this, the model considering all the predictors showed a wider 13 

distribution among households due to the difference in household socio-demographic 14 

conditions.  DS increased from 0.09 of the model with all predictors to 0.13 of the 15 

model with household size.  16 

Table 8. Composition of seven representative households with different conditions on 17 

occupation, age and the composition and number of children.  18 

Case Couple age Children  
Full time 
working 
male 

Female 
employment 
status 

preschool 
child 

school 
child 

Case 1 yes Unemployed 30-44 yes no 
Case 2 yes Part-time 30-44 yes no 
Case 3 yes Full time  30-44 yes no 
Case 4 yes Unemployed 30-44 yes yes 
Case 5 yes Full time  30-44 yes Yes 
Case 6 yes Full time  30-44 Yes no 
Case 7 yes Full time  45-65 no no 

 19 



29 
 

 1 

 2 

Figure 8. Estimated switch-on probability of the seven representative households listed 3 

in Table 8. The result over the first 24 hours shows those for weekdays, while the 4 

remaining result shows those for holidays. 5 

 6 

This result implies that Richardson’s and Widén’s models are less sensitive to 7 

the socio-demographic conditions compared to Wilke’s model because the household 8 

size is only considered in Richardson’s and Widén’s models. It also implies that a) the 9 

influence of socio-demographic conditions should be taken into account in appliance 10 

use modelling, and b) the consideration of socio-demographic conditions is not enough 11 

to reproduce the variety among households as shown in the difference between the 12 

Wilke’s model and empirical data in Figure 6.  13 
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  1 

Figure 9. Distribution of the number of switch-on events per day on weekdays estimated 2 

for households living in Minamisenrioka 3 

 4 

5.2.3 Time resolution of the data  5 

Figure 10 shows the comparison of the simulated mean power demand of households 6 
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15-minute resolution data are 0.0078 and 0.54 respectively. Spikes are seen at quarter 9 
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the case in the 5-minute data.  This has important implications for models which use 15-12 
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 1 

Figure 10. Comparison of the power demand profiles of simulations depending on 2 

switch-on times determined from 5-minute and 15-minute intervals. 3 

5.2.4 Quantification of calibration scalar and activity-based switch-on probability 4 

Figure 11 compares the switch-on probability of the washing machines simulated by 5 

Richardson et al. (2010) using a constant and hourly defined calibration scalar 6 

quantified by using Minamisenrioka Electricity Use data. The modelling approach 7 
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 1 

Figure 11. Comparison of the switch-on probability in weekdays (simulated by using 2 

the method of Richardson et al. (2010) with constant and hourly defined calibration 3 

scalars) with the empirical data.  4 
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number of households that conduct the target activity within an hour to the total number 1 

of households, which is referred to as activity starting probability in Wilke et al. (2013). 2 

Thus, activity probability is smaller than activity starting probability, which makes the 3 

calibration scalar larger than the activity-based switch-on probability. 4 

In addition to this, Richardson’s calibration scalar can be greater than 1 5 

(between 20:00 and 4:00) to calibrate the occurrence of a switch-on event 6 

corresponding to empirical data while Widén’s and Wilke’s activity-based switch-on 7 

probability cannot be greater than 1 given its definition. The difference between 8 

Widén’s and Wilke’s probability is moderate compared to that with Richardson’s 9 

calibration scalar, although the difference can be attributed to the difference in 10 

modelling methodology.  11 

   12 

Figure 12. Estimated calibration scalar and activity-based switch-on probability of the 13 

TUD based models.  14 
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significant influence on appliance switch-on. This further implies that empirical data 1 

based models (Type 1) developed from data collected from a specific local context 2 

cannot be applied to another area. Applicability of empirical data based models should 3 

be confirmed.  4 

 5 

Figure 13. Distribution of the number of switch-on events per day on weekdays 6 

estimated for Minamisenrioka and Komae city. 7 
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the mean switch-on probability at each time of day, they have limitations in 1 

replicating the intra- and inter-household variations as shown in Figure 6 and 2 

Figure 7. This is because TUD is collected for a limited number of days. To 3 

replicate the intra/inter-household variation in TUD based models, factors 4 

determining intra/inter-household variation should be taken into account. TUD 5 

based models could be improved by using longitudinal time use data or taking 6 

into account occupants’ weekly schedules such as the distribution of the number 7 

of uses of an appliance throughout the week (Flett and Kelly, 2017). 8 

• Figure 8 and Figure 9 showed that socio-demographic conditions have a 9 

significant influence on frequency and time of occurrence of switch-on events 10 

for home appliances. Appliance use models should take into account the socio-11 

demographic conditions. However, it is not always easy to collect empirical data 12 

combined with socio-demographic conditions to develop empirical data based 13 

models in order to cover households with various conditions sufficiently. TUD 14 

based models have an advantage as TUD usually has wide population coverage. 15 

However, the variety among households is much larger than the variety that can 16 

be produced by considering socio-demographic conditions as discussed above.  17 

• Figure 10 showed that modelling the power demand profiles by using 15-minute 18 

resolution of TUD could have a significant impact on the accuracy of the model. 19 

The high-power level at the start of the washing machine cycle causes spikes in 20 

the power demand profiles. Therefore, for appliances with varied power levels 21 

during use such as dishwashers, tumble dryers and washing machines, a higher 22 

resolution is recommended for time use surveys to determine the precise switch-23 

on time of the appliance. 24 
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• Figure 11 and Figure 12 showed that there is a time variation in the calibration 1 

scalar and activity-based switch-on probability. Ignoring it results in an error in 2 

the time variation of electricity demand. Thus, the calibration scalar and activity-3 

based switch-on probability should be quantified at a higher time resolution if 4 

electricity consumption is available with hourly or shorter intervals. Another 5 

solution is to disaggregate an activity into several subcategories so that activities 6 

can be linked more directly to appliance use, even though additional surveys 7 

might be needed. More research is needed to develop a representative dataset 8 

with simultaneous recordings of occupancy and activities, as well as appliance 9 

use. Such a survey would be complex due to the nature of the two different 10 

kinds of survey. 11 

• Calibration scalar and activity-based switch-on probability of TUD based 12 

models highlight the difference among the modelling methods (Figure 12). The 13 

difference in modelling methodology was found in (A) the difference between 14 

discrete-time and discrete-event modelling (the former is larger than the latter 15 

especially for appliances accompanied by activities with shorter duration) and 16 

(B) the nature of the calibration scalar and the activity-based switch-on 17 

probability (the former can be greater than 1 while it is not allowed for the latter, 18 

which is important when available TUD and empirical data are inconsistent). 19 

The difference in the modelling of activity between Widén’s and Wilke’s 20 

models was not significant for the modelling of the use of washing machines. 21 

This difference might be significant if more activities are simultaneously 22 

considered.   23 

• TUD based models can be applied to any simulation context when socio-24 

demographic conditions used as model input are prepared. Figure 14 25 
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demonstrates the advantage of the TUD based models in illustrating 1 

applicability. On the contrary, the applicability of empirical data based models 2 

should be confirmed if socio-demographic conditions are not sufficiently 3 

considered during model development. 4 

• The cross-analysis has provided key implications for the usability of appliance 5 

use models for different application contexts. First, the availability of empirical 6 

data is critically important for model performance. It is recommended to use 7 

larger samples with higher temporal resolution, if available. As most developed 8 

models are applied to external contexts, it is recommended to normalise 9 

developed models by influencing factors, especially households’ socio-10 

demographic conditions so that their influence can be reflected. When time 11 

series empirical data is unavailable, the TUD based models are a good 12 

alternative. Wilke’s regression-based activity model showed the highest 13 

applicability to various contexts when households’ socio-demographic 14 

conditions can be defined. It is also possible to include the function to take into 15 

account the influence of socio-demographic conditions in the other TUD based 16 

models. However, it is difficult to replicate intra/inter-household variations as 17 

they are in reality. The most difficult aspects to replicate by TUD based models 18 

are inter-household variation in the number of switch-on times per day, its intra-19 

household variation, and intra-household variation in switch-on time. The 20 

variations cannot be accounted for by socio-demographic conditions. Thus, 21 

further research is needed to understand which factors generate these variations 22 

and to develop methodologies to replicate them in TUD based models. It is also 23 

recommended to consider these aspects in empirical data based models to take 24 

advantage of utilizing rich empirical data. The TUD based models are also a 25 
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good alternative when available empirical data is not representative of 1 

households in the application context. In such cases, available data can be used 2 

to quantify limited key parameters to improve the TUD based models, such as 3 

time dependent calibration scalar and activity-based switch-on probability.  4 

• This paper only deals with washing machine for the case study. The findings 5 

related to TUD based models can only be applied to modelling of appliances that 6 

are operated when only one activity is undertaken. There are appliances whose 7 

use relates to a number of activities (e.g. TV) and are modelled through 8 

interaction with other household members. Further research is needed for those 9 

appliances. 10 

• Data cleaning of the empirical data is quite important. The challenging part of 11 

the empirical data is the identification of the actual use of the appliance. A 12 

robust methodology should be developed to identify incorrect readings. 13 

7. Conclusion 14 

This paper presented the issues and challenges in the modelling of use of home 15 

appliances based on a cross-analysis of the existing methods that are commonly used in 16 

literature to evaluate factors related to modelling performance. The conclusions arising 17 

from this study are:  18 

• The case study demonstrated that Yilmaz et al. (2017), used as an example of 19 

the empirical data based time-dependent switch-on probability models, is 20 

capable of replicating the household specific characteristics in appliance use 21 

(intra-variation) due to the inclusion of day-to-day variability derived from the 22 

extended period of monitoring.    23 
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• The case study showed that socio-demographic conditions have significant 1 

influences on appliance use in households and consideration of their significance 2 

will improve the model performance, though it is not enough to replicate the 3 

intra/inter-household variations. However, the capability of TUD based models 4 

in reflecting socio-demographic conditions enables models to be applied to 5 

various areas where these conditions are available. In contrast, it is difficult to 6 

address cross-area variation in empirical data based models as empirical data 7 

lacks socio-demographic information. Thus, the applicability of empirical data 8 

based models should be evaluated when developed models are extended to 9 

external contexts.  10 

• Time resolution of the data has a significant impact on the accuracy of the 11 

model. 12 

• The calibration scalar and activity-based switch-on probability of TUD based 13 

models have time dependency. Consideration of their time dependency improves 14 

model performance. TUD based models require a consistent dataset of socio-15 

demographic conditions of households, TUD and empirical data to quantify 16 

calibration scalar and activity-based switch-on probabilities. The difference 17 

between calibration scalar and activity-based switch-on probabilities arising 18 

from the difference between discrete-time and discrete-event modelling, and the 19 

nature of the calibration scalar that can be greater than 1 whereas activity-based 20 

switch-on probability is not allowed to be so.  21 

Modelling the operation of home appliances is a challenging task, given the 22 

variability in occupant behaviour. It is clear that some of the approaches have 23 

advantages over others in certain circumstances. In future work, a methodology will be 24 

developed to incorporate the advantages of empirical data and TUD based models.  25 
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9. Appendices 11 

9.1 Appendix A. Minamisenrioka Electricity Use 12 

Minamisenrioka Electricity Use contains electricity consumption data collected from 13 

333 households in a multi-family building located in Minamisenrioka in Settsu city, 14 

Osaka, Japan. All of the dwellings are owner-occupied but socio-demographic 15 

conditions are unknown for each household. For electricity measurements, each 16 

dwelling is equipped with current sensors attached to each circuit of an electrical 17 

distribution board which was also connected to a washing machine. The current sensor 18 

was produced by Panasonic and the time resolution of measurement was 1-minute. 19 

Switch-on data was extracted from the measured data and converted to 15-min 20 

resolution data for this study. The minimum value that can be measured was 20 W. The 21 

monitoring period was from January 2012 to December 2014 (3 years).  22 

9.2 Appendix B. Application of Wilke et al. (2013) 23 

Wilke et al. (2013) applied the multinomial logit model (MNL) to model the selection 24 

of activity starting at each time of day with one-hour intervals. The probability is called 25 

the starting probability. When the starting probability of an activity is modelled only for 26 
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laundry activity, the starting probability can be modelled as the binomial logit form 1 

shown in Equation (3):  2 
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where pt is the starting probability at time t (t = 1 to 96 for this study), xm is the mth 4 

predictor variable, βt,0 and βt,m are the regression coefficients. Table 9 lists the predictor 5 

variables considered in this study (M = 16). Although more predictors can be prepared 6 

by using data available with TUD, the predictors that can be prepared based on the 7 

national census were only selected because the model is applied to a specific district in 8 

this study. 9 

It should be noted that the following three arrangements were added to Wilke et 10 

al. (2013).  11 

• Four sets of regression models were developed for segments formed by gender 12 

and the distinction between weekdays and holidays, while they are dealt with as 13 

predictor variables in Wilke et al. (2013).  14 

• In the regression analysis, the predictor variables were selected so that Akaike’s 15 

Information Criterion could be minimized, while crude models were used in 16 

Wilke et al. (2013). 17 

• Duration of the operation of washing machines was assumed to be 45 minutes 18 

for all households based on Minamisenrioka Electricity Use.  19 

To validate the model, the goodness-of-fit of the developed models was 20 

evaluated based on the Hosmer-Lemeshow goodness-of-fit test (Helbe 2006). Figure 14 21 
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shows the estimated p values. As all of the p values are larger than 10%, the developed 1 

models fit well with the occurrence of laundry activity observed in TUD. 2 

 3 

Figure 14. Result of goodness-of-fit test.  4 

Table 9. Predictor variables considered in this study. Except for household size, all 5 

variables are modelled as a dummy variable. The coefficient of the predictors shows 6 

how starting probability is high compared with the reference case given by the third 7 

column. 8 

Variable Demographic condition Reference case 
Age Person aged 10–19, 20–29, 30–44, > 65 Person aged 45 to 64 
FullWorker Person with a fulltime job Unemployed person 
PartWorker Person with a part-time job 
HouseOwner Person is living in owner-occupied house Person living in rent 
TwoIncomes Person in household with two or more 

incomes 
Person in a 
household with 
single income 

WithParent Person living with parents couple of household 
GrParents Person in the highest generation of a three 

generation household  
Wipreschc Person living with one or more preschool 

child 
Person without both 
of preschool and 
school children. Wichild Person living with one or more school 

children 
WithPs&Sc Person living with preschool child and school 

child. Wipreschc and Wichild become zero if 
there are both preschool and school child.  

Singles Person living alone Person living in a 
household whose 
size is three or larger 

Couple Person living a couple household 

Hsize Household size - 
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5.3 Appendix C. Random sampling of households based on the national census 1 

The application of TUD based models needs the socio-demographic conditions of 2 

households. Probabilistic distributions of the household size and composition as well as 3 

the age, sex, employment/school status of each household member were developed by 4 

using the data listed in Table 5. Households are randomly sampled by evaluating the 5 

probabilistic distributions with uniform random numbers. The probability distributions 6 

using the data for Minamisenrioka were updated at every sampling to conduct sampling 7 

without replacement.  8 

Figure 15 shows the actual and sampled number of male and female in the 9 

Minamisenrioka area. As shown in the figure, the largest age groups are children 10 

younger than 10 and their parents aged 30 to 49. This occurs given that two large multi-11 

family buildings were constructed recently. The figure shows that the sampling result 12 

well reflects the actual distribution of male and female. It should be noted that we did 13 

not consider single households and couple households consisting only of people aged 65 14 

or older for the households in the multi-family building from which Minamisenrioka 15 

Electricity Use data was collected. This is because the multi-family building is for 16 

families and there is a condominium solely for elderly people in Minamisenrioka. We 17 

assumed that households consisting of people aged 65 or older were in the 18 

condominium. 19 
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 1 

Figure 15. Distribution of male and female by age. The sampling result was compared 2 

with the actual data described in the census. 3 
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