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Abstract 

Crystal plasticity has been applied to model the cyclic constitutive behaviour of a 

polycrystalline nickel-based superalloy at elevated temperature using finite element analyses. 

A representative volume element, consisting of randomly oriented grains, was considered for 

the finite element analyses under periodic boundary constraints. Strain-controlled cyclic test 

data at 650°C were used to determine the model parameters from a fitting process, where 

three loading rates were considered. Model simulations are in good agreement with the 

experimental results for stress-strain loops, cyclic hardening behaviour and stress relaxation 

behaviour. Stress and strain distributions within the representative volume element are of 

heterogeneous nature due to the orientation mismatch between neighboring grains. Stress 

concentrations tend to occur within “hard” grains while strain concentrations tend to locate 

within “soft” grains, depending on the orientation of grains with respect to the loading 

direction. The model was further applied to study the near-tip deformation of a transgranular 

crack in a compact tension specimen using a submodelling technique. Grain microstructure is 

shown to have an influence on the von Mises stress distribution near the crack tip, and the 



gain texture heterogeneity disturbs the well-known butterfly shape obtained from the 

viscoplasticity analysis at continuum level. The stress-strain response near the crack tip, as 

well as the accumulated shear deformation along slip system, is influenced by the orientation 

of the grain at the crack tip, which might dictate the subsequent crack growth through grains. 

Individual slip systems near the crack tip tend to have different amounts of accumulated shear 

deformation, which was utilised as a criterion to predict the crack growth path. 

 

Keywords: Crystal plasticity, Representative volume element, Submodel, Crack-tip 

deformation, Finite element. 

 

Nomenclature 

F, F
e
, F

p
  total, elastic and plastic deformation gradient 

L
p
    inelastic velocity gradient 

α  slip system 

αγ&     shear strain rate of slip system α 

m
α, nα

   slip direction and slip plane normal for slip system α 

S
α
    slip resistance of slip system α 

α
0S     initial slip resistance of slip system α 

B
α
    back stress 

κ    Boltzmann constant 

τα
    resolved shear stress on slip system α 

θ    absolute temperature 



µ, µ0    shear moduli at θ and 0 Kelvin 

F0, τ
α
, p, q, 0γ& , hS, dD, λ  material constants 

hB    hardening constant 

rD    dynamic recovery function 

fc    coupling parameter between the internal slip variables 

0µ ′     local slip shear modulus at 0 Kelvin 

ijij εσ ,     average stress and strain for the RVE 

A     area of the RVE 

ijij εσ ,    stress and strain within the RVE 

I    identity matrix 

inε~     accumulated inelastic strain 

u, v    displacement in x and y direction 

W, H   width and height of compact tension specimen 

a    crack length 

∆K    the stress intensity factor range 

R, f    load ratio and frequency 

C11 , C12, C44  anisotropic stiffness constants 

 

1. Introduction 

Nickel-based superalloys are used for turbine blades and discs in the hot section of gas 

turbine engines due to their exceptional high temperature mechanical properties. Alloy 

RR1000 is recently developed at the Rolls-Royce plc (public limited company) of the UK 



through a powder metallurgy process for application in the latest aero engines designed to 

have higher overall pressure ratios, compressor discharge temperatures and rotational speeds. 

Constitutive, fatigue and creep behaviour of RR1000 at high temperature have been 

systematically studied at Portsmouth, and the data and the models are already available for 

validation of the material for turbine discs [1-9]. 

 

However, the work has been so far limited to continuum level which is incapable of dealing 

with material micro-structural features and the influence of these features on the mechanical 

behaviour of the material. Alloy RR1000 is a face-centred-cubic (f.c.c.) polycrystalline 

metallic alloy with a fine grain microstructure. There is a mismatch of mechanical properties 

between grains due to the orientation difference. This mismatch could raise the stress levels 

locally to evoke crystallographic plastic deformation and to prompt microcrack initiation. A 

review of literature shows that the physically-based crystal plasticity theory has been 

generally used to describe the mechanical behaviour of materials at grain level. With the 

assistance of the finite element (FE) method, the theory is able to predict the global and local 

stress-strain response [10-15], the evolution of crystallographic grain texture [10, 16] and 

micro-structural crack nucleation [17-19] in polycrystalline materials under monotonic, creep 

and fatigue loading conditions. Recently, application of the theory has also been extended to 

polycrystalline nickel superalloy, where material microstructure was considered as one of the 

major factors influencing the fatigue and creep properties of the material. For instance, 

Dunne et al. [20] used a simplified crystal plasticity model to study the low cycle fatigue 

crack nucleation in a directionally solidified nickel alloy. The experimentally observed sites 



of crack nucleation near a free surface matched those of the persistent slip bands predicted 

from the crystal plasticity model. Shenoy et al. [21] formulated a rate-dependent 

microstructure-sensitive crystal plasticity model for correlating the mechanical behaviour of a 

polycrystalline Ni-based superalloy IN 100 at 650°C. The model has the capability to capture 

the first order effects on the stress-strain response due to grain size, precipitate size 

distribution, precipitate volume fraction and dislocation density for each slip system. 

 

Very recently, we have carried out crystal plasticity modelling of the global and local cyclic 

deformation for alloy RR1000, where the simulations compare well with experimental results 

for stress-strain loops, cyclic hardening behaviour and stress relaxation behaviour [22]. Stress 

and strain contour plots showed heterogeneous distribution due to orientation and property 

mismatch between neighboring grains. However, the work of Lin et al. [22] considered the 

in-plane grain orientation only, represented by the random variation of a single Euler angle, 

which is unable to capture the grain orientations properly. Such limitation has been overcome 

in the present study by using three randomly assigned Euler angles to represent the grain 

orientation in three dimensions. As illustrated in Fig.1, for a 150-grain RVE, there is only a 

circle in the pole figure (Figs.1a and 1c) and a line in the inverse pole figure (Fig.1e) when 

one Euler angle is used to represent the in-plane grain orientation, while random distribution 

of grain orientations can be seen in the pole and inverse pole figures (Figs.1b, d and f) if three 

Euler angles are adopted instead. 

 

In addition, from a macroscopic point of view, fatigue life consists of crack initiation and 



propagation phases. Crack initiation phase can be divided into micro-structurally short crack 

initiation and subsequent micro-structurally short crack propagation, both of which are 

strongly influenced by local micro-structural features, such as crystallographic orientations, 

inclusions, voids, grain boundaries and material phases [23-25]. For crack propagation phase, 

different size and crystallographic orientation of the grains may also increase, decrease or 

arrest the crack growth [26-29]. Also, grain orientation mismatch leads to the change of slip 

plane across the grain boundaries [30], resulting in a zig-zag pattern for crack growth [31]. In 

terms of modelling, a combination of crystal plasticity and simplified grain-structure 

modelling has been applied to study crack tip displacements, crack tip plasticity and crack 

opening/closure stress [26, 32-35]. It was concluded that both crack tip opening and sliding 

displacements contribute to the crack growth [26], and plastic zone size significantly depends 

on the crystallographic orientation [32]. In recent years, attempts have been made to account 

for random grain shapes by either transfering of the digital measurement to the FE model or 

using Voronoi tessellation [35, 36], which has been mostly focused on short cracks. For a 

major crack, Sreeramulu et al. [37] studied the mode I and II crack tip fields in 

polycrystalline solids under plane-strain and small-scale yielding conditions. It was found 

that significant texture evolution occurs close to the notch tip, which profoundly influenced 

the stress and plastic strain distributions. Also, the anisotropy due to cold rolling gave rise to 

a higher magnitude of plastic strain near the tip. However, their polycrystalline plasticity 

formulation was based on Taylor-type homogenization and did not consider the explicit 

influence of grain microstructure. 

 



In this paper, a pilot crystal plasticity study of constitutive behaviour, crack tip deformation 

and crack growth path was carried out for a nickel-based superalloy RR1000 under fatigue 

loading conditions at 650°C. The work aims to provide a micro-mechanics based 

understanding of cyclic deformation behaviour for the material. In particular, the 

three-dimensional nature of grain orientations was considered in the cyclic deformation 

simulation, which has overcome one of the major limitations of our recent work Lin et al. [22] 

and similar work in the literature. Furthermore, using an FE submodelling technique, the 

crystal plasticity model was applied to study explicitly the effects of grain microstructure on 

the near-tip deformation of a primary crack, which has not yet been reported. Accumulated 

shear deformation was computed for individual slip systems near the crack tip and utilised, 

for the first time, to predict the influence of grain orientation on the crack path. A similar 

criterion based on cumulative plastic strain has been used in Dunne et al. [20] and also 

discussed in McDowell and Dunne [38], but these were focused mainly on fatigue crack 

nucleation. Based on the key results of the present work, discussions were made regarding the 

heterogeneous inelastic deformation within the RVE and the effect of grain orientation on 

crack-tip deformation. The limitations of the work were also discussed. 

 

2. Crystal plasticity formulation 

The framework of crystal plasticity theory relies on the multiplicative decomposition of the 

total deformation gradient F into an elastic (F
e
) part and a plastic (F

p
) part [39]. The plastic 

component F
p
 is calculated from the inelastic velocity gradient L

p
 according to [39]: 
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where αγ&  is the shear strain rate on the slip system α, 
αm and 

αn are the slip direction 

and the slip plane normal, respectively. 

 

With the incorporation of two scalar state variables per slip system, i.e., slip resistance (S
α
) 

and back stress (B
α
) [40], the flow rule is expressed as an exponential function of the resolved 

shear stress
 
on the slip system:  
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where κ is the Boltzmann constant, τα
 is the resolved shear stress on the slip system α, θ the 

absolute temperature, µ and µ0 the shear moduli at θ and 0 Kelvin, respectively, and F0, 0τ̂ , p, 

q and 0γ&  are material constants. The brackets imply that xx =〉〈  for 0>x  and 0=〉〈x  

for 0≤x . 

 

The two internal variables, the slip resistance in each slip system, S
α
, and the back stress, B

α
, 

are introduced at the slip system level, which represent the state associated with the current 

dislocation network. The slip resistance on a generic slip system, associated with the 

dislocation density along that slip system (i.e., self-hardening), is assumed to evolve 

according to the following relation, starting at an initial value of 0S  [41], 

 

[ ] αααα γ&& )( 0SSdhS DS −−= ,          (3) 



 

where the first and second terms are static and dynamic recovery terms associated with the 

material constants hS and dD, respectively. 

 

The back stress is representative of the internal stress state arising due to dislocations bowing 

between obstacles which can be either precipitates or other dislocations. The back stress 

evolves according to a standard hardening-dynamic recovery format [41], 

 

α
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where hB is a hardening constant, and rD is a dynamic recovery function which introduces the 

inherent dependency between the slip resistance and back stress and may be expressed as 

[40]:, 
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where fc is a coupling parameter between the internal slip variables and 0µ ′  the local slip 

shear modulus at 0 Kelvin. 

 

The crystallographic formulation was implemented numerically into the finite element (FE) 

code ABAQUS [42] within the framework of large strain kinematics via a user-defined 

material subroutine (UMAT), where the fully implicit (Euler backward) integration algorithm 

was adopted [41, 43, 44]. 



 

As addressed in Dennis [43], two slip system families are commonly required to describe 

consistently the inelastic behaviour of f.c.c. Ni-base superalloys at high temperature, namely 

octahedral ({111} < 110 >) and cubic ({100}< 110 >) slip. Octahedral slip happens on the 

closely packed slip plane while cubic slip occurs on less closely packed slip plane. 

Consequently, two sets of material parameters (see Section 4 for parameter determination) are 

required to describe the octahedral and cubic slip systems respectively [43]. 

 

3. Finite element model 

3.1. RVE model 

As shown in Fig.2a (from Stöcker et al. [45]), polycrystalline alloy RR1000 has a fine grain 

structure with an average grain size of 4.76µm and random crystallographic orientation. To 

study the mechanical deformation at the grain level, a plane-strain representative volume 

element (RVE) is used to represent the global material behaviour, which was constructed 

using the Voronoi tessellation technique [46]. Each grain was assumed to have random 

orientation represented by three randomly assigned Euler angles (see the inverse pole figure 

in Fig.1f). Periodic boundary conditions are applied, which enforce parallel deformation of 

opposite edges [47, 48] and can be expressed as: 

)()()()( AuCuABuCDu −=−             (6) 

)()()()( AvBvACvBDv −=−              (7) 

where u(AB) and u(CD) are the x-direction displacements for edges AB and CD; v(BD) and 

v(AC) are the y-direction displacements for edges BD and AC; u(C) and u(A) are the 



x-direction displacements for nodes A and C; v(A) and v(B) are the y-direction displacements 

of nodes A and B. A sketch of the deformed shape, which satisfies the periodic boundary 

condition, has been illustrated by dashed lines in Fig.2b. To remove the rigid body motion, 

the vertex A was fixed in both x and y directions, and B and C were fixed in the x and y 

direction, respectively. A displacement was applied to vertex B in the y-direction to simulate 

the uniaxial strain-controlled loading condition.  

 

The RVE was meshed into first-order four-node plane strain elements with full integration. 

When large strain gradients or strain discontinuities are expected in a solution, such as in 

plasticity analysis at large strains, which is the case for the present work, first-order elements 

are usually recommended [42]. To obtain the global response of the material, homogenization 

based on averaging theorem over the RVE area was adopted [49], which was calculated via 

the following area integral: 
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where ijσ  and ijε  are the average stress and strain for RVE model, A is the area of the RVE, 

ijσ  and ijε  are the stress and strain within the RVE. 

 

The area integrals in (8) and (9) were computed using the Gauss integration algorithm as used 

in ABAQUS. A post-processing program was written in Fortran to obtain the stress and strain 

values for all the FE integration points and then perform the Gauss integration to work out the 

global stress and strain response. 



 

Using the crystal plasticity framework presented in the above section, FE analyses were 

carried out for four RVE models, containing 50, 100, 150 and 200 grains respectively, under 

monotonic tensile loading condition up to 5% strain at a strain rate of 0.005%/s, where the 

convergence of stress-strain curve was achieved at 150 grains. A mesh-sensitivity study was 

also carried out for the 150-grain model, where meshes with 921, 1450 and 4315 elements 

were evaluated. The results showed that the stress-strain curves reached a good convergence 

for the 1450-element mesh. It was also verified that the global stress in the x-direction and the 

global in-plane shear stress are negligible, which confirms the predominant uniaxial 

strain-controlled loading condition of the RVE in the y-direction. A convergence study was 

also carried out at grain level, where both the stress/strain distribution of the RVE and the 

stress-strain response for individual grains were examined for three different meshes (921, 

1450 and 4315 elements, respectively) and a good convergence was achieved for the 

1450-element mesh. For further validation, a pseudo three-dimensional (3D) RVE, which 

allows us to consider the deformation of the slip systems in a realistic three dimension, has 

been constructed for simulation, where the front and the back surfaces were constrained fully 

to represent the plane strain situation, i.e., the nodes were not allowed to move in the depth 

direction. Given the same random orientation for all the grains, the simulated stress-strain 

response is almost the same as that for the two-dimensional (2D) plane-strain RVE.  

 

In the present work, evaluation of RVE size and mesh sensitivity were purely based on FE 

analyses, which led us to adopt the 150-grain RVE. Further analyses have been carried out for 



RVEs with 50, 100 and 150 grains by considering 10 different sets of grain orientations. The 

stress-strain curves showed that the scatter is almost negligible for the 150-grain RVE. In 

what follows, FE analyses were performed for the RVE with 150 grains and 1450 finite 

elements to evaluate the global and local cyclic deformation for alloy RR1000 at 650°C. 

 

It should be pointed out that a preliminary set of material parameters was initially used to 

determine the adequate grain number and element number for RVE model. After the final 

model parameters were fitted (see Section 4), FE analyses were run again to check the 

convergence and the results presented in this paper were, in fact, obtained using the final set 

of parameters, as given in Table 1. 

 

3.2. Submodel for a transgranular crack 

A standard CT specimen (width W = 26mm and height H = 15.6mm) was considered for 

crack tip deformation analyses. The finite element mesh for the whole specimen, shown in 

Fig.3a, consists of four-node, first-order elements with full integration. Cyclic load, with the 

stress intensity factor range ∆K = 25 MPam
1/2

 and a load ratio R = 0.1, was applied to a rigid 

pin fitted into the hole of the specimen. The rigid pin and the hole of specimen were treated 

as a pair of contact surfaces in ABAQUS [42]. The crack length was chosen to be a = 13mm, 

i.e., a/W = 0.5. 

 

FE submodelling was adopted to study the dependence of crack tip deformation on the grain 

microstructure near the crack tip. As shown in Fig.3b, the submodel was constructed near the 



crack tip and contains 150 grains with randomly assigned orientations, where the loading was 

prescribed by the displacement of its boundaries from the global model analyses (ABAQUS). 

A transgranular crack across a couple of grains was introduced in the submodel. The grains in 

the vicinity of the crack tip are identified in the inverse pole figure, as illustrated in Fig.4. 

 

The deformation of the submodel follows the crystal plasticity formulation as given in 

Section 2, while the global model was described by a viscoplastic constitutive formulation 

[50], as adopted for RR1000 [6], where both isotropic and kinematic hardening variables are 

considered during the transient and saturated stages of cyclic responses. The viscoplasticity 

model has also been programmed into a user-defined material subroutine (UMAT), using a 

fully implicit integration and the Euler backward iteration algorithm [7], and implemented in 

the finite element software ABAQUS [42]. The whole procedure starts with the FE analyses 

for global model followed by the submodelling analyses. 

 

To evaluate the mesh sensitivity, three meshes have been generated, corresponding to an 

element sze of 0.40µm, 0.20µm and 0.13µm, respectively, near the crack tip. The stress and 

strain response, averaged over a distance of 0.40µm (about one tenth of the average grain 

size) ahead of the crack tip, confirms a good convergence for the 0.20µm mesh which has 

been used for the crack tip deforamtion analyses. 

 

It should be pointed out here that the submodelling analyses followed the procedure in 

ABAQUS, which only satisfies the displacement continuity at the interface between the 



submodel and global model. As traction continuity is not ensured at the interface, hence the 

results near the interface should be treated as approximate. Nevertheless, as the crack tip is 

reasonably away from the interface, such influence on the crack-tip field would be limited, 

which has been confirmed by the same ∆K value obtained from the submodelling analyses. 

 

4. Modelling of Cyclic Constitutive Behaviour 

4.1. Parameter determination 

The crystal-plasticity model was calibrated by fitting the stress-strain response of the 

strain-controlled cyclic tests at three different strain rates (0.5%/s, 0.05%/s and 0.005%/s) [3]. 

Prior to the fitting process, material constants were estimated from the literatures. For 

instance, the full model parameters are already available for CMSX4 nickel single crystals 

[41, 43, 44], which serve as a general guideline on the initial estimations. The calibration of 

material constants also involves certain constraints, which were imposed as the ranges of 

target values based on published work. For example, the value of p and q were recommended 

to be 0 < p < 1 and 1 < q < 2 [10], which greatly facilitated the calibration process. Also, to 

improve the efficiency of the fitting process, a sensitivity analysis of parameters with respect 

to the stress-strain response was conducted in the first stage of calibration. Given all of the 

crystal plasticity parameters that needed to be calibrated, it is known that some of them have 

specific influence on the stress-strain response, such as that the parameters p and q mainly 

influence the shape of the loops. 

 

The whole process began with fitting the monotonic stress-strain curves and the first cyclic 



loops for all three loading rates. During this process, the main target was to identify the 

material parameters p, q and 0τ̂ , which control the rate sensitivity, and work out their sensible 

values. Then, efforts were made to improve the cyclic hardening simulation, which involves 

re-calibration of some of the critical material parameters which control the cyclic hardening 

behaviour. In this process, the major influencing parameters were found to be a combination 

of the parameters fC and hS. 

 

Following each simulation, the resulting stress values at each strain point were compared 

with the experimental data, the magnitude of the difference was considered in an error 

function (objective function) over the history. Optimization was carried out until the error 

was minimized. The final parameter values determined by the fitting process are listed in 

Table 1 for both octahedral and cubic slip systems. Other fitted parameters include the 

coefficient λ = 0.85 and the shear modulus at 0 Kelvin µ0 = 192 GPa. Anisotropic stiffness 

constants were taken as C11 = 166.2 GPa, C12 = 66.3 GPa and C44 = 138.2 GPa, which give a 

global Young’s modulus of 190 GPa for alloy RR1000 at 650°C and matches the 

experimental measurement [3]. 

 

4.2. Stress-strain response 

The simulated stress-strain responses for monotonic and the first cycle of fatigue loading are 

shown in Fig.5 for the strain rate of 0.05%/s, with a direct comparison against the 

experimental data [3, 6]. Clearly, the model simulations agree very well with the test data. 



The stress response and the shape of hysteresis loops were both well captured by the 

crystal-plasticity-based FE analysis of the RVE. 

 

Cyclic hardening behaviour was presented in Fig.6 by plotting the stress amplitude as a 

function the number of cycles for the 0.05%/s strain-loading rate. Test data [3, 6] were 

included for a direct comparison, where a good match is demonstrated. For the nickel alloy 

RR1000, cyclic deformation seems to reach saturation after about 25 cycles. As shown in 

Fig.7, simulated stress-strain loops at saturation also agree very well with the experimental 

results. 

 

As an independent evaluation for the model, the same parameters were also used in 

simulations for cyclic uniaxial strain-controlled histories with 100-second hold time 

superimposed at both the maximum and minimum strain levels. The simulated stress 

relaxation during the strain hold periods are shown in Fig.8 for strain range = 2.0% and strain 

rate = 0.5%/s, which are again in good agreement with the experimental data [3]. 

 

4.3. Stress-strain distribution 

Figs.9 and 10 show the contour plots of the normal stress and strain in the y-direction at the 

maximum strain level of the 25
th 

cycle for the 0.05%/s loading rate case, where 

heterogeneous stress and strain distributions are observed. The maximum value of the local 

stress (1696MPa) is about 1.4 times the global stress (1215MPa) and the maximum local 

strain (1.7%) is about 1.7 times the global strain (1%). Stress and strain concentrations are 



located in different grains. A number of grains with high stress and strain concentrations are 

selected and their orientations are identified and presented in the inverse pole figure, 

respectively. The grains with high strain concentrations are orientated towards the [001] in 

the inverse pole figure (see Fig.10b), while those with high stress concentrations tend to 

locate away from [001] orientation (towards [101] and [111]) in the inverse pole figure (see 

Fig.9b). The highest strain concentrations are located within the “soft” grains, which have 

low strain hardening in the stress-strain response (see Fig.11). On the other hand, the highest 

stress concentrations are typically located within the “hard” grains, which have high strain 

hardening in the stress-strain response (see Fig.11). As demonstrated in Fig.11, the 

stress-strain loops are much wider for the soft grains than those for the hard grains, indicating 

more inelastic deformation in the soft grains. Also most stress and strain concentrations are 

located at the triple or multiple points due to the mismatch of the mechanical properties of 

multiple grains. Here, the normal stress and strain in the y-direction, instead of the equivalent 

stress-strain measures, were used to evaluate the hardening behaviour of individual grain, as 

equivalent stress-strain measures have only absolute values and are considered less indicative 

for damage analysis than the normal stress and strain. Also, the normal (in the x-direction) 

and shear stress-strain responses for individual grains are much smaller than that in the 

y-direction. 

 

5. Modelling of crack-tip deformation and crack path 

5.1. Stress-strain response near the crack tip 

As shown in Fig.12a, contour plot of the von Mises stress show stress concentrations near the 



crack tip confirms the well-known butterfly shape for viscoplastcity simulation. However, for 

crystal plasticity simulation, grain microstructure does have an influence on the Mises stress 

contour zone which does not have the butterfly shape (Fig.12b). The stress concentration 

zone obtained from the crystal plasticity analyses seems to be of an arbitrary shape and is less 

severe than that obtained from the visco-plasticity analyses. Shape and size of the stress 

contour zone are clearly affected by the heterogeneity of the grain microstructure. This could 

be due to the presence of mechanical property mismatch of individual grains which results in 

the re-distribution of the local stress concentration near the crack tip. Further FE analyses 

were also carried out for the RVE by assigning a single orientation to all grains, which is 

equivalent to a single crystal material. The contour plot of von Mises stress generally shows a 

highly distorted and asymmetric butterfly shape, indicating the significance of grain 

orientation in crack tip field [51, 52]. 

 

The stress-strain response in the y-direction, averaged over a distance of 0.40µm ahead of the 

crack tip, is shown in Fig.13, in a comparison with those obtained from the continuum 

viscoplasticity analyses. For both cases, the cyclic stress-strain loops remain open and exhibit 

a so-called ratchetting phenomenon, where the plastic deformation during the loading portion 

is not balanced by an equal amount of yielding in the reverse loading direction. By changing 

the orientation of the crack-tip grain to that for grain 1′ and 1′′, as shown in the inverse pole 

figure in Fig.4, the stress-strain loops near the crack tip become different (see Fig.14), 

indicating the influence of grain orientation. 

 



5.2. Shear deformation along slip planes near the crack tip 

The shear deformation along individual slip system near the crack tip has been extracted from 

the FE results, which is shown to vary according to the slip system. It turns out that four slip 

systems appear to have the most notable amount of shear deformation accumulated in four 

cycles, which include three octahedral slip systems (111)[1-10], (1-11)[-101] and (1-11)[110] 

and one cubic slip system (100)[0-11]. The 2D in-plane traces of these four slip systems are 

shown in Fig.15a, and the accumulated shear strain are plotted in Fig.15b for each slip system. 

The slip traces illustrated in Fig.15b are the projections of the 3D slip systems onto the 2D 

crack plane (perpendicular to the crack growth direction). 

 

Within four cycles, the cubic slip system (100)[0-11] has accumulated the maximum amount 

of shear deformation. If the accumulated slip was used as the crack growth criterion, the 

crack will grow along the trace of the cubic slip system (100)[0-11], as sketched in Fig.15a. 

By changing the orientation of the crack-tip grain to that for grain 1' and 1'', as shown in the 

inverse pole figure in Fig.4, crack growth will then follow the trace for the octahedral slip 

system (-1-11)[-110] and the cubic slip system (111)[1-10], respectively, which happen to 

have the maximum amount of accumulated slip (see Fig.16). 

 

5.3. Prediction of crack growth path 

Studies of fatigue of polycrystalline alloys at grain level indicated that crack nucleation and 

subsequent transgranular growth tend to follow the slip planes due to the shear deformation 

associated with the slip systems [e.g., 27, 30, 35, 53]. Along the same line, here it was 



proposed that crack growth in the grain interior will follow the direction of slip trace with the 

maximum accumulated slip, which can be computed from the crack-tip deformation analyses. 

Once the slip trace was identified, the crack length was immediately increased to the grain 

boundary along the slip system, representing a series of stationary cracks. As the material has 

a fine grain micro-structure, it seems plausible to assume that crack will grow along the slip 

trace without changing to another direction within the gain. Also, for polycrystalline material, 

experiment observations show that crack growth tend to follow the slip plane in each grain 

and a change of crack growth behaviour mostly happens when crossing the grain boundaries 

due to the change of favourable slip planes [27, 30].  

 

When the crack meets the grain boundary, the model was re-meshed for further finite element 

analysis, from which the slip trace with the maximum amount of accumulated slip was 

obtained to determine the crack growth path into the next grain. The size for the crack tip 

mesh near the grain boudary is about 0.6 µm and mesh sensitivity results show that the slip 

trace with the maximum amount of shear deformation remains unchnaged with mesh 

refinement. 

 

Two submodels with different sets of random orientation were considered and the predicted 

crack growth paths are shown in Fig.17, with details of the identified slip system for each 

crack growth segment. The loading condition is the same as that used for crack tip 

deformation analyses, namely, the stress intensity factor range ∆K = 25 MPam
1/2

, load ratio R 

= 0.1 and frequency f = 0.25Hz. The level of ∆K is well below the fracture toughness for 



alloy RR1000 (in the range of 100 MPam
1/2

). A closer look at the zig-zag path, predicted 

from the maximum shear deformation criterion, seems to suggest that the overall crack path 

tends to follow the major growth direction which is perpendicular to the external load. 

 

6. Discussions 

6.1. Cyclic deformation 

As shown in the present work, in addition to the global mechanical behaviour, the crystal 

plasticity model is capable of predicting the heterogeneous nature of local stress and strain 

behaviour, which is of great significance for prediction of crack initiation. Local stress and 

strain concentrations are located in the so-called “hard” and “soft” grains, respectively, and 

the stress-strain loops for the “soft” grains are much wider than those for the “hard” grains 

(Fig.11), indicating more inelastic deformation in the soft grains. The "soft" and “hard” 

grains refer to the different stress-strain behaviour for individual grains due to the difference 

in the orientation of the grains with respect to the loading direction. In the present work, the 

grain orientation with respect to the loading direction may be identified in the inverse pole 

figure drawn in the loading direction (Fig.9b and 10b). FE analyses were also carried out for 

the RVE loaded in the x-direction, and the corresponding inverse pole figure for the identified 

"hard" and "soft" grains confirms that soft grain tends to locate in the [001] orientation and 

hard grains tends to locate away from [001] orientation, which is consistent with that for the 

y-direction loading. This information could be further explored as a criterion for prediction of 

crack nucleation under low cycle fatigue. 

 



A contour plot of the accumulated inelastic strain at the maximum strain level of the 25
th

 

cycle is shown in Fig.18 for the RVE loaded at a strain rate dε/dt = 0.005%/s and strain range 

∆ε = 2%, which has the same pattern as the strain distribution (see Fig.10). The accumulated 

inelastic strain is referred to the accumulation of equivalent inelastic strain, whose rate is 

defined as )(:)(
3

2~ IFIF −−= PP

in
&&&ε , where PF&  is the rate of inelastic deformation 

gradient and I is the identity matrix. In Fig.18, only some localized inelastic deformation 

bands can be observed, which may prompt fatigue crack initiation and propagation, leading to 

transgranular fracture during crack growth. Cyclic deformation bands normally consist of a 

few connected grains which have a high level of accumulated inelastic strain after a number 

of loading cycles. However, at a low strain level (up to 1%), deformation bands are highly 

localized within individual grains, as shown in Fig.18, which is also true for the von Mises 

equivalent strain. FE analyses were carried out for the RVE cyclically loaded at a high strain 

level, up to 10% at a strain rate of 0.005%/s and strain ratio of −1, and the grey-scale contour 

plot of the von Mises equivalent strain at the maximum strain level of the 2
nd

 cycle (Fig.19) 

clearly shows the cyclic deformation bands inclined at 45 or 135 degree with respect to the 

loading direction, similar to that observed in Kovač et al. [15] for monotonic loading 

condition. This is also the case for the contour plot of the accumulated inelastic strain inε~ . 

 

Experimental observations have showed a direct link between the fatigue crack initiation and 

the localized slip bands predicted by crystal plasticity modelling for aluminium [17], titanium 

alloys [19, 54] and nickel alloys [20]. These results seem to support the role of slip bands in 

promoting fatigue crack nucleation. As reported, at grain level fatigue crack could nucleate 



from either hard [19, 54] or soft [17, 20] grains, which seems to depend on material 

properties and loading conditions. For alloy RR1000, which has superior high-temperature 

mechanical properties and toughness, fatigue crack initiation at 650°C is most likely to be 

associated with the accumulated inelastic deformation in the soft grains. At grain level, 

slip-induced deformation tends to accumulate within the soft grains (see Figs.10 and 18) and 

hence prompting crack nucleation from those soft grains due to the severe inelastic strain 

concentrations. 

 

6.2. Crack-tip deformation 

Crystal plasticity model is able to study the effects of the grain orientation on crack tip 

deformation and associated crack growth, an advantage over the continuum mechanics 

approach [55]. In addition to the near-tip stress-strain response (Figs.13 and 14), the 

accumulated shear deformation along the slip system which has the maximum amount of 

accumulated slip (see Figs.15 and 16) is compared in Fig.20 for the three differently 

orientated grains at the crack tip (Fig.4). The maximum amount of slip accumulation is 

different due to the different grain orientation, and, in 4 cycles, it reached 1.8, 0.8 and 0.9 for 

grain 1, 1' ad 1'', respectively. As seen from Figs.13, 14 and 20, near the crack tip, both the 

stress-strain response and the accumulated shear deformation along the slip system vary 

according to the orientation of the crack-tip grain, which might indicate variable crack growth 

rates should the crack chose to grow through different grains. The present work has also 

shown that the slip-related shear deformation is different for different slip systems (Fig.15b). 

The amount of slip depends on the orientation of the grain at the crack tip, which can be 



computed and utilised for the prediction of a zig-zag crack growth path (Fig.17) that acts as a 

major source for the well-known crack closure phenomenon [31]. 

 

It would be ideal to have a direct comparison of the FE predictions with in-situ recording of 

fatigue crack growth trajectories, for which in-situ SEM/TEM with EBSD analyses are 

required, but no such results are currently available for the material studied in the present 

work. However, experimental evidence regarding the connection between crack growth path 

and slip planes (e.g., {111}, {100}, {110}) in f.c.c. materials has been well documented [27, 

53, 56, 57]. In this work, crack growth trajectories were explored based on the consideration 

of the maximum amount of accumulated shear deformation on the available slip planes. The 

crack growth follows either octahedral {111} or cubic slip {100} system, depending on the 

level of accumulated shear deformation for each slip system. The predicted crack growth 

trajectories seem to be highly dependent on the grain orientations, as shown here for two 

random distributions of grain structures (Figs.17a and b). Although no preferential slip planes 

may be identified from these results, both paths show macroscopically co-planar type of 

crack growth, which seems reasonable. 

  

The present work utilised a micromechanics-based approach to study the crack tip 

deformation and crack growth path, which shows the influence of grain microstructure, 

although the results are specific to the set of orientation considered in the FE analyses. More 

substantial work is further required to thoroughly address the effect of grain orientation and 

size in damage tolerance design, including the correlation of crack growth rate with ∆K and 



full simulation of crack growth. This was not attempted due to partly also the lack of vacuum 

test results which can remove the influence of oxidation that is known to be substantial for 

this alloy tested in air and at high temperature. As the crack growth was modelled as a series 

of stationary crack tips, the non-proportional loading and elastic unloading in the 

neighborhood of growing cracks in elastic-plastic solids were not captured in the present 

work, which can influence the slip band patterns near the crack tip and hence the crack path 

according to the current criterion adopted. 

 

7. Conclusions 

Crystal plasticity modelling of cyclic deformation has been presented for a polycrystalline 

nickel-based superalloy at elevated temperature. An RVE, consisting of a number of 

randomly oriented single crystal grains, has been constructed using the Voronoi tessellation 

and meshed for finite element analyses under periodic boundary constraints. The model 

parameters were determined from strain-controlled cyclic test data at 650°C for different 

loading rates using a fitting process. Simulations using fitted parameters showed good 

agreement with experimental data for stress-strain loops, cyclic hardening behaviour and 

stress relaxation behaviour during strain hold period. 

 

Stress and strain contour plots of the deformed RVE showed heterogeneous distribution due 

to orientation mismatch between neighboring grains. Strain concentrations are basically 

located within soft grains, while stress concentrations are localized within hard grains. 

Localized inelastic deformation bands were also observed from the contour plot of 



accumulated inelastic strain, which seems to reside in the soft grains and may be the potential 

sites for fatigue crack nucleation. 

 

The model was also applied to study the near-tip deformation for a transgranular crack in a 

CT specimen. Crack-tip deformation is shown to depend on the orientation of the grain at the 

crack tip, and the amount of accumulated slip near the crack tip varies according to the slip 

system which was further used as a criterion to predict crack growth path that follows the 

zig-zag route. 
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Figure Captions 

Fig.1 Pole and inverse pole figures for a 150-grain RVE with one Euler angle ((a), (c) & 

(e)) and three Euler angles ((b), (d) & (f)). 

 

Fig.2 (a) Grain texture for alloy RR1000, where the color designates crystallographic 

orientation [45]; (b) illustration of the RVE and periodic boundary conditions. 

 

Fig.3 (a) Global finite element model for the CT specimen; (b) a 150-grain submodel with 

crack introduced across a couple of grains. 

 

Fig.4 (a) Illustration of the grains enclosing the crack tip and (b) their inverse pole figure.  

 

Fig.5 Comparison of simluated stress-strain loop and experimental results for the first 

cycle of a strain-controlled cyclic test (strain rate dε/dt = 0.05%/s and strain range ∆ε 

= 2% [6]). 

 

Fig.6 Comparison of simluated cyclic hardening and experimental results for a 

strain-controlled test (strain rate dε/dt = 0.05%/s and strain range ∆ε = 2% [6]). 

 

Fig.7 Comparison of simluated stress-strain loop at saturation and experimental results for 

a strain-controlled cyclic test (strain rate dε/dt = 0.05%/s and strain range ∆ε = 2% 

[6]). 



 

Fig.8 Comparison of model simulation and experimental data for the stress relaxation 

behaviour during 100-second dwells at maximum and minimum strain levels (strain 

rate dε/dt = 0.5%/s and strain range ∆ε = 2% [3]). 

 

Fig.9 (a) Contour plot of the normal stress in the y-direction at the maximum strain level 

of the 25
th

 cycle (strain rate dε/dt = 0.005%/s and strain range ∆ε = 2%); (b) Inverse 

pole figure for the grians with high stress concentration. 

 

Fig.10 (a) Contour plot of the normal strain in the y-direction at the maximum strain level 

of the 25
th

 cycle (strain rate dε/dt = 0.005%/s and strain range ∆ε = 2%); (b) Inverse 

pole figure for the grians with high strain concentration. 

 

Fig.11 Stress-strain loops of individual grains for the 25th laoding cycle (strain rate dε/dt = 

0.005%/s and strain range ∆ε = 2%). 

 

Fig.12 Contour plots of the von Mises stress obtained from the FE analyses using (a) crystal 

plasticity and (b) viscoplasticity model. 

 

Fig.13 Comparison of the stress-strain response in the y-direction, averaged over a distance 

of 0.40µm ahead of the crack tip, for the crystal plasticity and viscoplasticity model. 

 



Fig.14 Comparison of the stress-strain response in the y-direction, averaged over a distance 

of 0.40µm ahead of the crack tip, for grain 1′ and 1′′. 

 

Fig.15 (a) The 2D in-plane traces of the four slip systems with the most notable amount of 

accumulated shear deformation in four cycles; (b) Accumulated slip, averaged over a 

distance of 0.40µm ahead of the crack tip, as a function of the time for the four slip 

systems. 

 

Fig.16 Illustration of slip traces with the maximum amount of accumulated slip for grain 1′ 

and 1′′. 

 

Fig.17 Predicted crack growth paths for two submodels with different sets of random grain 

orientation. 

 

Fig.18 Contour plot of the accumulated inelastic strain at the maximum strain level of the 

25
th

 cycle (strain rate dε/dt = 0.005%/s and strain range ∆ε = 2%). 

 

Fig.19 Contour plot of the von Mises equavalent strain at the maximum strain level of the 

2
nd

 cycle (strain rate dε/dt = 0.005%/s, strain range ∆ε = 20%, strain ratio = −1). 

 

Fig.20 Influence of grain orientation on the maximum accumulated shear deformaiton 

averaged over a distance of 0.40µm ahead of the crack tip. 



Table Caption 

 

Table 1, Fitted model parameters for alloy RR1000 at 650°C. 



 

Fig.1, Pole and inverse pole figures for a 150-grain RVE with one Euler angle ((a), (c) & (e)) 

and three Euler angles ((b), (d) & (f)). 

(a) {111} pole figure (b) {111} pole figure 

(c) {100} pole figure (d) {100} pole figure 

(e) σyy−[010] inverse pole figure (f) σyy−[010] inverse pole figure 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2, (a) Grain texture for alloy RR1000, where the color designates crystallographic 

orientation [45]; (b) illustration of the RVE and periodic boundary conditions. 
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Fig.3, (a) Global finite element model for the CT specimen; (b) a 150-grain submodel with 

crack introduced across a couple of grains (mesh size near the crack tip is ~0.20µm). 
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Fig.4, (a) Illustration of the grains enclosing the crack tip and (b) their inverse pole figure.  
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Fig.5, Comparison of simluated stress-strain loop and experimental results for the first cycle 

of a strain-controlled cyclic test (strain rate dε/dt = 0.05%/s and strain range ∆ε = 2% [6]). 



 

 

 

 

 

 

Fig.6, Comparison of simluated cyclic hardening and experimental results for a 

strain-controlled test (strain rate dε/dt = 0.05%/s and strain range ∆ε = 2% [6]). 



 

 

 

 

 

 

Fig.7, Comparison of simluated stress-strain loop at saturation and experimental results for a 

strain-controlled cyclic test (strain rate dε/dt = 0.05%/s and strain range ∆ε = 2% [6]). 



 

 

 

 

 

Fig.8, Comparison of model simulation and experimental data for the stress relaxation 

behaviour during 100-second dwells at maximum and minimum strain levels (strain rate dε/dt 

= 0.5%/s and strain range ∆ε = 2% [3]). 



 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.9, (a) Contour plot of the normal stress in the y-direction at the maximum strain level of 

the 25
th

 cycle (strain rate dε/dt = 0.005%/s and strain range ∆ε = 2%); (b) Inverse pole figure 

for the grians with high stress concentration.
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Fig.10, (a) Contour plot of the normal strain in the y-direction at the maximum strain level of 

the 25
th

 cycle (strain rate dε/dt = 0.005%/s and strain range ∆ε = 2%); (b) Inverse pole figure 

for the grians with high strain concentration. 
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Fig.11, Stress-strain loops of individual grains for the 25th laoding cycle (strain rate dε/dt = 

0.005%/s and strain range ∆ε = 2%). 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.12, Contour plots of the von Mises stress obtained from the FE analyses using (a) 

viscoplasticity and (b) crystal plasticity model. 
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Fig.13, Comparison of the stress-strain response in the y-direction averaged over a distance 

of 0.40µm ahead of the crack tip for the crystal plasticity and viscoplasticity model. 



 

 

 

 

 

 

 

 

Fig.14, Comparison of the stress-strain response in the y-direction averaged over a distance 

of 0.40µm ahead of the crack tip for grain 1′ and 1′′. 

 



 

 

Fig.15, (a) The 2D in-plane traces of the four slip systems with the most notable amount of 

accumulated shear deformation in four cycles; (b) Accumulated slip, averaged over a distance 

of 0.40µm ahead of the crack tip, as a function of the time for the four slip systems. 
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Fig.16, Illustration of slip traces with the maximum amount of accumulated slip for grain 1′ 

and 1′′. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.17, Predicted crack growth paths for two submodels with different sets of random grain 

orientation.
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Fig.18, Contour plot of the accumulated inelastic strain at the maximum strain level of the 

25
th

 cycle (strain rate dε/dt = 0.005%/s and strain range ∆ε = 2%). 
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Fig.19, Contour plot of the von Mises equavalent strain at the maximum strain level of the 2
nd

 

cycle (strain rate dε/dt = 0.005%/s, strain range ∆ε = 20%, strain ratio = −1). 
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Fig.20, Influence of grain orientation on the maximum accumulated shear deformaiton 

averaged over a distance of 0.40µm ahead of the crack tip. 

 

 


