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Abstract

The paper documents the development of a global nonhydrostatic finite-volume
module designed to enhance an established spectral-transform based numerical
weather prediction (NWP) model. The module adheres to NWP standards, with for-
mulation of the governing equations based on the classical meteorological latitude-
longitude spherical framework. In the horizontal, a bespoke unstructured mesh with
finite-volumes built about the reduced Gaussian grid of the existing NWP model
circumvents the notorious stiffness in the polar regions of the spherical framework.
All dependent variables are co-located, accommodating both spectral-transform and
grid-point solutions at the same physical locations. In the vertical, a uniform finite-
difference discretisation facilitates the solution of intricate elliptic problems in thin
spherical shells, while the pliancy of the physical vertical coordinate is delegated to
generalised continuous transformations between computational and physical space.
The newly developed module assumes the compressible Euler equations as default,
but includes reduced soundproof PDEs as an option. Furthermore, it employs semi-
implicit forward-in-time integrators of the governing PDE systems, akin to but
more general than those used in the NWP model. The module shares the equal
regions parallelisation scheme with the NWP model, with multiple layers of paral-
lelism hybridising MPI tasks and OpenMP threads. The efficacy of the developed
nonhydrostatic module is illustrated with benchmarks of idealised global weather.
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1 INTRODUCTION

Numerical weather prediction (NWP) has achieved high proficiency over the
past 30 years. This owes much to advancements in computer hardware, ob-
servational networks and data assimilation techniques as well as numerical
methods for integrating hydrostatic primitive equations (HPE). One particu-
lar numerical approach embraced widely by NWP combines semi-implicit time
stepping with semi-Lagrangian advection (SISL) and with spectral-transform
spatial discretisation of the governing HPE [46]. The SISL time stepping en-
ables integrations with Courant numbers of the fluid flow and wave motions
much larger than unity, whereas the spectral-transform discretisation facili-
tates the efficient solution of elliptic equations induced by the SISL approach.
Moreover, it circumvents the computational expense of the latitude-longitude
(lat-lon) coordinate framework — where meridians converge towards the poles
— as spectral transforms can operate on a reduced Gaussian grid with quasi-
uniform distribution of nodes on the surface of a sphere [44,45].

The advance of massively parallel computing in the nineteen-nineties and
beyond encouraged finer grid intervals in NWP models. This has improved
resolution of weather systems and enhanced the accuracy of forecasts, while
stimulating development of global nonhydrostatic models. 1 In effect, many
operational NWP models nowadays include nonhydrostatic options either for
regional predictions or research [24,4,25,1,43,23,47]. However, to date no NWP
model runs globally in operations at nonhydrostatic resolutions. Such high
resolutions are still computationally unaffordable and too inefficient to meet
demands of the limited time window for distributing global forecasts to the
end users.

The computational affordability of global nonhydrostatic forecasts, and thus
their future, is a twofold concern. On one hand, with communications over-
whelming the efficacy of spectral transforms on large grids [44,45], emerging
supercomputers with simply scaled up numbers of cores become unaffordable,
not least due to the excessive energy bill. On the other hand, the necessity
of replacing HPE that have been central to the success of weather prediction
and climate projections exacerbates the efficiency problem. In particular, with
the simulated vertical extent of the atmosphere relatively thin compared to
its horizontal extent, the vertically propagating sound waves supported by
the nonhydrostatic Euler equations from which HPE derive, impose severe
restrictions on the numerical algorithms. The hydrostatic balance assumption
underlying HPE conveniently filters vertically propagating sound waves, there-
fore permitting large time steps in the numerical integration. Moreover, HPE

1 The progressive refinement of NWP grids invalidates HPE as horizontal resolution
approaches O(103) m.
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imply the separability of horizontal and vertical discretisation, thus facilitating
the design of effective SISL flow solvers.

Altogether, NWP is at a crossroads. Although massively parallel computer
technology promises continued advances in forecast quality, the latter cannot
be achieved with the existing apparatus of NWP models by straightforwardly
applying it to larger grids. This is well appreciated, and the community vigor-
ously seeks new avenues to advance the status quo of NWP to meet growing
demands and expectations of the society. Among a broad range of activities
pursued worldwide (see Introduction in [35] for a succinct overview), trends
emerge to start afresh and supersede the vested legacy codes with modern
developments. Recognising the predictive skills of the existing NWP legacy
codes, we seek to mitigate their shortcomings by supplying a complementary
nonhydrostatic module with capabilities of cloud-resolving models. The first
step towards this paradigm is the development of a global finite-volume non-
hydrostatic module capable of working on the reduced Gaussian grid of the
Integrated Forecast System (IFS) of the ECMWF [3,40,44].

The IFS is among the world leading global medium-range NWP models, with
spectral-transform based spatial discretisation and SISL integrator for the
governing PDEs. At present, IFS runs operationally with HPE, at the spectral
resolution equivalent to uniform coverage of the Earth surface with a <

∼16 km
grid spacing. In the vertical, the atmosphere is discretised using a hybrid
terrain-following pressure (viz. mass) coordinate resolving a ≈85 km deep
atmosphere with 137 levels, and equivalent height increments increasing (non-
uniformly) from about 10 m near the ground to a few kilometres at the very
top. The uniform time step 600 s used in operations results in local Courant
numbers ≈ 4− 5 in jet stream regions and, in particular, in the stratosphere
where flow velocities approach 100 m s−1. The efficiency standard is rigid for
the IFS: in order to be useful, a 10 day global forecast must be produced
in no more than 1 hour of wall-clock time. With 10 prognosed dependent
variables in 3D, this puts heavy demand on the efficiency of numerical schemes
and their scalability on massively-parallel computers. Furthermore, spatial
differentiation is conducted in spectral space, and there are no practical means
of calculating derivatives locally in physical space. Moreover, the increased
complexity of the nonhydrostatic IFS option significantly increases the number
of required spectral transforms, nearly doubling the cost compared to the
hydrostatic forecast, which is already projected to be too slow on existing
supercomputers at nonhydrostatic scales within the operational time window
of 1 hour [44].

The concept of supplementing NWP models with complementary nonhydro-
static add-on modules has been considered earlier [11]. However the approach
proposed in our paper is distinct. Rather than adding optional contributions
from nonhydrostatic perturbation terms to the governing HPEs, we supply an
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autonomous nonhydrostatic module that can operate on the nodes of the IFS
grid and, in principle, on any horizontal grid. In general terms, such an ap-
proach enables numerical procedures unavailable in SISL spectral models with
minimal disruption to their highly optimised codes. In particular, it can re-
place global communication and computation with local equivalents, providing
an effective testing ground for assessing the utility of innovations from outside
the realm of spectral methods in the context of real weather. Furthermore, the
autonomy of the module enables a variety of implementations, from as simple
as advecting selected critical fields of SISL NWP models in a conservative
finite-volume fashion, to as complex as replacing the whole dynamical core
with a cloud-resolving model while driving the latter with a smoother coarse
solution of a spectral transform HPE code. Herein, we document the devel-
opment of the autonomous hybrid all-scale finite-volume module (hereafter
FVM, for brevity).

The FVM is a hybrid descendant of the interdisciplinary all-scale Eulerian/semi-
Lagrangian research model EULAG [22,33,35,14] and the generalisation of the
non-oscillatory forward-in-time (NFT) atmospheric models to unstructured
meshes [28,37,34]. The default governing PDEs of the FVM assume the fully
compressible Euler equations under gravity on a rotating sphere, and reduced
soundproof PDEs are included as an option. The standard lat-lon spherical
framework (sometimes referred to as anholonomic; section 7.2 in [7]) forms
the basis of the analytic model formulation, similar in IFS and EULAG [42].
Circumventing the notorious stiffness of the global lat-lon system is delegated
to the flexibility of the finite-volume discretisation on an unstructured mesh,
with control volumes built around the reduced Gaussian grid of the IFS. In
3D, the mesh is prismatic; i.e., the horizontal discretisation is common for
all vertical levels of the computational space [37]. A uniform finite-difference
discretisation in the vertical is chosen to facilitate the solution of intricate
elliptic problems in thin spherical shells. Continuous curvilinear mappings are
employed to mimic a pliant height coordinate in physical space [21,41,33]. The
FVM employs established semi-implicit non-oscillatory forward-in-time inte-
grators of the governing PDE systems [35] conceptually similar to, but more
general than, those used in the IFS. Because FVM operates at the nodes of the
IFS grid, it seamlessly inherits the equal regions domain decomposition par-
allelisation scheme of the IFS, with multiple layers of parallelism hybridising
MPI tasks and OpenMP threads; [18,19] and references therein.

The conceptual building blocks of the FVM were established in the earlier de-
velopments of EULAG and the akin generalisations to unstructured meshes,
and they are well documented in the literature. Nonetheless, some technical
aspects had to be customised for the parallel implementation on the unstruc-
tured mesh constrained by the IFS grid. In particular, the edge-based formu-
lation pursued in the earlier works [37,38,32,34] had to be supplemented with
elements of a nodal formulation to facilitate massive parallelism. In this paper

4



we will only briefly review the building blocks, thoroughly discussed in earlier
publications, and focus on new elements. For simplicity and conciseness, the
presentation is focused on the formulation of the FVM dynamical core; i.e., it
is restricted to dry motions and accounts only for idealised heat sources/sinks
and momentum dissipation. 2 For the numerical simulation demonstrating
nonhydrostatic capabilities, the quasi-two-dimensional orographic flow with
linear vertical shear is adopted after [42]. For the numerical simulation epit-
omising midlatitude weather systems, the global baroclinic instability bench-
mark [9] is adapted after [35].

The paper is organised as follows. In section 2 we review the nonhydrostatic
governing equations available in FVM. These equations were discussed exten-
sively in [35], passing gradually from physically intuitive Lagrangian form in
Cartesian geometry toward the conservation laws consistent with the problem
geometry and the solution procedure. Consequently, here we go directly to the
latter form, to devote more attention to the technical aspects of the numerical
procedures in sections 3 and 4. In particular, section 3 summarizes the outer
layer of the FVM numerical apparatus, comprising building blocks of the semi-
implicit integration schemes such as NFT template algorithms, semi-implicit
time stepping, and the associated elliptic boundary value problems. Section 4
outlines the inner layer of the FVM machinery, including a description of the
spatial discretisation, the datastructure underlying the FVM code, and of the
hybrid MPI/OpenMP parallelisation scheme. Section 6 substantiates preced-
ing technical developments, demonstrating the efficacy of the FVM module
for two idealised flow problems relevant to weather. Section 7 concludes the
paper.

2 GOVERNING EQUATIONS

The analytic PDEs solved in the dynamical core of FVM can be written in a
compact symbolic form, consistent with the FVM code, as

∂G%
∂t

+∇ · (G%v) = 0 , (1a)

∂G%θ′

∂t
+∇ · (G%vθ′) = −G%

(
G̃Tu · ∇θa −H

)
, (1b)

2 Technically, physical parametrisations of the IFS can be readily used with the
FVM, because they are computed in vertical columns at each node of the reduced
Gaussian grid.
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∂G%u
∂t

+∇ · (G%v ⊗ u) = (1c)

−G%
(

ΘG̃∇ϕ+ gΥB
θ′

θb
+ f × (u−ΥCua)−M′(u,ua,ΥC)− DDD

)
.

The system (1) encapsulates three distinct sets of the governing equations: the
compressible Euler equations under gravity on a rotating sphere, and their two
reduced soundproof forms, the pseudo-incompressible equations of Durran [6]
and the anelastic equations of Lipps-Hemler [16,17]. The distinction between
the three sets is encrypted in definitions of the generalised density % and
pressure variable ϕ, together with the corresponding dimensionless coefficients
Θ, ΥB, and ΥC that depend on various states of the potential temperature
θ. For ideal gas, θ amounts to specific entropy via ds = cpd ln θ, with cp
denoting the specific heat at constant pressure. For the [compressible, pseudo-
incompressible, anelastic] PDEs, % and ϕ are defined respectively as

% := [ρ(x, t),
ρb(z)θb(z)

θ(x, t)
, ρb(z)] , ϕ := [cpθ0π

′, cpθ0π
′, cpθbπ

′] , (2)

where ρ marks air density, while subscripts b, 0 and a refer, respectively, to a
horizontally homogeneous and hydrostatically balanced base state, a constant
reference value and the ambient state discussed later. 3 The generalised pres-
sure ϕ depends on the Exner pressure π ≡ (p/p0)Rd/cp , where Rd is the gas
constant for dry air. Throughout the paper primes denote perturbations with
respect to the ambient state; e.g., π′ = π − πa, θ′ = θ − θa, and so forth. The
coefficients Θ, ΥB, and ΥC corresponding to generalised variables in (2) are

Θ :=

[
θ

θ0

,
θ

θ0

, 1

]
, ΥB :=

[
θb(z)

θa(x)
,
θb(z)

θa(x)
, 1

]
, ΥC :=

[
θ

θa(x)
,

θ

θa(x)
, 1

]
. (3)

Noteworthy, the soundproof equations contained in (1) do not necessitate the
provision of constitutive laws for their solution, because their respective pres-
sure perturbations are determined from the elliptic equations that follow from
constraining the velocity solutions to satisfy mass continuity. In other words,
their constitutive laws were analytically accounted for while deriving the re-
duced equations, and afterwards are not required for the solution of the dy-
namical core. This is not the case with fully compressible equations where the
ideal gas law

ϕ = cpθ0

(Rd

p0

%θ

)Rd/cv
− πa

 . (4)

3 For adiabatic dynamics H ≡ 0 in (1b), and the pseudo-incompressible density
ρbθb/θ can be replaced with ρbθb/θ0, in the spirit of the anelastic PDEs [32,35].
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explicitly relates the thermodynamic pressure perturbations to the distribu-
tion of temperature and mass in the fluid.

For the three sets of PDEs encapsulated in (1), the mathematical symbolism
of (1) already accounts for the generalised time-dependent curvilinear coordi-
nates enabling the representation of orography or dynamic mesh adaptivity
[21,41,13]. In particular, (x, t) refers already to the coordinates of the gen-
eralised time-dependent frame, and G(x, t) denotes the Jacobian — so, G2 is
the determinant of the metric tensor that defines the fundamental metric in
a space of interest where the problem is solved [21]. Furthermore, ∇ · (..) de-
notes the scalar product of spatial partial derivatives with a vector, so the
total derivative underlying conservation form (1), d/dt = ∂/∂t + v · ∇, takes
the velocity v = ẋ not necessarily equal to the physical velocity u for which
equations are solved. The G̃∇ϕ in the momentum equation symbolises the
product of a known matrix of metric coefficients and the vector of partial
derivatives, whereas G̃Tu = v − vg on the rhs of the entropy equation ac-
counts for the mesh velocity vg, set to zero in the remainder of this paper.
For the readers convenience, various metric coefficients are exemplified for the
spherical frame in the appendix A.

The remaining symbols are specific to applications addressed in the paper.
In the entropy equation (1b), H symbolises a heat source/sink. In the mo-
mentum equation (1c), the Coriolis parameter is given as f ≡ 2Ω, where Ω
denotes a constant angular velocity of the rotating sphere. The gravitational
acceleration g = (0, 0,−g) enters the buoyancy term on the rhs of (1c). The
term M′(u,ua,ΥC) = M(u) − ΥCM(ua) symbolises metric forcings in the
spherical domain (cf. appendix A), whereas DDD denotes a momentum sink.

To facilitate the presentation of the numerical solution procedures, we intro-
duce an auxiliary ambient state (ua, φa, θa) assumed to be a known particular
solution of the governing PDEs, typically different for each set [35]. The pri-
mary role of ambient states is to simplify the design of the initial and boundary
conditions as well as to enhance the accuracy of calculations in finite-precision
arithmetic. Generally, ambient states can be time-dependent; e.g., prescribing
oceanic tidal motions [39]. In this paper, only stationary ambient states are
considered, e.g., geostrophically balanced large-scale flows

0 = −cpθaG̃∇(πa − πb)− g
θa − θb
θb

− f × ua +M(ua) , (5)

for either compressible or pseudo-incompressible momentum equations, to-
gether with identically satisfied ambient mass continuity and entropy equa-
tions; cf. [35] for a discussion.
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3 NUMERICAL APPROXIMATIONS

3.1 Non-oscillatory forward-in-time template

All prognostic equations comprising symbolic system (1) can be written in
a compact form of the generalised transport equation for an arbitrary scalar
variable Ψ,

∂GΨ

∂t
+∇ · (VΨ) = GR , (6)

in which vector field V as well as scalar fields G and R are assumed to be
known functions of time and space. Depending on the definitions of G, Ψ, V
and R, (6) expresses either compressible or soundproof PDEs of atmospheric
dynamics; see [35] for a comprehensive discussion. For the entropy and the mo-
mentum equations in (1), Ψ represents, respectively, the potential temperature
perturbations θ′ and components of the physical velocity vector u; whereas the
density % is absorbed in G ≡ G%. Then R represents the corresponding paren-
thetic terms on the rhs in (1), and V ≡ Gv = G%v. For the mass continuity
equation R ≡ 0, but the interpretation of Ψ and V depends on the system
addressed. For soundproof PDEs, the density % is prescribed, and (1a) implies
the transportive momenta V = G%v. For the compressible system, Ψ ≡ %,
G ≡ G, so V = Gv in the continuity equation. Consequently, the cumulative
mass flux VΨ = Gv% in the prognostic mass continuity equation amounts to
transportive momenta in the entropy and the momentum equations. Formu-
lating numerical integrators of (1) according to the procedures adopted for (6)
assures the compatibility of conservative advection of θ′ and components of u
with the mass continuity [35].

A key building block for semi-implicit integrators of the PDE systems en-
capsulated in (1) is a second-order-accurate non-oscillatory forward-in-time
(NFT) template algorithm for (6)

Ψn+1
i = Ai

(
Ψ̃n,Vn+1/2, Gn, Gn+1

)
+0.5δtRn+1

i , Ψ̃n ≡ Ψn+0.5δtRn . (7)

Here, A is a shorthand for the NFT advection transport operator MPDATA
(for multidimensional positive definite advection transport algorithm) [35].
Furthermore, the index i symbolises position on the computational grid, δt is
a time interval between two consecutive time levels denoted by n and n + 1,
and the “advector” Vn+1/2 is an O(δt2) estimate of V at the intermediate
time level. The template (7) is congruent with the trapezoidal-rule trajectory
integral of the ODE underlying (6) [27,31]. Its respective Euler-forward,

Ψn+1
i = Ai

(
Ψn + δtRn,Vn+1/2, Gn, Gn+1

)
, (8)
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and Euler-backward,

Ψn+1
i = Ai

(
Ψn,Vn+1/2, Gn, Gn+1

)
+ δtRn+1

i , (9)

forms as well as their combinations for selected counterparts of R will be also
employed in the subsequent discussions.

3.2 Semi-implicit integrators

In the system (1), only the mass continuity equation (1a) is homogeneous,
whereas the entropy and momentum equations have non-vanishing right-hand-
sides, dependent on the prognosed model variables. In consequence, the entire
model algorithm can be reduced to two conceptually distinct steps.

The first step provides the advectors for the first term on the rhs of (7). For
soundproof PDEs, Vn+1/2 = (G%v)n+1/2 is typically evaluated by linear ex-
trapolation from tn−1 and tn and used consistently for all prognostic variables.
For compressible PDEs the linearly extrapolated Vn+1/2 = (Gv)n+1/2 is used
only in the density advection,

%n+1
i = Ai

(
%n, (Gv)n+1/2,Gn,Gn+1

)
=⇒ Vn+1/2 = (G%v)

n+1/2
, (10)

while updating the density and concomitantly evaluating the advectors as
cumulative directional mass fluxes for advection of θ′ and all components of u;
see [35] for an exposition.

The second step integrates the entropy and momentum equations in (1). To
account for the nonlinearity of the pressure gradient force and/or the metric
forces on the rhs of the momentum equation the template algorithm (7) is
executed iteratively, lagging nonlinear terms behind:

θ′|νi = θ̂′i − 0.5δt
(
G̃Tuν · ∇θa

)
i

(11)

uνi = ûi − 0.5δt

(
Θν−1G̃∇ϕν + gΥB

θ′ν

θb

)
i

−0.5δt
(
f × (uν −Υν−1

C ua)−M′(u,ua,ΥC)ν−1
)
i
.

Here, θ̂′i and ûi are the shorthands for the transport operator A applied to θ̃′

and ũ in (7), subsumed with the respective contributions from forcings H and
D estimated to O(δt) at tn+1, given as
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θ̂′i = Ai

(
θ̃′ + 0.5δtHn+1,Vn+1/2, %∗n, %∗n+1

)
, (12)

ûi = Ai

(
ũ + 0.5δtDn+1,Vn+1/2, %∗n, %∗n+1

)
,

with Vn+1/2 provided by the preceding step, and the effective densities, %∗ :=
G%, specified as %∗

n
= Gn%n and %∗n+1 = Gn+1%n+1. Furthermore,

θνi =
(
θ̂′ − 0.5δtG̃Tuν · ∇θa + θa

)
i
. (13)

Throughout (11)-(13), the index ν = 1, .., Nν numbers the iterations, with the
first guess θ0

i = θ̂i generated by advecting full θ as

θ0
i = Ai

(
θn + δtHn,Vn+1/2, %∗n, %∗n+1

)
, (14)

and u0
i is obtained by linear extrapolation from tn−1 and tn to tn+1. With this

design, the solution is fully second order accurate even for Nν = 1, and Nν = 2
gives already close approximation to the trapezoidal integral [31].

The scheme outlined in (11)-(13) contains fully implicit trapezoidal integrals
of buoyancy and Coriolis terms; whereas metric forcings, and coefficients de-
pending on full potential temperature are integrated explicitly. For soundproof
PDEs pressure gradient terms are always integrated implicitly with the trape-
zoidal rule, whereas for the compressible Euler equations they can be inte-
grated explicitly or implicitly leading, respectively, to the acoustic option of
the solver in the spirit of gas dynamics for high speed flows [31], or the semi-
implicit option suitable for large time step simulations of low Mach number
flow. Regardless of the selected option, derivation of the closed-form expres-
sion for the velocity update is common to all three sets of PDEs. The potential
temperature perturbation is substituted in the buoyancy term of the momen-
tum equation with the rhs of the entropy scheme and all terms depending on
uν are gathered on the lhs of the momentum scheme, while dropping the spa-
tial grid index i everywhere, as all dependent variables, coefficients and terms
are co-located in (11)-(13). This results in

uν + 0.5δt f × uν − (0.5δt)2gΥB
1

θb
G̃Tuν · ∇θa = (15)

û− 0.5δt

(
gΥB

θ̂′

θb
− f ×Υν−1

C ua −M′(u,ua,ΥC)ν−1

)
−0.5δtΘν−1G̃∇ϕν ≡ ̂̂u− 0.5δtΘν−1G̃∇ϕν ,

which symbolises a system of three linear algebraic equations with three un-
known components of the velocity vector uν at each point of the co-located
grid. Viewing the lhs of (15) as a linear operator acting on the velocity vector,
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Luν , the closed-form expression for the velocity update may be symbolised as

uν = ˇ̌u−C∇ϕν , (16)

where ˇ̌u = L−1 ̂̂u and C = L−10.5 δtΘν−1G̃ denotes a 3×3 matrix of known co-
efficients; cf. [21] and [32,34] for expanded expressions in tensorial and explicit
component notations.

Completion of the solution requires provision of the pressure perturbation in
each iteration ν of the velocity update in (16). For the acoustic option of the
compressible solver, the thermodynamic pressure

ϕνi = cpθ0

(Rd

p0

%n+1θν−1

)Rd/cv
− πa


i

, (17)

is used in each iteration ν, and the total potential temperature (required in
the coefficients Θ and ΥC) gets updated according to (13). The potential
temperature perturbation θ′ is updated according to (11), upon completion of
the velocity update for ν = Nν . For the compressible and soundproof solvers
with implicit integrals of the pressure gradient terms, the thermodynamic
pressure evaluation from (17) is superseded with the solutions of the elliptic
pressure equations discussed next.

3.3 Elliptic pressure equations

Computational stability of the acoustic solver critically depends on the speed
of sound; therefore, this is not a practical option for NWP. However, the
availability of the acoustic solver is important because: a) it provides a refer-
ence solution for verification of large time step results [35,14]; b) it provides
a suitable approach for simulation of extreme events like explosions in natu-
ral environments or volcanic eruptions [31]; and c) it guides the development
of large time step schemes [35]. In the latter, the evolutionary form of the
equation of state, derived by taking d/dt of (4), couples all thermodynamic
variables and the flow field (through d%/dt and the mass continuity equation),
thus providing a constraint for pressure and velocity in (16). Taking d/dt(4),
expressing the result in the conservation law form, and manipulating the terms
[35,14] leads to the PDE

∂%∗ϕ

∂t
+∇ · (%∗vϕ) = %∗Rϕ (18)

with the rhs forcing

Rϕ = −ξφ 1

G
∇ · (Gv)− 1

%∗
∇ · (%∗vφa) + φa

1

%∗
∇ · (%∗v) + ξφΠ , (19)
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where φa ≡ cpθ0πa, φ ≡ ϕ + φa, ξ ≡ Rd/(cp − Rd), and the explicit forcing
Π due to heat sources/sinks in the entropy equation is Π ≡ H/θ. The PDE
(18) extends the equation (56) in [35] to account for the heat forcing H,
according to the derivation detailed in Appendix A of [14]. Interpreting (18)
as an archetype PDE (6), and integrating it with a mix of the first-order NFT
templates (8)-(9)

ϕn+1
i = Ai

(
ϕ̃,Vn+1/2, %∗n, %∗n+1

)
+ δtR̃ϕ|n+1

i ≡ ϕ̂+ δtR̃ϕ|n+1
i , (20)

where ϕ̃ = (ϕ + δtξφΠ)n and R̃ϕ ≡ Rϕ − ξφΠ, provides a discrete implicit
constraint for (16)

0 = − 1

G
∇ · (Gvν)− 1

ξ

φa
φν−1

(
1

%∗φa
∇ · (%∗φavν)−

1

%∗
∇ · (%∗vν)

)
(21)

− 1

δtξφν−1
(ϕν − ϕ̂) .

Recalling from section 2 that in stationary coordinates v = G̃Tu, (16) implies

vν = ˇ̌v − G̃TC∇ϕν , (22)

and when inserted in (21) leads to an elaborate Helmholtz problem for pressure
(referred to in [35] as of the second-kind) composed of the three soundproof
like Poisson operators

1

ζ
∇ · ζ(ˇ̌v − G̃TC∇ϕ) , (23)

where ζ denotes a generalised density.

The Helmholtz problem (21) was widely discussed in [35]. A significant new
element of (21) is that it now accounts for diabatic effects, via modification of
the ϕ̃ argument of the transport operator A in (20) and, thus, the modification
of the explicit counterpart ϕ̂ in the Helmholtz term in (21). Noteworthy, it
can be shown that neglecting the ∂ϕ/∂t on the lhs of (18) leads to the Poisson
problem

∇ · %∗θ(ˇ̌v − G̃TC∇ϕ) = %∗H , (24)

which upon approximating the density %∗ with Gρbθb/θ, becomes the elliptic
constraint of the pseudo-incompressible system of Durran [6]; recall (2) and
footnote 3 in section 2. Conversely, neglecting ∂%/∂t while taking d/dt(4),
reveals the residual relation

∇ · %∗(ˇ̌v − G̃TC∇ϕ) = 0 , (25)
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which upon the linearisation %∗ → Gρb amounts to the elliptic constraint of
the anelastic system [16]. These observations are not meant to replace rigor-
ous derivations of the reduced soundproof systems, but merely to point out
connections of the Helmholtz problem (21) to the Poisson problems for the
soundproof PDEs. In the FVM code, the customised Krylov-subspace solver 4

does not rely on such connections but builds the linear operator associated
with each PDE by combining/modifying accordingly the elementary Poisson
(23) operators and their preconditioners.

4 DISCRETE APPARATUS

4.1 Spatial discretisation

The mathematical formalism adopted in sections 2 and 3 together with the
co-located arrangement of dependent variables simplifies the presentation of
the discrete spatial differential operators. The finite-difference (FD) and finite-
volume (FV) discretisations in the vertical and horizontal, respectively, com-
bine two standard approaches. In particular, generic second-order-accurate
centred finite differences are used in the vertical. The FV discretisation and
differentiation on spherical surfaces located at z = (k − 1)δz for k = 1, N
follows the median-dual approach described in [37]. It is briefly summarized
below.

Sji j

Fig. 1. The edge-based, median-dual approach in 2D. The edge connecting nodes
i and j of the primary polygonal mesh pierces, precisely in the edge centre, the
face Sj shared by computational dual cells surrounding nodes i and j; open circles
represent geometrical barycentres of the primary mesh, solid lines mark the primary
mesh, and dashed lines outline the dual cells with control volumes Vi and Vj .

A schematic of an arbitrary mesh on a 2D plane is shown in Fig. 1. The

4 The adopted nonsymmetric preconditioned Generalised Conjugate Residual
(GCR) approach has been widely discussed in the literature of EULAG; see [32]
for a recent overview and a comprehensive list of references.
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median-dual FV approach constructs the control volume containing the node
i by joining the barycentres of polygonal mesh cells encompassing the node i
with the midpoints of the edges originating in the node i. Having defined the
mesh in planar geometry, all geometric elements such as cell volume, cell face
area, and normals are evaluated from vector calculus in the computational
space; i.e., in terms of x coordinates on a zonally periodic 2D plane [37]. All
dependent variables are co-located in the nodes.

The derivations and details of median-dual unstructured mesh discretisation
of differential operators entering MPDATA schemes symbolised with A in (7),
are provided in [28] and [36], and a summary of MPDATA with composite
FD/FV discretisation in the vertical/horizontal is provided in the following
section 4.2. Here, we highlight a key tool for designing discrete differential op-
erators for control-volume schemes; facilitating, in particular, the presentation
in section 4.2. For a differentiable vector field A, the Gauss divergence theo-
rem —

∫
Ω∇·A =

∫
∂Ω A ·n — applied over the control volume Vi surrounding

node i leads to

∇i ·A =
1

Vi

l(i)∑
j=1

A⊥j Sj . (26)

Hereafter, l(i) numbers edges connecting node i with its neighbours j, and Sj
refers both to the face per se and its surface area. 5 Equation (26) is exact
given ∇i ·A is interpreted as the mean value of ∇ ·A within the volume Vi,
while A⊥j is interpreted as the mean normal component of the vector A at the
cell face Sj. The approximation begins with specifying A⊥j in terms of data
available on the mesh; i.e., in terms of mean values of the field within the
control volumes Vi and Vj. One elementary example is

A⊥j = 0.5 nj · [Ai + Aj] , (27)

where nj is a mean outward unit normal to the face Sj. Partial derivatives ∂xΨ
and ∂yΨ of a scalar field Ψ can also be interpreted in terms of the Gauss the-
orem by representing the two derivatives as the divergence of the augmented
vector field (Ψ, 0) and (0,Ψ) as, e.g.,

∂Ψ

∂x

∣∣∣∣
i

=
1

Vi

l(i)∑
j=1

0.5(Ψi + Ψj)S
x
j (28)

where Sxj denotes the x component of the oriented surface element Sj = Sjnj
of the face at the jth edge. Evaluation of ∂yΨ|i proceeds analogously, but using
the Syj component.

5 In the FVM code, Sj and Vi have dimensions of length and area, yet the ac-
tual face areas and volumes of prismatic cells are, respectively, Sjδz and Viδz, in
computational space; consequently, their ratios are always Sj/Vi regardless of δz.
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To illustrate a FD/FV differentiation, consider the 3D operator of the velocity
divergence in the first term on the rhs of (21)

[
1

G
∇ · (Gv)

]
k,i

=
1

Gk,iVi

l(i)∑
j=1

(
Gkuk

i,j
Sxj + Gkvk

i,j
Syj
)

(29)

+
1

Gk,iδz
(
Gw|k+1/2,i − Gw|k−1/2,i

)
,

where

Gkuk
i,j

= 0.5 (Gk,iuk,i + Gk,juk,j) , (30)

Gkvk
i,j

= 0.5 (Gk,ivk,i + Gk,jvk,j) ,

Gw|k+1/2,i = 0.5 (Gk,iwk,i + Gk+1,iwk+1,i) .

The x and y components (see Appendix A) of the oriented surface element Sj
are evaluated from the coordinates of the barycentres defining the face Sj. In
particular,

Sxj = yl − yr , (31)

Syj =xr − xl ,

where subscripts l and r refer respectively to the barycentres to the left and
right of the ~ij edge piercing the Sj face. It is easy to check that for the
special case of rectangular mesh with uniform grid increments δx and δy (so
∀iVi = δxδy), the first term on the rhs of (29) becomes a sum of standard
centred finite-difference derivatives in x and y, analogous to the z derivative
in the second term on the rhs of (29).

The actual execution of (29) and (30) in the FVM code commences with
evaluating (30) in a loop over the edges for all vertical levels k. Then the
normal velocity to the face Sj (the parenthetic term under the sum in the
first term of 29) is evaluated in the analogous loop. Only then, the horizontal
divergence is calculated in a loop over nodes, as a sum over l(i), for all vertical
levels k and stored as an auxiliary field. Subsequently, the second term on
the rhs of (29) is evaluated in a loop over nodes, and combined with the
horizontal divergence in a separate loop over nodes and vertical levels. This is
different from purely edge-based codes that even in 2D (i.e., FD/FV aspects
aside) evaluate both the normal velocity to the face and the divergence in
loops over edges and, thus do not require storing connectivity of the nodes
with its neighbouring edges. This distinction makes the FVM also a hybrid in
terms of edge- and node-based programming driven by the efficiency of mixed
MPI/OpenMP parallelisation discussed in section 5.2.

15



Having established the means of evaluating elementary differential operators
the building blocks of section 3 can be combined into a complete apparatus
for integrating the governing PDEs presented in section 2. The only nontriv-
ial elements still missing are specifications related to the composite FD/FV
MPDATA, and the periodic and polar boundary conditions on each horizontal
surface of the computational domain. The latter are recapitulated in section
5.2, after [37], as they are intimately linked with the parallelisation scheme;
whereas the former are discussed next.

4.2 Composite FD/FV MPDATA

MPDATA is an iterative application of the first-order accurate upwind scheme,
where the first iteration uses physical velocities while all subsequent iterations
compensate the leading truncation error of the preceding iteration using ana-
lytically derived pseudo-velocities and most recent iterates of the transported
field. The MPDATA approach encompasses a number of schemes. 6 However,
even the simplest (basic) algorithm with one corrective iteration is conserva-
tive, sign-preserving and at least second-order accurate.

Using the notation of section 3.1, the integral (7) of the homogeneous (viz.
R ≡ 0) generalised transport equation (6) can be represented, see [35], as

Ψi =Ai

(
Ψn,Vn+1/2, Gn, Gn+1

)
(32)

=χ
n+1/2
i Ahi

(
Ψn,Vn+1/2, Gn, χn+1/2, ...

)
=χ

n+1/2
i Ψ

Nη
i .

Here i = (k, i) is the vector index with k marking the grid point position in
the vertical and i a mesh node in the horizontal; the “, ...” is a shorthand for
the usual dependence on the grid/mesh parameters δt, δz, V and S already
used in section 4.1; χn+1/2 ≡ Gn/Gn+1; and Ah refers to the basic version of a
composite MPDATA that combines the established FD [29,13] and FV [28,36]
forms, formulated for G independent of time in [27,37]. Namely, Ah iterates
for η = 1,Nη the discrete form

6 The reader interested in a hands-on experience with MPDATA is referred to [10],
a recently released library of solvers for systems of transport equations (6).
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Ψ
(η)
k,i = Ψ

(η−1)
k,i −

δt

Gk,iVi

l(i)∑
j=1

F⊥k,j

(
Ψ

(η−1)
k,i ,Ψ

(η−1)
k,j , V ⊥k,j

(η)
)
Sj (33)

− δt

Gk,iδz

{
F z
k+1/2,i

(
Ψ

(η−1)
k,i ,Ψ

(η−1)
k+1,i , V

z
k+1/2,i

(η)
)

− F z
k−1/2,i

(
Ψ

(η−1)
k−1,i ,Ψ

(η−1)
k,i , V z

k−1/2,i
(η)
)}

,

together with

Ψ(0) ≡ Ψn , Ψ(Nη) ≡ Ψn+1 , Ψ̌ ≡ χn+1/2Ψ , (34)

V ⊥
(η+1)

= V ⊥
(
V(η), Ψ̌(η),∇Ψ̌(η), Gn, ...

)
, V ⊥

(1) ≡ V ⊥|n+1/2 , (35)

V z(η+1) = V z
(
V(η), Ψ̌(η),∇Ψ̌(η), Gn, ...

)
; V z(1) ≡ V z|n+1/2 . (36)

In (33), the second term on the rhs — reminiscent of (26) — represents the
horizontal divergence of advective flux normal to the Sj face of the dual cell
surrounding node i. In MPDATA this flux always assumes the functional form
of the generic upwind flux; e.g.,

F⊥k,j

(
Ψ

(η−1)
k,i ,Ψ

(η−1)
k,j , V ⊥k,j

(η)
)

=
[
V ⊥k,j

(η)
]+

Ψ
(η−1)
k,i +

[
V ⊥k,j

(η)
]−

Ψ
(η−1)
k,j , (37)

where the nonnegative/nonpositive parts[
V ⊥

]+
≡ max

[
0, V ⊥

]
,
[
V ⊥

]−
≡ min

[
0, V ⊥

]
(38)

always coincide with outflow/inflow from the ith cell. The third term on the
rhs — reminiscent of the second term on the rhs of (29) — represents the
vertical divergence of the advective flux through the horizontal faces of the
prismatic cells. Its explicit functional form is analogous to (37),

F z
k+1/2,i

(
Ψ

(η−1)
k,i ,Ψ

(η−1)
k+1,i , V

z
k+1/2,i

(η)
)

= (39)[
V z
k+1/2,i

(η)
]+

Ψ
(η−1)
k,i +

[
V z
k+1/2,i

(η)
]−

Ψ
(η−1)
k+1,i .

However, unlike in (37), here [V z]+ and [V z]− always take Ψ from the nodes
below and above, respectively, so there is no fixed correspondence between the
sign of V z and the cell inflow/outflow. Negative/positive V z at the face above
the node k correspond to inflow/outflow, and vice-versa at the face below.
This is a consequence of the fixed bottom-top orientation of the vertical edges
in the FD formulation.

For Nη = 1, the algorithm in (33)-(40) is simply a composite FV/FD first-
order upwind advection scheme. The crux of the MPDATA is in the subsequent
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iterations for η > 1, in which it relies on expressions specifying the functional

dependences (35) and (36) of the V ⊥
(η+1)

and V z(η+1) advector iterates on
the vector field V, field Ψ and its spatial derivatives ∇Ψ at the preceding
iteration. These expressions can be intricate and their specific form depends
on the various MPDATA options. Because they are broadly documented in
the literature, we refer the reader to [13,35,10] for technical expositions and
novelties pertinent to structured grids; whereas corresponding technicalities
for unstructured meshes can be found in [28,36,37].

5 DATASTRUCTURE AND PARALLELISATION

The FVM module is built on a newly developed framework called Atlas. The
Atlas framework provides parallel distributed, flexible object-oriented datas-
tructures for both structured grids and unstructured meshes on the sphere. It
separates concerns of mathematical model formulation and numerical solutions
from the cumbersome management of unstructured meshes, distributed mem-
ory parallelism, and input/output of data. While FVM is developed in Fortran
2003, it is recognised that handling flexible structures and carefully controlled
memory-management is not easily achieved with the Fortran language. Hence,
the language of choice for Atlas is C++, a highly performant language pro-
viding excellent object-oriented programming support, and building upon C’s
memory management proficiency. A Fortran 2003 interface exports all of Atlas’
functionality to the FVM.

5.1 Flexible object-oriented datastructure

The FVM instructs Atlas to generate a Mesh. 7 This object stores the hori-
zontal coordinates of every node and requires connectivity tables between the
nodes via elements such as triangles, quadrilaterals and lines, as is necessary
for unstructured meshes. As the coordinates and connectivity tables can have
a large memory footprint for large meshes, the Mesh is a distributed object,
meaning that the mesh is subdivided in partitions and each parallel task is
responsible for one partition. The memory distribution scheme will be detailed
in section 5.2.

Using the Mesh, FunctionSpace objects can be created on demand. A Func-
tionSpace describes in which manner Fields are discretised on the mesh. A
straightforward FunctionSpace is the one where fields are discretised in the

7 Herein, italicised terms refer to Atlas classes and their objects.
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nodes of the elements. Other FunctionSpace objects could describe fields dis-
cretised in cell-centres of triangles and quadrilaterals, or in edge-centres of
these elements. Another type of FunctionSpace describes spectral fields in
terms of spherical harmonics. Fields are objects that store the actual data
contiguously in memory as a one-dimensional array and can be mapped to
an arbitrary indexing mechanism to cater for, e.g., the current FVM mem-
ory layout, or a different memory layout that proves beneficial on emerging
computer hardware. A Field, with which a Metadata object is associated, can
be addressed by a user-defined name. Metadata stores basic information like
the units of the field, or a time-stamp. It is this flexibility and object-oriented
design that leads to more maintainable and future-proof code. Figure 2 illus-
trates this design with the relevant classes.

Composition
Aggregation

notation: UML

Inheritance

Field

FieldSet

1

0..*

0..*

0..*

Array

Mesh

Nodes

0..*

1

0..1

1..*

Mesh

functionspace::
NodeColumns

1..*

0..*

FunctionSpace

functionspace::
Spectral

Metadata

1

1

Field interpreted by

1

FunctionSpace

0..*

HybridElements

functionspace::
EdgeColumns

Communication
Pattern

0..*

1

1..*

Communication
Pattern

0..*

1

0..*

Mesh

Connectivity

1

0..*

1

Field

0..*

0..* 0..*

11

Fig. 2. Atlas datastructure’s aggregations, compositions and class inheritance. A
Field is composed of Array (containing data) and Metadata (containing data de-
scriptions), and references an abstract FunctionSpace. Multiple Field objects can
be aggregated into a FieldSet. A Mesh is composed of Nodes and HybridElements
that store mesh-specific Fields (e.g. node coordinates) and (Connectivity) tables
relating elements and nodes. Concrete FunctionSpace objects, such as function-
space::NodeColumns, describe how a particular field is discretised and parallelised
on the distributed mesh. The characters by the ends of the composition/aggregation
arrows quantify the relationships between objects; e.g., 1-1 refers to one-to-one re-
lation, whereas 1-0..* to one-to-any relation.

Currently, the FVM makes use of two particular FunctionSpaces : one for fields
defined in the nodes of the primary mesh, and one for fields defined in edge-
centres of the primary mesh. Example fields stored in edge-centres are advec-
tive velocities and fluxes, and vectors normal to the dual mesh faces (Sj in
Fig. 1). These normal vectors can be stored in edge-centres of the primary
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mesh as every edge corresponds to one face of its dual mesh. The volume Vi
of the dual cell (recall the discussion following eq. 26) is stored in the nodes.

In principle, FVM and Atlas can accommodate nearly any form of horizon-
tal meshing. However, in the envisaged context of being able to use spectral
transforms on the nodes of the FV mesh, the nodes have to satisfy certain
constraints. In meridional direction, they must coincide with the roots of the
ordinary Legendre polynomials, or roots of other suitable quadratures. Fur-
thermore, longitudes on each latitude must be distributed uniformly to satisfy
the requirements of fast Fourier transforms (FFTs), while reducing in num-
ber going from the equator towards the poles for efficiency. Given these fixed
node locations, Atlas is capable of generating a mixed triangular/quadrilateral
mesh. The IFS’s set of reduced Gaussian grids satisfy these requirements. For
illustration, Fig. 3a shows the meshing of a coarse N24 reduced Gaussian grid
with an approximate resolution of 3.75◦ (415 km; N24 indicates 24 latitudes
between pole and equator). A second example is the mesh based on triangu-
lating an octahedron with approximately the same resolution, still satisfying
the reduced Gaussian grid requirements, Fig. 3b. Both meshes have the same
resolution in the vicinity of the poles, but the more uniform triangulation of
the octahedral mesh (Fig. 3b) has a locally more homogeneous dual resolution,
which provides superior results as discussed in section 6.

(a) Classical mesh (b) Octahedral mesh

Fig. 3. Primary meshes generated around N24 reduced Gaussian grid points with
approximate resolution of 3.75◦ (415 km). The shading represents the dual resolu-
tion, computed as the square root of the local dual volume. The octahedral mesh
shows a locally more homogeneous dual resolution than the classical mesh.
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5.2 Parallelisation scheme

The FVM is designed to run at High Performance Computing (HPC) cen-
tres which provide a grouping of computational cores in tasks. Computational
cores in each task have access to shared memory among themselves, whereas
tasks don’t share memory and are connected by message passing. The FVM
hybridises two standards — Message Passing Interface (MPI) and Open Multi-
Processing (OpenMP) — for parallelisation, each with a different purpose.
MPI is a standard for handling the communication of data between tasks; i.e.
the data is distributed between tasks, and sending and receiving of information
is required at regular intervals to advance a simulation. OpenMP is a stan-
dard for easily managing multiple computational threads working with shared
memory; e.g. several iterations in one do loop can be executed simultaneously
within an algorithm. Following the IFS experience, the hybrid MPI/OpenMP
parallelisation delivers about 20% better performance than MPI only, which
is related to an improved load balance and memory scalability for large grids.

5.2.1 Distributed memory parallelisation

The parallelisation of FVM relies on the distribution of the computational
mesh with its unstructured horizontal index, so that structured vertical columns
are always preserved in memory as a contiguous entity. The Atlas framework,
upon which the FVM is built, is responsible for generating a distributed mesh,
and provides communication patterns using MPI to exchange information be-
tween the different partitions of the mesh. To minimise the cost of sending and
receiving data, the distribution of the mesh is based on a equal regions domain
decomposition algorithm optimal for a quasi-uniform node distribution on the
globe [18,15]. The equal regions domain decomposition divides the globe in
bands oriented in zonal direction, and subdivides each band in a number of re-
gions so that globally each region has the same number of nodes. Noteworthy
is that the bands covering the poles are not subdivided, communication-wise
forming two polar caps; see [18,15] for details. Figure 4 illustrates the domain
decomposition of the mesh displayed in Fig. 3a with 32 partitions.

For evaluating FV differential operators, the FVM requires only nearest neigh-
bour communication by means of a halo between neighbouring partitions,
with halo thickness limited to one element of the primary mesh, as shown
in Fig. 4. Nearest neighbour communication available in FVM contrasts with
global communication required for spectral transforms. It is essential with
the trend of increasing computing power by adding more and more cores to
the HPC cluster, up to the point where global communication will become a
severe bottleneck in achieving the required scalability. The underlying Atlas
framework is used to create the internal halos and to manage communication
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Fig. 4. Equal regions domain decomposition (32 partitions) of mesh displayed in
figure 3a. Also shown is the internal halo of one partition, and the periodic halo
responsible for the periodic boundary condition.

patterns to exchange data in the halos, thus separating this concern from the
FVM.

Because the computational mesh used in the FVM is defined on a 2D periodic
longitude-latitude plane, the FVM needs periodic boundary conditions at, say,
the Greenwich meridian. To avoid having to implement periodic boundaries
explicitly, a periodic halo is created as illustrated in Fig. 4. Consequently,
the periodic boundary is treated exactly like any internal boundary between
different partitions. Note that the partitions involving the poles are periodic
with themselves.

5.2.2 Memory layout and shared memory parallelisation

In memory, a field is stored as one large contiguous 1D array that can be
reinterpreted as a multi-dimensional array by the FVM. The FVM chooses
the memory layout of a full 3D field with the horizontal unstructured index
as the slowest moving index, followed by the structured vertical index, and
the fastest index being the number of variables a field contains (e.g. scalar=1,
vector=3, tensor=9). Ignoring the index for the variables (i.e., assuming for
scalar field), the memory layout is sketched in Fig. 5.

The advantage of this memory layout is twofold. First, it makes the verti-
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4*N + 2

4*N + 3

3*N + 0

3*N + 1
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C/C++: field[inode][ilev]

Fortran: field(jlev,jnode)

jnode = inode+1

jlev = ilev+1

Fig. 5. Memory layout of a scalar field in 3D domain: solid lines show the under-
lying unstructured mesh; dashed lines mark the structured vertical columns with
N denoting the number of vertical levels; and dots, numbered with memory offsets
from the first index of the 1D array, represent the field values.

cal columns contiguous in memory, so that a halo-exchange involves contigu-
ous chunks of memory and makes the packing and unpacking of send/receive
buffers more efficient. Second, it favours the outer loop to be over the columns
and the inner loop to be over the levels within each column, with correspond-
ing indices jnode and jlev, Fig. 5. Due to the unstructured nature of the
horizontal jnode index, indirect addressing is required to access neighbouring
column data. The horizontal index for the outer loop then reduces the cost of
this lookup by reusing the node specific computations for the entire column
in the inner loop, giving the compiler the opportunity to optimise the inner
loop in the vertical direction further with vector instructions, provided that
computations for each level are independent of each other. By using shared-
memory parallelisation with OpenMP over the outer horizontal index further
need for distributing the mesh is avoided, which would otherwise require a
larger memory footprint due to having relatively more halo nodes.

6 RESULTS

In the following, we discuss solutions generated with the compressible option
of FVM suitable for large time step simulations of low Mach number flow. In
the course of the module development the acoustic and two soundproof options
encapsulated in (1) were also extensively used to benchmark and verify the
module. Their solutions are not shown here, as they corroborate the conclu-
sions of [35] regarding relative comparability of compressible and soundproof
results. The two physical problems considered in the current section serve dif-
ferent purposes and are distinct in nature. The sheared orographic flow on a
small planet attests the nonhydrostatic quality of the solver, whereas the baro-
clinic instability targets essentially hydrostatic midlatitude weather systems.
The two problems complement each other in demonstrating diverse aspects of
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the FVM solutions.

6.1 Quasi two-dimensional orographic flow with linear vertical shear

As pointed out in [42], this classical problem constitutes a particularly discrim-
inating test for a nonhydrostatic model, because in the presence of shear the
nonhydrostatic and hydrostatic equations predict a fundamentally different
propagation of orographically-forced gravity waves. While hydrostatic models
produce a vertically propagating gravity wave, the correct solution is that of
a trapped, horizontally propagating gravity wave [12].

The setup of the numerical experiment matches that in [42]. A three-dimensional
hill with elliptic horizontal cross section and the classical “witch of Agnesi”
vertical profile is centred at the equator

h(φ, λ) = h0

(
(1 + (lλ/Lλ)

2) + (lφ/Lφ)2
)−1

(40)

with lλ = a cos−1[sin2 φc + cos2 φc cos(λ − λc)] and lφ = a cos−1[sinφc sinφ +
cosφc cosφ], where the mountain half-width is Lλ = 2.5 km, and the merid-
ional extent of the ellipse is defined by Lφ = |L2

λ − L2
f |1/2, the centre posi-

tion of the mountain (λc, φc) = (3π/2, 0), and the focus point distance Lf =
a cos−1[sinφd sinφc + cosφd cosφc cos(λd − λc)] with (λd, φd) = (3π/2, π/3);
mountain height is h0 = 500 m. All distances and formulae are expressed fol-
lowing great circles on the sphere. Ambient conditions consist of the linearly
sheared wind profile ua(φ, z) = U0(1 + Cz) cos(φ) below the tropopause lo-
cated at 10.5 km, and constant aloft; U0 = 10 ms−1 and C = 2.5× 10−4 m−1;
(va = 0, wa = 0) and the Brunt-Väisälä frequency N = 0.01 s−1. The Richard-
son number of the flow in the troposphere is Ri ≡ N2/(U0C)2 = 16 and in the
stratosphere Ri = ∞. A constant stability, S = N2/g, ambient atmosphere
is isothermal with T0 = g2/(cpN

2), and the thermodynamic profiles of the
ambient state are assumed to coincide with the base state, (φa, θa) = (φb, θb).
The model is set for the shallow atmosphere approximation and the planetary
rotation is set to zero; see [42] for a discussion.

The FVM domain, a spherical shell with the inner radius a = 20.3718 km, is
discretised in the horizontal using a finite-volume mesh generated around a
N128 octahedral reduced Gaussian grid (cf. Fig. 3), with horizontal mesh spac-
ing about 250 m at the equator. In the vertical, the model domain is resolved
with 137 levels stretched smoothly (as a hyperbolic tangent), such that the ver-
tical spacing changes from 70 m near the ground up to 1400 m near the top. A
rigid lid upper boundary at 85 km was chosen, and the inverse time scale of the
Rayleigh-damping absorber profile α = τ−1 max{0, (Z−Zthres)/(Ztop−Zthres)}
was applied with Zthres = 55 km and τ = 300 s. Given the solution character-
istics of the trapped wave in the nonhydrostatic model simulations, vertical
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absorbers have little effect on the lower tropospheric solution. The integration
time is 2 h with a time step δt = 3 s.

Fig. 6. Gravity wave response after 2h of the simulated quasi-2D sheared orographic
flow on a small planet; isolines of vertical velocity [ms−1] are shown in vertical cross–
section along the equator (top) and in the horizontal cross-section at z = 3000 m
(bottom). The abscissa marks the longitude [deg], whereas ordinates mark the alti-
tude [km] and latitude [deg] for the top and bottom panels, respectively.

Figure 6 shows isolines of the vertical velocity after two hours of wave evo-
lution simulated with the FVM. The top panel displays the solution in the
vertical cross section at the equator, whereas the bottom panel provides the
corresponding display on the spherical surface at z = 3000 m above the bottom
surface of the shell. The solution is consistent with the numerical results and
linear analysis discussed in [42]. Noteworthy is the trapped lee wave behind
the mountain with the dominant horizontal wavelength of ≈ 14 km, corre-
sponding to 40o of longitude on the small planet. The wave energy leakage
through the tropopause excites a weaker stratospheric wave with the domi-
nant wavelength supported by the ambient conditions about twice that of the
trapped wave below. Due to the domain periodicity, the upstream influence of
the mountain can already be seen after 2h at the downstream end of the wave
packet.
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6.2 Baroclinic instability

Fig. 7. Baroclinic instability, day 8: (top) color map of vertical velocity [cm/s] over-
laid with isentropes, in the vertical cross section at the 53o N latitude; (bottom)
color map of surface meridional velocity [m/s] and isentropes. In both panels, isen-
tropes are displayed with the contour interval of 5K. Similarly like in Fig. 6, the
abscissa marks longitude [deg], and ordinates mark altitude [km] and latitude [deg],
respectively for the top and bottom panels.

In contrast to the section 6.1 that addressed nonhydrostatic performance of
the FVM, here we illustrate its capability for simulating essentially hydro-
static motions. For this purpose we repeat the baroclinic instability benchmark
adopted in [35] after [9]. In [35], the authors discussed a series of experiments
with soundproof and compressible equations using a coarse horizontal resolu-
tion of 128 × 64 nodes of the regular longitude-latitude grid. Here we show
the corresponding compressible result generated with FVM using an N800
octahedral reduced Gaussian grid, with horizontal grid spacing of 12.5 km cor-
responding to state-of-the-art operational NWP. The model depth ≈ 24 km
is resolved with 61 stretched vertical levels, with smoothly varying resolution
of δz = 50 m near the ground, through δz = 150 m at 2 km altitude, up to
δz = 850 m near the model top. The employed time step δt = 80 s resulted in
the maximal Courant number >

∼0.5 at the time of the frontal collapse.

Figure 7 displays the baroclinic wave train after 8 days evolution from a weakly
perturbed unstable-equilibrium initial state consisting of the two planetary
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Fig. 8. Surface kinetic energy spectra at day 9 of the baroclinic instability evolution,
simulated with various horizontal resolutions. Vertical lines on the right indicate four
grid intervals for each corresponding resolution. For reference, the -3 and -5/3 slopes
are shown with solid and dashed lines, respectively.

jets in midlatitudes. The upper panel shows isentropes overlaid with con-
tours of the vertical velocity, in the vertical cross section through the centre
of the northerly jet. Lower panel shows isentropes together with the surface
meridional velocity. Together these figures highlight a 3D structure of idealised
frontogenesis and formation of weather systems in midlatitudes. These results
are consistent with those familiar from the literature. Notably, at the rela-
tively high resolution employed, the simulation begins to capture mesoscale
gravity waves radiated at collapsing front [20] that can be seen in the upper
panel of Fig. 7 as fine-scale irregularities at ∼ 180o. In inviscid simulations the
associated grid-scale features are intermittent. Generally they are filtered out
with an aid of artificial viscosity or subgrid-scale parametrisations. Here they
are controlled by the model non-oscillatory numerics providing an implicit
subgrid-scale model with documented implicit large-eddy-simulation (ILES)
properties [5,30]. The latter is substantiated in Fig. 8 depicting surface kinetic
energy spectra at various resolutions. The spectra follow each other closely
at the resolved scales of motion and tend to separate at the grid-scale, where
implicit dissipation is effective.

We end this section with a comment on the potential efficiency of the proposed
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approach — a definitive conclusion is yet to be established as the current FVM
code has not been optimised. The presented simulations were conducted on
Cray XC30 at the ECMWF. The expense of calculations in section 6.1 is
insignificant. The baroclinic instability simulation used 768 MPI tasks and 6
OMP threads (i.e., 4608 cores). The 9720 time steps used to resolve 9 days
of the instability evolution took <

∼7h of the wall-clock time. An equivalent
simulation (not shown) with the 30 km resolution and three times larger time
step δt = 240 s took 20 min of the wall-clock time of the 4608 cores. This
is commensurate with 17-fold reduction of the computational work due to
the coarser temporal and spatial resolution. Noteworthy, in both calculations
average number of iterations in the Helmholtz solver is about 10 per time
step, thanks to the physically motivated stopping criterion relating the exit
condition to the actual magnitude of the flow divergence [26].

7 CONCLUSIONS

From the perspective of numerical methods, this paper synthesised finite-
difference [21] and flexible finite-volume [37] discretisations of the compu-
tational space underlying curvilinear coordinate representations of the com-
pressible and soundproof nonhydrostatic PDEs governing global atmospheric
dynamics [35]. The work combines the two modes of discretisation with contin-
uous mappings to supplement large 3D atmospheric models. A fully unstruc-
tured discretisation of the computational domain in the horizontal allows to
circumvent the efficiency issues due to meridians’ convergence towards the
poles by resolving the spherical surface with uniform control volumes in the
physical space [37]. Here, the regularity of the discretisation is compromised to
build the control volumes about the predetermined node locations suitable for
spherical harmonics based quadrature on the sphere. This grid arrangement
need not lead to a compromise in the solution accuracy, because the degrada-
tion of the mesh quality is found to decrease with increasing model resolution,
and it is found to be insignificant for natural flows. In return the constrained
flexible discretisation facilitates interactions with established NWP models, as
illustrated by adopting the efficient parallelisation scheme of the IFS and the
use of its spectral transforms (Fig. 8). Finite-difference discretisation in the
vertical empowers direct preconditioning of complex elliptic boundary value
problems (section 3.3) imperative for thin spherical shells such as the Earth’s
atmosphere. The benefits of continuous mappings include the analytic repre-
sentation of spherical shells with irregular lower boundary (section 6.1), mesh
adaptivity [21,13], pliancy of physical vertical coordinate [41,37], and a mini-
mal overhead to the parallelisation.

From the perspective of NWP applications, this paper demonstrates that
the FVM on its own can provide solutions representative of elements of real

28



weather at disparate scales, involving entirely different computation and com-
munication patterns compared to spectral-transform based contemporary global
NWP. These elements can be identified in Fig. 9 that depicts a snapshot of
the FVM simulation of a global circulation on the N256 reduced Gaussian
grid (cf. left panel of Fig. 3) using realistic orography (cf. section 2.5 in [2]),
together with an idealised frictional/diabatic forcing established for intercom-
parison of the dynamical cores of the atmospheric general circulation models
[8]. Figure 9 illustrates the importance of the selected benchmarks for the
broader NWP context, where these representative elements are embedded in
the global atmospheric flow.
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Fig. 9. N256 simulation of a global circulation using the Earth’s orography [2] and
idealised diabatic/frictional forcing [8]. Vertical component of instantaneous rela-
tive vorticity(×106) is displayed at about 4 km above the surface. Noteworthy are
baroclinic eddies in midlatitudes of both hemispheres and fine-scale features in the
equatorial area and mountainous regions indicative of convection and gravity-waves.

Altogether, the reported development and supporting simulations foreshadow
new opportunities for blending the strengths of cloud-resolving and NWP
models. The FVM together with the associated infrastructure provides a tool-
box of methods previously inaccessible to spectral-transform based models. On
the other hand, the IFS provides the required advanced environment to explore
alternative discretisation techniques in the context of operational weather fore-
casting.
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Appendix A. Specifications of the spherical frame

In the spherical curvilinear framework of [21], the vector u represents the
physical velocity with components aligned at every point of the spherical shell
with axes of a local Cartesian frame (subsequently marked as c) tangent to the
lower surface (r = a) of the shell; r is the radial component of the vector radius,
and a is the radius of the sphere, cf. Fig. 7.7, section 7.2 in [7]. Consequently,
dxc = r cosφ dλ, dyc = r dφ and zc = r−a; where λ and φ denote longitude and
latitude angles, respectively. Then, in the formalism of sections 2 and 3 and
in the absence of coordinate stretching, x = aλ, y = aφ, and z = zc; thereby
effectively employing longitude-latitude coordinates standard in many global
atmospheric models [37]. Furthermore, the coefficient matrix G̃ consists of
zero off-diagonal entries, whereas G̃1

1 = [Γ cos(y/a)]−1, G̃2
2 = Γ−1, and G̃3

3 = 1.
Here, Γ = 1+z/a, and indices 1, 2, and 3 correspond to x, y, and z components.
Consequently, the Jacobian is G = Γ2 cos(y/a).

In the momentum equation, the components of the Coriolis acceleration are

−f × u =
[
v f0 sin(y/a)−w f0 cos(y/a) , (41)

− u f0 sin(y/a) ,

u f0 cos(y/a)
]
,

where u = [u, v, w] and f0 = 2|Ω|. Furthermore, the metric forcings (viz.,
component-wise Christoffel terms associated with the convective derivative of
the physical velocity) are,

M(u) = (Γa)−1
[

tan(y/a)u v−uw , (42)

− tan(y/a)uu− v w ,
u u+ v v

]
.
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