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Abstract: The location of fire stations at a fire & rescue service is an important factor in 

its fire protection capability. This paper aims to determine the optimal location of fire 

station facilities. The method proposed here is the combination of a fuzzy multi-objective 

programming and a genetic algorithm. The reason of using this method is that the 

decision of where to locate fire stations depends upon a set of criteria, such as travel 

times or travel distances, setting up costs and operating costs, and the ordinary 

optimization methods may not be able to handle them effectively due to the relatively 

large scale of real problems. The original fuzzy multiple objectives are appropriately 

converted to a single unified ‘min-max’ goal, which makes it easy to apply a genetic 

algorithm for the resulting problem solving. Compared with the existing methods of fire 

station location our approach has three distinguish features: (1) considering the fuzzy 

nature of a decision maker (DM) in the location optimization model; (2) fully 

considering the demands to the facilities from the areas with various fire risk categories; 

(3) being more understandable and practical to DM. The case study was based on the 

data collected from the Derbyshire fire & rescue service and used to illustrate the 

application of the method for fire station locations. 
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1 Introduction 

Determination of where to locate fire stations and how many fire stations to have in a given area is 

perhaps the most important decision faced by any Chief Fire Officer. It is appreciated that the optimum 

solution is the one which minimizes the sum of losses from fire and the cost of providing the service 

(Hogg, 1968). In detail, appropriate fire station locations can bring the following benefits (Tzeng and 

Chen, 1999): (a) it can shorten the distance between fire stations and accident sites so as to improve 

reaction time efficiency; (b) fire stations can be loaded to minimize overlap of fire station services, so 

as to utilize efficiently fire station resources; and (c) it can help determine the reasonable number of 

fire stations at a given area by considering an economical trade-off between the accident-loss cost and 

the total setup and operating costs of fire stations. 

 

Fire station facility location problems have multiple objectives and are complex and NP-hard. Multiple 

objectives often conflict with each other and require multi-objective approaches rather than a single 

objective approach. Quite often multiple objectives are converted into a single unified goal as the 

weighted sum of the objectives or the total deviations from the goals or into a series of single objective 

optimization problem by picking one of the objectives to minimize while each of the others is turned 

into a constraint. Diwekar (2003) introduced the general ways of converting multi-objective 

optimisation problems into a single objective optimisation problem. Chen (2001) presented an 

application of this conversion in a multi-objective optimisation problem. Ordinary optimisation 

methods may not be able to handle these NP-hard problems effectively. As a consequence, several 

meta-heuristic methods such as Genetic Algorithms, Tabu search and Simulated Annealing have been 

introduced to solve these problems. Hales and Moberg (2003) summarized these meta-heuristic 

optimisation methods in their review of location science research. 

 

The main objectives of this paper are to fully consider the various fire risk categories of the given area 

in the location optimisation and to establish a fire station location model which is understandable and 

practical to fire service authorities. The original fuzzy multiple objectives need be appropriately 

converted to a single unified ‘min-max’ goal. This makes it easy to apply a genetic algorithm for the 

resulting problem solving. Our approach is similar in spirit to the works of Sakawa et al. (1997) and 

Tzeng and Chen (1999), but is revised to address the various fire risk categories of a given area and to 

convert into a genetic algorithm based search problem.  

 

The main advantage of our approach over the existing approaches including the works of Sakawa et al. 

(1997) and Tzeng and Chen (1999) is that different risk categories and obstacles within a given region 

have been considered in both the multiple objectives and the constraints. The way of ensuring a 

reasonable distance between any two adjacent fire stations through the characteristic function is more 

simple and efficient. In summary, our approach proposed in this paper has three distinguish features: a) 

distinguishing the areas with different risk categories in the optimal location problem is more 

reasonable and understandable; b) introducing the fuzzy nature of the recommendations of the Home 

Office in the UK on the speed of fire engine attack to accidents in the optimal location model has 
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greatly improved the precision of the optimal model and possesses a potential to reduce the amount of 

facilities; c) choosing a suitable chromosome format and embedding constraints into the fitness 

function of a genetic algorithm has dramatically reduced the complexity of the optimal fire station 

location problem. 

 

This paper is organized as follows: Section 2 reviews location science research, particularly in optimal 

fire station location. The proposed multi-objective fuzzy model is presented in Section 3. GA based 

resolution is described in Section 4. Application to the Derbyshire fire and rescue service is given in 

Section 5. Finally, some discussions and future work are presented in Section 6. 

 

2 Location science research 

2.1 Location science research 

Location science research investigates where to physically locate a set of facilities (resources) so as to 

minimize the cost of satisfying a set of demands subject to certain constraints (Hale and Moberg, 

2003). It includes locating fire stations to minimize the maximum response time to fire accidents. A 

variety of different exact and heuristic solution approaches have been developed to solve location 

problems (Brotcorne et al., 2003; Jayaraman et al., 2003; Salhi and Gamal, 2003; Cheung et al, 2001). 

The exact solution approaches have been used to obtain the global optimal solution in location 

problems and the heuristic solution approaches have been taken to yield reasonable solutions with 

moderately computational time. However, these two approaches bring two further issues for carrying 

out location problem solving, complex optimization nature and problem sizes (Kim, 2000). These two 

issues have led to the development of different heuristic solution techniques and algorithms, including 

the evolutionary computing technologies. Kim (2000) gave a comprehensive literature review in these 

areas. Hale and Moberg (2003) gave a review on location science research, which provides readers 

with a more general review of the location science research landscape rather than an exhaustive list of 

location science topics. 

 

There are very rich literatures on the use of GA in location science research. The research of Hosage 

and Goodchild (1986) appeared as a pioneering attempt that applied GA to location problems. They 

developed a binary genetic algorithm for solving a location problem. In practice, it is not always 

appropriate to convert a solution to a binary representation. An integer representation (Bianchi and 

Church, 1992) and a real number representation (Houck et al., 1996; Brimberg et al., 2000; and Salhi 

and Gamal, 2003) have been developed to represent the location of facilities.  

 

2.2 Optimal fire stations location 

The determination of optimal base locations for fixed emergency facilities has a long history in location 

science research. It is to determine the “best” base location for fire fighting engines so that some 

service level objective is optimized. It is assumed that each fire engine waits at its base until called into 
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service. After completing service, the fire engine returns to the base to await another call. The main 

task of fire stations is to operate in case of fire and in case of some other emergencies. The speed of 

arrival of the assistance is the dominant criterion.  

 

 In recent years, multiple criteria modelling approaches have been used in fire station location 

problems. Tzeng and Chen (1999) consider three objectives in the optimal location of airport fire 

stations:  

 Minimizing the total setup cost of fire stations and total loss cost of an accident;  

 Minimizing the longest distance from the fire stations to any point at the airport;  

 Minimizing the longest distance from any fire station to the high-risk area.  

 

Badri et al. (1998) considers 11 objectives in a general multi-objective model for locating fire stations. 

These multiple objectives incorporate both travel times and travel distances from stations to accident 

sites, and consider other cost-related objectives and technical or political criteria such as water 

availability and service overlaps of fire stations. These 11 objectives are as follows: 

 Minimize fixed cost; 

 Minimize total annual operating cost; 

 Maximize service of those areas that require in most based on number of forecasted accidents; 

 Minimize average distance travelled from station to accident sites; 

 Minimize maximum distance travelled from station to accident sites; 

 Minimize average time travelled from station to accident sites; 

 Minimize maximum time travelled from station to accident sites; 

 Attain targeted number of fire stations required; 

 Minimize service overlaps of fire stations; 

 Attain favoured area status; 

 Minimize locating where water availability could be a problem. 

 

The methods of solving the multi-objective location problems vary from traditional optimization 

programming such as branch and bound, MINLP (mixed integer nonlinear programming) (Badri et al, 

1998; Diwekar, 2003) to evolutionary computation techniques such as genetic algorithms (GA) (Tzeng 

and Chen, 1999; Cheung at el., 2001; Salhi and Gamal, 2003). The hybrid evolutionary methods are 

also employed in optimal location problems (Gong et al. 1997; Sakawa et al., 1997) that are described 

in a hierarchy structure; problems at lower levels are solved by traditional optimization techniques; 

while problems at higher levels become more complex and solved by an evolutionary technique. 

 

3 Fuzzy Multi-Objective Optimization Model 

Fuzzy multi-criteria models have been used in several studies in location optimization problems 

(Bhattacharya et al., 1992; Sakawa et al., 1997; Tzeng and Chen, 1999). People usually think that the 

main reason of using a fuzzy multi-objective approach in fire station location optimization problems is 

its simplicity when compared with traditional weighting methods (Tzeng and Chen, 1999). More than 
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the simplicity, if investigating the recommendations of the Home Office in the UK on the speed of fire 

engine attack to accidents which are summarized in Table 1 (Home Office, 1985), the fuzzy nature is 

exactly there. For example, the risk category B areas require the time limits for the fire engine 

attendance are 5 to 8 minutes, which mean that 5 minutes of the travel time is good enough and 8 

minutes is still acceptable. This requirement is fuzzy in nature. Table 1 also shows that different risk 

categories have different travel time requirements. Taking the average travel speed as 60 mile per hour 

the travel time requirements are converted to the distance limits shown in Table 1 as well. Tzeng and 

Chen (1999) used the risk rank for a location to multiply the distance between the fire station and the 

location. The risk rank is computed based on accident statistics for different areas. Our approach will 

follow the recommendation made by the Home Office in the UK rather than based on the accident 

statistics which might not be available and/or reliable. Our approach assumes that once positioned, fire 

engines would almost always be available when a call arrived. Therefore the number of pumps in Table 

1 is not used in this approach. The numbers of fire engines and fire fighters in any fire stations are 

usually allocated and regularly renewed in terms of the latest accident statistic reports in the area and 

the financial budget of the fire stations. In a major accident such as terrorist attacks the assumption 

made here may be not true.  In these situations local and national collaborations between nearby fire 

stations and even fire & rescue services become extremely important. The requirements of the 

availability of fire engines in individual fire stations will be met through the local and/or national 

cooperation of fire stations.  The UK government funded project ‘Firelink’ (Office of the Deputy Prime 

Minister, 2003) intends to achieve an efficient and reliable collaboration between fire & rescue services 

through advanced information sharing, mobile communication technologies and central control in order 

to respond any major accidents. 

 

 

Table 1: Recommendation of the Home Office in the UK on the speed of attack to fire accidents 

Risk Category Number of Pumps Time Limits for Attendance 

(in Minutes) 

Distance Limits to accident 

sites (in Miles) 

A 3 4-5 4-5  

B 2 5-8 5-8 

C 1 8-10 8-10 

D 1 10-20 10-20 

 

3.1 Multi-objective binary programming 

The decision variable, denoted as Sij, takes a binary value in fire station location optimization 

problems. If a fire station is set up on a x-y coordinate (i, j), then Sij=1, otherwise, Sij=0. The following 

is the generalized representation of a multi-objective binary programming problem (Diwekar, 2003): 
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where fk(Sij), k=1, 2, 3, …, M, are M conflicting objective functions; gl(Sij), l=1, 2, 3, …, P, are P 

constraints; i and j are a set of integer coordinates within a given area. The optimal variable in equation 

(1) and the rest of the paper is the whole set of ijS , i.e. a matrix 
maxmax

)( jiijS S , rather than any 

single decision variable ijS , unless specified. 

 

In a minimization problem such as minimizing the travel time from a fire station to an accident site, the 

objective stated by a Decision Maker (DM) such as the Home Office in the UK is to be best less than 

an optimistic value 
kf , and be surely less than a pessimistic value 

kf . This requirement possesses the 

fuzzy nature and can be treated by introducing the following linear membership function (Sakawa et 

al., 1997): 
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It is assumed that the kth membership function should be 1 if the objective achieves the optimistic 

value, 0 if the pessimistic value is not achieved, and linear from 0 to 1. Such a linear membership 

function is illustrated in Figure 1. 
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Figure 1: The achievement level for fuzzy objectives (k=1, 2, 3, …, M) 

  

The basic concept of fuzzy multi-objective optimization is to find the maximal achievement level 

among constraints of conflicting objectives. The multi-objective binary programming problems shown 

in equation (1) can be transformed as: 
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3.2 Fuzzy multi-objective model for fire station location optimization 

In the fire station location problem multiple as well as conflicting goals are present. Two common 

goals used in many emergency-location related studies are (a) to minimize the fixed cost and the total 

loss cost of accidents, (b) to minimize the distance from the fire station to any accident site. In our 

approach we adopt the model built by Tzeng and Chen (1999) for the first objective to obtain the 

optimal number of fire stations, and use the above fuzzy multi-objective model for the second objective 

to address the recommendation made by the Home Office on the time limits for attendance at accident 

sites.  

 

3.2.1 Minimizing the total setup and operating cost of fire stations and total loss cost of accidents in a 

given area 

The setup and operating cost for each fire station is denoted as SC, the total loss cost of accidents in a 

given area as TLC. SC and TLC are estimated by fire brigade authorities. The estimate of TLC is based 

on the total number of accidents and statistic property loss in these accidents. Obviously an insufficient 

number of fire stations will lead to inefficient reaction times and cause more loss cost. If no fire station 

was setup in a given area, the total loss cost will be equal to TLC; on the contrary, the total loss cost 

can be reduced when more fire stations are setup. On the other hand, too many fire stations will result 

in the increase of the setup and operating cost. Therefore, there must be an optimal number of fire 

stations after the trade-off between the total setup and operating cost of fire stations and the total loss 

cost. We modify the model established by Tzeng and Chen (1999) by introducing an adjustable 

parameter α in the TLC term for optimizing the number of general fire stations. 

})({ 1 
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where Sij is the decision variable, α is the adjustable parameter. The adjustable parameter α is used to 

tune the value of the effect of the total number of fire stations on the actual loss cost of accidents in 

order to match the actual situations. The value of the adjustable parameter α is obtained from the linear 

regression in terms of the history record. 

 

If the total number of the fire stations 
i j

ijS is denoted as N, equation (4) can be re-written as the 

following ‘continuous’ function with the only optimal variable N: 



 

i j
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(5) 

 

The optimal value N in equation (5) can be easily obtained through setting the derivative of f1(N) being 

zero and rounding the result into an integer value once SC and TLC have been estimated by fire 

brigade authorities and α has been calculated from the history record. 
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3.2.2 Minimizing the longest distance from a fire station to any accident site 

The recommendation made by the Home Office in the UK in Table 1 shows the time limits for fire 

engine attendance at accident sites. The time taken to get to an accident site is necessarily dependent 

upon the distance to be traveled and the road conditions experienced during the journey. Many 

researchers used maximum distance to reflect the worst scenario case associated with bad conditions 

experienced during the journey. Some researchers consider the elements of time and distance 

simultaneously. The new feature here is that in order to fully consider the demands to fire facilities 

from the areas with various fire risk categories four individual objectives are built since these areas 

have different attendance time limits. 

  

The objective for the areas with the fire risk category ‘A’ is shown in equation (6), the ones for the 

areas with the fire risk category ‘B’, ‘C’, and ‘D’ are shown in equations (7), (8),and (9) respectively. 
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where Sij is the decision variable; x, y are the coordinate of a fire site location; i, j are the coordinate of 

a location where a fire station might be located; rxy is the fire risk category for the location with the 

coordinate (x, y), it may take a value from ‘A’, ‘B’, ‘C’, and ‘D’. 

 

Equation (6) is an expression that calculates the distance from a location with the coordinate (x, y) to 

the closest fire station with the coordinate (i, j), i.e. 2
1

))()(( 22

,,1)|,{(
jyixMin

jiSji ij




, and then 

calculates the maximal distance for all the locations (x, y) with the fire risk category ‘A’, i.e. 

},,)|,{( yxAryx xy

Max


. The optimal objective is to minimize the maximal distance, i.e. )}.({ 2 ijSfMin  

Equations (7), (8) and (9) have a similar formula but deal with the areas with the fire risk category ‘B’, 

‘C’, and ‘D’. Euclidean distance is applied in equations (6) to (9). The actual value of the distance is 

the result of the value 2
1

))()(( 22 jyix  multiplied by the size of each cell in the coordinate 

system. Other kinds of distance such as Manhattan distance jyix  can be equivalently applied 

for this purpose. 
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3.2.3 Constraints 

The first constraint for the optimal objectives shown in equations (6) to (9) applies to the total number 

of fire stations being N obtained from the first optimal objective shown in equation (5). 

NS
i j

ij   (10) 

 

The second constraint considers obstacles in a given area. A fire station should not be built up within 

any obstacles such as waterways and reserved areas, which are described in equation (11). 

 ),(0 jiSij  (11) 

where the symbol  represents a set of obstacle coordinates. The principle of satisfying the constraint 

shown in equation (11) is to check the feasibility of any possible fire station locations. If a possible 

location is infeasible, i.e. the possible location is within the set of obstacles, we repair it in two ways: 

(a) randomly generate another possible location and check its feasibility, repeat this process until a 

feasible location is found; (b) move the infeasible possible location of the fire station to its nearest 

feasible locations. The way (b) is illustrated in Figure 2, in which the only obstacle is at the location 

with the coordinate (i+3, j+1) if choosing the bottom left corner of the cell to represent the location. 

The possible nearest feasible locations are obtained by increasing or decreasing the horizontal or 

vertical coordinates by 1, which are the cell with the coordinates (i+3, j), (i+3, j+2), (i+2, j+1), and 

(i+4, j+1). 

i
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Infeasible location Repaired possible locations

 

Figure 2: Avoiding obstacles 

If the distance between two fire stations a and b is shorter than the distance between fire station a and 

any other fire station we call fire station b is adjacent to fire station a. The definition of fire station b 

being adjacent to fire station a is described in equation (12). 
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The third constraint is that there should be a reasonable distance, denoted as 
r

abd , between any two 

adjacent fire stations a and b. This distance should not be too long, for example not be greater than a 

longest distance, 
l

abd , for fire stations to support each other, and should not be so short, for example 
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not be less than a shortest distance, 
s

abd , as to cause overlapping of fire station services. Tzeng and 

Chen (1999) used the expressions 
r

abd , 
l

abd , 
s

abd  to construct fuzzy constraints.  For the sake of the 

simplicity, we use two inequalities to express the constraint as shown in equation (13). 

l
abbaba

s
ab djjiid  2

1

))()(( 22  (13) 

where (ia, ja) and (ib, jb) are the coordinates of any two adjacently located fire stations a and b 

respectively. 

 

3.2.4 Fuzzy multi-objective model in a single unified goal 

The optimistic and pessimistic values of the objectives f2, to f5 are listed in Table 2, which are directly 

derived from the Home Office recommendations shown in Table 1. By applying the fuzzy membership 

function shown in equation (2) into the objectives f2 to f5 shown in equations (6) to (9), the multi-

objective binary programming problem shown in equation (3) can be presented as equation (14), where 

l

abd  and 
s

abd are the longest and the shortest distances between two adjacent fire stations; N is the 

optimal total number of fire stations;  represents the set of obstacle coordinates. Equation (14) 

includes the three constraints described in section 3.2.3. 

 

l
abbaba

s
ab

ij

ij

i j
ij

ijijijij

djjiidbaadjacent

jiS

S

NStosubject

SfSfSfSfMax









2
1

))()((,,

),(,0

1,0

))}(()),(()),(()),((min{

22

55443322 

 

(14) 

Table 2: Optimistic and pessimistic objectives 

Fire risk category Objective Optimistic value (f+) Pessimistic value (f-) 

A f2 4 5 

B f3 5 8 

C f4 8 10 

D f5 10 20 

 

4 Formulizing as a Genetic Algorithm Based Search Problem 

The above fuzzy multi-objective problem shown in a single unified goal can be formulised as a GA 

based search problem. In order to do so, it is necessary to define: 

 a representation of the problem, i.e. a chromosome; and 

 a fitness function defined in terms of this representation. 

 
4.1 Representation 

A chromosome in a genetic algorithm can be represented as a binary string, an integer string, or a real 

number string. In this study, the decision variable Sij is a binary, and the location is a pair of integer 

coordinate (x, y) taken from the National Grid. If a double string (Sakawa et al., 1997) is chosen as the 

representation for a chromosome, a chromosome can be represented as 
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where K and L are the numbers of row and column of the National Grid in a given area.  In the 

evolution of the chromosome in a double string shown in equation (15), the first row must be 

maintained unchanged, and only the decision variable row evolves. The difficulty of the chromosome 

evolution is that the sum of the decision variables at the second row must be equal to N, the optimal 

number of fire stations, as shown in equation (10). In order to avoid this complexity we choose the 

coordinates of the N locations where the fire stations are initially located to build the chromosome and 

only let the coordinate of fire station locations evolves. This is presented as follows: 
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Three standard GA evolutionary operators including mutation, crossover and reproduction have a 

straightforward application to the chromosome shown in equation (16).  The optimal variables Sij in the 

single unified goal of the fuzzy multi-objective model shown in equation (14) is replaced by the 

coordinates of the initially selected N fire station locations shown in equation (16) in the evolution of 

the chromosome. If denoting ),,,( 21 Niii   as I, and ),,,( 21 Njjj  as J, equation (14) is re-written 

as equation (17). The constraint shown in equation (10) has been taken away from equation (17) 

because it will be automatically satisfied in the chromosome representation shown in equation (16).  
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4.2 Fitness function 

Using a characteristic function (Sakawa et al., 1997) F(I,J), the constraints shown in equation (13) can 

be re-written as 
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Equation (18) means that if there is a reasonable distance between any two adjacent fire stations, i.e. 

the constraint shown in equation (13) has been satisfied, the characteristic function equals 1, and 

otherwise, the characteristic function equals 0. 
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By introducing the characteristic function F(I,J) shown in equation (18) into the objective function 

shown in equation (17) and denoting the fitness function as ffitness(I,J), the fitness function ffitness is 

defined as follows: 

(I,J)}(I,J)),χ(f(I,J)),μ(f(I,J)),μ(f(I,J)),μ(f{μ

(I,J)f

F

fitness

55443322min


 

(19) 

 

The above fitness function is equal to 0 if the characteristic function is 0; otherwise it will take the 

minimal value of the fuzzy memberships of the objectives f2 to f5.  

 

The fitness functions of the optimal fire station locations are expected to achieve a maximum fuzzy 

membership, i.e. the minimal value among the longest distances from a fire station to any accident sites 

for any fire risk category areas, therefore achieves a value maximally close to the optimistic value 

recommended by the Home Office in the UK. That is: 

),( JIfMax fitness  (20) 

 

It can be seen that once the constraint shown in equation (13) is not satisfied, i.e. two adjacent fire 

stations are too close to or too far away from each other, the characteristic function F is 0, the fitness 

value is then equal to zero as well so that the chromosome is discarded in the next generation. In order 

to achieve the maximal fitness value, the constraint shown in equation (13) must be satisfied, i.e. 

F(I,J) must be equal to 1. Therefore, by choosing the representation of the chromosome shown in 

equation (16) and introducing the characteristic function F(I,J) shown in equation (18) into the fitness 

function, both constraints shown in equations (10) and (13) have been embedded in the fitness function. 

The only constraint that needs to be considered separately is the one of avoiding obstacles re-written as 

equation (21).  

Naji aa ,,1,),(   (21) 

 

5 Applications to the Derbyshire Fire Station Locations 

 

5.1 Data collection 

The National Grid System in the UK divides the Derbyshire region into 186116 cells, each of them is 

a 0.5×0.5 km2 square. Set the cell outside of the Derbyshire region with the value of zero, the ones 

within the region with the value of 1 for the fire risk category ‘A’, the value of 2 for the fire risk 

category ‘B’, 3 for ‘C’, and 4 for ‘D’. The obstacle cells within the region have the value of zero.  A 

part of the region is illustrated in Figure 3.  
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Figure 3: Cells in the National Grid System with fire risk categories 

 

5.2 Optimal number of the fire stations 

The total number of the fire stations 

i j

ijSN is determined purely by optimizing the first 

objective shown in equation (5), and the rest of the objectives f2 to f5 are ignored. It is because in this 

research the optimal number of the fire stations is mainly considered from the aspect of the financial 

costs rather than from the aspect of the performance of these fire stations. By setting the derivative of 

f1(N) being zero the total number of fire stations N is given as 

)lnint(ln  SCTLCN  (22) 

where int denotes rounding the result into an integer value; SC denotes the setup and operating cost for 

each fire station; TLC denotes the total loss cost of accidents;  ln  is an adjustable parameter. The 

SC includes building costs, fire engines costs, salary and life insurance of fire fighters, training costs 

and other consumable costs. Obviously N is the tradeoff between the total loss cost and the total setup 

and operating cost. Taking the average numbers of fire engines and fire fighters for each fire station as 

6 and 20 respectively the SC is estimated to be 1.82 millions GBP per year by the relevant authorities 

in the UK. If there is no fire stations available the fire incidents occurred will cause a significant life 

loss and injuries and property loss. The TLC is computed by estimating the number of deaths and 

injuries multiplied by the insurance payment for each plus the loss of property etc. The estimation of 

the TLC in this study is equal to 110.8 million GBP. The adjustable parameter β is equal to 25.9. Both 

of the estimations were based on the history data from the statistic reports from the Home Office in the 

UK. By taking the values of TLC, SC, and β into equation (22) the optimal number of the fire stations 

N is equal to 30.  
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5.3 Implementation and result analysis 

Table 2 is applied into equation (2) to compute the fuzzy membership for the areas with the fire risk 

categories ‘A’, ‘B’, ‘C’, and ‘D’ as follows: 
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The value of the characteristic function F(I,J) shown in equation (18) is determined by the minimal 

distance and the maximum distance between any two adjacent fire stations which are denoted as 

min
abd and max

abd  respectively. After consulting fire service authorities the shortest distance s
abd is set to 

0.5 miles, and the longest distance l
abd is set to 10 miles. After obtaining min

abd and max
abd , the 

characteristic function is computed as follows: 

 





 


otherwise

danddif
JI abab

F
0

10,5.01
),(

maxmin

  

(27) 

 

The ordinary three GA operators: reproduction, mutation, and crossover, have been implemented in the 

genetic algorithm. Based on our experience (Yang, 2004) the probability of mutation is set as 0.08, the 

probability of crossover as 0.6, and the size of the population as 50, and the number of generation as 

100. Tables 3 and 4 give the numerical coordinates of the 30 fire stations. Figure 4 illustrates the 

distribution of the final 30 fire station sites identified by the circle symbols. The best fitness value is 

0.44. The fuzzy memberships for the areas with the fire risk categories ‘A’, ‘C’, and ‘D’ equal 1.0, the 

one for the area with the fire risk category ‘B’ equals 0.44. The minimal distance and the maximum 

distance between any two adjacent fire stations equal 1.32 miles and 9.01 miles respectively, which are 
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calculated in the format  2
1

))()(( 22

baba jjii the cell size (0.5 km here) and satisfy the 

constraint shown in equation (13), and therefore make the value of the characteristic function be equal 

to 1. 

 

The upper left corner in Figure 4 is the national forest district. The population and the fire risk in this 

area are much lower than ones in the Derby city centre and the Chesterfield city centre located in the 

middle of the Derbyshire region. Only three recommended fire stations are located in the national 

forest district. Most of the recommended fire stations are located in the Derby city centre and the 

Chesterfield city centre. This is similar to the actual fire station locations in Derbyshire. The actual 

locations of the fire stations in Derbyshire are not illustrated in Figure 4 because the actual number of 

the fire stations is far below the optimal number and the locations were determined purely based on the 

population distribution rather than the risk categories in the area. The major difference between the 

recommended and actual locations in this case study is that all the actual locations of fire stations are 

either in a city centre or in a village centre, but part of the recommended fire stations are located 

between two villages or out of the centre centres. The reason of causing this difference is that the 

recommended locations are only focused on the various risk categories in a given area, and does not 

involve any social factors in the objectives. This difference has been acknowledged by the DFRS 

authority. 

 

 

 

Table 3: Fuzzy memberships and fitness values for 30 fire stations 

Gen- 

eration 

f2 f3 f4 f5 2 3 4 5 
min
abd  

(mile) 

max
abd  

(mile) 

F ffitness 

1 4.36 7.69 8.16 8.16 0.64 0.10 0.92 1.00 0.93 8.04 1 0.1 

2 4.23 7.57 7.25 7.33 0.77 0.14 1.00 1.00 0.69 8.89 1 0.14 

3 3.43 7.25 6.98 7.47 1.00 0.25 1.00 1.00 1.39 9.24 1 0.25 

5 1.81 7.09 7.56 7.68 1.00 0.30 1.00 1.00 1.55 9.33 1 0.30 

35 3.36 6.90 7.84 7.69 1.00 0.37 1.00 1.00 0.98 8.56 1 0.37 

43 3.24 6.79 6.90 7.17 1.00 0.40 1.00 1.00 1.12 8.23 1 0.40 

76 2.93 6.67 7.28 7.52 1.00 0.44 1.00 1.00 1.32 9.01 1 0.44 
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Table 4: 30 Fire station locations proposed by GA 

1 2 3 4 5 6 

(87, 112) (60, 38) (48, 122) (91, 63) (78, 56) (56, 97) 

7 8 9 10 11 12 

(82, 88) (66, 28) (45, 58) (52, 98) (95, 54) (94, 118) 

13 14 15 16 17 18 

(20, 167) (60, 70) (70, 80) (55, 112) (42, 48) (89, 76) 

19 20 21 22 23 24 

(60, 8) (96, 47) (110, 129) (49, 141) (49, 63) (17, 118) 

25 26 27 28 29 30 

(47, 111) (65, 123) (76, 120) (36, 90) (20, 138) (82, 93) 
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Figure 4: Distribution of the final 30 fire station sites 

 

6 Discussions and future work 

Any optimal location problems are usually constrained by a number of physical limitations and have 

multiple conflicting objectives. In this paper we converted a fuzzy multi-objective optimization model 

into a single unified goal and combined the goal with a genetic algorithm for the fire station location 

problem. Five objectives are created, the first one is to minimize the total setup and operating costs of 

fire stations and total loss cost of accidents in a given area, and the rest four are to minimize the longest 

distance from a fire station to any accident site. The optimal number of fire stations is obtained by 
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solving the first objective, which is transferred into a constraint for the rest of four objectives. There are 

other two extra constraints: one considers obstacles in a given area, and the other concerns the distance 

between any two adjacent fire stations. By choosing the coordinates of N possible fire station locations 

to represent a chromosome in the genetic algorithm we make the constraint about the optimal number 

of fire stations being automatically satisfied in the genetic algorithm. Also by using a characteristic 

function the constraint about the distance between any two adjacent fire stations is embedded in the 

fitness function of the genetic algorithm. Therefore the genetic algorithm only needs to consider a 

single constraint, which is to avoid the obstacles in a given area. Based on the recommendations of the 

Home Office in the UK on the speed of fire engine attack to accidents the areas with different fire risk 

categories have different travel time requirements. In order to fully consider these various demands to 

fire facilities four individual objectives are created. This approach is more reasonable and closer to 

practice. Our case study illustrates that the model established and the method proposed in this paper to 

deal with the constraints can be applied successfully at the DFRS.   

 

Further work in optimal fire station locations mainly considers how to model and deal with the 

capacities of different types of fire stations. For example, the whole time stations will function 24 hours 

a day and 7 days a week, the day staffing stations will only be available in day time, and the retained 

stations will be available only once a request has been received. Also the facilities allocated in these 

different types of fire stations are various.  The capacity limitations should be included in the optimal 

fire location problem. Furthermore, information about road conditions is helpful in the decision making 

of the fire station location. Bad weather and peak hours will make the road conditions much worse than 

good weather and non-peak hours. How to consider the effect of the road conditions on the travel time 

of fire engines is still a big challenge. 
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