

This item was submitted to Loughborough’s Institutional Repository by the
author and is made available under the following Creative Commons Licence

conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

A non-learnable class of E-pattern languages

Daniel Reidenbach 1

Fachbereich Informatik, Technische Universität Kaiserslautern,

Postfach 3049, 67653 Kaiserslautern, Germany

Abstract

We investigate the inferrability of E-pattern languages (also known as extended
or erasing pattern languages) from positive data in Gold’s learning model. As the
main result, our analysis yields a negative outcome for the full class of E-pattern
languages – and even for the subclass of terminal-free E-pattern languages – if the
corresponding terminal alphabet consists of exactly two distinct letters. Further-
more, we present a positive result for a manifest subclass of terminal-free E-pattern
languages. We point out that the considered problems are closely related to funda-
mental questions concerning the nondeterminism of E-pattern languages.

Key words: pattern languages, inductive inference, learning theory

1 Introduction

In the context of this paper, a pattern – a finite string that consists of vari-
ables and terminal symbols – is used as a device for the definition of a formal
language. Such a pattern generates a word by a uniform substitution of all
variables with arbitrary strings of terminal symbols, and, accordingly, its lan-
guage is the set of all words that can be constructed by suchlike substitutions.
For instance, the language generated by the pattern α = x1 x1 a b x2 (with
x1, x2 as variables and a, b as terminals) includes all words where the pre-
fix can be split in two occurrences of the same string, followed by the string
ab and concluded by an arbitrary suffix. Thus, the language of α contains,
among others, the words w1 = a a a b a, w2 = a b a b a b a b, w3 = a b b b,
whereas the following examples are not covered by α: v1 = b a, v2 = b b b b b,

Email address: reidenba@informatik.uni-kl.de (Daniel Reidenbach).
URL: http://www-agrw.informatik.uni-kl.de/home/reidenba/ (Daniel

Reidenbach).
1 Supported by the Deutsche Forschungsgemeinschaft (DFG), Grant Wi 1638/1-2

Preprint submitted to Elsevier Science 2 May 2004

v3 = b a a b a. Consequently, numerous regular and nonregular languages can
be described by patterns in a compact and “natural” way.

The investigation of patterns in strings may be seen as a classical topic in
the research on word monoids and combinatorics of words, examined for in-
stance by Thue [25], [26], Bean, Ehrenfeucht, McNulty [6], Keränen [11], and
many more; the definition of pattern languages as described above goes back
to Angluin [1]. Pattern languages have been the subject of several analyses
within the scope of formal language theory, e.g. by Jiang, Kinber, Salomaa,
Salomaa, Yu [9],[10] – for a survey see [21]. These examinations reveal that
a definition disallowing the substitution of variables with the empty word –
as given by Angluin – leads to a class of languages with particular features
that significantly differ from the properties of the class that results from a
definition which admits the empty substitution (cf. w3 in our example, that
can only be generated by α if the empty word is assigned to x1). Languages of
the latter type have been introduced by Shinohara in 1982 (cf. [22]); they are
referred to as extended, erasing, or simply E-pattern languages, whereas those
following Angluin’s definition are called NE-pattern languages.

When dealing with pattern languages, manifold questions arise from the prob-
lem of computing a pattern that is common to a given set of words. Therefore
pattern languages have been a focus of interest of algorithmic learning theory
from the very beginning. In the elementary learning model of inductive infer-
ence – known as learning in the limit or Gold style learning (introduced by
Gold in 1967, cf. [8]) – a class of languages is said to be inferrable from posi-
tive data if and only if a computable device (the so-called learning strategy) –
that reads growing initial segments of any text (an arbitrary stream of words
that, in the limit, fully enumerates the language) – after finitely many steps
converges for every language and for every corresponding text to a distinct
output exactly representing the given language. In other words, the learning
strategy is expected to extract a single and complete description of a (po-
tentially infinite) language from finite data. According to [8], this task is too
challenging for many well-known classes of formal languages: All superfinite
classes of languages – i.e. all classes that contain every finite and at least one
infinite language – such as the regular, context-free and context-sensitive lan-
guages are not inferrable from positive data. Consequently, the number of rich
classes of languages that are known to be learnable is rather small. Finally,
it is worth mentioning that Gold’s model has been complemented by several
criteria on language learning (e.g. in [2] and [28]) and, moreover, that it has
been transformed into a widely analysed learning model for classes of recursive
functions (e.g. [5], [12], and [3]).

The current state of knowledge concerning the learnability of pattern lan-
guages considerably differs when regarding NE- or E-pattern languages, re-
spectively: The learnability of the class of NE-pattern languages was shown

2

by Angluin when introducing its definition in 1980 (cf. [1]). In the sequel there
has been a variety of additional studies – e.g. by Lange, Wiehagen [13], Wieha-
gen, Zeugmann [27], Reischuk, Zeugmann [19] and many more (for a survey
see [24]) – concerning the complexity of learning algorithms, consequences of
different input data, efficient strategies for subclasses, and so on. The question,
however, whether the class of E-pattern languages is inferrable from positive
data, considered to be “one of the outstanding open problems in inductive in-
ference” (Mitchell [15]), remained unresolved for two decades – apart from the
positive results in [15] for the special terminal alphabets of unary and infinite
size. The present paper, that has been given as a preliminary version in [16],
examines this question with regard to the more significant binary terminal
alphabets, and it provides a negative answer for that case. Thus, if alphabets
with two distinct letters are considered, the small difference in the definitions
of NE- and E-pattern languages causes the opposite results with regard to
the learnability of both classes. Meanwhile, this negative finding has been ex-
tended on E-pattern languages over alphabets with three and with four letters
as well (cf. [18]).

Up to the present, only very few non-trivial subclasses of E-pattern languages
are known to be learnable. In detail, the class of E-pattern languages where the
patterns contain at mostm distinct variables (indirectly shown by Wright [28])
and the class of quasi-regular E-pattern languages, with every variable occur-
ring exactly m times (first shown by Shinohara in [22] for m = 1, the general
case shown by Mitchell in [15]), can be mentioned. The learnability of a third
class has been claimed in [16] and is proven in Section 4. A fourth, recent
positive finding on a subclass of E-pattern languages, that can be interpreted
easier when the results of this paper are described completely, is noted in
Section 5.

The considerations in the following sections focus on a particular subclass
of E-Pattern languages, the so-called terminal-free E-pattern languages, which
are generated by patterns that consist of variables only. These patterns, known
as terminal-free or pure patterns, have been a subject of several publications
within the scope of formal language theory, such as [7] and [10]. Our decision
is motivated by two reasons – a rather abstract and a fairly pragmatical one.
First, the approaches by Shinohara, Wright and Mitchell restrict the occur-
rences of variables, and therefore patterns only consisting of variables seem
to allow an undisguised look at the difficulties that caused these restrictions.
Second, the inclusion problem is not decidable for the full class of E-pattern
languages, but it is decidable for terminal-free E-pattern languages, and this
fact is a valuable aid when analysing learnability of formal languages; this cir-
cumstance is explained in the following, formal section. Since many problems
considered in this paper may be interpreted as questions on the nondetermin-
ism of pattern languages our focus on terminal-free patterns implies connec-
tions to so-called equality sets and, thus, to several examinations on words that

3

solve some instance of the Post Correspondence Problem (cf. [21]). Within the
scope of this paper, however, these aspects are not discussed explicitly.

2 Preliminaries

In order to keep this paper largely self-contained we now introduce a num-
ber of definitions and basic properties. For standard mathematical notions
and recursion-theoretic terms not defined explicitly, we refer to [20]; for unex-
plained aspects of formal language theory, [21] may be consulted.

We begin with some fundamental definitions on words and languages. N is the
set of natural numbers, {0, 1, 2, . . .}. For an arbitrary set A of symbols, A+

denotes the set of all non-empty words over A and A∗ the set of all (empty and
non-empty) words over A. Any set L ⊆ A∗ is a language over an alphabet A.
We designate the empty word as e. For the word that results from the n-fold
concatenation of a letter a or of a word w we write a

n or (w)n, respectively.
The size of a set A is denoted by |A| and the length of a word w by |w|; |w|a
is the frequency of a letter a in a word w. The Parikh vector of a word w over
a finite alphabet A := {a1, a2, . . . , an} is the vector 〈|w|a1

, |w|a2
, . . . , |w|an

〉.

Let (Li)i∈N be an infinite sequence of non-empty languages. Then the mem-
bership problem for (Li)i∈N is said to be decidable, provided there is a total
computable function that, given any pair of an index i ∈ N and a word w,
decides whether or not w ∈ Li; we say that the inclusion problem is decid-
able if there exists a total computable function that, given any pair of indices
i, j ∈ N, decides whether or not Li ⊆ Lj . If the membership problem for
(Li)i∈N is decidable then we call it an indexed family (of non-empty recursive
languages). A class L of languages is indexable if and only if there exists an
indexed family (Li)i∈N with L = {Li | i ∈ N} – in that case we say that the
membership problem for L is decidable. Accordingly, for class L of non-empty
languages the inclusion problem is said to be decidable if and only if there ex-
ists a sequence (Li)i∈N with L = {Li | i ∈ N} such that the inclusion problem
is decidable for (Li)i∈N.

We proceed with the pattern specific terminology. Σ is a finite or infinite al-
phabet of terminal symbols and X = {x1, x2, x3, . . . } an infinite set of variable
symbols, Σ ∩ X = ∅. Henceforth, we use lower case letters from the begin-
ning of the Latin alphabet as terminal symbols; words of terminal symbols are
named as u, v, or w. A pattern is a non-empty word over Σ ∪X, a terminal-
free pattern is a non-empty word over X; naming patterns we use lower case
letters from the beginning of the Greek alphabet. var(α) denotes the set of all
variables of a pattern α. We write Pat for the set of all patterns and Pattf for
the set of all terminal-free patterns.

4

A substitution is a morphism σ : (Σ ∪ X)∗ −→ Σ∗ such that σ(a) = a for
every a ∈ Σ. We explicitly allow the substitution of variables with the empty
word. An inverse substitution is a morphism σ̄ : Σ∗ −→ X∗. The E-pattern
language LΣ(α) of a pattern α is defined as the set of all w ∈ Σ∗ such that
σ(α) = w for some substitution σ. If α is a terminal-free pattern then we
call LΣ(α) a terminal-free E-pattern language. For any word w = σ(α) we
say that σ generates w, and for any language L = LΣ(α) we say that α
generates L. If there is no need to give emphasis to the concrete shape of Σ we
denote the E-pattern language of a pattern α simply as L(α). We use ePAT
as an abbreviation for the full class of E-pattern languages and ePATtf for the
class of terminal-free E-pattern languages. For any class ePAT⋆ of E-pattern
languages we write ePAT⋆

Σ if the corresponding alphabet is of interest.

Clearly, both ePAT and ePATtf are indexable since, first, every E-pattern lan-
guage is non-empty, second, a recursive enumeration of all necessary patterns
can be constructed with little effort and, third, the decidability of the mem-
bership problem for any pattern α ∈ Pat and word w ∈ Σ∗ is guaranteed as
the search space for a successful substitution of α is bounded by the length
of w. With regard to the inclusion problem, however, ePAT and ePATtf are
different. In [10] it is shown that, in general, the inclusion problem for ePAT
is undecidable, whereas for ePATtf the opposite holds true. As this is of great
importance for the following examinations, we now cite two corresponding
theorems:

Fact 1 (Jiang, Salomaa, Salomaa, Yu [10]) Let Σ be an alphabet, |Σ| ≥
2, and α, β arbitrarily given terminal-free patterns. Then LΣ(β) ⊆ LΣ(α) iff
there exists a morphism φ : X∗ −→ X∗ such that φ(α) = β.

Fact 2 (ibid.) The inclusion problem for ePATtf is decidable.

We conclude our notions on E-pattern languages with the naming of some
important properties of particular patterns. A pattern α is in canonical form
if and only if, for some n ≥ 1, var(α) = {x1, x2, . . . , xn} and, additionally,
for every xi, 1 ≤ i < n, the leftmost occurrence of xi in α is to the left of
the leftmost occurrence of xi+1; for instance, the pattern x1 x2 x1 x3 x2 is in
canonical form, whereas x1 x2 x4 and x1 x3 x2 x3 are not.

Following [15], we designate a pattern α as succinct if and only if |α| ≤ |β|
for all patterns β with L(β) = L(α). The pattern β = x1x2x1x2, for instance,
generates the same language as the pattern α = x1x1, and therefore β is not
succinct; α is succinct because there does not exist any shorter pattern than
α that exactly describes its language.

According to the studies of Mateescu and Salomaa on the nondeterminism
of pattern languages (cf. [14]) we denote a word w as ambiguous (in respect
of a pattern α) if and only if there exist two substitutions σ and σ′ such

5

that σ(α) = w = σ′(α), but σ(xi) 6= σ′(xi) for some xi ∈ var(α). The word
w = aaba, for instance, is ambiguous in respect of the pattern α = x1ax2 since
it can be generated by several substitutions, such as σ and σ′ with σ(x1) = a,
σ(x2) = ba and σ′(x1) = e, σ′(x2) = aba. We call a word unambiguous (in
respect of a pattern α) if it is not ambiguous.

We proceed with the learning theoretical definitions. Our learning model goes
back to Gold [8], but, since we restrict ourselves to considerations on indexable
classes, we largely follow Angluin [2]. Our learner is expected to deal with
positive data exclusively, given as text. A text for an arbitrary language L is
any total function t : N −→ Σ∗ satisfying {t(n) | n ∈ N} = L. For any text
t, any n ∈ N and a symbol 3 6∈ Σ, tn ∈ (Σ ∪ {3})+ is a coding of the first
n + 1 values of t, i.e. tn := t(0) 3 t(1) 3 t(2) . . . 3 t(n). The learner is any
total computable function S (the so-called learning strategy) that, for a given
text t, successively reads t0, t1, t2, etc. and returns a corresponding stream
of natural numbers S(t0), S(t1), S(t2), and so on. For a language Lj in an
indexed family (Li)i∈N and a text t for Lj , we say that S identifies Lj from t if
and only if there exist natural numbers n0 and j′ such that, for every n ≥ n0,
S(tn) = j′ and, additionally, Lj′ = Lj . An indexed family (Li)i∈N is learnable
(in the limit) – or: inferrable from positive data, or: (Li)i∈N ∈ LIM-TEXT for
short – if and only if there is a learning strategy S identifying each language
in (Li)i∈N from any corresponding text. Finally, we call an indexable class L of
languages learnable (in the limit) or inferrable from positive data if and only
if there is a learnable indexed family (Li)i∈N with L = {Li | i ∈ N}. In this
case we write L ∈ LIM-TEXT for short.

As mentioned in the previous paragraph, this specific learning model is just
a special case of Gold’s learning model, which can be considered for more
general applications as well. Indeed, there is a large number of publications
where the elements of the above definition are modified or generalised, such
as the objects to be learned (e.g., using arbitrary classes of languages instead
of indexed families), the learning goal (e.g., asking for a semantic instead of
a syntactic convergence), or the output of the learner (choosing some general
hypothesis space instead of the indexed family itself). However, with regard
to our negative main result (cf. Theorem 5), we state that it holds in many
well-established, more general variants of Gold’s learning model as well. For
information on suchlike aspects, see [29] and [4].

Angluin has introduced some criteria on indexed families that reduce learn-
ability to a particular language theoretical aspect (cf. [2]). For the proof of
our main result, we use the following (combining Condition 2 and Corollary 1
of the referenced paper):

Fact 3 (Angluin [2]) Let (Li)i∈N be an arbitrary indexed family of non-
empty recursive languages. If (Li)i∈N ∈ LIM-TEXT then for every j ∈ N

6

there exists a set Tj such that

• Tj ⊆ Lj,
• Tj is finite, and
• there does not exist a j′ ∈ N with Tj ⊆ Lj′ ⊂ Lj.

If there exists a set Tj satisfying the conditions of Fact 3 then it is called a
telltale (for Lj) (in respect of (Li)i∈N).

The importance of telltales – that, at first glance, do not show any connection
to the learning model – is caused by the need of avoiding overgeneralisation
in the inference process, i.e. the case that the strategy outputs an index of
a language which is a proper superset of the language to be learned and
therefore, as the input consists of positive data only, is unable to detect its
mistake. Thus, every language Lj in a learnable indexed family necessarily
contains a finite set of words which, in the context of the indexed family, may
be interpreted as a signal distinguishing the language from all languages that
are subsets of Lj .

If the inclusion problem for the examined indexed family is decidable then
this necessary condition for learnability is sufficient, too. This finding again
derives from [2] (combining Condition 2, Condition 4 and Corollary 3):

Fact 4 (Angluin [2]) Let (Li)i∈N be an arbitrary indexed family of non-
empty recursive languages such that the inclusion problem for (Li)i∈N is de-
cidable. Then (Li)i∈N ∈ LIM-TEXT iff for every j ∈ N there exists a set Tj
such that

• Tj ⊆ Lj,
• Tj is finite, and
• there does not exist a j′ ∈ N with Tj ⊆ Lj′ ⊂ Lj.

Consequently, Fact 4 can be used for analysing the learnability of ePATtf as
the inclusion problem for ePATtf is decidable (cf. Fact 2).

With these criteria we can conclude the section of definitions and preliminary
results and proceed to the main result of this paper.

3 The Main Result

As mentioned in Section 1, the full class of E-pattern languages is known
to be learnable in case of a unary or an infinite alphabet (cf. [15]). However,
since these special alphabets considerably ease the construction of telltales, the
respective reasoning has not been extendable on finite alphabets of different

7

size (that, in turn, normally are considered to be more interesting). For our
approach to the long-term open question of the learnability of ePAT over finite
alphabets with more than one letter, we restrict ourselves to binary alphabets.
This assumption facilitates the main result which provides a negative answer
and thus remarkably contrasts with the outcome for NE-pattern languages
(cf. Section 1):

Theorem 5 Let Σ be an alphabet, |Σ| = 2. Then ePATΣ 6∈ LIM-TEXT.

In the following section we give the proof of Theorem 5. For this purpose,
we present a specific and simply structured terminal-free pattern αab whose
language, for |Σ| = 2, has no telltale in respect of ePATΣ, and we point out
that this is caused by the ambiguity of some particular words in LΣ(αab).
Moreover, our reasoning implies that even the subclass of terminal-free E-
pattern languages is not learnable in the limit for binary alphabets.

3.1 Proof of the main result

To begin with we name a special type of patterns that is as useful for the
upcoming line of reasoning as it is inconvenient for the needs of inductive
inference:

Definition 6 (Passe-partout) Let α be a pattern and W ⊂ L(α) a finite
set of words. Let β be a pattern, such that

• W ⊆ L(β) and
• L(β) ⊂ L(α).

We then say that β is a passe-partout (for α and W).

Note that if there exists a passe-partout β for a pattern α and a set of words
W , then W is not a telltale for L(α) in respect of any class of E-pattern
languages that contains both L(α) and L(β).

Definition 6 allows us to formulate the following lemma, that is crucial for the
proof of Theorem 5:

Lemma 7 Let Σ = {a, b} be an alphabet. Then for the pattern

αab := x1 x1 x2 x2 x3 x3

and for any finite W ⊂ LΣ(αab) there exists a terminal-free passe-partout.

8

PROOF. If W is empty then the claim of Lemma 7 is trivially true. Given an
arbitrary non-empty W = {w1, w2, . . . , wn} ⊂ L(αab), the following procedure
constructs a passe-partout β:

As an inverse substitution we define for every wi a morphism σ̄i : Σ∗ −→ X∗

by

σ̄i(c) :=

x2i−1 , c = a,

x2i , c = b.

As W ⊂ L(αab), for every wi, 1 ≤ i ≤ n, there exists a substitution σi
satisfying σi(αab) = wi. Constructing a set of 3n strings γi,k ∈ X∗ we now
identify the necessary elements of β.

Case (i) σi(x3) contains a letter exactly once and wi contains this letter
exactly twice.
Formally, that is σi(x1), σi(x2) ∈ {b}∗ and σi(x3) = v1av2 with v1, v2 ∈ {b}∗

or σi(x1), σi(x2) ∈ {a}∗ and σi(x3) = v1 b v2 with v1, v2 ∈ {a}∗. In this case
we define

γi,1 := σ̄i (σi(x1) σi(x2)) ,

γi,2 := σ̄i (σi(x3)) ,

γi,3 := e.

Note that wi necessarily is ambiguous in the present case, and therefore
the above definition provides a pattern γi := γi,1 γi,1 γi,2 γi,2 γi,3 γi,3 with
wi ∈ L(γi).

Case (ii) Not (i).
In other words, σi(x3) is empty or wi contains every letter of σi(x3) at least
four times. In this case we simply define

γi,k := σ̄i (σi(xk)) , 1 ≤ k ≤ 3.

Obviously, (ii) also provides a pattern γi := γi,1 γi,1 γi,2 γi,2 γi,3 γi,3 with
wi ∈ L(γi).

Combining the fragments of all γi in an appropriate manner we now compose
the resulting pattern of the procedure:

β := γ1,1 γ2,1 · · · γn,1
︸ ︷︷ ︸

∼x1

γ1,1 γ2,1 · · · γn,1
︸ ︷︷ ︸

∼x1

γ1,2 γ2,2 · · · γn,2
︸ ︷︷ ︸

∼x2

γ1,2 γ2,2 · · · γn,2
︸ ︷︷ ︸

∼x2

γ1,3 γ2,3 · · · γn,3
︸ ︷︷ ︸

∼x3

γ1,3 γ2,3 · · · γn,3
︸ ︷︷ ︸

∼x3

.

Note that, in general, β is neither in canonical form nor succinct.

9

In order to conclude the proof we now show that β indeed is a passe-partout
for αab and W :

(1) We define a substitution σ′

i : X∗ −→ Σ∗ by

σ′

i(xj) :=

a , j = 2i− 1,

b , j = 2i,

e , else.

Obviously σ′

i(β) = wi, and thus W ⊆ L(β).
(2) αab and β both are terminal-free, and, because of the above depicted

shape of these patterns, there exists a morphism φ : X∗ −→ X∗ with
φ(αab) = β, namely φ(xj) = γ1,j γ2,j · · · γn,j for every xj ∈ var(αab).
Thus, L(β) is a subset of L(αab) (according to the inclusion criterion
described in Fact 1).
We now prove that L(β) is a proper subset of L(αab). For that purpose,
assume to the contrary there is a morphism ψ : X∗ −→ X∗ such that
ψ(β) = αab. As, due to the existence of φ, every variable of β occurs
at least twice, there exist two morphisms ψ′ and ψ′′ such that ψ(β) =
ψ′′(ψ′(β)) = αab and

ψ′(xj) =

e , |β|xj
> 2,

xj , |β|xj
= 2,

for xj ∈ var(β). Consequently, ψ′ replaces – possibly among others – all
variables in φ(x3) with the empty word since these variables occur at
least four times in β (cf. definitions of cases (i) and (ii)), and therefore

β ′ := ψ′(β)=

ψ′(φ(x1))
︷ ︸︸ ︷
xj1 xj2 · · · xjp

ψ′(φ(x1))
︷ ︸︸ ︷
xj1 xj2 · · · xjp

ψ′(φ(x2))
︷ ︸︸ ︷
xjp+1

xjp+2
· · · xjp+q

ψ′(φ(x2))
︷ ︸︸ ︷
xjp+1

xjp+2
· · · xjp+q

ψ′(φ(x3))
︷ ︸︸ ︷

e

ψ′(φ(x3))
︷ ︸︸ ︷

e

with p, q ≥ 0 and xjk 6= xjl for k 6= l, 1 ≤ k ≤ p+q, 1 ≤ l ≤ p+q. However,
when regarding all patterns α that are in canonical form and that can
be derived from β ′ by any morphism such that the Parikh vector of α
equals that of αab, we obviously receive the following list: x1x2x3x1x2x3

(for p + q ≥ 1), x1x2x1x2x3x3, and x1x1x2x3x2x3 (for p ≥ 1 and q ≥ 1).
Consequently, since αab is in canonical form and since no pattern in the
above list equals αab, there is no morphism ψ′′ such that ψ′′(β ′) = αab;
this is a contradiction. Thus, L(αab) is not a subset of L(β), and therefore
L(β) ⊂ L(αab). 2

10

Clearly, the proof of Lemma 7 can be adapted to infinitely many succinct
terminal-free patterns such as x2

1 x
2
2 x

2
3 x

2
4, x

2
1 x

2
2 x

2
3 x

2
4 x

2
5, and so on. However,

we claim that there is no shorter pattern than αab with the feature described
above. Furthermore, it seems worth mentioning that the procedure given in the
proof of Lemma 7 is not the only way to construct a passe-partout: With little
effort the cases (i) and (ii) can be modified such that the variable x1 ∈ var(αab)
takes the role of x3 and vice versa, leading to a different passe-partout β ′ for
every set of wordsW that contains at least one element satisfying the condition
of case (i).

The following example illustrates the most relevant elements of the proof:

Example 8 Let W := {w1, w2, w3, w4} ⊆ L(αab) be given by

w1 := a
︸︷︷︸

σ1(x1)

a
︸︷︷︸

σ1(x1)

b
︸︷︷︸

σ1(x2)

b
︸︷︷︸

σ1(x2)

b
︸︷︷︸

σ1(x3)

b
︸︷︷︸

σ1(x3)

,

w2 := bb
︸︷︷︸

σ2(x1)

bb
︸︷︷︸

σ2(x1)

ab
︸︷︷︸

σ2(x2)

ab
︸︷︷︸

σ2(x2)

b
︸︷︷︸

σ2(x3)

b
︸︷︷︸

σ2(x3)

,

w3 := b
︸︷︷︸

σ3(x1)

b
︸︷︷︸

σ3(x1)

bb
︸︷︷︸

σ3(x2)

bb
︸︷︷︸

σ3(x2)

bab
︸︷︷︸

σ3(x3)

bab
︸︷︷︸

σ3(x3)

,

w4 := ab
︸︷︷︸

σ4(x1)

ab
︸︷︷︸

σ4(x1)

bb
︸︷︷︸

σ4(x2)

bb
︸︷︷︸

σ4(x2)

bab
︸︷︷︸

σ4(x3)

bab
︸︷︷︸

σ4(x3)

.

Evidently, w3 satisfies the condition of case (i), whereas the other words satisfy
case (ii). Consequently, the pattern fragments γi have the following shape:

γ1 =

γ1,1
︷︸︸︷
x1
︸︷︷︸

σ̄1(a)

γ1,1
︷︸︸︷
x1

︸︷︷︸

σ̄1(a)

γ1,2
︷︸︸︷
x2
︸︷︷︸

σ̄1(b)

γ1,2
︷︸︸︷
x2
︸︷︷︸

σ̄1(b)

γ1,3
︷︸︸︷
x2
︸︷︷︸

σ̄1(b)

γ1,3
︷︸︸︷
x2
︸︷︷︸

σ̄1(b)

,

γ2 =

γ2,1
︷ ︸︸ ︷
x4x4
︸ ︷︷ ︸

σ̄2(bb)

γ2,1
︷ ︸︸ ︷
x4x4
︸ ︷︷ ︸

σ̄2(bb)

γ2,2
︷ ︸︸ ︷
x3x4
︸ ︷︷ ︸

σ̄2(ab)

γ2,2
︷ ︸︸ ︷
x3x4
︸ ︷︷ ︸

σ̄2(ab)

γ2,3
︷︸︸︷
x4
︸︷︷︸

σ̄2(b)

γ2,3
︷︸︸︷
x4
︸︷︷︸

σ̄2(b)

,

γ3 =

γ3,1
︷ ︸︸ ︷
x6x6x6
︸ ︷︷ ︸

σ̄3(b bb)

γ3,1
︷ ︸︸ ︷
x6x6x6
︸ ︷︷ ︸

σ̄3(b bb)

γ3,2
︷ ︸︸ ︷
x6x5x6
︸ ︷︷ ︸

σ̄3(bab)

γ3,2
︷ ︸︸ ︷
x6x5x6
︸ ︷︷ ︸

σ̄3(bab)

γ3,3
︷︸︸︷
e

γ3,3
︷︸︸︷
e ,

γ4 =

γ4,1
︷ ︸︸ ︷
x7x8
︸ ︷︷ ︸

σ̄4(ab)

γ4,1
︷ ︸︸ ︷
x7x8
︸ ︷︷ ︸

σ̄4(ab)

γ4,2
︷ ︸︸ ︷
x8x8
︸ ︷︷ ︸

σ̄4(bb)

γ4,2
︷ ︸︸ ︷
x8x8
︸ ︷︷ ︸

σ̄4(bb)

γ4,3
︷ ︸︸ ︷
x8x7x8
︸ ︷︷ ︸

σ̄4(bab)

γ4,3
︷ ︸︸ ︷
x8x7x8
︸ ︷︷ ︸

σ̄4(bab)

.

Hence, the passe-partout for αab and W reads

11

β=

γ1,1
︷︸︸︷
x1

γ2,1
︷ ︸︸ ︷
x4x4

γ3,1
︷ ︸︸ ︷
x6x6x6

γ4,1
︷ ︸︸ ︷
x7x8

︸ ︷︷ ︸

φ(x1)

γ1,1
︷︸︸︷
x1

γ2,1
︷ ︸︸ ︷
x4x4

γ3,1
︷ ︸︸ ︷
x6x6x6

γ4,1
︷ ︸︸ ︷
x7x8

︸ ︷︷ ︸

φ(x1)

γ1,2
︷︸︸︷
x2

γ2,2
︷ ︸︸ ︷
x3x4

γ3,2
︷ ︸︸ ︷
x6x5x6

γ4,2
︷ ︸︸ ︷
x8x8

︸ ︷︷ ︸

φ(x2)

γ1,2
︷︸︸︷
x2

γ2,2
︷ ︸︸ ︷
x3x4

γ3,2
︷ ︸︸ ︷
x6x5x6

γ4,2
︷ ︸︸ ︷
x8x8

︸ ︷︷ ︸

φ(x2)

γ1,3
︷︸︸︷
x2

γ2,3
︷︸︸︷
x4

γ4,3
︷ ︸︸ ︷
x8x7x8

︸ ︷︷ ︸

φ(x3)

γ1,3
︷︸︸︷
x2

γ2,3
︷︸︸︷
x4

γ4,3
︷ ︸︸ ︷
x8x7x8

︸ ︷︷ ︸

φ(x3)

.

Obviously, W ⊆ L(β) and L(β) ⊆ L(αab). In addition note that, for all xj ∈
var(φ(x3)), |β|xj

≥ 4. In order to show that L(β) is a proper subset of L(αab),
we state without proof that, e.g., a a b b aa aa ∈ L(αab) \ L(β).

Evidently, every variable of αab occurs exactly twice. Therefore its language
belongs to the class of quasi-regular E-pattern languages (cf. Section 1) that
– according to Mitchell (cf. [15]) – is learnable in the limit. Nevertheless,
the findings of Mitchell and Lemma 7 are consistent as β not necessarily is
quasi-regular. Consequently, our result promotes the interpretation that the
quasi-regular E-pattern languages are learnable because they do not include
all possible passe-partouts and not on account of their shape as such.

Referring to the necessary condition for the learnability of indexed families
given in Fact 3 the consequence of Lemma 7 can be stated with little effort:

Theorem 9 Let Σ be an alphabet, |Σ| = 2. Then ePATtf,Σ 6∈ LIM-TEXT.

PROOF. Lemma 7 provides a terminal-free pattern αab, such that for any
finite set W ⊂ LΣ(αab) there exists a terminal-free passe-partout β. Obviously,
every set of patterns generating ePATtf needs to contain two patterns α′ and β ′

such that L(αab) = L(α′) and L(β) = L(β ′). Therefore, no indexed family for
the class of terminal-free E-pattern languages satisfies Angluin’s Condition 2
(cf. [2]), and according to Fact 3 it is not learnable in the limit. 2

With this negative result for the subclass of terminal-free E-pattern languages,
Theorem 5 is proven immediately.

We conclude this section with some additional remarks on the role of ambi-
guity of words in the proof of Lemma 7: With the capability of a suitable
inverse substitution in mind, we assume that, when the full classes ePAT and
ePATtf are considered, any telltale for an E-pattern language has to include
words generated by a substitution containing a unique letter (see case (i) in
the proof of Lemma 7). If the alphabet consists of just two letters – as taken

12

into consideration in the present section – these specific words may turn out
to be ambiguous, leading to a decisive loss of significance. We claim that if
the words of Example 8 were unambiguous, then these words would work as
a telltale for αab – and, in fact, even the set {w1, w2, w3} would be sufficient.
Thus, we consider it beneficial for learnability analyses to ask for the existence
of appropriate unambiguous words in E-pattern languages, a question that is
closely connected to the research on so-called equality sets (and, therefore,
on the Post Correspondence Problem, cf. [21]). In the following section, as
a demonstration of this approach, we utilise unambiguous words for a mi-
nor positive learnability result. Since we examine an appropriate subclass of
terminal-free E-pattern languages, we even may allow binary alphabets in this
case. For the full class of terminal-free E-pattern languages and for alphabets
with at least three distinct letters, however, meanwhile a similar method –
that is not based on unambiguous words, but on those with some “bounded”
ambiguity – has led to a positive result (cf. [17]).

4 Unambiguous Words and the Learnability of Terminal-Free Non-
Cross E-pattern Languages

The outcome of Section 3 entails the finding that all positive results on in-
ductive inference of E-pattern languages cited in Section 1 follow the only
practicable course: any learnable (sub-)class of these languages has to be pro-
vided with appropriate restrictions on the shape of the variables or of the
terminal alphabet.

According to these demands, the present section proves the learnability of a
natural subclass of terminal-free E-pattern languages for arbitrary terminal
alphabets. We refer to the following set of patterns, that analogously has been
considered by Shinohara with regard to NE-pattern languages (cf. [23]):

Definition 10 (Terminal-free non-cross patterns) A pattern α is a ter-
minal-free non-cross pattern iff it satisfies

α = xr11 xr22 xr33 · · ·xrnn

for some n and numbers r1, r2, · · · , rn with n ≥ 1 and ri ≥ 1, 1 ≤ i ≤ n. We
denote a language L as terminal-free non-cross E-pattern language if L = L(α)
for some terminal-free non-cross pattern α.

We designate the set of all terminal-free non-cross patterns as Patnc
tf and the

class of all terminal-free non-cross E-pattern languages as ePATnc
tf . Patnc,>

tf ⊂
Patnc

tf is the set of those patterns with ri ≥ 2 for every i, 1 ≤ i ≤ n.

The separate naming in Definition 10 of those terminal-free non-cross patterns

13

that contain every of their variables at least twice is motivated by the following
fact: Obviously, ePATnc

tf = {L(α) | α ∈ Patnc,>
tf ∪ {x1}} since, for all terminal-

free non-cross patterns β that are not contained in Patnc,>
tf , L(β) equals L(x1).

For the latter language we can easily give a telltale, e.g., by the set {a} for any
letter a in the corresponding terminal alphabet. Consequently, when examin-
ing the learnability of the class of terminal-free non-cross E-pattern languages,
we may focus on patterns in Patnc,>

tf – and, in fact, for the specific argumenta-
tion in the present section, this restriction even is mandatory as we implicitly
require succinctness of patterns. We state without proof that this holds for
every pattern in Patnc,>

tf , whereas the patterns in Patnc
tf \(Patnc,>

tf ∪ {x1}) evi-
dently are not succinct.

Before we present our result on the learnability of ePATnc
tf , it seems worth

mentioning – with the remark on αab being quasi-regular in mind (cf. Sec-
tion 3.1) – that αab obviously is non-cross, as well. So this section features a
second example of a class of E-pattern languages that in fact only is learnable
because possible passe-partouts are not contained in the class. This aspect can
directly be detected in the upcoming proof of Theorem 14.

We begin with a notion that is motivated by technical reasons:

Definition 11 (Uniform Substring) Let Σ be an alphabet with |Σ| ≥ 2 and
let w be a non-empty word, w = v1 u v2 with u ∈ Σ+, v1, v2 ∈ Σ∗. Then we
call u a uniform substring (over a) iff u ∈ {a}+ for an arbitrary a ∈ Σ and v1

does not end with a and v2 does not start with a.

Example 12 In this example word all uniform substrings are marked:

aaa
︸︷︷︸

bb
︸︷︷︸

a
︸︷︷︸

ccc
︸︷︷︸

.

As mentioned in Section 3.1, the proof of the Theorem 14 is based on specific
unambiguous words, that are due to Sandra Zilles:

Lemma 13 Let Σ be an alphabet, |Σ| = 2. Then for every α ∈ Patnc,>
tf there

exists an unambiguous word over Σ.

PROOF. According to Definition 10, α = xr11 xr22 xr33 · · ·xrnn for an n ≥ 1 and
r1, r2, . . . , rn ∈ N, ri ≥ 2 for all i with 1 ≤ i ≤ n. Let the substitution σnc be
given by

σnc(xj) := a b
j

for all xj ∈ var(α). Then obviously σnc(α) = (ab)r1 (abb)r2 · · · (abn)rn and,
thus, the sequence of the lengths of the uniform substrings over b in σnc(α)
(from the left to the right) is monotonic increasing. We show that σ′(xj) =

14

σnc(xj) necessarily holds true for every substitution σ′ with σ′(α) = σnc(α)
and for all xj ∈ var(α).

To begin with, we give the following claim:

Claim 1. For every σ′ with σ′(α) = σnc(α) there does not exist any xj ∈ var(α)
such that σ′(xj) satisfies one of the following equations:

σ′(xj) = ab
p u1 ab

q u2 (1)

with p, q ≥ 0, p 6= q, u1 = e or u1 = a v1, u2 = e or u2 = a v2, v1, v2 ∈ Σ∗, or

σ′(xj) = u1 b
p
a u2 b

q
a (2)

with p, q ≥ 0, p 6= q, u1 = e or u1 = v1 a, u2 = e or u2 = v2 a, v1, v2 ∈ Σ∗, or

σ′(xj) = b
p u1 ab

j
a u2 b

q (3)

with p, q ≥ 0, p 6= q, u1 = e or u1 = a v1, u2 = e or u2 = v2 a, v1, v2 ∈ Σ∗.

Proof of Claim 1: We regard the equations (1) and (2) first: Assume to the
contrary there exists a substitution σ′ with σ′(α) = σnc(α) and σ′ satisfying
(1) or (2) for an xj′ ∈ var(α). Since α ∈ Patnc,>

tf , we may conclude that rj′ ≥ 2.
Consequently, σ′(α) has the following shape:

σ′(α) = w1 ab
p w2 ab

q w3 ab
p w4 ab

q w5

or
σ′(α) = w1 b

p
a w2 b

q
a w3 b

p
a w4 b

q
a w5,

respectively, for some w1, w2, w3, w4, w5 ∈ Σ∗ such that the substrings b
p and

b
q are empty or uniform (the latter holds due to the demands on u1, u2 in

equations (1) and (2)). Obviously, p 6= 0 and q 6= 0 since σnc(α) does not
contain any substring aa. As p 6= q, σ′(α) contains some uniform substrings
over b such that the sequence of their lengths is not monotonic increasing.
This contradicts the shape of σnc(α) described above. Thus, for every σ′ with
σ′(α) = σnc(α) there does not exist any xj ∈ var(α) such that σ′(xj) satisfies
(1) or (2).

Concerning equation (3) we argue as follows: Assume to the contrary there
exists a substitution σ′ with σ′(α) = σnc(α) and σ′ satisfying (3) for an xj′ ∈
var(α). Then σ′(α) has the following shape:

σ′(α) = w1 b
p w2 ab

j′
a w3 b

q
b
p w4 ab

j′
a w5 b

q w6

for some w1, w2, w3, w4, w5, w6 ∈ Σ∗ such that the substring b
q
b
p is empty or

uniform (the latter holds due to the demands on u1, u2 in equation (3)). Obvi-
ously, p+q 6= 0 since σnc(α) does not contain any substring aa. Furthermore, if

15

p+q 6= j′ then there are some uniform substrings over b in σ′(α) such that the
sequence of their lengths is not monotonic increasing. Thus, p+ q must equal
j′. However, with (3), σ′(α) contains at least 2rj′ − 1 uniform substrings b

j′ ,
whereas there are exactly rj′ occurrences of this uniform substring in σnc(α).
This contradicts the assumption. 2 Claim 1.

We now proceed with the main part of our proof; for the respective argu-
mentation, recall that α ∈ Patnc,>

tf and therefore σ(α) = u1 σ(xj) σ(xj) u2,
u1, u2 ∈ Σ∗, for every substitution σ and for every xj ∈ var(α). Assume to the
contrary there exist a leftmost index j′ with σ′(xj′) 6= ab

j′ for a substitution
σ′ with σ′(α) = σnc(α). Clearly, σ′(xj′) must not begin with the letter b and
therefore – as σnc(α) does not contain any substring aa – it must not end with
the letter a. Furthermore,

• σ′(xj′) 6= (abj
′

)r
′

u with r′ ≥ 2, u = e or u = a v, v ∈ Σ∗, and
• σ′(xj′) 6= ab

j′′ with j′′ 6= j′

as these substitutions would cause uniform substrings over b with the wrong
number or with the wrong length in respect of σnc(α). Hence, and due to the
assumption and Claim 1, σ′(xj′) must equal the empty word. Consequently,
since the number of uniform substrings over b in σnc(α) equals the length of
α, there must be some variable xj′′ ∈ var(α) such that σ′(xj′′) contains at
least two uniform substrings over b with different length. Moreover, we even
may assume without loss of generality that one of these uniform substrings
must be of length j′′ as a simple combinatorial consideration reveals that the
existence of xj′′ implies the existence of a variable with such a feature. Since,
obviously, σ′(xj′′) 6= a u a for any u ∈ Σ∗, it must satisfy equation (1), (2), or
(3). This contradicts Claim 1. Thus, the assumption is incorrect. 2

With the unambiguous words identified in Lemma 13 we can prove the main
result of this section:

Theorem 14 Let Σ be a finite alphabet, |Σ| ≥ 2. Then ePATnc
tf,Σ ∈ LIM-TEXT.

PROOF. Let α be an arbitrary pattern, α ∈ Patnc
tf . Let the word wα over Σ

be given by wα := σnc(α) with σnc derived from the proof of Lemma 13. The
set Tα is defined as

Tα :=

{wα} , α ∈ Patnc,>
tf ,

{a} , else.

We now show that Tα is a telltale for L(α) in respect of ePATnc
tf,Σ. For α /∈

Patnc,>
tf this holds trivially. So we restrict ourselves in the following lines to

16

α ∈ Patnc,>
tf .

Assume to the contrary there exists a pattern β ∈ Patnc,>
tf such that Tα ⊆

L(β) ⊂ L(α). Then – according to Fact 1 – there exists a morphism φ :
X∗ −→ X∗ with φ(α) = β. Furthermore, there is another substitution σ′ such
that σ′(β) = wα. The following diagram illustrates the relation of α, β and
wα:

α - β

wα

@
@@R

�
��	

φ

σnc σ′

Thus, σnc(xj) = σ′(φ(xj)) for all xj ∈ var(α) since wα is unambiguous in
respect of α (cf. Lemma 13). This leads to σ′(φ(xj)) = a b

j for all xj . Conse-
quently, φ(xj) = γ1 xj′ γ2 with γ1, γ2 ∈ X∗ and xj′ /∈ var(γ1) ∪ var(γ2), since
the letter a is unique in σ′(φ(xj)) and therefore it must be generated by a
variable that is unique in φ(xj). Now we can identify two cases:

Case (i) |α|xj
= |β|xj′

for all xj ∈ var(α).
Then the morphism ψ : X∗ −→ X∗, for all xk ∈ var(β) given by

ψ(xk) :=

xj , k = j′,

e , else,

implies L(β) ⊇ L(α). This contradicts the assumption L(β) ⊂ L(α).

Case (ii) Not (i).
Thus, because of φ(α) = β, there exists an xj ∈ var(α) with |β|xj′

> |α|xj
.

Hence, we can assume without loss of generality that j > 1 as there must
exist at least two variables in α that are transformed by φ into a string
containing xj′ . Consequently, φ(xj) = γ1 xj′ xj′′ γ

′

2 with j′ 6= j′′ and γ1, γ
′

2 ∈
X∗, since σ′(xj′) = a v with v ∈ {b}∗ (caused by σ′(φ(xj)) = a b

j), whereas
σ′(xj′′) necessarily must not contain the letter a. However, this leads to
β /∈ Patnc

tf since |α|xj
≥ 2 for all xj ∈ var(α) (because of α ∈ Patnc,>

tf) and,
thus, β = γ1 xj′ xj′′ γ2 xj′ xj′′ γ3 for γ1, γ2, γ3 ∈ X∗. This contradicts the
assumption β ∈ Patnc,>

tf .

Consequently, the assumption is incorrect. Therefore Tα is a telltale for L(α)
in respect of ePATnc

tf,Σ and thus, with Fact 4, the theorem is proven. 2

We consider it noteworthy that every language in ePATnc
tf even has a singleton

telltale, as it is revealed by the proof of Theorem 14.

Finally, our result can be extended easily:

17

Corollary 15 ePATnc
tf ∈ LIM-TEXT.

PROOF. For an infinite or unary alphabet, not covered by Theorem 14, refer
to [15]. 2

5 Conclusion

Describing the results of [16], we have provided a partial answer to the long-
term unresolved question on the Gold style learnability of the class of E-
pattern languages: ePATΣ and even its subclass ePATtf,Σ are not inferrable
from positive data if |Σ| = 2. Furthermore, as a positive result, we have proven
the learnability of the class of terminal-free non-cross E-pattern languages for
any alphabet.

We have omitted the learnability criteria on classes of terminal-free E-Pattern
languages given in [16] as these criteria mostly were meant to be a substanti-
ation of the conjecture that ePATtf might be learnable for other than binary
alphabets. Meanwhile, this assumption has been confirmed for all finite termi-
nal alphabets with three or more letters (cf. [17]), using a different, but similar
criterion.

Acknowledgements

The author is indebted to the anonymous referees, whose careful remarks
helped to improve this paper significantly. Moreover, the author wishes to
thank Sandra Zilles, Rolf Wiehagen and Thomas Zeugmann for their support.

References

[1] D. Angluin. Finding patterns common to a set of strings. Journal of Computer

and System Sciences, 21:46–62, 1980.

[2] D. Angluin. Inductive inference of formal languages from positive data.
Information and Control, 45:117–135, 1980.

[3] D. Angluin and C. Smith. Inductive inference: Theory and methods. Computing

Surveys, 15:237–269, 1983.

[4] G. R. Baliga, J. Case and S. Jain. The synthesis of language learners.
Information and Computation, 152:16–43, 1999.

18

[5] Ja. M. Barzdin and R.V. Freivald. On the prediction of general recursive
functions. Soviet Mathematics Doklady, 13:1224–1228, 1972.

[6] D. R. Bean, A. Ehrenfeucht, and G. F. McNulty. Avoidable patterns in strings
of symbols. Pacific Journal of Mathematics, 85:261–294, 1979.

[7] G. Filè. The relation of two patterns with comparable language. In Proceedings

of the 5th Annual Symposium on Theoretical Aspects of Computer Science,

STACS 1988, volume 294 of Lecture Notes in Computer Science, pages 184–
192, 1988.

[8] E. M. Gold. Language identification in the limit. Information and Control,
10:447–474, 1967.

[9] T. Jiang, E. Kinber, A. Salomaa, K. Salomaa, and S. Yu. Pattern languages with
and without erasing. International Journal of Computer Mathematics, 50:147–
163, 1994.

[10] T. Jiang, A. Salomaa, K. Salomaa, and S. Yu. Decision problems for patterns.
Journal of Computer and System Sciences, 50:53–63, 1995.

[11] V. Keränen. Abelian squares are avoidable on 4 letters. In Proceedings of

the 19th International Colloquium on Automata, Languages and Programming,

ICALP 1992, volume 623 of Lecture Notes in Computer Science, pages 41–52,
1992.

[12] R. Klette and R. Wiehagen. Research in the theory of inductive inference by
GDR mathematicians – a survey. Information Sciences, 22:149–169, 1980.

[13] S. Lange and R. Wiehagen. Polynomial-time inference of arbitrary pattern
languages. New Generation Computing, 8:361–370, 1991.

[14] A. Mateescu and A. Salomaa. Finite degrees of ambiguity in pattern languages.
RAIRO Informatique théoretique et Applications, 28:233–253, 1994.

[15] A. R. Mitchell. Learnability of a subclass of extended pattern languages. In
Proceedings of the Eleventh Annual Conference on Computational Learning

Theory, COLT 1998, pages 64–71, 1998.

[16] D. Reidenbach. A negative result on inductive inference of extended pattern
languages. In Proceedings of the 13th International Conference on Algorithmic

Learning Theory, ALT 2002, volume 2533 of Lecture Notes in Artificial

Intelligence, pages 308–320, 2002.

[17] D. Reidenbach. A discontinuity in pattern inference. In Proceedings of the 21st

Symposium on Theoretical Aspects of Computer Science, STACS 2004, volume
2996 of Lecture Notes in Computer Science, pages 129–140, 2004.

[18] D. Reidenbach. On the learnability of E-pattern languages over small alphabets.
In Proceedings of the 17th Annual Conference on Learning Theory, COLT 2004,
to appear in Lecture Notes in Artificial Intelligence, 2004.

19

[19] R. Reischuk and T. Zeugmann. Learning one-variable pattern languages in
linear average time. In Proceedings of the Eleventh Annual Conference on

Computational Learning Theory, COLT 1998, pages 198–208, 1998.

[20] H. Rogers. Theory of Recursive Functions and Effective Computability. MIT
Press, Cambridge, Mass., 1992. 3rd print.

[21] G. Rozenberg and A. Salomaa, editors. Handbook of Formal Languages, volume
1. Springer, Berlin, 1997.

[22] T. Shinohara. Polynomial time inference of extended regular pattern languages.
In Proceedings of RIMS Symposia on Software Science and Engineering, Kyoto,
volume 147 of Lecture Notes in Computer Science, pages 115–144, 1982.

[23] T. Shinohara. Polynomial time inference of pattern languages and its
application. In Proceedings of the 7th IBM Symposium on Mathematical

Foundations of Computer Science, pages 191–209, 1982.

[24] T. Shinohara and S. Arikawa. Pattern inference. In Algorithmic Learning for

Knowledge-Based Systems, GOSLER Final Report, volume 961 of Lecture Notes

in Artificial Intelligence, pages 259–291, 1995.

[25] A. Thue. Über unendliche Zeichenreihen. Kra. Vidensk. Selsk. Skrifter. I. Mat.

Nat. Kl., 7, 1906.

[26] A. Thue. Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Kra.

Vidensk. Selsk. Skrifter. I. Mat. Nat. Kl., 1, 1912.

[27] R. Wiehagen and T. Zeugmann. Ignoring data may be the only way to
learn efficiently. Journal of Experimental and Theoretical Artificial Intelligence,
6:131–144, 1994.

[28] K. Wright. Identification of unions of languages drawn from an identifiable class.
In Proceedings of the Second Annual Workshop on Computational Learning

Theory, COLT 1989, pages 328–333, 1989.

[29] T. Zeugmann and S. Lange. A guided tour across the boundaries of learning
recursive languages. In Algorithmic Learning for Knowledge-Based Systems,

GOSLER Final Report, volume 961 of Lecture Notes in Artificial Intelligence,
pages 190–258, 1995.

20

