A normalized gradient algorithm for an adaptive recurrent perceptron

A normalized algorithm for on-line adaptation of a recurrent perceptron is derived. The algorithm builds upon the normalized backpropagation (NBP) algorithm for feedforward neural networks, and provides an adaptive learning rate and normalization for a recurrent perceptron learning algorithm. The algorithm is based upon local linearization about the current point in the state-space of the network. Such a learning rate is normalized by the squared norm of the gradient at the neuron, which extends the notion of normalized linear algorithms to the nonlinear case