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Abstract 9 

Carbon capture and sequestration (CCS) is expected to play a major role in reducing 10 

greenhouse gas in the atmosphere. It is applied using different methods including geological, 11 

oceanic and mineral sequestration. Geological sequestration refers to storing of CO2 in 12 

underground geological formations including deep saline aquifers (DSAs).  This process 13 

induces multiphase fluid flow and solute transport behaviour besides some geochemical 14 

reactions between the fluids and minerals in the geological formation. In this work, a series of 15 

numerical simulations are carried out to investigate the injection and transport behaviour of 16 

supercritical CO2 in DSAs as a two-phase flow in porous media in addition to studying the 17 

influence of different parameters such as time scale, temperature, pressure, permeability and 18 

geochemical condition on the supercritical CO2 injection in underground domains. In contrast to 19 

most works which are focussed on determining mass fraction of CO2, this paper focuses on 20 

determining CO2 gas saturation (i.e., volume fraction) at various time scales, temperatures and 21 

pressure conditions taking into consideration the effects of porosity/permeability, heterogeneity 22 

and capillarity for CO2-water system. A series of numerical simulations is carried out to illustrate 23 

how the saturation, capillary pressure and the amount of dissolved CO2 change with the change 24 

of injection process, hydrostatic pressure and geothermal gradient. For example, the obtained 25 

results are used to correlate how increase in the mean permeability of the geological formation 26 

allows greater injectivity and mobility of CO2 which should lead to increase in CO2 dissolution 27 

into the resident brine in the subsurface. 28 

 29 

Keywords: geological sequestration, two-phase flow, capillary pressure, porous media, CO2 30 

sequestration, deep saline aquifer, CO2 sequestration  31 

 32 

1. Introduction 33 

Carbon sequestration is a technique for managing carbon dioxide (CO2) that has been emitted 34 

into the atmosphere by various activities, e.g., combustion of carbon-based fuels. It is a 35 

relatively new concept that had been developed to address the problem of global warming, 36 
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which is attributed to high levels of atmospheric CO2. In a more specific approach, geological 37 

sequestration aims to inject supercritical CO2 into porous formations underground while 38 

attempting to prevent leakage of CO2 to the surface again. This method can be applied to 39 

declining oil fields, un-minable coal seams as well as deep saline aquifers (DSAs). Injecting 40 

CO2 into DSAs is considered to be one of the most feasible sequestration methods of CO2. 41 

From a fluid mechanics point of view, injecting supercritical CO2 into geological formations can 42 

be treated as a two-phase flow in a porous medium (Tsang et al., 2008).  Supercritical CO2 is 43 

considerably denser than the gaseous CO2 phase but has lower density and viscosity than the 44 

occupant brine in the porous space. As a result of the differences of fluid densities, 45 

supercritical CO2 migrates buoyantly towards the upper confining layer. The preferred depths 46 

to inject CO2 are greater than 800m (Prevost et al., 2005) as they provide the required 47 

conditions above the critical points of CO2 for it to stay in supercritical phase. This increases 48 

the storage capacity of the site because more CO2 can be stored within a specific volume. 49 

 50 

It must be emphasised that there are particular conditions, which the geological formation must 51 

meet for CO2 storage to be successful. According to Bachu and Bennion (2008), three basic 52 

conditions must be met, namely, (i) capacity, i.e., the geological media must have the capacity 53 

to allow the anticipated amount of CO2 over the duration of the project operation; (ii) injectivity, 54 

i.e., the media must be able to allow the CO2 at its injection rate and, (iii) confinement, i.e., the 55 

media must be able to impede leakage of CO2 from the storage zone or minimize leakage to the 56 

tolerable levels. Furthermore, geological storage of CO2 is determined by four foremost trapping 57 

mechanisms as discussed below.  58 

(a) Structural trapping, which takes place when CO2 gas becomes immobile in the porous 59 

sedimentary layers with existed brine by impermeable barriers (White et al., 2013). 60 

(b) Residual trapping that takes place as a result of the hysteresis effect when the 61 

saturation direction is reversed after the injection process stops and, the existing brine 62 

moves back and tries to displace CO2 in the pores (Ide et al., 2007).  63 

(c) Solubility trapping takes place when the injected CO2 dissolves in the resident  fluid and 64 

increases the acidity and density of the brine creating convective currents that allow the 65 

denser brine with high concentration of CO2 to settle at the bottom part of the aquifer 66 

trapping the CO2 more securely (Silin et al. 2009).  67 

(d) Mineral trapping occurs when the dissolved CO2 reacts with the brine producing 68 

carbonic acid that reacts with the dissolved ions within the aquifer brine and minerals 69 

forming the host rock resulting in chemical precipitation of solid carbonate minerals 70 

(Beni et al., 2012). 71 

 72 
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Modelling of underground injection of CO2 primarily represents modelling a system of two-73 

phase flow in porous media which requires one to identify the relevant parameters. These 74 

parameters describe various physical and chemical properties of the geological formation such 75 

as entry pressure (depending on pore/particle size of the domain), hydrodynamic conditions 76 

(e.g., pressure difference, groundwater velocity), fluid properties, permeability, chemical species 77 

from geochemical reactions and fluid/fluid interfacial mass transfer (Ide et al., 2007). 78 

Considerable uncertainty may however exist with regards to the formation-related parameters 79 

because of the difficulty in collecting sufficient data across the huge areas that should be taken 80 

into account for any geologic sequestration project. A number of studies have been conducted 81 

to determine the capillary pressure-saturation-relative permeability relationships for subsurface 82 

injection of CO2 into porous media (e.g., Bachu et al., 1994; Pruess et al., 2003; Kumar et al., 83 

2005; Knauss et al., 2005; Juanes et al., 2006; Birkholzer et al., 2009; Schnaar and Digiulio, 84 

2009). They demonstrate that computational models are able to replicate complex formation 85 

heterogeneities by employing statistical routines; residual CO2 trapping and hysteretic relative 86 

permeability curves, dissolution reactions and mineral precipitation and others. For example, 87 

Nordbotten et al. (2004) analytically described the time evolution of the CO2 plume dominated 88 

by viscous forces with irrelevant effects of the CO2 buoyancy forces using a simplified form of 89 

Buckley-Leverett equation. They utilized their modelling results to inspect the 90 

accuracy/implication of assuming constant properties for the fluids in the storage formation and 91 

discussed some cases where buoyancy and non-zero residual saturations have more influence 92 

on the mobility of CO2 plume in addition to the effects of CO2 dissolution in the existing brine. 93 

 94 

One of the critical issues in CO2 geological sequestration is the phase transition from liquid or 95 

supercritical to gas according to the temperature and pressure changes during the injection 96 

progression. Therefore, numerical simulation for CO2 sequestration in saline aquifers should 97 

have the ability to envisage when the CO2 phase transition occurs. It must also be able to 98 

determine the buoyancy and viscous forces influence on the fluid flow and, CO2 dissolution in 99 

the aqueous fluid (White and Oostrom, 2003). Though capillarity plays a crucial role in 100 

assessment of saline aquifers for CO2 sequestration, there is not much real (field) data 101 

available about the behaviour of CO2-brine flow system in the porous rocks. Plug and Bruining 102 

(2007) developed a laboratory scale method to investigate the static capillary pressure change 103 

as a function of saturation at different pressure and temperature conditions. They examined the 104 

influence of CO2 dissolution in water by comparing its behaviour to the behaviour of nitrogen (N2) 105 

under the same conditions and observed that the residual water saturation (Swc) for CO2 is 106 

much smaller than that for N2 due to the difference in interfacial tension. 107 

 108 
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Capillary trapping, which is also called residual trapping, is closely related to the capillary forces 109 

between CO2 and resident fluid at the scale of the grains of reservoir rock which is controlled by 110 

interfacial forces, pore size and wettability (Alkan et al., 2010). Experimental studies conducted 111 

by Bennion and Bachu (2008), and Plug and Bruning (2007) reported that permeability and 112 

capillarity are influenced by interfacial forces and wettability of CO2-brine-rock systems. Another 113 

study on CO2 sequestration has been conducted by Bickle et al. (2007) who modelled CO2 flow 114 

behaviour in Sleipner field in the North Sea. They used a theoretical model and validated it with 115 

experimental results by Lyle et al. (2005) to characterise the gravity flow in porous media. To 116 

attain their solutions they employed a number of assumptions, e.g., neglecting the motion of the 117 

existing fluid within the hosting formation and ignored both capillary and viscous forces in the 118 

fluid flow system which exhibited some limitations in the applicability of their solutions. Bickle et 119 

al. (2007) concluded that the radius of accumulated CO2 ponds in the subsurface increases 120 

linearly with the square-root of the elapsed time. They observed an increase in CO2 input in 121 

higher layers of the domain with a decrease in lower ones due to the leakage into the upper 122 

structures of the modelled formation. Their solutions provide important predictions on CO2 123 

behaviour with no need to carry out full simulation for any potential storage sites. 124 

 125 

Unlike most conventional approaches for determining capillary pressure relationships which are 126 

based on equilibrium flow conditions (i.e., time derivative of fluid saturation is zero), dynamic 127 

capillary pressure effects have been shown to have a great influence on two-phase flow in 128 

porous media (Helmig et al., 2007; Mirzaei and Das, 2007; Hanspal and Das, 2012). A number 129 

of fundamental studies (e.g., Oung et al., 2005; Manthey et al., 2005; Bottero et al., 2006) have 130 

investigated the dynamic capillary pressure effects in two-phase flow systems, and this gives 131 

rise to the possibility of applying these understanding to determine if these effects are 132 

significant for supercritical CO2 flow in the geological formation as well. 133 

 134 

In addressing most of the above issues, the main goal of this study is to carry out a simulation 135 

study to determine static and dynamic capillary pressures for CO2-water system as a function of 136 

saturation for different permeability and heterogeneity at various time scales, temperature and 137 

pressure conditions in order to evaluate the implications of different CO2 injection strategy and 138 

its storage capacity in briny aquifers. For this purpose a series of numerical simulations are to 139 

be carried out under various pressure, temperature, heterogeneity and injection rate conditions. 140 

It is envisaged that this would help the prediction of the right CO2 injection process and CO2 141 

behaviour within the aquifer formation during sequestration life time which has a vast impact on 142 

the energy cost and storage process safety. It is believed that this study will provide better 143 

understanding of the injection and sequestration processes.  144 

 145 



5 
 

2. Modelling Approach 146 

 147 

2.1. Main Equations  148 

In this work the injection of CO2 into saline aquifers is defined to represent the flow of two 149 

immiscible fluids, namely, water (brine) as a wetting phase and CO2 as a non-wetting phase in 150 

a porous medium where supercritical CO2 replaces the existing fluid in a process called 151 

drainage.     152 

 153 

2.1.1. Mass and Momentum Conservation Equations    154 

Modelling CO2 injection into geological formation is governed by the equations of mass and 155 

momentum conservation.  156 

 157 

The conservation of momentum is described by the following form of Darcy’s law: 158 
𝜕(𝑆𝛼𝜙𝜌𝛼)

𝜕𝑡
+ ∇. (𝜌α𝑣α)−  𝜌α𝑞α = 0                        (1) 159 

where 𝑆𝛼 is the phase α (water or CO2) saturation, ϕ is the porosity, 𝜌𝛼 is the density, t refers to 160 

the elapsed time, 𝑣α is the average pore velocity of the phase and 𝑞α refers to the phase flux.  161 

 162 

From the generalized Darcy’s law (equation of momentum), velocity vector 𝑣α is b calculated as 163 

𝑣𝛼 = −  𝑘𝑟𝛼
𝜇𝛼

 𝐾 (𝛻𝑝𝛼 −  𝜌𝛼  𝑔)               (2) 164 

𝑘𝒓𝜶 identifies the relative permeability for the phase α (water or CO2), μ refers to the dynamic 165 

velocity, 𝑝𝛼  identifies the pressure, K is the tensor of absolute permeability (defined to be 166 

isotropic) and 𝑔 the vector of gravity. The phase permeability (effective permeability) (k𝛼) is 167 

related to the relative permeability (kr𝛼) as: 168 

𝑘rα = 𝑘α
𝐾                  (3) 169 

where K signifies the domain permeability for a single-phase flow (the absolute permeability). 170 

 171 

By substituting equation (2) in equation (1) the following general form of mass conservation 172 

equation is obtained for both fluid phases:  173 

𝜕(𝑆𝛼𝜙𝜌𝛼)
𝜕𝑡

− 𝛻.�𝜌𝛼
𝑘𝑟𝛼
𝜇𝛼

 𝐾 (𝛻𝑝𝛼 −  𝜌𝛼  𝑔)� −  𝜌𝛼𝑞𝛼 = 0            (4) 174 

 175 

2.1.2. Constitutive Relationships 176 

The two fluid flow process is dominated by capillary pressure ( 𝑃𝐶) - saturation ( 𝑆𝑤) - relative 177 

permeability ( 𝑘𝑟) relationships because any decrease in the wetting phase saturation results in 178 

non-wetting fluid retreatment into smaller pores which increases the capillary pressure. In a two 179 

http://en.wikipedia.org/wiki/Permeability_%28fluid%29
http://en.wikipedia.org/wiki/Permeability_%28fluid%29
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phase flow the capillary pressure is defined as the difference between the average phase 180 

pressures of non-wetting (nw) and wetting (w) phases, 181 

𝑃𝑐=𝑃𝑛𝑤 − 𝑃𝑤    (5) 182 

 183 

One of the most common formulations used to determine 𝑃𝑐 -𝑆𝑤 -𝐾𝑟  relationships is Brooks-184 

Corey function (Brooks and Corey, 1964), in which the displacement pressure of the wetting 185 

fluid from the largest pore (𝑃𝑑) is involved while this pressure has been ignored by other authors 186 

for fully saturated porous media. The relationship defines the effective saturation as: 187 

𝑆𝑒𝑤 = �𝑃𝑐
𝑃𝑑
�
−𝜆

                               for  𝑃𝑐> 𝑃𝑑         (6) 188 

𝑆𝑒𝑤=1 for  𝑃𝑐  ≤ 𝑃𝑑          (7) 189 

𝑆𝑒𝑤 = (𝑆𝑤−𝑆𝑤𝑟)
(1−𝑆𝑤𝑟)  for 0 ≤ 𝑆𝑒𝑤≤ 1      (8) 190 

Where, (𝑆𝑒𝑤) denotes the effective water saturation, (𝑆𝑤𝑟) is the residual water saturation, (𝑃𝑑) 191 

represents entry (displacement) pressure, (𝜆) is the pore size distribution index.  192 

 193 

Brooks-Corey correlations in conjunction with the Burdine theorem (Burdine, 1953) are used to 194 

define the relative permeability-saturation relationships for wetting (w) and non-wetting (nw) 195 

phases. 196 

𝑘𝑟𝑤 = 𝑆𝑒𝑤
2+3𝜆
𝜆        (9) 197 

𝑘𝑟𝑛𝑤 = (1 − 𝑆𝑒𝑤)2(1− 𝑆𝑒𝑤
2+𝜆
𝜆 )     (10) 198 

 199 

The coupled equations are solved for the primary variables where the porous domain is 200 

assumed to be a rigid rock and both fluids are defined as incompressible. Furthermore, the 201 

dynamic viscosities of the fluids are assumed to be constant and all source and sink terms are 202 

ignored. 203 

 204 

2.2. Simulation Approach 205 

The scope of this research is to simulate the process of injecting CO2 as a supercritical fluid into 206 

DSAs. It focuses on the flow of multiphase fluid (H2O-CO2-NaCl) in a porous media for which 207 

STOM32 (STOMP-CO2) operational mode of STOMP (subsurface transport over multiple 208 

phases) simulation code is used. In this mode water (brine) is the wetting phase and CO2 is a 209 

non-wetting fluid which is injected at different pressure rates into the porous domain which is 210 

fully saturated with water (brine). This leads to a situation where CO2 drains water out of the 211 

domain in a process called drainage followed by an imbibition process when CO2 injection ends 212 
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and water flows back into the domain to replace CO2 in the domain pores leaving some traces 213 

of it trapped. This operational mode is able to incorporate buoyancy and viscous forces driven 214 

flow, CO2 dissolution in aqueous fluid, phase transition, dispersion and diffusivity of the gas and 215 

uses the finite volume technique to numerically simulate the process. These are discussed in 216 

detail by White and Oostrom (2003) and are not repeated in this paper. However it should be 217 

mentioned that STOMP-CO2 simulator is written in FORTRAN 90 with a capability of dynamic 218 

memory allocation for faster execution. The collection of source files is required to be compiled 219 

into an executable file that can be used on various computing platforms including Linux and 220 

Windows to read the input file that is created by the user including a number of cards that 221 

contain calculation instructions and required parameters to solve the simulation problem. The 222 

code has been effectively optimized for workstations (HP, IBM, Sun) in addition to mainframes. 223 

The speed and memory requirements for running STOMP-CO2 executable files depend on the 224 

complexity of the problem and computational grid refinement. There is no minimum memory or 225 

processor speed provided by the developer. However, from our experience it has been found 226 

out that the code better functions on UNIX operating system with 2.4 GHz CPU and 1 GB 227 

memory. STOMP-CO2 is utilized to numerically solve the coupled conservation equations (water 228 

mass, CO2 mass and NaCl mass) by converting them to algebraic equations using finite volume 229 

method (FVM) and Euler-backward time differencing for spatial and temporal discretizations, 230 

respectively. Backword Euler method is a first order time stepping method that makes an error 231 

of ∆𝑡2 for each time step. This method offers more stability and accuracy than forward Euler 232 

method especially for problems with large and nonlinear functions like diffusion equations. The 233 

produced algebraic equations in the discretised equations are closed using a number of 234 

constitutive relationships as explained in section 2 and solved using Newton-Raphson iteration 235 

to resolve their nonlinearities (White and Oostrom, 2003). 236 

 237 

2.3. Initial and Boundary Conditions 238 

The domain is considered to be anisotropic and almost fully saturated with brine before injecting 239 

supercritical CO2 in the centre. The initial condition for all simulation conditions are shown in 240 

Table 4. We generate two-phase conditions within the computational domain by setting the 241 

aqueous saturation value at 0.9999 as an initial condition for the employed equations of state in 242 

the simulation code (e.g., Kelvin equation (Nitao, 1988), and the formulation by Battistelli et al. 243 

(1997)) which take into account the changes in thermodynamic properties of the fluid phases as 244 

the simulation conditions change.  The non-wetting fluid (CO2) saturation was assumed to be 245 

1.0 at the injection source at the outer wall of the reservoir and 0.00001 in the rest of the 246 

computation domain as initial condition for the reason above. It is injected into the lower 3 grid 247 

cells (i.e. 30 m from the bottom of the domain). Vertically zero flux is considered for aqueous 248 

phase at the well case as inner boundary while the outer boundary was assumed to be infinite 249 
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with zero flux for gas phase. Horizontally zero flux is considered at the upper and lower 250 

surfaces which force the injected gas to spread laterally. For both dynamic and static conditions, 251 

fluids saturation, pressure and volume are measured at each node and the CO2 saturation is 252 

plotted versus simulation time. This procedure is repeated twice: once for sandstone (coarse) 253 

and another for Wechselfolgen (fine) homogeneous domains. This procedure is repeated twice: 254 

once for sandstone (coarse) and another for Wechselfolgen (fine) homogeneous domains.  255 

 256 

2.4. Dynamic and Quasi-static Simulations 257 

In this research work, simulations are carried out by injecting CO2 into the centre of the 258 

computational domain which is initially fully saturated with brine. The gas pressure is defined to 259 

be zero all over the domain. The CO2 injection starts at 32 MPa and increased at a rate of 0.1 260 

MPa every 0.5 year for 20 years for quasi-static simulations. This increment in injection 261 

pressure increases the capillary pressure ( 𝑃𝑐) in the domain until it reaches the displacement 262 

pressure ( 𝑃𝑑) when the injected CO2 starts displacing the existing brine and continues till a 263 

steady state is reached when average values of aqueous saturation and capillary pressure are 264 

calculated to give a single point for the  𝑃𝑐 − 𝑆𝑤 relationships. This procedure is repeated for 265 

each time step from which the Pc-Sw curves are produced. For dynamic simulations the 266 

imposed injection pressure is increased to 36 MPa in one step and maintained till the end of 267 

injection period. 268 

 269 

2.5. Capillary Pressure and Saturation Averaging 270 

From the locally predicted values of saturation and pressure at each grid node for each time 271 

step (𝑡𝑛) the volume-weighted average water saturation (𝑆𝑤) and saturation-weighted average 272 

capillary pressure (𝑃𝑐 ) values for the whole domain are determined using the following 273 

equations. 274 

 275 

The average saturation at any time step (tn) is calculated by; 276 

 𝑆𝑤⎹𝑡𝑛 =
∑ 𝑆𝑤𝑗𝑚
𝑗=1 𝑉𝑗⎹𝑡𝑛
∑ 𝑉𝑗𝑚
𝑗=1

                         (11) 277 

 278 

And the average capillary pressure is calculated by; 279 

 𝑃𝑐⎹𝑡𝑛 = [ 
∑ �1−𝑆𝑤𝑗 �𝑃𝑛𝑤𝑗𝑚
𝑗=1
∑ �1−𝑆𝑤𝑗 �𝑚
𝑗=1

–
∑ 𝑆𝑤𝑗𝑃𝑤𝑗𝑚
𝑗=1
∑ 𝑆𝑤𝑗𝑚
𝑗=1

   ]⎹𝑡𝑛                  (12) 280 

 281 

Where, 𝑉𝑗 , is the volume of node j, and, 𝑆𝑤𝑗 , 𝑃𝑤𝑗  and 𝑃𝑛𝑤𝑗  denote water saturation, water 282 

pressure and CO2 pressure at node j, respectively. 283 

 284 
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The time derivative of saturation dependency can be calculated from the average saturation 285 

values calculated from equation (13) as follows:  286 

 𝜕𝑠
𝜕𝑡
⎹𝑠𝑤𝑡𝑛 =

𝑆𝑤⎹𝑡𝑛+1−𝑆𝑤⎹𝑡𝑛−1
𝑡𝑛+1−𝑡𝑛−1

                        (13) 287 

 288 

As shown in equations (11) and (12), both calculated average values are based on water 289 

saturation and, hence, they are called saturation-weighted averages (Mirzaei and Das, 2007; 290 

Hanspal and Das, 2012).  291 

 292 

Conventional theories (Collins, 1961; Scheidegger, 1974; Bear and Verruijt, 1987; Helmig, 1997) 293 

define capillary pressure as a function of fluid saturation only for fluids at equilibrium conditions. 294 

However, this is not always the case as fluids might not flow under steady conditions especially 295 

at early stages of flow when the change rate of saturation is thought to be high. Therefore, it 296 

has been suggested by many authors that an additional term ought to be added to the capillary 297 

pressure equation (5) for dynamic fluid flow in porous media (Hassanizadeh and Gray, 1993a; 298 

Beliaev and Schotting, 2002; Dahle et al., 2005; Hanyga and Seredynska, 2005; Oung et al., 299 

2005).  300 

 301 

In this study we will be investigating the dynamic effects at a field-scale domain. The  additional 302 

term is called the dynamic coefficient (𝜏) which represents dynamic capillary pressure effect on 303 

the flow behaviour and is determined from the slope of a linear relationship between the 304 

capillary pressures at dynamic and static flow conditions and the time derivative of saturation as 305 

shown in equation (14): 306 

 307 

(𝑃𝑐,𝑑𝑦𝑛 −𝑃𝑐,𝑠𝑡𝑎𝑡)|s =−𝜏 𝜕𝑠
𝜕𝑡
⎹𝑠                         (14) 308 

where 𝑃𝑐,𝑑𝑦𝑛 and 𝑃𝑐,𝑠𝑡𝑎𝑡 represent dynamic and static capillary pressures calculated at a specific 309 

value of saturation (𝑠), respectively. The dynamic coefficient has been used by many previous 310 

workers (e.g. Tian et al., 2012; Fucik, 2010; Mirzaei and Das, 2007; Hanspal and Das, 2012; 311 

Das and Mirzaei, 2013; Mirzaei and Das, 2013; Hanspal et al., 2013) to take into account 312 

dynamic capillary pressure effect and, therefore, a detailed discussion on dynamic capillary 313 

pressure effect is avoided in this paper.   314 

 315 

2.6. Computational Domain 316 

Our simulation parameters are based on Bunter Sandstone Aquifer in North German Basin in 317 

North-Eastern Germany. This aquifer consists of four cycles beginning with basal sandstone 318 

which has three cycles of permeable layers (Detfurth, Hardegsen and Solling-Folge) and ending 319 
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with an alternating succession of silt, sand and clay stone (May et al., 2004). In this research 320 

study we focus on Detfurth cycle which is divided to a lower sandstone with high permeability 321 

and upper alternating succession of sand, silt and clay stones which is called  (Wechselfolgen) 322 

with low permeability because it demonstrates heterogeneity in regards to porosity and 323 

permeability.  324 

 325 

The simulated three-dimensional cylindrical domain extends laterally (r-direction) from the 326 

injection point which is represented by the well radius of 0.2 to 2500 m and vertically from 2900 327 

to 3000 m below land surface while at the top and bottom are impermeable layers that preserve 328 

the injected CO2 safely in the storage formation. This depth ensures that the injected CO2 will 329 

remain in supercritical state which increases the storage capacity of the site. The system can be 330 

modelled as a two-dimensional radial domain, as there is no heterogeneity in the azimuthal 331 

direction. The field is segregated into 71x4x10 grids cells. This grid refinement was optimized 332 

for less computational time and accurate outputs through a series of experiments that showed 333 

no significant effect of the grid refinement up to a magnitude of 10 times on the produced CO2 334 

saturation contours. It is a fact that fine block grids produce smoother contours, however 335 

noticeable reduction of execution time was observed by using coarser grids with no momentous 336 

influence on the smoothness of CO2 profiles. This is consistent with studies by Gonzalez-337 

Nicolas et al. (2011) and Hanspal and Das (2012) which indicate that grid refinement has no 338 

significant influence on 𝑃𝑐 − 𝑆𝑤 profiles. 339 

 340 

Supercritical CO2 is to be injected at pressure and temperature above CO2 critical conditions 341 

into the centre of the computational domain at the lower 30 m at a constant rate of 40 Kg/s for 342 

20 years followed by 980 years lockup period as illustrated in Figure 1. This injection rate 343 

represents about 25% of a medium size coal-fired power generation plant. Different types of 344 

heterogeneities have been considered for the domain and various scenarios of injection 345 

process are applied to investigate the effects of permeability, temperature, porosity, and 346 

injection pressure on capillary pressure ( 𝑃𝑐)-saturation ( 𝑆𝑤) relationships at static and dynamic 347 

flow conditions which has a significant influence on the fate of CO2 after the injection process. 348 

 349 

Firstly, we run our simulations on fine and course homogenous domains with porosity of 0.16 350 

and 0.25, respectively, to determine the effect of porosity and permeability on 𝑃𝑐 − 𝑆𝑤 351 

relationships. Unlike other works (Mirzaei and Das, 2007; Peszynska and Yi, 2008; Hsu and 352 

Hilpert, 2011), dynamic and quasi-static simulations are conducted for comparison purposes. 353 

The simulated aquifer and simulation parameters are illustrated in details in Tables 1 and 2, 354 

respectively. 355 

 356 
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In spite of considering three-dimensional flow in a permeable media, it is noted by Domenico 357 

and Schwartz (2000) that under the same hydraulic gradient, horizontal flow is of the order of 358 

six orders of magnitude faster than vertical flow.  In our simulation the lateral flow dominates, 359 

therefore we can refine our computational domain by declaring our reference nodes in the 360 

output control card in the input file, vertically at distances from the bottom of the formation at 20, 361 

40 and 70 m while horizontally at radial distances of 100, 200, 500, 800, and 1000 m, from the 362 

injection well while azimuthally a single reference plane is considered at 45° to measure our 363 

simulation variables for two-dimensional scenarios.  364 

 365 

3. Results and Discussions 366 

To evaluate the behaviour of CO2 in three-dimensional cylindrical field-scale formation a 367 

medium-term of 1000 years of simulations of CO2 injection into homogeneous and 368 

heterogeneous formations were carried out in this work. The injection process continued for 20 369 

years followed by 980 years of lockup. Supercritical CO2 is injected azimuthally at 4 nodes 370 

which are uniformly distributed towards the lower 30 m of the domain.  371 

 372 

As stated earlier, this study aims to examine the effects of injection pressure, temperature, 373 

heterogeneities (layering), porosity, permeability and injection condition states on the Pc-Sw 374 

relationships and the behaviour of the injected CO2 in terms of its dissolution or mobility. To 375 

show how CO2 behaves over the simulation time period, a series of numerical simulation 376 

models displayed in Table 3 were created for different initial and boundary conditions  shown in 377 

Table 4. 378 

 379 

3.1. CO2 Migration 380 

As soon as the injection process starts the supercritical CO2 displaces the existing brine and 381 

migrates away from the injection well as illustrated in Figure 2. For different time levels, the 382 

simulated CO2 spatial distribution profiles are shown for drainage process (Figure 2 (A-D)) 383 

during the injection period and imbibition process (Figure 2 (E-H)) presenting the post injection 384 

period for case 1 simulation conditions (Table 3). CO2 continues to migrate laterally due to the 385 

governing forces, e.g., (i) hydrostatic pressure difference between the injection point and aquifer, 386 

and (ii) capillary pressure. Furthermore, as a result of densities difference between the ambient 387 

brine and injected supercritical CO2  buoyancy forces push the latter upwards until it reaches the 388 

impervious confining layer (caprock) under which it is trapped or extends more laterally. Figure 389 

2 (E-H) demonstrates that when injection process ends the domain is invaded by brine which 390 

displaces most of the CO2 leaving part of it trapped in small pores. This leads to residual 391 

trapping of the injected CO2. Meanwhile a volume fraction of the injected CO2 are dissolved in 392 
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the brine after the injection process to produce a rich CO2 layer that settles permanently at the 393 

bottom of the domain.    394 

 395 

3.2. Effects of Porosity and Permeability 396 

It has been suggested by some researches (e.g., Kumar et al., 2005; Xu et al., 2006; Kopp et 397 

al., 2009; Chasset et al., 2011) that an increase in the mean permeability results in greater 398 

injectivity and mobility of CO2 which increases dissolution into the formation brine. To explore 399 

this further and, in particular, determine the effects of porosity and permeability on the injectivity 400 

of CO2, two sets of simulations were carried out in this study. The first set in cases 1 and 2 401 

explores these effects in fine and coarse homogeneous domains, respectively. The second set 402 

(cases 7 and 8) looks at the effects of two heterogeneous porous layers involving fine-coarse-403 

fine and coarse-fine-coarse layers. In all injection cases illustrated in Figure 3, it is observed 404 

that the coarse domain produces larger CO2 plumes during the injection time at middle altitudes 405 

of the domain. This means that the higher the permeability the higher the CO2 saturation is 406 

during the drainage process when the hydrostatic forces dominate. Different plumes are 407 

produced during the imbibition process when the aquifer brine reverses back to displace the 408 

CO2. Though the CO2 plume size looks larger for the fine sand domain (Figure 3 (B, C, D)) the 409 

actual sequestration of CO2 was still higher because by then a considerable amount of injected 410 

CO2 had dissolved in the existing brine and most of it would have settled at the top of the 411 

domain. This is clearly displayed in the coarse domain contours illustrated in Figure 3 (G,H).  412 

 413 

CO2 distribution profiles in Figure 4 demonstrates a different behaviour of the injected CO2 in 414 

fine domain where CO2 residual saturation was never reached though some tendency was 415 

noticed at a radial distance of 1000 m after 800 years of simulation compared to the coarse 416 

domain where residual CO2 saturation was reached at about 200 years. In contrast, all CO2 417 

profiles in the coarse domain reach the CO2 residual saturation levels after 200 years. This is 418 

because lower permeability porous media limits both lateral and vertical CO2 mobility and 419 

maintain more contact with the surrounding brine which enhances the solubility trapping to keep 420 

the injected gas more securely within the aquifer. In addition, the small size pores in the fine 421 

domain play like meniscus tubes which allow CO2 to break through due to capillary forces to 422 

enhance residual trapping. These results are consistent with those obtained by Nordbotten et al. 423 

(2005) and Kumar et al. (2005). In the case of heterogeneity these profile show completely 424 

different trends which will be discussed in more details in section 3.6.  425 

 426 

3.3. Effects of Injectivity 427 

Capillarity plays an important role in sequestering CO2 in geological formations because it 428 

enhances the residual trapping (one of the means of sequestration). To investigate the effect of 429 
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injection pressure on capillarity in the domain, supercritical CO2 was injected into a coarse sand 430 

domain at 36, 34 and 32 MPa (cases 2, 5 and 6), respectively, under dynamic flow conditions. 431 

The results presented in Figure 5(A) show no significant influence of the injection pressure on 432 

capillary pressure at all saturation values which is most likely due to the employed values of 433 

injection pressure being very close to the hydrostatic pressure in the aquifer, in fact in case 6 434 

the same value of 32 MPa was used in addition to the high permeability of the domain which 435 

offers easier migration of CO2 laterally and vertically. These results are qualitatively consistent 436 

with the experimental results achieved by Plug and Brunning (2007). 437 

 438 

The influence of injection pressure on CO2 saturation profiles is displayed in Figure 5(B), which 439 

shows a steep increase in CO2 saturation at 70 m altitude for all injection pressures as a result 440 

of gravity forces which cause most of the injected CO2 to migrate up towards the top of the 441 

aquifer. This increase reaches the highest value at 200 years when the trends sharply steep 442 

down till they reach CO2 residual saturation. The results indicate that the higher the injection 443 

pressure, the larger the amount of CO2 accumulated at the top of the aquifer at times between 444 

200 – 500 years of simulation. This amount of CO2 is unlikely subject to any permanent trapping 445 

in short-term periods of simulation because it is not affected by the imbibition process.    446 

 447 

3.4. Temperature Effects on CO2 Distribution  448 

In this research work we inspected the effects of temperature on CO2 distribution during 449 

drainage and imbibition processes. CO2 saturation contours in Figure 6 demonstrate smaller 450 

plumes of supercritical CO2 after 20 years of injection (i.e. end of drainage process) and 200 451 

years (during imbibition process) at a domain temperature of 80℃ (case 5) compared to those 452 

for 58℃ (case 3) under the same injection pressure conditions. This is because increasing the 453 

temperature decreases the density and viscosity of the injected CO2 and consequently 454 

increases buoyancy and gravity forces that contribute in spreading CO2 laterally and vertically. 455 

The effect of temperature on CO2 dissolution in the hosted brine is illustrated in Figure 7. It 456 

shows that after about 200 years of simulation higher temperature results in more CO2 457 

dissolved because it decreases CO2 density which migrates upwards to get in contact with 458 

more fresh brine which enhances the solubility trapping mechanism.  Moreover it is observed in 459 

Figure 8 that capillary pressure increases proportionally with temperature and this change is 460 

more prominent between saturation values of 0.55 - 0.7. The results in Figure 8 demonstrate 461 

that about 50% increase in capillary pressure is obtained when the temperature is increased 462 

from 58℃ to 80℃. This increase in capillary pressure permits more CO2 flow into the small 463 

pores and trap there as a residual solute, which is referred to as residual trapping of CO2. 464 

 465 
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3.5. Dynamic Capillary Pressure Effects 466 

Our investigations explain that in addition to the saturation, capillary pressure is strongly 467 

influenced by the flow conditions in the system. Several simulation tests were carried out to 468 

compare the CO2 saturation change in homogeneous and heterogeneous computational 469 

domains under quasi-static and dynamic conditions. The results are illustrated in Figure 9 which 470 

demonstrates that higher CO2 saturation is obtained under quasi-static flow conditions at any 471 

radial distance from the injection well at all time levels. The elapsed time to attain static 472 

conditions allows more CO2 into small pores by capillary forces and it may increase convective 473 

mixing between the two fluids which enhances solubility trapping of the injected CO2. 474 

Additionally, it is noticed from Figure 10 that at saturation values above 0.55 higher capillary 475 

pressures are generated in fine-grained domain which is consistent to the theories which relate 476 

capillary pressure directly to the pore size.  477 

 478 

To determine the dynamic or damping coefficient (τ), which indicates the extent of dynamic 479 

capillary pressure effect, two numerical simulations (cases 2 and 10) were run under dynamic 480 

and quasi-static condition, respectively. All calculation results are displayed in Figure 11. From 481 

equation (16) we calculated the dynamic coefficient for each average value of the aqueous 482 

saturation calculated by equation (14), the corresponding average values of dynamic and static 483 

capillary pressures (Pc,dyn
 , Pc,stat), and the calculated values of the time derivative of saturation 484 

(∂S/∂t ). Figure 11 shows that the value of dynamic coefficient decreases when the rate of 485 

change of aqueous saturation increases and this decline is very sharp at low saturation values 486 

when the rate of change in aqueous saturation is slow (i.e. lower values of ∂S/∂t). The attained 487 

relationship between the dynamic coefficient and aqueous saturation can be clarified by the 488 

longer time required to attain the residual saturation at higher values of dynamic coefficient. 489 

 490 

3.6. Effects of Heterogeneity 491 

Heterogeneity is closely related to the disparity in permeability which strongly rules the CO2 492 

transport through different parts of the domain. To investigate this influence we compare four 493 

study cases (1, 2, 7 and 8) in terms of CO2 saturation distribution in homogenous and 494 

heterogeneous domains. As expected, and in agreement with previous studies (e.g., Ataie-495 

Ashtiani et al., 2001; Das et al., 2006), heterogeneity has shown an important influence on the 496 

characteristics of two-phase flow. It is shown in Figure 12 that all trends behave similarly at 200 497 

m and 40 m horizontal and vertical distances, respectively, as they display an increase in the 498 

integrated aqueous CO2 upon injection stops and tend to plateau after about 200 years except 499 

in case 8 (coarse sand embedded in fine) which starts to drop after 50 years of simulation. This 500 

behaviour is related to the injection section into which the supercritical CO2 was injected (lower 501 

30 m) which for this case is a fine layer bounded by a coarse one above. This scenario 502 
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encourages vertical migration of CO2 due to the lower entry pressure of the upper strata which 503 

consequently reduces both residual and solubility trapping by eliminating the contact time 504 

between CO2 and existing brine. However, larger amount of CO2 was dissolved in the 505 

homogenous coarse domain due to the high permeability which increases CO2 movement in 506 

both directions maintaining more contact with fresh brine in which it dissolves. Figure 13 507 

presents the total integrated amount of CO2 in aqueous and gas phases at the same grid block 508 

described above. It is apparent that all curves decline and tend to plateau soon after the 509 

injection stops except case 8 which shows sharp increase in total integrated CO2 till about 50 510 

years of simulation and continuously increases until the end of 1000 years of simulation. This 511 

can be explained by the fact that the injected CO2 favourably move through large size pores 512 

which increases the hydrodynamic trapping as a result of pressure difference forces and CO2 513 

concentration. This is combined with the solubility trapping due to the convective mixing of CO2 514 

and the surrounding brine. Residual trapping is larger in the surrounded fine layer which slows 515 

down the migration of the injected CO2 providing more chance to enter the small pores. 516 

 517 

CO2 spatial spread is demonstrated in three-dimensional cylindrical contours in Figure 14, 518 

which demonstrates how the injected supercritical CO2 spreads through different 519 

heterogeneous domains (cases 7 and 8) at different time steps. During a drainage process 520 

period of 20 years for case 7 (coarse sand embedded in fine), higher CO2 saturation values 521 

were obtained. This increase is a result of the pressure difference forces that control the lateral 522 

migration of CO2 and vertically due to the buoyancy forces that transfer the supercritical fluid 523 

from the low permeability layer up to the higher permeability one as evidently shown in Figures 524 

14(A-D).  525 

 526 

In contrast during imbibition process (post injection) which is presented in case 8, higher 527 

concentrations of CO2 were achieved as shown in Figures 14(E,H) because in this case 528 

advective, diffusive and gravity forces all contribute in trapping the injected CO2 in addition to 529 

the reversed-back movement of the brine behind the CO2 plume to displace the CO2 again 530 

leaving traces of it as residual contaminants in small-sized pores which is referred to as residual 531 

trapping. Moreover the low permeability layer retains more contact time between the two fluids 532 

which enhances the solubility trapping mechanism. The results of this work are consistent with 533 

those obtained by Nordbotten et al. (2005) as they found out that the buoyancy forces places 534 

the highest mobility layer of injected CO2 at the top of the domain considering that in their case 535 

the CO2 was injected along the whole altitude of the domain.  536 

 537 
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4. Conclusion 538 

A series of numerical simulations have been conducted in this work to identify the possible 539 

implications of a number of important parameters on the capillary pressure – saturation 540 

relationship for supercritical CO2 in deep saline aquifer. From the results of this work it is 541 

obvious that the higher the injection pressure, the higher the capillary forces are; however, the 542 

maximum sustainable pressure has to be taken into consideration to avoid any geochemical 543 

fracture to the formation rock. The value of the dynamic coefficient (τ)  increases  as the rate of 544 

change of aqueous saturation (∂S/∂t)  declines because more time is required for the residual 545 

saturation to be attained. It has been found that capillary forces are higher in fine-grained 546 

domains and they enhance storage capacity of the site by amplifying the residual trapping 547 

mechanism of CO2 during the imbibitions process. Solubility trapping is more efficient in fine 548 

domains because they maintain more contact between the fluid phases which leads to more 549 

CO2 dissolved in aquifer brine. Warm aquifers are more competent in CO2 sequestration 550 

because higher temperatures increase the capillary pressure and consequently enhance 551 

residual trapping of CO2. Fine sand embedded in coarse pattern of heterogeneity is found to be 552 

more effective method over long periods of storage procedure however more research is 553 

required to clarify how the field distribution of heterogeneity and injection scenarios of CO2 554 

affect the efficiency of the sequestration.  555 
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Table 1. Selected aquifer parameters for simulation 

Parameter Value/Function Reference 
Diameter (m) 5000 - 
Thickness (m) 100 - 
Depth (m) 2900 - 
Grid (nodes) 71 x 4 x 10 - 

Porosity Sandstone          (Wechselfolgen) 
0.25                    0.16 May et al. (2004) 

Horizontal Permeability (m2) (5.625e-13)           (0.5428e-13) May et al. (2004) 

Vertical Permeability (m2) (1.688e-13)            (11.15e-16) May et al. (2004) 

rock density (kg/m3) 2430                    2470 May et al. (2004) 

specific storativity (1/m) 9.2e-4 May et al. (2004) 
Surface  temperature (℃) 8 May et al. (2004) 
Reservoir  temperature (℃) 58 Beni et al. (2012) 
Temperature gradient (K/m) 0.035 Reinicki, (1968) 
Reservoir pressure (MPa) 32 Beni et al. (2012) 
Pressure gradient (KPa/m) 10.5 Beutler, (1975) 

 
  



Table 2. Important parameters and initial conditions 

 Parameter Value Reference 

Irreducible saturations 
water, Slr 

0.1 Beni et al. (2012) 

CO2, Sgr 0.05 Beni et al. (2012) 

Brooks/Corey  

Exponent, λ 
0.457 Beni et al. (2012) 

Strength coefficient, P0 19,610 Pa Beni et al. (2012) 

Pore compressibility, k 1xe-9 Pa-1 Beni et al. (2012) 

Pore expansivity, 𝛃 1xe-6 K-1 Beni et al. (2012) 

Injection Pressure  36 MPa - 

Temperature  58 ℃ Beni et al. (2012) 

Salinity 0.2 Beni et al. (2012) 

Pressure gradient 
10.5 

MPa/Km 
May et al. (2004) 

Salinity gradient 80 g/L.Km May et al. (2004) 

CO2 injection rate 40 Kg/s - 

Injection time 20 Yrs - 

Simulation time 1000 Yrs - 

 
  



Table 3. Simulation cases and parameters 

Conditions Case 
No. Domain 

Inject. 
Press. 
(MPa) 

Temp. 
℃ Porosity Horiz. Perm. 

(m2) 
Vert. Perm. 

(m2) 

Dynamic 

1 Homogeneous 
(Fine) 36 58 0.16 0.5428e-13 0.01115e-13 

2 

H
om

og
en

eo
us

 
(C

ou
rs

e)
 

36 58 

0.25 5.625e-13       1.6876e-13 
3 36 70 
4 36 80 
5 34 58 
6 32 58 

7 
Heterogeneous  

fine-coarse-
fine 

36 58 0.16 - 0.25 -0.16 Variable Variable 

8 
Heterogeneous 

 coarse-fine-
coarse 

36 58 0.25 -.016 - 0.25 Variable Variable 

Quasi 
Static 9 Homogeneous 

(Fine) 36 58 0.16 0.5428e-13 0.01115e-13 

Quasi 
Static 10 Homogeneous 

(Coarse) 36 58 0.25 5.625e-13 1.6876e-13 

        

 
  



Table 4. Initial and boundary conditions 

Case 
No. 

Domain 
Type/Cond. 

Horizontal 
Permeability 

(m2) 

Domain 
Temp. 

(℃) 

CO2 
Injection 
Pressure 

(MPa) 
 Dynamic    

1 Homogenous 
Fine Sand 0.5428e-13 58 36 

2 
Homogenous 
Coarse Sand 5.625e-13 58 36 

3 Homogenous 
Coarse Sand 5.625e-13 70 36 

4 Homogenous 
Coarse Sand 5.625e-13 80 36 

5 
Homogenous 
Coarse Sand 5.625e-13 58 34 

6 
Homogenous 
Coarse Sand 5.625e-13 58 32 

7 
Heterogeneous 

Coarse in Fine Sand 
0.5428e-13 - 5.625e-13 - 

0.5428e-13 
58 36 

8 
Heterogeneous 

Coarse in Fine Sand 
5.625e-13 - 0.5428e-13 - 5.625e-

13 
58 36 

 Quasi-Static    

9 Homogenous 
Fine Sand 

0.5428e-13 58 36 

10 Homogenous 
Fine Sand 

0.5428e-13 58 36 

11 Homogenous 
Fine Sand 

0.5428e-13 58 32 

Porosity;                        Fine Sand= 0.16,                 Coarse Sand= 0.25  
Vertical Permeability;    Fine Sand= 0.01115e-13 ,     Coarse Sand= 1.6876e-13 
Hydrostatic Pressure=32 MPa,  Pressure Gradient= 10.5 MPa/Km, Salinity=0.2 
Source: illustrated in Tables 1 and 2 
 
 



 

 

 

 

 

 

 

 

 

 

 
Figure 1. A schematic diagram of geological CO2 sequestration process in a deep saline aquifer (DSA). 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

        

         

         

        

  Figure 2.  Evolution of CO2 plume in low permeability homogenous aquifer (case1):   

      (A-D) CO2 distribution after 1, 5, 10 and 20 years of simulation during injection process (drainage).  
      (E-H) CO2 distribution after 50, 200, 500 and 1000 years post injection process (imbibition). 
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Figure 3. CO2 plume evolution in low and high permeability homogenous aquifers at different time scales; 

(A-D) fine sand domain (Case 1), (E-H) coarse sand domain (Case 2). 
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Figure 4. CO2 saturation plots for homogenous domains:  
Case 1 - fine sand (left) and case 2 - coarse sand (right). 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Figure 5. A- Capillary pressure vs. aqueous saturation at different injection pressures. 
                B- CO2 saturation curves at R=500 m and Z=70 m in a coarse homogeneous domain. 
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    Figure 6. CO2 plume evolution in high permeability homogenous aquifer at different times and temperatures; 

A- after 20 years at 58 ℃, B- after 200 years at 58 ℃ (Case 2) 
C- after 20 years at 80 ℃, D- after 200 years at 80 ℃ (Case 4) 
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Figure 7. Temperature effects on dissolved CO2 mass (cases 2, 3 and 4). 

  



 

 

 

 

 

 

 

 

Figure 8. Capillary pressure vs. aqueous saturation at different 
temperatures (cases 2, 3 and 4). 
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Figure 9. CO2 saturation (volume fraction) curves for homogenous fine domain under 
static and dynamic conditions at altitude of 40 m (cases 1 and 9). 

  



 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 10. Dynamic and quasi-static capillary pressure-saturation curves  
for homogenous domains. 
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Figure 11. Dynamic Coefficient change with aqueous saturation in a homogeneous coarse 
sand domain (cases 2 and 10). 
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Figure 12. Integrated aqueous change for homogeneous and 

heterogeneous domains (cases 1, 2, 7 and 8) at radial distance of 200 m 
and altitude of 40 m 

 

  



 

 

 

 

 

 

 

 

 

Figure 13. Total Integrated CO2 profiles for homogeneous and 
heterogeneous domains (cases 1, 2, 7 and 8) at radial distance of 200 m 

and altitude of 40 m.  
 

  



 

 

 

 

 

 

 

 

 

 

 

 

                                              

                                             

                                             

                                            

Figure 14.  Evolution of CO2 plume (volume fraction of CO2) in heterogenous domain for 5, 20, 100 and 500 years:  
(A-D) fine - coarse - fine domain (case 7); 

(E-H) coarse – fine - coarse domain (case 8). 
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