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Nomenclature 
 





D,C

B,A
 Functions of used in theanalytical solution of 

0,1rdr

dn






  

b0 Dimension of the cell enclosing the fibre used in flow model. 

D Diffusion Coefficient 

d Fibre width 

 variable used in theanalytical solution of 
0,1rdr

dn






 (C / 3) 

F  exponent function used in theanalytical solution of 
0,1rdr

dn






  

g function of describing the new surface of the fibre containing deposit. 

I   integral 

k Hydrodynamic factor used in the flow model of Stechkina and Fuchs (1966) 

N Normal to the fibre surface 

NC number of segments the boundary of the solution domain is divided into when 

solving for the flow field. 

n Particle concentration 

n0 Particle concentration in the undisturbed flow 

Pe Peclet number 

Re Reynolds  number of the flow 

r Polar coordinate 

rp Particle radius 

r1 interception radius  pr2
d   

U0 Fluid (air) velocity 

U Fluid velocity component in the x direction 

V Fluid velocity component in the y direction 

Ur Fluid velocity component in the r direction 

U Fluid velocity component in the  direction 

X,Y   integration variables used in theanalytical solution of 
0,1rdr

dn






  

x,y Cartesian components 

 Packing fraction
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  Constant describing the rate at which particles deposit upon the fibre surface 

   Integration variable used in theanalytical solution of 
0,1rdr

dn






  

 Non-dimensional thickness of the diffusion layer 

 Constant related to the rate at which particles deposit upon the fibre surface 

  
0N

n


  

 Particle collection efficiency 

D Contribution to SF from deposition 

SF Particle collection efficiency as defined by Stechkina and Fuchs (1966) 

 Contribution to SF from interception 

 Ratio of particle and fibre radii 

 Air viscosity  

 Polar coordinate 

 Density of air 

 Fluid vorticity 

 Stream function 
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Abstract 
 

This work is aimed at developing numerical methods for calculating diffusive and 

interceptive deposition on fibres in fibrous filters as a deposit builds up. Calculations 

are performed of the two dimensional flow field past a single fibre for three different 

cell models using the boundary element model (BEM). Boundary conditions for the 

cells correspond to the Kuwabara model and two different rectangular cases, one 

corresponding to a periodic cell array. The concentration field for particles is then 

calculated using the equation of Stechkina and Fuchs (1966), but with the numerical 

flow field. Resulting deposition rates are compared with their results and also with 

those of Friedlander (1977) for point particles. For deposition on the front of the fibre, 

we extend their results using the analytic flow field to obtain analytic results for 

parameter regions where different types of deposition occur. The two relevant 

parameters are the ratio of the particle to fibre radii and the effective thickness of the 

diffusion layer. Numerical flow fields are used to calculate particle deposition over 

the whole fibre, assuming the deposit forms as a smooth solid layer. The new surface 

shape is parameterised, and the whole process of recalculating the flow field and 

particle deposition is repeated. Results are obtained for deposition on the new surface 

as functions of flow Peclet number and fibre packing fraction. 
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Introduction 

 
Filtration by fibrous filters is one of the simplest and most effective ways to separate 

particulate matter from fluid and filters find diverse application. For example, many 

employees in industry or agriculture need to avoid exposure to airborne particulates 

and protection is usually provided by face masks or larger scale filtration units. Also 

medical and biological fields rely on clean air and filtration can improve air quality in 

all areas of life. 

 

A fibrous filter consists of many threadlike fibres, of varying sizes, positioned more 

or less normal to the direction of the fluid flow. The fluid passes through the regions 

between the fibres and particles which are suspended in the fluid are removed by their 

collision and attachment to the fibre surface. The particle deposit builds up on the 

fibres and in the limit clogging occurs and further filtration simply results in cake 

formation at the filter surface which necessitates filter replacement or regeneration. 

 

In order to understand the performance of fibrous filters it is necessary to obtain a 

description of the fluid flow and much work has been undertaken in this area. As the 

structure of the fibrous filters is complex, simplified models have been developed. 

Generally the assumption is made that the Reynolds number of the flow is small and 

hence the inertia of the flow is neglected. Many of the earlier works have then 

adopted ‘cell’ models where the equations of the fluid flow are solved in a two 

dimensional ‘cell’, surrounding the single fibre, where the boundary conditions take 

into account neighbouring fibres, see Kuwabara (1959), Happel (1959). These models 

have been widely adopted to model the fluid flow. Other approaches have been 

adopted, see for example Brown (1984) who determined the stream function that 

gives rise to the lowest rate of dissipation of energy by viscous drag. Numerical 

techniques such as the Boundary Element Method, see Hildyard et al (1985) and 

control volume method, see Rao and Faghri (1988) and Dhaniyala and Liu (1999) 

have also been adopted to determine the flow field. Once a description of the flow 

field through the filter is known the transport of the particles by the flow and their 

possible removal by the fibres can be investigated. Much research has been 

undertaken into understanding the removal of particles by the mechanisms of 

interception, inertial impaction, gravitational capture and diffusional deposition for a 
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clean filter and is now reasonably well understood. See for example Lee and Gieseke 

(1980), Fardi and Lui (1992), Ingham et al (1989), Harrop and Stenhouse (1969), Pich 

(1973), Stechkina and Fuchs (1966), Zhu et al (2000)., Asgharian and Chenh (2002).  

However the feedback effects of the particle deposition upon subsequent deposition 

and filter performance are less well understood and this is the situation considered in 

this paper. Experimental investigations in this area include Japuntich et al (1994) and 

Thomas et al (2001) where the penetration and pressure drop of various filters were 

considered under loading. Modelling work which has been undertaken in this area 

includes the semi-empirical models of fibre efficiency as a function of deposit, see 

Stenhouse et al (1992) and Stenhouse and Trottier (1991). These models are restricted 

to specific cases and based on limited experimental data. The models of dendrite 

growth by Payatakes and colleagues, Payatakes et al (1977), Payatakes and Gradon 

(1980), which are limited due to the neglect of the effects  of the dendrite upon the 

flow field. The theoretical studies of Konstandopoulos et al (1998) and Kostoglou and 

Konstandopoulos (2000) considered the shape evolution of particulate deposits on 

cylinders. In the paper by Konstandopoulos et al (1998) the case of inertial deposition 

on an isolated cylinder in potential flow was studied. The Boundary Element Method 

was adopted to compute the flow past the cylinder with and without deposition.  In the 

paper of Kostoglou and Konstandopoulos (2000) the deposit evolution on a cylinder 

was considered for inertial impaction in the limit of high Stokes number. Other 

studies which attempt to take into account the change in the flow field due to the 

particle deposit are restricted due to their considerable use of computing time and 

resources, see Jung and Tien (1993), Biggs et al (2003), Karadimos and Ocone (2003) 

and Przekop et al (2003). 

 

In the work described here cell models have been adopted to determine the flow field 

using the Boundary Element Method. This numerical method has the advantage of 

only needing to discretise the domain boundary in order to solve for the flow field, 

hence requiring significantly lower computing resources than other available 

approaches. The same approach was adopted by Konstandopoulos et al (1998), 

however they considered particles suspended in potential flow and the mechanism of 

deposition was inertial impaction, representative of a cylinder at the front of a filter. 

In this work slow flow has been assumed and the deposition on the fibres due to 

diffusion has then been considered for various situations representative of fibres 
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throughout the filter, using three different cell models. Considering the change in the 

shape of the boundary due to the deposition, the flow field and hence particle 

deposition has been recalculated. The effects upon subsequent deposition and 

efficiency are then investigated. As the only mechanism by which particles are 

assumed to deposit is diffusion the model developed here is only valid for particles 

whose size is a lot smaller than the size of the fibres. Also, in the model developed 

here, the particle deposit is assumed to form a smooth solid layer whose width is a 

function of position on the fibre. This allows for the feedback effects from the 

deposition upon further deposition and filter efficiency to be investigated. However it 

does mean that the complex dendrite structures which do form on the surface of fibres 

have not been modelled accurately  and hence the results obtained give a qualitative 

description of the effect of deposition.    

Overall the present work is intended to provide a practical means of calculating 

deposition in individual cells of a cell model as a function of the cell parameters and 

particle deposition. Realistically there is considerable variation in these parameters for 

an actual filter and the results will be used in a statistical model, currently under 

development, which takes account of these variations and which lead to a distribution 

of the efficiency with which a single cell removes particles. 
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Fluid flow formulation 

 
In this work we are considering infinitely long cylinders with the air flow moving 

perpendicular to the cylinder axis. Hence the flow is two dimensional and the motion 

takes place in the plane perpendicular to the cylinder axis. Generally for fluid flow 

through a filter the Reynolds number, Re, of the flow is small, where Re is defined by, 




 0Ud
Re , d is the diameter of the fibres making up the filter,  is the density of the 

air, U0 is the air velocity and  the air viscosity. In this case the flow is described by 

the biharmonic equation for the stream function , i.e. 

04                                                                          (1) 

In the work described here equation (1) was solved using the Boundary Element 

Method (BEM). In order to apply this method equation (1) is first reduced to its 

coupled equivalent form,  

02

2




        (2) 

where  is the fluid vorticity which is a measure of the tendency of the fluid to rotate 

or to cause rotation of suspended bodies during flow. 

 Consider the general two dimensional domain S bounded by the contour C. By using 

the Rayleigh-Green biharmonic boundary formula (see Jaswon and Symm (1977)) 

and Greens second identity we may obtain the equivalent pair of coupled integral 

equations (Kelmanson (1983a)) 

 
 







C
11

C
2

'
211

dq)q,p(G)q(')q,p('G)q()p()p(

dq)q,p(G)q(')q,p(G)q()q,p(G)q(')q,p('G)q()p()p(

      (3) 

where  

 (i) Cq  ,CSp   

(ii) A prime denotes differentiation with respect to the outward normal to S at 

Cq . 

(iii) dq is the differential increment of C at Cq . 
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



























      Cp if p of sideeither on  C  to tangentsebetween th included angle Internal

 Sp if    2

CSp if    0

)p(

:by defined is )p()iv(

 

(v) ,qpln)q,p(G1     1qplnqp
4

1
)q,p(G

2

2   

  In order to solve equations (3) for  and  at the general point CSp   we need a 

complete set of boundary information for ',,',  . The physical boundary 

conditions of viscous flow give only two of these equations at each point Cq . In 

order to obtain a complete set of information on the boundary, equations (3) are 

applied at a point Cq
1
 to obtain: 

 

 

 

  0)q()q(dq)q,q(G)q(')q,q('G)q(

0)q()q(

dq)q,q(G)q(')q,q(G)q()q,q(G)q(')q,q('G)q(

11
C

1111

11

C
121

'
21111










                   (4) 

where Cq,q
1
  

Equations (4) can be solved to give the remaining boundary information at each point 

Cq
1
 . Having obtained a complete set of boundary information equations (3) can be 

used to generate   and at any point in the solution domain. 

In order to solve equations (4) and subsequently equations (3), numerical methods 

generally must be adopted. The procedure which has been adopted is to divide the 

boundary C into a number, NC , of straight line segments C1 --- CN, such that  


CN

1j
jCC


                   (5) 

On each of the Cj it is assumed that ' and  ,' ,  have the piecewise constant value 

of jjjj ' and  ,' ,   respectively, which are their values at the midpoints of the 

segments. A discretised form of equations (4) (Kelmanson (1983b)) is then applied at 

the midpoint Ci
N---1i ,qq  of each interval. This generates a set of 2NC linear 

simultaneous equations in the 2NC unknowns. Solution of these equations gives the 

complete set of boundary information. A discretised form of equation (3) is then 
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applied at the general point CSp  to obtain )p( and )p(  . Having obtained it 

is then possible to obtain the velocities of the flow from  

x
V ,

y
U








                  (6)      

In the work presented here  has been obtained for the two different domains shown 

in Figs 1a-b. Before making any calculations all quantities were non-dimensionalised, 

distances with respect to fibre radius, d/2, and velocities with respect to the mean flow 

velocity, U0. The form of equation (3) is unchanged. 

The domain shown in Fig. 1a is equivalent to the ‘cell’ studied by Kuwabara (1959) 

and models a system of parallel, staggered, cylinders directed normal to the flow. The 

‘cell’ consists of a surface concentric with the fibre surface at such a distance that the 

packing fraction of the fibre within this cylinder is identical to that of the fibres within 

the filter as a whole. The packing fraction, , is defined as the fraction of the 

perceived volume of the filter that is actually occupied by fibres The physical 

boundary conditions are that there is no flow across the fibre surface and on the outer 

boundary the flow is moving with the mean flow velocity U0. In terms of  and  

these conditions are: 

(a) =0 on AB and CD 

(b) ’=0 on BC                    (7) 

(c) =h1sin, =0 on DA 

where  is the angle made with the positive x axis and h1 is given by 


 1h1 . This 

model will be called model 1 in this work. 

The domain shown in Fig. 1b models a system of parallel cylindrical fibres such that 

the axes of the cylinders are parallel and perpendicular to the airflow. The cell in this 

case is the area defined by ADEF. Two different sets of boundary conditions have 

been applied to this domain corresponding to two physically different set-ups. In both 

cases there is no flow across the surface of the fibres or across the symmetry plane 

AD leading to the conditions, in dimensionless units 

(a) =h2=0 on AB, DC  

(b) =h2’=0 on BC         (8) 

(c) =0=0 on EF. 
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In model 2 the cylinders are assumed to be staggered as in model 1 and the extra 

boundary conditions taken are: 

(d) =h2y, =0 on AF, DE        (9) 

In model 3 the cylinder are not staggered but are positioned such that their axes lie in 

the same plane. The extra boundary conditions taken are: 

(d) ’=0, ’=0 on AF, DE                 (10) 

For models 2 and 3 the packing fraction, , is given by 2h4
 . 

For all 3 models the flow velocities were determined at any position in the domains 

shown using the Boundary Element method described. 

 

Particle motion. 

 

Neglecting the influence of electric effects the main mechanisms by which point 

particles are captured by the fibres within the filter are  

(i) inertial impaction, when particles deviate from the streamlines of the air 

flow due to their inertia and impact upon the fibres 

(ii) gravitational settling, when particles settle out of the air moving through 

the filter due to the influence of gravity. 

(iii) diffusional deposition, in which the combined effect of the air motion and 

the Brownian motion of the particle brings it into contact with a fibre. 

Taking into account the finite size of particles of radius rp these mechanisms are 

augmented by the interception of the particles with the fibres, see Fig. 2 where the 

mechanism is shown for a clean fibre. Mechanisms (i) and (ii) are generally 

applicable for larger particles and mechanism (iii) for smaller particles. In this work 

we are considering the deposition of smaller particles as these are particles for which 

filters are generally used in aerosol science. Hence mechanism (iii) is the case we are 

considering and our method takes account of interception of particles with fibres by 

using the appropriate boundary conditions. For steady state conditions the particle 

concentration is described by equation (11), see Stechkina and Fuchs (1966). 































 

2

2

22

2

r
n

r

1

r

n

r

1

r

n
D

n

r

U

r

n
U                 (11) 

where Ur and U are the components of air velocity in polar coordinates, n is the 

particle concentration and D is the coefficient of diffusion of the particles. Non-
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dimensionalising distances with respect to fibre radius, velocities with respect to U0, 

and n with respect to n0, the particle concentration in the undisturbed flow. Equation 

(11) then becomes 

 





























 

2

2

22

2

r
n

r

1

r

n

r

1

r

n

Pe

2n

r

U

r

n
U                 (12) 

where 

D

dU
Pe 0                     (13) 

is the Peclet number, which is a measure of the relative magnitude of the diffusional 

motion of the particles and the convective motion of the air past the fibre. All 

quantities in equation (12) are now dimensionless. For fibrous filtration the third term 

on the right hand side of equation (12) is much smaller than the other terms and hence 

has been neglected. 

Therefore the problem of determining the particle concentration in the vicinity of a 

fibre reduces to solving  


























 

r

n

r

1

r

n

Pe

2n

r

U

r

n
U

2

2

r                  (14) 

subject to the boundary conditions that n=1 away from the fibre and n=0 at the 

interception radius, which is 1+ for a clean fibre, where d
r2 p is the ratio of the 

particle and fibre radii. For large Peclet numbers the particles diffuse to the fibre from 

a thin layer (boundary layer) adjacent to its surface. The thickness of this layer is 

much less than half the distance between the fibres, which gives the condition that 


 1  where  is the non-dimensional thickness of the diffusion layer. In order to 

solve equation (14) it is necessary to apply a third boundary condition. This was done 

in a similar way to Stechkina and Fuchs (1966). Along the line =0, U=0, and hence 

equation (14) reduces to an ordinary differential equation  

0U
Pe.r

2

dr

dn

dr

nd

Pe

2
r2

2







                    (15) 

Dividing the line =0 into n-1 segments the derivatives can be approximated using 

finite differences and the value of Ur determined at any point using the BEM 

described earlier. This generated a set of equations for n at the ends of the segments 

which can then be solved, hence giving the values of n at finite points along =0. 
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Equation (14) was then solved numerically using the finite difference approach. A 

grid was generated by taking m radial lines emanating from the fibre centre and k 

curves parallel to the fibre surface. Initially for the clean filter these will be concentric 

circles but as the shape of the fibre surface changes due to particle deposition these 

gridlines will also change. The domain in which the grid was generated was taken so 

that any increase in its size had no significant effect upon the results obtained. The 

partial derivatives in equation (14) were then approximated using the values of n at 

the grid points, the nij, for i=1,k, j=1,m, by finite difference approximations and a 

system of equations for the nij generated. These were then solved to give the value of 

n at all the grid points. Various values of k and m were considered until any further 

increase in their values had no significant effect upon the results obtained. 

If an expression is available for Ur along =0 then equation (15) can be treated 

analytically. Such a treatment has also been undertaken here by approximating Ur, and 

is described in the next section. This investigation gives us a better understanding of 

particle deposition upon the fibre for different physical conditions.  

Analytic solution of equation (15) 

In this section, we extend the analytic treatment of eq.(15) by Stechkina and Fuchs 

(1966) to obtain expressions for the deposition flux, dn/dr, at  = 0. The parameters 

controlling the flux are related to the deposition geometry and particle variables, and 

we find different expressions in different parameter regions. 

Following Stechkina and Fuchs (1966), the non-dimensional radial flow field in (15) 

is taken to be a form valid near the cylinder surface: 

k2

rln2
r

1
1

U
2

r







 

         (16) 

where the hydrodynamic factor, for an isolated cylinder, is given by the Lamb 

equation in terms of the flow Reynolds number, 

k = 2 – ln Re.         (17) 

For a system of parallel cylinders (model 1), we use the expression in terms of the 

packing fraction, , 

44

3
)ln(

2

1
k

2
        (18) 

Equation (15) can now be integrated, as by Stechkina and Fuchs (1966), to obtain 
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 



 

 1

I

dr

dn 1

0,1r

        (19) 

where the integral is 

 

I = drr exp{[ 3(rrrlnrln(



d exp{[ 3ln



ln( 

where the integration variable has been changed to  = r – 1 - 



The quantity, which represents the thickness of the diffusion layer around the 

cylinder, is given by 

3
1

Pe

k4






                     (21)

The integral, I, is a function of the two parameters,  and , and it can be shown that, 

for the range of values of  and  that we need to consider, the exponent in the 

integrand becomes exceedingly  small well before  = 1. The exponent in the 

integrand, which we term F(  can then be expanded in a series in 

Because the first two terms in the expansion vanish when  = 0, to cover all 

physical cases it has been found necessary in general to go to 4th order: 

F( = [ - A() - B() 2 – C() 3 + D() 4 ] / 3,             (22) 

Where 
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To bring out the complex behaviour of this expansion, the coefficients have been 

expanded for small Both the coefficients A and B vanish in the point particle 

limit when =0. The dominant falloff in the exponential may be provided by either 

one of the first three terms depending on the values of  and the fourth term always 

being a relatively small correction. To understand which term is dominant in the 

exponent, F, we change the integration variable to X = A3, or X2 = 

Bwhen the integral takes the following alternative forms: 

I = (A) dX3X/Aexp[ -X –B3X2/A
2 –CX3/A

3   

-D9X4/A
4]      (24) 

or 

I = (B
1/2) dX3/2X/ B

1/2exp[ - AX/(B)1/2 -X2 –CX3/B
3/2  

– D3X4/B
2].      (25) 

 

The boundaries between the region where the X term provides the exponential cutoff 

and the regions where the X2 or X3 term provide the cutoff are points for which the 

coefficients of these terms in the first exponent are equal to 1, giving the critical 

values of 

A-B = (A
2 /B )

1/3, A-C = (A
3 /C )

1/6.                (26) 

Similarly, from the second exponent, the boundary between the region where the X2 

term provides the exponential cutoff and the region where the X3 term provides the 

cutoff is given by:  

B-C = B /C
2/3.                   (27) 

In Figure 3 we show the results of calculations of the A-B and B-C boundaries in the 

plane compared to points in the plane calculated for the physical examples 

given in Table 1. The X cutoff dominates in the bottom region shown in figure 3 and 

the X3 cutoff in the top region. In the narrow intermediate region, through which runs 

the A-C boundary which we have not plotted, the X2 term is the largest in the 

exponent, although it is not generally possible to neglect the other terms. In the 

extreme regions, one term in the exponent is dominant and we can obtain analytic 

approximations to the integral. Accurate boundaries where these approximations are 

valid have not been determined so that the neglected terms may make sizeable 

contributions to the integral at points near to the boundaries. For the first small  

region, it is easy to calculate resulting corrections to the main result as we now show. 
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The lower, small region 

Here A is the largest term in the exponent, and we expand the B and C terms and 

the term to first order in to obtain 

I = ( 1 + )-1d- 2 B()/ 3– 3 C()/ 3  exp[- A()  / 3] 

 

  = ( 1 + )-1 [ 3 / A – (3 / A)
2 / ( 1 + ) – 2 (B / (3 / A)

3 

 – 6 (C / (3 / A)
4].                  (28) 

 

The upper, larger region 

 

 Here, the C term in the exponent dominates and the simplest approximation is to 

take first, 

I =  ( 1 + )-1dexp ( - E 3),                 (29) 

where  

E = C() / 3.         

We change the variable to Y = E1/3  when the integral becomes 

I = E-1/3 ( 1 + )-1 I0,                   (30)  

where the dimensionless integral is a constant: 

I0 = dYexp ( - Y3) = 2 3  / [ 9 (2/3)] = 0.8930.              (31) 

In terms of the original parameters, 

I = 0.8930 C()-1/3  (1+)-1.                  (32) 

Values of the integral I given in equation (20) were also determined numerically for 

various values of  and  and were found to be in good agreement with the analytical 

expressions (28) and (32).  

To return to the comparison with the physical data of Table 1 shown in Figure 3, we 

see that the physical points spread across from the upper region, where the C term 

dominates, to the lower region, where the A term dominates, as  increases. Case 6 

of = 0.5 is a rather unphysical case of a particle half as wide as the fibre which is 

well into region A. However, for very small values of particles of much smaller 

values of  will also be in this region, and presumably have a similar type of 

deposition pattern. The point particle limit of =0 does not extend far into larger  

when  is very small. 
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Values of  are consistently smaller for parallel fibres than for isolated or random 

fibres. The flux at =0 given by the integral will be smaller in this geometry, resulting 

from the shadowing  of particle flux by the preceding fibre. Altogether, evaluation of 

the parameters and , should help in the characterization of particle deposition.
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Results 

a) Clean filter 

Initially the case of a clean filter was considered. This is the situation most often 

considered in the past literature and hence there are results available with which to 

validate the model described here. An important characteristic used to evaluate the 

performance of a filter is the particle collection efficiency, which is the measure of 

the efficiency of a single representative fibre in the filter. This is defined to be the 

ratio of the number of particles that are actually removed by the fibre to the number 

entering the ‘cell’. Hence, in terms of dimensional quantities,  

000

0 rr

nbU2

ds
N

n
D2

1




 








                    (33) 

where r1 is the interception radius which will change as deposition of particles occurs, 

b0 is the dimension of the cell and N is the normal to the fibre surface. In terms of 

dimensionless quantities equation (33) becomes 

Pe

I2 
                                (34) 

where I is the integral  




 









0 rr

ds
N

n
I

1

                   (35) 

where n, N, r1 and ds in equation (35) are all dimensionless. In the case of the clean 

fibre this integral is relatively straightforward to determine numerically with ds=r1d. 

Initially, in order to compare with the work of Stechkina and Fuchs (1966) we define 

an efficiency, SF,  to be the ratio of the number of particles that are actually removed 

by the fibre to the number crossing an area equal to that of the fibre. This can be 

written as: 

000

0 rr
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SF naU2

d
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)ra(D2
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                   (36) 

In terms of dimensionless quantities, equation (36) becomes 

Pe
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n
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0 rr
SF

1














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Values of SF have been determined for various values of , Pe and packing fraction 

. Results are shown in Figure 4, where SF is shown as a function of Pe for =0.05. 

In obtaining these results, model 1 was adopted in the flow calculations, this is the 

same system as considered by Stechkina and Fuchs (1966) and hence results obtained 

using their formula for SF are also shown.  Their formula was developed from their 

numerical results and given by: 

SFD++
Pe.k

24.1 3
2


                   (38) 

where: 

Pe

624.0
Pek9.2 3

2
3

1

D 


                  (39) 

   
 





 1k2

1

k2

1

k

1ln1
 

and k is given by equation (18). As can be seen in the figures the results obtained here 

agree well with Stechkina and Fuchs (1966) work, other values of  were considered 

and similar results were obtained with agreement best for small , this is expected as 

Stechkina and Fuchs (1966) model is only valid for small . 

It appears therefore that the method adopted is modelling the situation well, although 

calculations for large  are not realistic because of the relatively large size of the 

particles. 

Considering the effect the packing fraction  has upon efficiency figure 5 shows  

plotted as a function of Pe for =0.0025 for 3 different values of , 0.01, 0.05 and 0.1 

using model 1. As can be seen  increases with , this is to be expected as increasing 

 leads to an increase in the proportion of space in a cell occupied by the fibre and its 

diffusion layer. The smaller Peclet numbers correspond to lower flow velocities which 

give particles more time to diffuse to the fibre. The main purpose of this current work 

is to investigate the effects of particle deposition on the fibres upon subsequent 

deposition. As deposition is a function of N
n


 on the fibre surface, where N is the 

normal to the surface, this normal derivative is a quantity of interest in our 

calculations. In figure 6 N
n


  is shown as a function of where =0 corresponds to 

the front of the fibre and  the rear, for =0.05. Results are shown for the three 

numerical models, models 1-3, described for the air flow. Also shown is the 
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expression derived by Friedlander (1977) for  N
n


  for point particles. The 

behaviour of the derivative was investigated for various physical situations and it was 

found to fall into two regimes when using models 1 and 2. In one case N
n


 has an 

initial very gradual decrease from its maximum value at =0  and a more rapid 

decrease to zero near . In the other case N
n


 has a fairly rapid decrease at the 

front of the fibre which then tails off to zero at the rear. These two regimes 

correspond to the different regions identified by the analytical solution described 

earlier. An example of each case is shown in fig.6 where in fig. 6a Pe=5891 and 

=0.0025 which corresponds to small , large , and in fig. 6b Pe=363114, =0.05 

which corresponds to larger smaller. The results in fig. 6a correspond to the 

physical conditions, d=40m, U0=0.1m/s and rp=50nm and those in fig. 6b to 

d=20m, U0=0.5m/s and rp=500nm. As can be seen, for both cases, models 1 and 2 

give similar results but model 3 gives a smaller value of N
n


 at the front of the fibre. 

In model 3 the fibres are not taken to be staggered but assumed to lie in-line, hence 

symmetry on the flow field has been imposed up and down stream of the fibre. This 

leads to the differences shown in the results in figure 6. 

The expression derived by Friedlander is for point particles and hence is only valid as 

0 which explains the bad agreement with the numerical results in fig. 6b, 

however agreement is good in fig. 6a where  is small. The two regimes for the 

behaviour of  N
n


 as  increases can be explained physically. Away from the 

immediate vicinity of the fibre, particles are carried by the flow but in the thin 

diffusion layer adjacent to the fibre, particles diffuse to the surface. The non-

dimensional thickness of this layer, , can be approximated by equation (21). 

The behaviour of N
n


 as  increases shown in fig. 6a corresponds to relatively large 

values of , small and hence deposition due to diffusion is dominant and 

interception is not significant. The behaviour shown in fig. 6b corresponds to 

conditions such that the non-dimensional radius of the particle is of the same order, or 

larger, than . In this case interception will also have a significant affect upon 

deposition. In the rest of this work the first case will be considered, i.e. large , small 
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. In this case, for staggered fibres, it is possible to approximate N
n


  as a function 

of  by the expression 

 bp

0

a1
N

n

N

n













                  (40) 

where a, b and p are constants determined by the least squares method. Examples of 

how well equation (40) fits the numerical results are shown in Figure 7 for (a) 

Pe=1473, =0.05, (b) Pe=5891, =0.0025, (c) Pe=14728, =0.005. These correspond 

to (a) rp=50nm, d=2m and U0=0.5m/s, (b) rp=50nm, d=40m and U0=0.1m/s and (c) 

rp=50nm, d=20m and U0=0.5m/s. The numerical results shown in Fig. 7 were 

obtained using model 1 for the flow field.  
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b) Loaded filter 

In the following section the effect deposition has upon subsequent filter performance 

is investigated. In obtaining the results shown model 1 has been adopted in order to 

solve for the flow field though either of the other methods could equally as well be 

applied. 

Using equation (40) it is possible to determine the boundary of the new surface 

formed when particles have deposited on the fibres. As the rate at which particles 

deposit is proportional to N
n


  it is possible to write the equation of the new surface 

as  

 bpa11
N

n
1r 




                   (41) 

The term N
n


  is the derivative of n with respect to the outward normal to the 

surface, N. For a clean fibre N is in the radial direction but when particles have 

deposited this is no longer the case, an explanation on how N
n


  was evaluated here 

is given in appendix A. The constant which is a function of timeand initial particle 

concentration, defines the thickness of the layer of deposit on the front of the fibre 

where =0. 

Once the new surface formed by the deposit has been described it is possible to 

recalculate the flow field using the BEM method described earlier. The conditions 

=h, ’=0 now being imposed on the surface described by equation (41). Having 

obtained the flow field equations (14) and (15) are solved to obtain the particle 

concentration in the vicinity of the fibre. 

An example of the feedback effect of deposition upon N
n


 is shown in Figure 8 

where N
n


 on the surface is shown as a function of  when =0.05 for the cases of 

(i) clean fibre, (ii) one layer of deposit of the fibre and (iii) two layers of deposit on 

the fibre. In this case a layer is taken to be when the amount of deposit collected on 

the fibre is such that =0.1. As can be seen from the figure the effects of the initial 

stages of deposition upon the following deposition distribution on the fibre surface is 

not great. Hence the particle build up on the fibre surface grows with the majority on 

the front facing side.  

An example of the evolution of the deposit build-up is shown in Figure 9 for 

Pe=5891, =0.0025,  where, as can be seen for the parameters considered, deposit is 
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collected over the entire surface with maximum deposition occurring on the front 

surface. Other values of the parameters have been considered and the distribution of 

the deposit on the fibre surface is found to be dependent upon Pe and In the case of 

small Pe the dominant means by which the particles are transported to the fibre 

surface is their diffusive motion and hence the distribution of deposit around the fibre 

surface is more uniform. In the limit of pure diffusion, Pe=0, a uniform distribution is 

expected. For large Pe convection is the dominant means of transporting particles to 

the fibre surface and hence particle deposition on the rear of the fibre decreases. Such 

distributions have been noted previously by Kanaoka et al (1983). The effect of 

increasing  is also to decrease deposit on the fibre rear as finite size particles 

intercept with the front surface. For the values of the parameters taken in figure 9 

convection is dominant and hence particle deposit is mainly on the front of the fibre 

although some does deposit on the rear,  is small and hence interception is not 

playing a significant role. For larger values of particle deposit does not collect so 

close to the rear. 

Considering the effects that the initial deposition upon the fibre has upon the 

efficiency of collection, , figure 10 shows  as a function of Pe for the cases of no 

deposit and for 1 layer of deposit. Equations (34) and (35) were used to determine , 

an explanation of how the integral, equation (35), was determined for the loaded case 

is given in appendix B. Three different packing fractions are shown, =0.01, =0.05 

and =0.1 and =0.0025. As can be seen, although the effect of the deposition is to 

decrease N
n


 , as shown in figure 8, the efficiency is actually seen to increase, 

leading to more deposition. This is due to the greater area over which deposition now 

takes place as the surface changes.  The larger the value of  the greater the effect is.  

Considering the effects deposition has upon efficiency for different packing fractions, 

, figure 11 shows   as a function of  for the case of no deposit and for 1 layer of 

deposit for Pe=5891, =0.0025. As can be seen the effects of deposition upon  are 

more pronounced for the larger values of .  
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Conclusions 

 

In this paper a numerical study has been made of the performance of fibrous filters. In 

particular the effects of diffusional deposition upon subsequent deposition and filter 

efficiency have been investigated. In the course of the study is has been shown that 

the cell model chosen does have a significant effect upon the results obtained with a 

marked difference been seen in the rate at which particles are deposited upon the 

staggered and non-staggered fibres. In the case of parallel, staggered fibres when 

deposition due to diffusion is dominant and interception not significant then the 

surface formed by the fibre + deposit can be approximated by a simple function of . 

This fact makes it possible, using the numerical technique adopted here, to 

straightforwardly recalculate the flow field with the deposit on the fibre accounted 

for. An investigation has then been made into how the deposition affects further 

deposition and filter efficiency for various packing fractions. As has been observed in 

previous experimental studies, Thomas et al (2001), filter efficiency was seen to 

increase as deposition occurs. The larger the value of the packing fraction the more 

pronounced this effect was seen to be.  

The main advantage of the method described in recalculating the flow field following 

deposition  is its simplicity. The BEM only requires the boundary of the solution 

domain to be divided into segments and as, for the physical conditions considered 

here, the new surface formed by the deposit can be easily described, this is a 

straightforward matter. This method of calculation will enable us to evaluate changes 

to the initial distribution of single fibre efficiencies occurring in a real filter which 

result from aerosol deposition. 
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Appendix A 

The surface of the fibre can be described by the vector  

     sin)g(1 ,cos)(g1rs                 (A1) 

where 
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nld is the number of layers of deposit on the fibre. 

The partial derivative of this vector with respect to  is then given by 

    



sin)('gcos)g(1 ,cos)('gsin)(g1

rs
            (A3) 

The vector normal to the surface N  will be perpendicular to 


 sr
and hence is given 

by: 

     cos)('gsin)g(1 ,sin)('gcos)(g1N  

i.e. 
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Hence the unit normal 

N  is given by   jNiNN yx 


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and 
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In terms of polar coordinates 
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Therefore the normal derivative 
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Appendix B 
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In order to determine this integral ds was determined as a function of d 

 

 

 

 

  

  

  

  

  

  

For d small it can be determined that  
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If there is one layer of deposit on the fibre then     11
bp

1a1g  , if there are 2 layers 

      2211
bp

21
bp

1 a1a1g   and in general  
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where nld is the number of layers of deposit on the fibre. 

By assuming that d is small equation g()-g(d) can be written as: 
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and hence from (B2) 

  222 )(G)(g1dds                   (B6) 

The integral (B1) can then be determined numerically.
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r2 
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d

ds 
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Figure captions 

Figure 1 The domains considered. Fig 1a represents the Kuwabara cell and the 

dimensionless scaling replaces d/2 by 1 and b0 by .d
b2h 0

1   In Fig. 1b the cell 

represents a fibre within a system of parallel cylindrical fibres, and the dimensionless 

scaling replaces d/2  by 1 and h by d
h2h 2  . 

Figure 2 The interception radius for the particles, r1, is pr2
d   which is replaced by 

1+ in dimensionless units.  

Figure 3 Boundaries between regions in the plane where deposition at =0 is 

specified by a different integral and will have different characteristics. Points 

corresponding to the physical filter cases shown in Table 1 are shown with the 

exception of case 1 where they are very close to those of case 8. The region below the 

lower line corresponds to the lower small  region and the region above the upper line 

to the upper large  region where analytical results are obtained in the text. 

Figure 4 SF as a function of Pe for =0.05, =0.05, =0.1 and =0.2.Also shown are 

the results of Stechkina and Fuchs (1966). 

Figure 5.  as a function of Pe for =0.0025, =0.01, =0.05 and =0.1. 

Figure 6. N
n


  as a function of  using the 3 different flow models. Also shown are 

the results from the model of Friedlander (1977). In 6a Pe=5891, =0.0025, in 6b 

Pe=363114, =0.05. 

Figure 7 
N

n




as a function of  determined numerically and using equation (40) for (a) 

Pe=1473, =0.05, (b) Pe=5891, =0.0025, (c) Pe=14728, =0.005 

Figure 8 
N

n




as a function of  for Pe=5891, =0.0025 



 31

Figure 9. Evolution of the deposit on the fibre surface for Pe=5891, =0.0025. Flow is 

from left to right. 

Figure 10.  as a function of Pe for packing fraction, =0.01, =0.05 and =0.1 for 

no deposit and for 1 layer of deposit on the fibre. 

Figure 11.  as a function of  for Pe=5891, =0.0025 with no deposit and with 1 

layer of deposit. 
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Table 1. Parameters for cases considered. All cases are for atmospheric pressure at 

20C and =0.05 

 

Case 

no.   

Fibre 

Diameter 

d m     

Velocity 

 

U0 m/s 

Re Particle 

radius 

rp nm 

Pe =2rp/d delta 

k parallel 



k isolated 

1 20 0.5 0.6595 50 7364 0.005 0.06129 0.08690 

2 20 0.5 0.6595 100 22600 0.01 0.04218 0.05980 

3 20 0.5 0.6595 500 363100 0.05 0.02106 0.02986 

4 2 0.5 0.06595 50 1473 0.05 0.13205 0.23402 

5 2 0.5 0.06595 100 4519 0.1 0.09087 0.16104 

6 2 0.5 0.06595 500 36310 0.5 0.04537 0.08041 

7 40 0.1 0.2638 50 5891 0.0025 0.08319 0.13128 

8 40 0.1 0.2638 100 1808 0.005 0.05725 0.09034 

9 40 0.1 0.2638 500 14525 0.025 0.02858 0.04511 
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Figure 9.  
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