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Abstract 

This technical note aims to raise awareness amongst radiographers of the application of Computed 

Tomography data in the production of models using Rapid Prototyping technologies.  It also aims to provide 

radiographers with recommendations that will assist them in providing three-dimensional Computed 

Tomography data that can fulfil the requirements of medical modelling.  Potential problem areas in data 

acquisition and transfer are discussed and suggestions are given for methods that aim to avoid these. 
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Introduction 

Medical modelling is the term for the production of highly accurate physical models of anatomy directly from 

3D medical image data utilising computer-controlled manufacturing machines commonly referred to as 

Rapid Prototyping (RP).  Medical modelling involves acquiring three-dimensional image data of human 

anatomy, processing the data to isolate individual tissues or organs of interest, optimising the data for the 

RP technology and finally building the physical model in an RP machine.  These machines have been 
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primarily developed to enable designers and engineers to build exact models of products that they have 

designed using computer-aided design software (CAD).  Consequently, RP technologies have developed to 

produce models of very high accuracy as rapidly as possible. 

 

Medical modelling has many applications and the most common has been in head and neck reconstruction 

including neurosurgery, craniofacial / maxillofacial surgery and manufacturing prosthetics and implants.  

Medical models are routinely used for diagnosis, communication and pre-surgical planning but also they are 

increasingly used in the design and manufacture of implants and prosthesis1-9, creating surgical guides10-15, 

making imaging phantoms and teaching.  Clear demonstration of benefits published in case studies and 

review articles has led to increasing interest in medical modelling16-18.  Hundreds of medical models are 

produced in the UK each year and the numbers are growing rapidly making it increasingly likely that 

radiographers will be asked to provide CT images for medical modelling. 

 

Usually, a surgeon or clinician who requires a medical model will request a 3D scan of the area of interest.  

The medical modelling process requires the relevant anatomy to be captured in a three-dimensional format 

and although a number of medical imaging technologies have been successfully employed to make models, 

including MRI19 and Ultrasound20, volumetric Computed Tomography (3D CT) is by far the commonest 

imaging modality.  The 3D medical image data is processed, mathematically modelled and subsequently 

transferred to a rapid prototype model provider for manufacture.  Useful reviews of the rapid prototyping 

methods and clinical applications are available21, 22.  After acquisition and transfer, the images are imported 

into specialist RP software and techniques such as image thresholding and region growing are used to 

isolate the desired anatomical structure23.  This data is then exported in a format called STL (Standard 

Triangulation Language) that can be utilised by RP machines.  The steps from CT image to 3D 

reconstruction as an STL file is illustrated in Figure 1. 

 
Figure 1: Thresholding, Region growing and 3D reconstruction 
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The software for the RP machine then slices the three-dimensional data to produce a cross-section for each 

layer the machine will build.  It is not possible to describe each RP technology in detail here but more 

information can be found in reference texts21.  A typical medical model of the mid-face and mandible is 

shown in Figure 2.  The model is multicoloured to help the clinician distinguish between different tissue types 

identified within the CT images. 

 
Figure 2: A typical medical model made by stereolithography. 

 
A good quality medical model would be defined as a model that is fit for purpose.  Specifically, it should 

include all of the anatomy of interest, be free from any artefacts that result in the physical model deviating 

from the anatomy and be sufficiently dimensionally accurate.  This technical note aims to provide 

radiographers with recommendations that will enable them to provide 3D CT images that can fulfil the 

requirements of medical modelling quickly and efficiently.  There have been many case studies describing 

the use of medical models and but comparatively few have addressed the issues encountered when 

attempting to utilise medical modelling24, 25.  Potential problem areas in data acquisition and transfer are 

addressed in this note and suggestions are given for methods that can be applied to limit or avoid these 

errors. 

 

CT Considerations for Medical Modelling 

 

Anatomical Coverage 

An ideal CT acquisition should be free from image artefacts, have isotropic voxel resolution, high image 

contrast between the anatomy of interest and neighbouring tissues and low noise.  It is clear that the series 

of axial images must begin and end either side of the anatomy of interest but it is important to begin and end 

the scan some distance either side of the region/anatomy of interest.  It is better to include anatomy above 

and below the area of interest, the amount being dependent on the region being scanned and the purpose of 

the model.  For example when constructing medical models of cranial defects to facilitate the manufacture of 
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a cranioplasty plate, it is helpful to include a margin of 20 mm around the defect so that the prosthetist can 

shape the titanium plate to fit the patient correctly.  In some cases, anatomy well beyond the area of direct 

interest is used to help form or shape a repair to a bone of soft tissue defect4, 5, 26-28.  For example, a model 

may include the left side of a body part so that symmetry can be used to assist the construction of a 

prosthesis on the right side.  The data volume should be continuous as non-continuous data may contain 

areas where the patient has shifted position slightly and the separate series will not align perfectly. 

 

 

Patient Arrangement, Positioning and Support 

Movement during the CT acquisition will result in movement artefact and distort the image data, which will 

translate directly through to the finished model.  In maxillofacial surgery anything greater than one-millimetre 

of movement may render a model unusable29.  Involuntary movement of the chest, neck, head or mouth can 

occur through breathing or swallowing.  Multislice CT is capable of imaging the chest or abdomen within 15 

seconds, which is achievable in a single breath-hold.  Although medical modelling is most commonly 

undertaken for bone structures, there is increasing interest in modelling soft-tissue structures including the 

heart and arteries30.  Therefore, gated acquisition for cardiac compensation using multislice CT scanning31 

would lead to significant movement artefact reduction.  The image data may be acquired during systole or 

diastole but the choice of which to use would depend on the model application and should be clarified before 

scanning.  Other sources of movement like swallowing or talking should be minimised as far as possible. 

 

It is increasingly common for 3D CT scans to be utilised in the multi-disciplinary management of a patient, 

where the image data is not only used for diagnosis but also for surgical planning, computer guided surgery, 

medical modelling and prostheses design.  The 3D CT data may be used to represent both hard and soft 

tissue internally but may also find subsequent application in tissue reconstruction or prosthetic rehabilitation.  

It is therefore important to consider the positioning and support of soft tissues to eliminate or reduce 

unwanted deformation of soft tissue.  The use of positioning pads should be considered so that the anatomy 

of interest does not become distorted prior to scanning.  Patient immobilisation techniques such as vacuum 

pillows or simple foam pads may be used to support the patient, even to the extent that the surgical position 

of the patient may be replicated within the scanner.  Examples of unwanted soft tissue deformations caused 

during CT acquisition can be seen in Figure 3 where the images were acquired for the soft tissue 

information.  Note the use of a hand in supporting a child’s chin in Figure 3.  The use of the data should be 

clarified with the referring clinician to ensure appropriate positioning and support is used. 
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Figure 3: Deformation of soft tissues caused by inappropriate support during CT acquisition. 

 

When using CT data for surgical planning it is often necessary for different bones to be manufactured 

individually so that they can be moved independently to simulate surgical techniques.  It is common for 

example when planning maxillofacial surgery to perform osteotomies and move parts of the mandible or 

maxilla.  Often the patient is scanned with a closed bite, which causes the data for upper and lower teeth to 

merge.  This makes subsequent separation of the mandible and maxilla using image-processing techniques 

very difficult.  The effect of this overlap can be seen in Figure 4.  For maxillofacial cases it is recommended 

that a slightly open bite or spacer be used that will enable the different jaws to be separately segmented. 

 

 
Figure 4: Joining of upper and lower teeth caused by closed bite during acquisition. 

 

 

CT Parameters 

There is a very wide range of CT technology available in the health service (from single slice helical to 64 

slices or greater) and the variation in clinical practice throughout the UK and Ireland is very wide.  It would 

not be appropriate for us to provide a definitive CT scanning protocol for any or all regions of the body, given 

that different centres will have different technology and imaging protocols depending on local needs.  It is 
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recommended that radiographers use their routine 3D volumetric protocol for the given anatomical area also 

taking into consideration some of the issues below. 

 

Slice Thickness 

To maximise the data acquired the reconstructed slice thickness should be minimised.  Some scanners can 

produce 0.5 mm slices, which gives excellent results but this must be balanced against increased radiation 

dose.  For example in maxillofacial surgery a slice thicknesses of 0.5 to 1 mm will be required to ensure the 

resulting model is sufficiently accurate.  A slice thickness of 2 mm may be adequate for larger structures 

such as the long bones or pelvis.  Using a slice thickness that is greater than 2 mm will result in a loss of 

data and a stepped artefact and is therefore not recommended for rapid prototype models. 

 

Consideration should also be given to slice reconstruction and overlap.  In single helical and multislice CT, 

the reconstruction of axial slices may be performed with a significant overlap.  This feature is especially 

useful where thin bones are present or 3D surface rendering of small blood vessels is required30.  For 

example, images were reconstructed from 1.0 mm slices with 0.5 mm increment (50% overlap) to aid the 

manufacture of titanium implant of the orbit7.  The 50% overlap had a significant effect on the visualisation of 

the orbital floor and on the surface quality of the medical model providing very smooth surfaces. 

 

Gantry Tilt 

Gantry tilt is commonly used it CT to provide the appropriate angle of slice relative to the anatomy of interest 

and also to reduce the radiation dose to the orbits in head scanning.  However, for the purposes of medical 

modelling, gantry tilt should be set to zero (00) as it does not significantly improve the quality of the acquired 

data and provides an opportunity for error when the service provider imports the images.  Large gantry tilt 

angles are clearly apparent on visual inspection of the data and may be corrected.  However, small angles 

may not be easy to check visually and may remain undetected or be compensated for incorrectly.  Even the 

use of automatic import of the medical image standard DICOM is no guarantee as although the size of angle 

is included in the format, the direction is not.  Failure to compensate for the direction correctly will lead to a 

distorted model, wasting time and money and potentially leading to errors in surgery or prosthesis 

manufacture. 
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X-Ray Scatter 

Dense objects such as amalgam or gold fillings, braces, bridges, screws, plates and implants scatter X-rays 

resulting in a streaked appearance in the image.  It is common practice in radiography to remove all metal to 

reduce artefacts where possible.  However, where metal implants cannot be removed the effects of these 

can be manually edited using medical imaging software to produce a better medical model.  However, this 

does depend on the expertise of the service provider and consequently the accuracy of the model in the 

affected areas cannot be guaranteed. 

 

Noise and Image reconstruction kernels 

Noise is a fundamental component of a CT image and is especially prevalent in dense tissues.  Medical 

modelling depends on identifying well-defined boundaries between different tissues, which is achieved by 

using pixel thresholding.  Noise interrupts the boundary, resulting in incomplete surfaces in 3D 

reconstructions that typically appear rough or porous as illustrated in Figure 5.  Efforts could be made to 

reduce noise by increasing mA where medical models are required.  However, any increase in dose would 

need to be clinically justified by the benefits of the medical model. 

 
Figure 5: The effect of noise on a three-dimensional reconstruction of vertebrae. 

 

During the reconstruction, digital filters (kernels) are applied which enhance or smooth the image depending 

on the clinical application.  Typically, the options will range from “sharp” to “smooth”.  Sharpening filters 

increase edge sharpness but at a cost of increasing image noise.  Smoothing filters reduce noise content in 

images but also decrease edge sharpness.  In general, when building medical models, smooth filters tend to 

give better results and are easier to work with.  Although the smooth image contrast appears poor on screen 

(Windows computers can only display 256 shades of grey and the human eye can only perceive about 70 

grey levels), density profiles show that the actual contrast is good and allows a lower threshold to be used. 
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Data Transfer 

3D medical image processing and medical RP software (e.g. Mimics, Materialise N.V, Technologielaan 15, 

3001 Leuven, Belgium, AnalyzeDirect, Inc. 7380 W 161st Street, Overland Park, KS, 66085 USA) require 

DICOM V3.0 data format and are usually sent to a medical modelling service provider on CD-ROM.  In 

nearly all cases, only the reconstructed axial/transverse images are required as further image processing 

and modelling will be carried out by the service provider.  CT images should be written without image 

compression or the automated viewing software.  From a patient confidentiality point of view, the exclusion 

of the manufacturer’s viewing software means that images on a lost or misplaced CD cannot be easily 

viewed without specialist knowledge and software.  The images do not need to be “windowed” prior to 

storage or transfer as access to the original DICOM images allows the service provider to view them with 

their own settings.  Careful consideration should be given to patient confidentiality and data security and 

procedures should be agreed with the service provider to ensure all data is securely and ethically treated.  

For example, data should be sent by registered post, the service provider should be requested to store data 

in a locked cabinet, and access to any data should be password protected.  Arrangements should also be 

made to return or destroy the CD on completion of the model. 

 

Conclusion 

A consideration of the issues described above will help to improve the source volumetric CT image data 

used for medical rapid prototyping and subsequently improve model quality. 
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