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Abstract 
 
Rubbers do not decompose easily and therefore disposal of rubber waste is a serious 
environmental concern. Raw material costs, diminishing natural resources, and the growing 
awareness of environmental issues and sustainability have made rubber recycling a major area of 
concern. Reclaiming and recycling rubber waste is a major scientific and technological challenge 
facing rubber scientists today. This paper reviews a number of important areas related to the 
reclaiming, characterizing, testing and recycling of rubber waste. These include: chemical and 
microbial devulcanization with particular emphasis on main chain scission and kinetics of 
chemical devulcanization reactions; the cutting-edge techniques for reclaiming devulcanized 
rubber waste by the action of large shearing forces, heat and chemical agents: and analytical 
techniques and methods for characterizing composition and testing of devulcanized rubber waste, 
respectively. In addition, some aspects of the recycling of devulcanized ethylene-propylene-
diene rubber (EPDM) waste will be reported. EPDM is used extensively in automotive 
components world-wide and recycling the rubber at the end of its useful service life is of major 
importance to manufacturers of automotive components.  
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1. Introduction 

        One of the problems that humanity faces in the 21st century is waste disposal management. 

Rubbers are used in many applications such as tires, window seals, engine mountings, hoses, and 

isolation bearings. Eventually, these articles must be disposed of or scrapped at the end of their 

useful service lives. Reclaiming and recycling of waste rubber has important implications for the 

protection of the environment, conservation of energy, re-use with or in place of virgin rubber, 

costs reduction, and modification of the processing behavior of rubber compounds.1 These topics 

will be examined briefly here.  

a) Protection of the environment: The environmental pollution caused by the disposal of waste 

rubber is getting increasing serious. For example, discarded old tires on open grounds are 

breeding places for mosquitoes and diseases which spread infections such as encephalitis and 

malaria. In addition, when tire dumps catch fire, they produce toxic fumes which are very 

harmful to the environment.1 

b) Conservation of energy: Raw polymers and chemicals used to manufacture rubber goods are 

mostly petroleum derivatives. For example, more than 70% of the raw materials used to 

manufacture synthetic rubbers is made from petroleum. Moreover, waste rubber is a high value 

fuel with a calorific value of roughly 33000 kJ/kg, which is the highest value in the industrial 

waste sector similar to that of coal.1 

c) Re-use with or in place of virgin rubber: Reclaimed waste rubber is used with raw virgin 

rubber or as replacement for it in many industrial rubber articles. For instance, shredded rubber is 

used in asphalt and children play grounds.  

d) Costs reduction and modification of the processing behavior of rubber compounds 

One of the major problems until now has been the limited use of waste rubber in real recycling 

loops, i.e., reuse in new rubber products. Improvement of the properties of waste rubber by 

developing a more selective breakdown process is an important issue and a global challenge.2 

        Rubber recycling techniques and science continue developing, aiming at the reutilization of 

waste rubber as close as possible to its virgin form. This type of recycling method where rubber 

is re-used like in its virgin form is called devulcanization or reclaiming. ASTM STP 184 A3 
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defines devulcanization as “a combination of depolymerization, oxidation, and increased 

plasticity” because each of these processes usually occurs during reclamation. In fact, 

devulcanization is the reverse of vulcanization. In sulfur vulcanization, the formation of both C–

S and S–S bonds takes place, and it is thus expected that during devulcanization, only C–S and 

S–S bonds cleavage should occur. In reality, in an ideal devulcanization process, crosslinks 

should be broken without main-chain scission. Figure 1 shows the difference in the molecular 

structure of virgin raw rubber, vulcanized rubber and devulcanized rubber.4  

        The energies required to break monosulfidic C-S , polysulfidic S-S and C-C bonds are 270, 

240 and 345 kJ/mol, respectively.5 Hence, caution should be exercised during devulcanization as 

much as possible to avoid C-C bonds cleavage. Cleavage of C-C bonds weakens mechanical 

properties of the re-vulcanized waste rubber. 

        Ethylene-propylene-diene rubber (EPDM) (Fig. 2) was first introduced in the USA in 

limited commercial quantities in 1962.6 EPDM is a copolymer of ethylene and propylene with a 

diene monomer which introduces unsaturation sites or double bonds into the macromolecule. 

Currently, EPDM is the fastest-growing general purpose rubber. This is because EPDM has 

excellent properties such as high resistance to ozone and oxygen and ability to tolerate high 

loading of solid filler. In automotive applications, about 3 wt% of the total weight of a vehicle is 

made of non-tire rubber products, namely weather-strips, hoses, vibration insulators, and 

miscellaneous parts.7 EPDM was the preferred choice in this study because it is used extensively 

in automotive components world-wide and recycling the rubber at the end of its useful service 

life is of major importance to manufacturers of automotive. 

        This paper reviews a number of important areas related to the reclaiming, characterizing, 

testing and recycling of rubber waste. These include: chemical and microbial devulcanization 

with particular emphasis on main chain scission and kinetics of chemical devulcanization 

reactions; the cutting-edge techniques for reclaiming devulcanized rubber waste by the action of 

large shearing forces, heat and chemical agents: and analytical techniques and methods for 

characterizing composition and testing of devulcanized rubber waste, respectively. In addition, 

some aspects of the recycling of devulcanized ethylene-propylene-diene rubber (EPDM) waste 

will be reported.     
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2. A review of recycling technology of scrap rubber   

2.1. Background to regeneration/devulcanization of scrap rubber  

        There are significant economic and environmental reasons to develop recycling 

technologies and recycle scrap rubber for further industrial use. In recent years, outstanding work 

has been carried out to recycle waste rubber. Myhre and MacKillp8-15 reviewed reclaiming, 

regeneration/devulcanization of scrap rubber in detail. They identified at least three important 

processes for reclaiming scarp rubber. They were thermal process, followed by the heater/pan 

and the alkali digester process, which worked well to reclaim natural rubber. The alkali digester 

process, was similar to the heater process but performed in a jacketed autoclave. The method of 

reclaiming rubber utilizing aqueous alkaline solutions was eventually phased out because of 

environmental pollution hazard. Other methods include grinding and size reduction. The major 

processes for making crumb rubber are mechanical grinding at ambient temperature, cryogenic 

grinding and wet grinding. Ambient grinding is carried out on a two-roll cracker-type mill.16 This 

is a very elaborate process which involves coarse crumb sizing, ultrafine sizing, metal separation, 

fiber separation, bagging and weighing. The process reduces large pieces of scrap rubber to size 

in the range of 10-40 mesh in the first stage and then to crumbs size of 80 mesh in the final 

stage.17 Cryogenic grinding first cools shredded rubber pieces less than 3 inches in size with 

liquid nitrogen so the rubber is frozen.18 The frozen shreds are then passed through an impact 

mill to shatter and ground it into finer mesh grinds. The crumb is then dried fibers and metal 

separated and then classified into the various mesh sizes. Wet grinding uses a series of grinding 

wheels with water sprayed continuously to ensure cooling of the crumb. Water is then separated 

from the crumb, dried and then the physical properties such as bulk density, particle size and 

particle size distribution measured.19-24 

2.2. A survey of important techniques and processes related to regeneration/devulcanization of  
         scrap rubber 
 
        Devulcanization of scrap rubber has been an extensive area of interest and activities over 

the years and various useful techniques have been developed. They include: chemical 

devulcanization, 25,26 thermal devulcanization,27,28 mechanical,29 chemomechanical,30-39 

thermomechanical,40 thermochemical,41-48 ultrasonic,49-55 and some less effective methods,56,57 

and microbial devulcanization.67-70 
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• Chemical devulcanization - The devulcanization is carried out by refluxing a mixture of rubber 

peelings and an aromatic solvent with an aqueous alkaline solution of the catalyst. The mixture is 

then stirred vigorously for 2 hours at reflux temperature below 100oC and then the rubber is 

filtered off, washed and dried.25 There is also a chemical regeneration process where chemicals 

are added to the rubber and stirred with very little shear.26 A different process treats the scrap 

with ferrous chloride and phenylhydrazine for several hours at normal room temperature and 

pressure.27   

• Thermal devulcanization – This process heats the rubber crumb at a high enough temperature 

without chemicals and is only applicable to NR. The microwave energy causes molecular motion 

and this raises the temperature of the scrap rubber, causing crosslinks to be broken.28 It is 

possible to avoid damage to the carbon-carbon and break the sulfur-sulfur and carbon-sulfur 

bonds if the microwave energy can be controlled.  

• Mechanical – The crosslink density of solvent swollen chloroprene and EPDM slurries were 

catalytically reduced using screens, composed of alloys of iron and copper.29 This process 

achieved a 43% devulcanization. The tensile properties and flex life deteriorated when 5 and 10 

parts of the polychloroprene in a polychloroprene compound were replaced with the regenerated 

material. The compound containing the regenerated material had viscosities and shorter scorch 

safety than the virgin rubber.          

• Chemomechanical – The method mixes chemicals with scrap rubber often on two-roll mills 

and internal mixers to achieve devulcanization. Scrap rubber crumb from vulcanized tire 

compound was masticated on a two-roll mill with sulfur, diphenylguanidine and zinc oxide.30 In 

a separate process, ground rubber crumb was mixed with peptizers and some rubber chemicals to 

regenerate the rubber. This increased the plasticity of the crumb and made it easier to mix with 

virgin material to reduce cost.31  Other processes use accelerators, activators and curatives, as a 

master batch, which helps the material to be reused without further processing.32-35  The use of 

natural occurring material to regenerate rubber crumb has also been investigated. One agent was 

a diallyl disulfide and the other was a natural occurring material that had a disulfide as the major 

component. The reclaiming agents broke into radicals, increasing as the temperature increased, 

because of shear. These radicals then combined with the polymer main chains radicals, 
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preventing their recombining, hence the sol fraction increased.36-37 A process for reclaiming 

rubber crumb using standard equipment at a relatively low temperature was reported.38 The use 

of disulfides and standard equipment such as mill and extruder that applied shear to the rubber 

crumb caused it to regenerate.39               

• Thermomechanical - A shear flow stage reactor that was basically a single screw extruder with 

a specially designed screw was used to devulcanized EDPM scrap thermomechanically. The 

temperatures reached 250 to 300oC by the shearing of the rubber crumbs. This was an efficient 

method of generating heat in the rubber by shearing it. No external source of heat was required in 

this case.40    

• Thermochemical - This process reclaim scrap rubber without using normal alkali or acid. The 

process was performed in a steam or dry autoclaves at temperatures in the range of 150-190oC 

for a given period of time after which the material was removed and flattened on a two roll mill. 

A wide variety of organic chemicals were used to carry out this process.41 The use of organic 

long chain saturated acids and long chain aliphatic amines to reclaim rubber has been reported.42 

Other chemicals such as bis(trialkyl phenol) sulfides,43 phenol sulfoxide,44 dialkyl aryl methyl 

hydroperoxides,45 and aromatic amine sulfides46,47 have also been used to reclaim rubber. A 

process of regeneration by blending the ground scrap with a plasticizing mixture of dipentene, 4 

parts tall oil, 2 parts of a highly aromatic tar distillate and catalyst such as phenylhydrazine - zinc 

chloride complex, then placing it in a kettle at 150 to 190oC leaving about 8% undisolved has 

also been successful in reclaiming scrap rubber.48   

• Ultrasonic devulcanization – Ultrasonic waves can be used to generate sufficient level effects 

that would be suitable to initiate the breaking down of the sulfur crosslinks. Since the sulfur-

sulfur bonds have lower bond energies than those of the carbon-carbon bonds in the polymer 

backbone, the ultrasonic waves should have enough energy to cause devulcanization. The 

process does not require solvent or plasticizer and the resulting material can be revulcanized.49 

The early work of Isayev et al.50 on the development of ultrasonic technology for 

devulcanization of waste rubbers showed that the ultrasonic waves of certain levels in the 

presence of pressure and heat rapidly break up the three dimensional network in crosslink 

rubbers. The devulcanized rubber was reprocessed, shaped and revulcanized in much the same 
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way as a virgin rubber. The work was carried out with model styrene-butadiene rubber (SBR) 

and with ground rubber tire (GRT). Curing behavior, rheological properties, and structural 

characteristics of rubbers devulcanized at various processing conditions were studies, as well as 

mechanical properties of revulcanized rubber samples. The process led to a breakdown of the 

carbon-carbon bonds in the molecular chains. The subsequent efforts were directed to improve 

the selectivity of the ultrasonic devulcanization process in breaking down the chemical crosslinks 

so that less degradation of the rubber occurred.  Later work on the use of ultrasonic waves to 

recycle scrap rubber was also very successful. The effect of ultrasonic treatment on crosslink 

density, gel/sol ratio and glass transition temperature of a styrene-butadiene rubber (SBR) 

vulcanizate showed large reduction in the crosslink density and the gel formation.51 The 

mechanical properties of the revulcanized SBR were measured and showed that under some 

processing conditions, the tensile strength of the revulcanized SBR was much higher than the 

original vulcanizates with no change in elongation.52 In the case of NR, the degree of 

devulcanization passed through a maximum at an intermediate level of ultrasonic energy and the 

mechanical properties depended upon the revulcanization recipe.53 Other studies showed that an 

increasing carbon black level resulted in an increase in the degree of devulcanization. The 

ultrasonic treatment appeared to cause a partial deactivation of carbon black.54 Continuous 

ultrasonic devulcanization of carbon black filled synthetic polyisoprene (IR) and natural rubber 

showed a greater extent of devulcanization than CB filled NR. This difference was attributed to 

the amount of stereoregular structures in the IR and NR rubbers.55   

        Other methods have also been used to devulcanize scrap EPDM rubber crumb. For example, 

Tzoganakis et al.56 used supercrititical CO2 in an industrial-scale twin screw extruder to 

devulcanize scrap EPDM crumb. At the same time, effect of processing conditions such as screw 

speed and feed rate on the sol and gel fractions, degree of devulcanization and Mooney viscosity 

of devulcanized rubber were also investigated. Ground rubber tire (GRT) has been used as a 

dispersed phase in a thermoplastic matrix with the use of compatibilizers. The properties 

achieved were inferior and thus GRT based thermoplastic elastomers (TPE) had limited 

applications.57    

       All the evidence seems to suggest that there are a large number of advanced thermal, 

mechanical, chemical, and radiation processes available for reclaiming rubber waste. They 
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include thermal process, heater or pan process, digester process, ambient grinding, cryogenic 

grinding, wet grinding, chemomechanical, thermomechanical, thermochemical, ultrasonic and 

microwaves. Numerous techniques for recycling rubber waste have also been developed. They 

are autoclave, microwaves heater, ultrasonic reactor, twin screw extruder, and internal batch 

mixer. The analytical methods for testing and characterizing devulcanized rubber waste are: 

solvent swelling, thermogravimetry analysis (TGA), solid-State H neutron mass spectroscopy 

(NMR), differential scanning calorimeter (DSC), atomic absorption spectroscopy, inductively 

coupled plasma atomic emission spectroscopy (ICP-AES), inductively coupled plasma optical 

emission spectroscopy (ICP-OES) and elemental analysis which involves the determination of 

the mass fraction of carbon, hydrogen, nitrogen, and heteroatoms (X) (CNHX).    

3. Chemical and microbial devulcanization of rubber waste  

        EPDM has different reactivity towards devulcanization compared with natural rubber (NR) 

vulcanizate when treated with aromatic disulfides because of the difference in the rubber chain 

structure and the crosslink sites.6 In the period 1995-2005, a group at the University of Twente 

spent a huge amount of effort to devulcanize and reuse scrap EPDM rubber.  Two papers were of 

significant interest to the authors. One reported modeling on the kinetics of an EPDM 

devulcanization in an internal batch mixer using hexadecylamine (HAD) as the devulcanizing 

agent.58 The model included all the rate determining parameters that occur during the 

devulcanization process such as temperature, shear rate, reactant concentrations and times. HAD 

was optimally used for the main reaction with the crosslinks and performed well in the 

devulcanization process. Effect of disulfides as devulcanizers on the thermochemical recycling 

of NR and EPDM vulcanizates was also studied.  It was interesting that NR sulfur vulcanizates 

were completely plasticized when heated with diphenyldisulfide at 200oC. It was concluded that 

both main chain scission and crosslink scission caused the network breakdown. For EPDM a 

temperature range of 200-275oC was used, and it was found that there was almost no 

devulcanization of EPDM sulfur vulcanizates at 200oC in the presence of diphenyldisulfide. 

However at 225 and 250oC, there was only slightly more devulcanization.59   

        Fig. 3 shows a devulcanization reaction mechanism proposed by Mouri et al.60. These 

workers studied mechanism of devulcanization by shear flow stage reaction control technology 

for sulfur vulcanized EPDM rubber based on the network structure of the devulcanized rubber 
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and behavior of crosslinking bond breakage. They found that the sulfur crosslinks of the 

vulcanized rubber broke selectively during the devulcanization reaction. There were three types 

of crosslinks, monosulfide, disulfide and polysulfide. At the initial stage of the reaction, 

polysulfide and disulfide crosslinks changed into monosulfide ones by heat. Furthermore, 

monosulfide crosslinks were broken by the addition of shear stress and finally, a devulcanized 

rubber was obtained. Residual sulfur atoms at the broken crosslinking bonds were stabilized by 

the reaction of adjacent hydrogen atoms, and changed into less reactive sulfur functional groups. 

        Fukumori et al.61 proposed another perspective for devulcanization. The basic 

understanding of the cleavage of crosslinks under high shear stress which was suggested by these 

workers is as follows. As shown in Fig. 4, there appears to be only a small difference in the 

energy between C-C bonds, C-S and S-S bonds. The energies of C-C, C-S and S-S bonds were 

370, 310, and 270 kJ/mol, respectively.  It is worth mentioning that for C-C, C-S and S-S bonds 

energies 345, 270, and 240 kJ/mol have been reported,5 which are somewhat different from the 

ones reported by Fukumori.     

        By simple heating in a pressure vessel, cleavage of both C-C, C-S and S-S bonds may occur 

unselectively. Hence, this leads to the lowering of the mechanical properties of the reclaimed 

rubber by the conventional method. On the other hand, with regard to the elastic constant k for 

these bonds (estimated approximately on the basis of the values for crystals), the k-value for the 

S-S bonds can be estimated to be about 1/30th of that of the C-C bonds, as shown in Fig. 4(a). 

Generally, it is understood that the mechanical behavior of crosslinked rubber may be mainly 

controlled by the entropic term in the strain energy. In contrast with this entropic deformation 

behavior, at extremely high shear stresses induced by filling and kneading in the reactor, most of 

the rubber molecules may become fully elongated to their limited extensibility. Under these 

conditions, the S-S bonds having lower elastic constant may become more extended in 

comparison with the C-C bonds, having higher elastic constant in an elastic manner as shown in 

Fig. 4(b). That is to say, the elastic energy induced by high shearing may be particularly effective 

on the S-S bonds, causing the selective breakage of the crosslink points.  

        Cavalieri et al.62 and Magini et al.63 proposed a different mechanism for the devulcanization 

of waste rubber. They suggested that devulcanization could be carried out with the aid of both 

shearing forces and chemical agents. A phenolic antioxidant [2,6-di-tert-butyl-4-methyl-phenol 

(BHT)] w a s  u s e d  as reclaiming agent to prevent aging and capture mechanically generated 
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macro-radicals (Fig. 5). When waste rubber powder underwent mechanical shearing, most of the 

reclaiming agent, 2-mercaptobenzothiazole disulfide (MBTS), transformed into radicals due to 

the temperature rising and also mechanical shearing. These radicals then combined with the 

broken polymer radicals and prevented the recombination of the polymer radicals as shown in  

Fig. 6.64 In other investigations, 65,66  diphenyl disulfide (DD) as reclaiming agent was dissolved 

in scCO2 (supercritical CO2) and the DD molecules solvated by the scCO2 penetration into the 

rubber vulcanizate. The presence of DD in the rubber vulcanizate led to the crosslink cleavage as 

shown in Fig. 7.  

        In terms of environmental conservation, biological processes (microbial metabolism) are 

useful for devulcanization.67,68 Some microbes exhibit biological activity toward sulfur and break 

down the sulfur crosslinks in rubber by oxidizing sulfur to sulfate. For example, waste rubber 

products are devulcanized by various Thiobacillus species. However, this method is slow, time 

consuming and has low conversion efficiency. Other miscellaneous methods such as 

devulcanization in supercritical carbon dioxide are also available but are not yet of industrial 

importance.69  

        Reportedly, Guangming et al.70 succeeded to devulcanize waste rubber by T. ferrooxidants 

microbe (Fig. 8). The first step of the microbial desulfurization was the detoxification of the 

waste rubber powder to remove additives which inhibited microbial growth. Then the waste 

rubber powder was mixed with the sulfur-utilizing microorganisms, which produced the sulfur-

oxidizing activity of enzymes to remove the sulfur links. The study showed that the crosslinks of 

the devulcanized rubber were ruptured at a certain depth. Ion chromatography (IC), Fourier-

transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS) 

techniques were used to determine which microorganism was most bio-reactive. This was done 

by monitoring the level of sulfate in solution, detect some groups, and characterize the oxidation 

state of sulfur in solids, respectively.71 

 

4. Kinetics of chemical vulcanization of rubber and chemical devulcanization of scrap 

rubber   

Vulcanization is a chemical reaction and is characterized by using kinetic parameters.  Due to the 

complex reactions taking place during vulcanization, phenomenological models usually are used 
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for kinetic study. These models are simple to compute and are based on the rate of reaction as it 

is shown in equation 1.72 

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑘𝑘(𝑇𝑇)𝑓𝑓(𝑑𝑑)                   (1) 

 

where c is the degree or extent of vulcanization, k is the rate constant as a function of 

temperature, and f(c)  is a function  of the degree of vulcanization. The degree of vulcanization 

can be measured by tracking the concentration of reactants and products but this process is 

difficult to monitor and also involves costly spectroscopic analysis. However, as the 

vulcanization reaction is exothermic in nature, it can be assumed that the heat released during the 

reaction is proportional to the degree of vulcanization.  

        Flynn-Wall and Ozawa (FWO) integral isoconversional method is used for calculating 

activation energy of a devulcanization reaction, using thermogravimetry analysis (TGA) 

according to equation (2).73-76 

𝐿𝐿𝐿𝐿 𝛽𝛽 = 𝑙𝑙𝐿𝐿
𝐴𝐴𝐴𝐴

𝑔𝑔(𝛼𝛼)𝑅𝑅
− 5.330 − 1.052

𝐴𝐴
𝑅𝑅𝑇𝑇

              (2) 

where 𝛽𝛽 is the heating rate, A is the pre-exponential factor, 𝛼𝛼 is the conversion at temperature T, 

E  is the activation energy, and R is the gas constant. The FWO method is based on the Doyle 77 

approximation and assumes that the reaction rate, at a specified conversion, is only a function of 

the temperature. For different heating rates at a constant conversion, a linear relationship is 

observed by plotting log 𝛽𝛽 versus 1/T, and E is obtained from the angular coefficient of the 

straight line.78,79  

5. Kinetics of chemical revulcanization of devulcanized scrap rubber   

Isayev and Sujan80 devulcanized ground rubber tire (GRT) using a coaxial ultrasonic 

devulcanization reactor at different ultrasonic amplitudes. The devulcanized samples were 

revulcanized isothermally using a sulfur-based recipe at various temperatures using an advanced 

polymer analyzer (APA 2000). The curves generated showed a reversion in the cure that was 

more obvious at higher temperatures. A simple vulcanization model was used to fit these cure 

curves and the corresponding kinetic model parameters were determined. Devulcanized samples 
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were cured nonisothermally in the APA at various constant heating rates and multiple heating 

steps to predict nonisothermal curing behavior, which included reversion. The crosslink density 

and gel fraction of the samples cured in the APA were determined and correlated to the state of 

cure at different times during the curing reaction. Utilizing this information along with the cure 

kinetics, the crosslink density distribution of compression-molded disks were predicted and 

compared to experimental data.  They subsequently derived an isothermal and a non-isothermal 

model for predicting the kinetic parameters for revulcanizing devulcanized GRT. For the 

isothermal case, they used equation 3 to calculate the state of re-cure (𝛼𝛼  ). 

𝑑𝑑𝛼𝛼
𝑑𝑑𝑑𝑑

= 𝐿𝐿𝑘𝑘1/𝑛𝑛𝛼𝛼(𝑛𝑛−1)/𝑛𝑛(1 − 𝛼𝛼)(𝑛𝑛+1)/𝑛𝑛                                 (3) 

where t is the curing time difference between the time and the induction time, n is the order of 

the reaction, α is the state of cure, and k is the rate constant with the Arrhenius type temperature 

dependence: 

                               𝑘𝑘 = 𝑘𝑘0 exp �− 𝐸𝐸
𝑅𝑅𝑅𝑅
�                                                               (4) 

where 𝑘𝑘0 is the pre exponential factor, E is the activation energy, and R is the Universal gas 

constant. The nonisothermal case was analyzed, assuming that nonisothermal conditions exposed 

by the sample consisted of many infinitesimal isothermal time steps, ∆𝑑𝑑 = 𝑑𝑑𝑗𝑗 − 𝑑𝑑𝑗𝑗−1. Using this 

assumption, the temperature profile was broken into small isothermal time steps and the non- 

isothermal induction time, 𝑑𝑑𝐼𝐼 , was obtained from isothermal induction time, 𝑑𝑑𝑖𝑖 , using the 

concept of induction time index : 

                          𝑑𝑑̅ = ∫ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑖𝑖(𝑅𝑅)

𝑑𝑑𝐼𝐼
0 = 1                                                                     (5) 

where isothermal induction time , 𝑑𝑑𝑖𝑖(𝑇𝑇) , at each time step is given by equation (6). 

                          𝑑𝑑𝑖𝑖(𝑇𝑇) = 𝑑𝑑𝑖𝑖0 exp �𝐸𝐸𝑡𝑡𝑖𝑖
𝑅𝑅𝑅𝑅
�                                                               (6) 

where 𝑑𝑑𝑖𝑖0 and 𝐴𝐴𝑑𝑑𝑖𝑖 are material constants independent of the cure temperature. When the value of 

the dimensionless induction time index, 𝑑𝑑̅ , reaches unity, the upper limit of the integration is 

taken as the nonisothermal induction time. The same assumption of infinitesimal isothermal time 
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steps was used for the determination of the cumulative state of cure. The following equation was 

used for the determination of the cumulative state of cure:81 

𝛼𝛼𝑗𝑗 = 𝛼𝛼𝑗𝑗−1 +
𝑘𝑘1(𝑇𝑇)

𝑘𝑘1(𝑇𝑇) + 𝑘𝑘2(𝑇𝑇)
{1 − exp[−𝑘𝑘1(𝑇𝑇) + 𝑘𝑘2(𝑇𝑇)) (∆𝑑𝑑)]}

+
𝑘𝑘2(𝑇𝑇)

𝑘𝑘1(𝑇𝑇) +  𝑘𝑘2(𝑇𝑇) − 𝑘𝑘3(𝑇𝑇)
𝑋𝑋�exp[−𝑘𝑘3(𝑇𝑇)(∆𝑑𝑑)]

− exp [−�𝑘𝑘1(𝑇𝑇) + 𝑘𝑘2(𝑇𝑇)�(∆𝑑𝑑)]�  𝑓𝑓𝑓𝑓𝑓𝑓 𝑑𝑑 ≥  𝑑𝑑𝑖𝑖               (7) 

where 𝛼𝛼𝑗𝑗 is the state of cure at any given instant after the induction period. The main 

disadvantage of using the above method is that it is unable to describe the induction period of 

cure, and this method requires the induction time to be defined as an explicit kinetic parameter. 

6. Techniques for reclaiming EPDM rubber waste  

6.1.  Autoclave  

        Ostad Movahed et al.82 used an industrial autoclave which provided both heating and high 

pressure steam for devulcanizing an automotive EPDM waste rubber powder. The powder was a 

mixture of several aged and new automotive rubber with an average particle size less than 1 mm. 

To aid the devulcanization process, 2-mercaptobenzothiazoledisulfide (MBTS) and 

tetramethylthiuram disulfide (TMTD), and aromatic and aliphatic oils were also used. MBTS and 

TMTD were used as devulcanizing agents. The autoclave was 4.5 m long and 1.5 m in diameter 

and had a nominal capacity of 8000 litres. About 250 kg of the oil-soaked waste powder was 

placed in the autoclave and the door was shut tight. Devulcanization was carried out in steam at 

165oC under 6 bar pressure, and at 175oC under 8 bar pressure, to produce devulcanized rubber 

compounds. It took 8 h to complete the process. The devulcanized waste powder, which looked 

spongy and rather inconsistent, was then removed from the autoclave and allowed to dry at 

ambient temperature for 24 h before it was processed on an industrial two roll mills for 2 min to 

produce a more consistent and homogenous compound for further use. Then a portion of the 

virgin EPDM rubber, which was used in a common formulation for the automotive rubber strips, 

was replaced with the devulcanized product to produce blends, which were revulcanized using a 

semi-efficient (SEV) vulcanization system. The viscosity, cure and mechanical properties of the 

blends were subsequently determined. The waste powder from the discarded EPDM automotive 
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parts was successfully devulcanized using an industrial autoclave. The oils had different effects 

on the devulcanization of the waste powder and MBTS was a more efficient devulcanizing agent 

than TMTD. The devulcanization percentage was calculated according to the procedure 

described in ASTM D297-13, using methanol and a Pycnometer. The devulcanization 

percentages varied between 28.6 to 94.7% depending on the devulcanization conditions. 

Replacing a portion of the virgin EPDM rubber with up to 60 wt% of the devulcanized powder in 

the common formulation for the automotive rubber strips reduced the viscosity, which was 

beneficial to the processing of the rubber compound. Also, replacing a portion of the virgin 

rubber with 60 wt% of the devulcanized powder in the formulation had no adverse effect on the 

scorch and optimum cure times, crosslink density and rate of cure of the rubber compound. In 

addition, replacing 20 wt% of the virgin rubber with the devulcanized powder in the blend had 

no adverse effect on the hardness, compression set, and modulus at 20% elongation of the rubber 

vulcanizate. Therefore, it was concluded that the devulcanized powder could be used in low 

quantity in order not to deteriorate the mechanical properties of the virgin rubber too much. In 

addition, there was sufficient evidence from this study to suggest that the devulcanized waste 

powder could replace a portion of the virgin rubber in the automotive rubber strips. This 

provided potentially a new recycling route for the waste powder.   

6.2.  Microwaves heating  

        Microwaves are electromagnetic radiation with wavelengths from 1 mm to 1 m, and 

corresponding frequencies between 300 MHz and 300 GHz.83 The two most commonly used 

frequencies are 0.915 and 2.45 GHz. Microwaves are used as a source of energy to break down 

crosslinks, mainly C–S and S–S linkages. This method has the advantage of volumetric heating, 

which is generated from the inner parts to the surface of the material and does not require an 

appreciable amount of time to affect temperature changes, and promotes efficient and uniform 

heating throughout rubber.84 However, materials heated using microwaves need to have a certain 

polarity, which is an intrinsic characteristic of a material. It is known that the microwave 

absorption and dispersion properties of EPDM are poor.85 This issue may be resolved by adding 

polar fillers such as silica and carbon black to the rubber.  

        Ostad Movahed et al.64 studied the devulcanization of an automotive EPDM  waste rubber 

powder by microwave heating and various devulcanizing chemical agents. The EPDM waste 
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powder was a mixture of several aged and new automotive rubber components with an average 

particle size less than 1 mm. Originally, the powder was made of particles roughly 1 cm in size 

but this was not suitable for devulcanization, because large particles did not devulcanize well. 

Therefore, the powder was ground to produce particles roughly 1 mm in size before 

devulcanization began. First N-cyclohexyl-2-benzothiazole sulfenamide (CBS), 

dipentamethylenethiuram tetrasulfide (DPTT), hexadecylamine (HAD), mercaptobenzothiazole 

(MBT),  MBTS, and TMTD chemicals, which were used as devulcanizing agents, were mixed 

with the aromatic oil and then added to the waste powder in a 500 ml glass beaker. Note that 

HAD was reported to be a good devulcanizer for EPDM rubber58 and hence it was used in this 

study. The waste powder was soaked in the oil for 24 h to allow it to penetrate into the rubber 

fully. Microwave oven had an output power of 900 W, frequency of 2000 MHz, and internal 

capacity of 30 litres. Devulcanization was carried out at 200, 230 and 260oC, for 3 minutes. 

Effect of different amounts of the aromatic and aliphatic oils on the devulcanization of the waste 

powder in the presence of a devulcanizing agent was also investigated. It was found that using 

microwave heating at these temperatures, and with the aid of CBS, HDA, and MBT chemicals 

and aromatic and aliphatic oils, the EPDM waste power was successfully devulcanized. The 

effectiveness of the chemicals to devulcanize the waste powder was summarized as:  HDA > 

MBT = CBS > MBTS = DPTT > TMTD. The lowest devulcanization was measured for the 

compound containing TMTD at about 75 to 80 % and the highest for the compound with HDA at 

about 91 to 94 % as temperature was increased from 200 to 260oC (Fig. 9).   The process was 

more efficient at higher temperatures. The devulcanized waste powder was then revulcanized 

with a sulfur cure system. The scorch and optimum cure times were very short, i.e. less than 1 

min, and the rate of cure very slow, i.e. as low as 1.7 S-1. The revulcanized rubber compounds 

had low crosslink densities as indicated by the ∆torque values. ∆torque was the difference 

between the maximum and minimum torque values on the cure trace of the rubber compounds 

and was an indication of crosslink density changes in the rubber. The hardness, tensile strength, 

and elongation at break of the revulcanized compounds were in the range of 49-79 Shore A, 2.0-

3.7 MPa, and 34-211%, respectively. This indicated that these revulcanized compounds could 

never be used for heavy duty applications. The most interesting finding of the study was the fact 

that the cure and mechanical properties of the revulcanized compounds were dependent on the 

composition and devulcanization conditions of the waste powder.  
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6.3.  Twin screw extruders and internal mixers 

         Twin screw extruders and internal mixers have been used to perform continuous 

devulcanization of scrap EPDM waste.6,58,86 Sutanto et al.86 applied a kinetic model to EPDM 

devulcanization in an extrusion process. Parameters that were included in the model were 

crosslink density, devulcanizing agent concentration, time, shear rate, and temperature. The 

extruder was considered as a series of plug flow and stirred tank reactors. The residence time 

was calculated using solid flow or liquid flow model, depending on the degree of decrosslinking. 

The model accurately predicted the decrosslinking degree inside the temperature boundary 

defined by the applied experimental conditions. Outside this boundary, the effect of chemical 

degradation on the measured conversion became more significant. A number of interesting 

results were reported. The model predicted the conversion in the extruder quite well. The 

analysis on the devulvcanizate did not show any significant amount of degradation product. The 

molecular weight of the devulcanizate was around 40% lower than the molecular weight of the 

virgin material, indicating less than one scission per polymer chain of the sol fraction. The 

successful continuous devulcanization process modeling showed that the extruder operating 

conditions could resemble the operating conditions in the batch system to attain the same shear 

and residence time.  As a result of Sutanto‘s work and the work of many other 

researchers,58,59continuous EPDM devulcanization in multi-screw extruder operations are in 

industrial operation in the USA.     

        Ostad Movahed et al. 87 devulcanized some automotive EPDM waste rubber power in a 

semi-industrial twin screw extruder, which provided shearing force and reactor, along with 

MBTS chemical as a devulcanizing agent. This was carried out at feed screw speeds of 6 and 8 

rpm, main screw speeds of 180 and 220 rpm at a constant temperature of 220oC. The twin screw 

extruder had a capacity of 100-250 kg/h.  The machine was equipped with a feeder with 

adjustable feed rate screw, cooling and heating systems as well as a main screw with rotating 

speed control. The devulcanized waste powder was recycled by mixing different amounts of the 

devulcanized powder with a commercial EPDM-based automotive rubber strips compound 

(referred to as reference compound) to produce 8 blends. The blends, reference compound and 

devulcanized powder were then cured with a semi-efficient (SEV) vulcanization system. The 

viscosity, cure and mechanical properties of the blends were measured and compared with those 
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of the reference compound to assess effect of the increasing amount of the devulcanized powder 

in the blends on the aforementioned properties. It emerged that that this method was efficient and 

practical for devulcanizing the automotive EPDM waste rubber powder and achieved 92% 

devulcanization. In addition, the devulcanized rubber was obtained continuously at the head of 

the reactor in the form of strand. The surface appearance of the devulcanized rubber depended 

strongly on the devulcanization condition namely, screw speed, temperature of the screw channel 

(devulcanization temperature), feeding rate and raw material composition. When the operating 

conditions were not optimal, the surface of the strand appeared rough. When the rubber 

properties were measured, it emerged that the Mooney viscosity remained unchanged when up to 

40 wt% of the devulcanized waste powder was in the blends with the virgin EPDM rubber. 

However, the viscosity decreased very substantially when the loading of the devulcanized waste 

powder in the blends was raised to its optimum. Lower viscosity was very beneficial for the ease 

of processing. The ∆torque, which indicated crosslink density changes in the rubber, was 

unaffected with 20 wt% of the devulcanized waste powder in the blends. The elongation at break 

was unaffected with 10 wt%, hardness with 50 wt%, compression set with 20 wt%, and tensile 

strength with 10 wt% of the devulcanized powder in the blends. The scorch and optimum cure 

times shortened and the cure rate index increased for the blends containing an increasing loading 

of the devulcanized powder. Interestingly, the cure characteristics and mechanical properties of 

the EPDM rubber vulcanizate were affected by the level of the devulcanized waste rubber.   

7. Methods for characterizing and testing of vulcanized rubber applied to revulcanized 

EPDM scrap rubber 

7.1. Swelling test 

        Swelling in solvents such as toluene is an effective and commonly used method for 

measuring crosslink density (CLD) and sol content of rubber vulcanizates. The crosslink density 

is calculated using the Flory–Rehner equation:88 
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where cr  is the CLD (mol/m3), sV  is the molar volume of toluene (1.069 × 410− m3/mol at 25 °C), 

0
rυ  is the volume fraction of rubber (polymer) in the swollen gel, and 𝜒𝜒  is the interaction 

parameter, which was calculated using the following equations:89,90 

𝜒𝜒 = 0.429 + 0.218𝜐𝜐𝑟𝑟𝜊𝜊                                                       (9) 

𝜐𝜐𝑟𝑟𝜊𝜊 = 1

1+𝑑𝑑𝑟𝑟𝑑𝑑𝑠𝑠�
1−𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠

1−𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠−𝑓𝑓𝑓𝑓𝑖𝑖𝑠𝑠
�(𝑤𝑤𝑠𝑠𝑤𝑤0

−1)
                                       (10) 

where 𝑑𝑑𝑟𝑟 and 𝑑𝑑𝑠𝑠 are the densities of the rubber and solvent, respectively; 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠    is the weight 

fraction of soluble material in the initial sample (sol fraction); 𝑓𝑓𝑓𝑓𝑖𝑖𝑠𝑠 is the initial weight fraction of 

filler in the sample; 𝑤𝑤𝑠𝑠 is the weight of the swollen gel; and 𝑤𝑤0 is the weight of the dried sample. 

The sol content and devulcanization % were calculated as follows: 

𝑆𝑆𝑓𝑓𝑙𝑙 𝑑𝑑𝑓𝑓𝐿𝐿𝑑𝑑𝑐𝑐𝐿𝐿𝑑𝑑 = 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑋𝑋 100 =  𝑤𝑤𝑖𝑖−𝑤𝑤0
𝑤𝑤𝑖𝑖

 𝑋𝑋 100            (11) 

Devulcanization (%) = 100 × (initial waste rubber CLD − final rubber CLD)/initial waste rubber 

CLD                                                                                                                 (12) 

where 𝑤𝑤𝑖𝑖 is the initial weight of the sample.                                        

         Equations 8-12 have been used to measure CLD and sol content of some revulcanized 

EPDM waste rubbers in toluene.  For example, Bani et al.91 used the Flory-Rehner equation, as 

derived from rubber elasticity theory, to calculate the CLD of some revulcanized carbon black-

filled devulcanized/virgin EPDM rubber. They reported values around 49-57 mol/m3for their 

samples, depending on the type of sulfur links in the rubber.  The author and co-workers64 

calculated the CLD and sol content of EPDM waste powder after oil extraction by acetone using 

equations (8) and (11), respectively, and reported a value 186 mol/m3 for the CLD and 0.5% for 

the sol content. After the waste powder was devulcanized under different conditions, the CLD 

and sol content were somewhere between 10 and 51 mol/m3 and 2.8 and 13.6 %, respectively. 

Clearly the equations used to calculate CLD and sol content for vulcanized rubbers are perfectly 

applicable to devulcanized scrap rubber and revulcanized blends of devulcanized/virgin rubber.  
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7.2. Chain scission in a polymer network.  

        One major work carried out by Horikx92 has been instrumental in our understanding of the 

devulcanization process of rubber waste. This worker investigated relations between the soluble 

fraction and the number of effective chains between crosslinks in a three-dimensional network 

undergoing a scission reaction. This lead to a correlation between the weight loss in a degraded 

NR network as a function of the percentage of the inactive chain. Three limiting cases were 

considered. They were random scission in the chains, scission in the chains directed by the 

crosslinks, and scission of the crosslinks only. The number of scissions was computed from the 

fraction of soluble material in a degraded network, as determined experimentally. This procedure 

was then applied to the oxidation of a NR vulcanizate. It emerged that in a NR sulfur-Santocure 

vulcanizate, the scission reaction accompanying the oxygen absorption at 100oC, did not involve 

opening of the crosslinks but it could not be establish whether the scission in the chains was 

directed or at random.  The study showed that there exited a simple relation between the soluble 

fraction of a network that had undergone scission and the effective number of chains in the gel 

fraction as determined by the swelling measurements. Furthermore, the fraction of soluble 

material in the degraded network was a measure of the number of scission.                

7.3. Thermogravimetry analysis (TGA) in determining the waste rubber composition 

        TGA was used as described in ASTMD6370-99 and E1131-08 methods to quantity carbon 

black and ash (filler) in waste rubber and nonorganic solids in liquids and solids. Ostad Movahed 

et al. 64,82,87  analyzed an automotive EPDM waste rubber powder by TGA (Fig. 10). The TGA 

results showed that EPDM degradation began at 287.6 °C and finished at 547.8 °C. Mass loss 

was also observed in the range 26.2–287.6 °C, because of the presence of the oil. In addition to 

the mass loss related to the oil and rubber, a transition in the range 550–613 °C was observed. 

This was attributed to the combustion of carbon black present in the sample (after changing the 

atmosphere to air at 550 °C). On the TGA curve, there was a clear peak around 700oC, probably 

related to the content of calcium carbonate. The waste powder was a mixture from several rubber 

articles, which contained carbon black and calcium carbonate. The calcium carbonate exhibited 

decomposition to calcium oxide with a weight loss in the region of 700oC (Fig. 10). The 

unburned residue was attributed to minerals and metals in the sample. Only 38.88 wt% of this 
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waste rubber or exactly 32.1 wt% of the initial waste rubber (before acetone extraction), was 

EPDM rubber. 

7.4. Solid-State H neutron mass spectroscopy   

        Neutron mass spectroscopy (NMR) is a powerful technique to investigate the chemical 

structure of insoluble materials. For EPDM rubber, NMR can be used to quantify the ethylene to 

propylene (E/P) weight ratio and has been proposed as a means to investigate crosslink density 

through the relative intensity of the diene peak, the relative width of the ethylene peak,94 and the 

measurement of the spin-spin 𝑇𝑇2 relaxation time.95-100 As an illustration, Moldovan et al.99 

studied the dynamic heterogeneities of polymer chains for a series of EPDM rubbers with carbon 

black N683 filler content varying from 20 to 70 parts per hundred rubber by weight (phr). Proton 

Hahn-echo decays were measured with an acquisition delay that played the role of a dipolar filter 

and removed the signal contribution from the bound polymer chains. The Hahn-echo decay was 

considered which was weighted only by the fluctuating part of the polymer chains. In addition, 

an exponential correlation function was considered in the derivation of the functional form for 

the Hahn-echo decay. The power-law correlation function was found to be inadequate to describe 

the Hahn-echo decay of mobile EPDM rubber segments for carbon black-filled samples in the 

investigated time domain. Liang et al.93 suggested that NMR and Fourier transform infrared 

spectroscopy (FTIR) were not suitable for the analysis of the waste rubber samples due to the 

line-broadening effect of paramagnetic species present in large concentrations (Fig. 11). 

7.5. Differential scanning calorimeter (DSC) 

        Differential scanning calorimeter (DSC) presents qualitative information on crosslink 

density and relative amount of ethylene in the EPDM rubber through measuring glass transition 

(Tg) and melting temperature (Tm) of the compound and is a complementary technique to 

TGA.101 Liang et al.93 used several EPDM waste ground rubber (WGR) grades and thermo 

mechanically regenerated and studied them with DSC (Fig. 12).  As shown in Fig. 12, near -

40℃ , a change in heat capacity corresponding to the glass transition is observed. For all the 

WGR grades, this transition is followed by an endothermic peak that is attributed to the melting 

point of ethylene crystals when high enough concentration (typically above 50 w/w%) of 

ethylene was present. 
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7.6. Atomic absorption spectroscopy, ICP-OES, and CHNS analysis 

        Atomic absorption spectroscopy, inductively coupled plasma atomic emission spectroscopy 

(ICP-AES), and inductively coupled plasma optical emission spectrometry (ICP-OES), are 

analytical techniques used for the detection of trace metals. ICP-OES, and elemental analysis 

which involves the determination of the mass fraction of carbon, hydrogen, nitrogen, and 

heteroatoms (X) (CNHX) like halogens and sulfur, are frequently used for determining the 

chemical composition of EPDM rubber waste. In an effort, Liang et al.93 used the 

aforementioned technique for various grades of WGR. They found that the total amount of 

CaCO3, ZnO, SiO2 and Al2O3 ranged from 16.0 to 19.9% and the values of sulfur ranged from 

0.1 to 0.4%. In addition, two most important metals as impurities in WGR samples were calcium 

and zinc. Calcium weight ranged from 4.00 to 6.15%. Calcium is often added as filler in the form 

of CaCO3, or it can be used as a processing aid in the form of calcium fatty acid salts. The use of 

CaO as a cure activator in concentrations ranging from 2 to 8% has also been reported.101 Zinc 

percentages were smaller, varying from 1.43 to 1.73%. Its most probable source is ZnO, which is 

used as activator. The other elements measured (cadmium, chromium, copper, iron, magnesium, 

manganese, sodium, nickel, phosphorous, and titanium) could not be detected above detection 

limit of the method (0.01%) except for aluminum.      

8. Some aspects of the recycling and analytical testing of devulcanized EPDM rubber waste  

        The ultimate target for recycling waste rubber is to replace virgin EPDM rubber entirely 

with devulcanized waste rubber. Bani et al.91 devulcanized an EPDM formulated rubber with the 

aid of microwave and replaced a part of  virgin rubber with the devulcanized rubber. They 

concluded that the virgin rubber and devulcanized rubber had good interfacial adhesion, which 

helped to produce better products than those  made of similar materials where the recycled part 

was made of ground undevulcanized EPDM rubber. Niloofar Kalantar et al.102 reviewed the use 

of waste polymer in asphalt to improve the properties of pavement.  Nabil et al.103-109 studied 

properties of devulcanized EPDM rubber and virgin NR blends. They measured morphology, 

cure and mechanical properties of the blends and concluded that the blends could replace virgin 

NR in corresponding applications. The use of recycled EPDM in polypropylene (PP) as a 

thermoplastic elastomer was studied. 110 The results indicated that good dispersion and 

compatibility between PP and recycled EPDM was obtained and incorporation of recycled-
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EPDM led to significant improvement in the PP impact strength.  Effect of recycled-EPDM 

rubber on the mica-filled EPDM rubber compounds was measured.111 It was found that the 

scorch time decreased with increasing the recycled-EPDM content, whereas curing time and 

∆torque showed the opposite trend. Wang et al.112 suggested an ingenious, simple, non-toxic, 

low energy consumption, labor unintensive process, which was carried out at ambient 

temperature and under pressure for reclaiming EPDM rubber. The reclaimed rubber was of a 

high quality and could be applied to waterproofing membranes. Pistor et al.113 studied effect of 

devulcanized EPDM rubber with microwave on the mechanical properties of correspondent 

blends with low density polyethylene (LDPE). They concluded that incorporation of the 

devulcanized EPDM rubber reduced toughness and increased elasticity modulus and impact 

resistance of the blends.  

        Santos et al.114 used 1-dodecanethiol chemical as a compatibilizer in the blend of virgin 

EPDM and recycled EPDM rubbers. They claimed that when using this chemical, more recycled 

EPDM rubber waste could be used without having a detrimental effect on the mechanical 

properties of the blend. For example, they used 1 unit of the recycled EPDM rubber waste with 1 

unit of the virgin EPDM to produce a blend with a tensile strength of 10 MPa. When the 

formulation was altered to 1.5 unit of the recycled EPDM rubber waste with 1 unit of the virgin 

EPDM and 1 unit of 1-dodecanethiol, the tensile strength remained unchanged. Use of 

devulcanized EPDM rubber waste in a polypropylene (PP)/high density polyethylene 

(HDPE)/EPDM ternary blend was also investigated.115 In this study, ternary blends of the 

aforementioned polymers were prepared in a laboratory twin screw extruder with the level of the 

devulcanized EPDM rubber waste increasing from around 20 and 40 to 60 wt% at 20 wt% 

concentration of HDPE. The blends were subsequently cured with sulfur dynamic vulcanization 

method. Mechanical properties of the blends were measured and then compared with those of the 

virgin EPDM rubber. It was concluded that the properties of the blends after the devulcanized 

EPDM rubber waste was incorporated were comparable to those of the virgin EPDM rubber. 

        A more recent study by Isayev investigated the ultrasonic treatment of unfilled EPDM and 

silica-, nanoclay- and CB-filled EPDM mixtures using a coaxial ultrasonic extruder at various 

ultrasonic amplitudes.116 It was found that the storage and loss moduli and complex dynamic 

viscosity of untreated and ultrasonically treated silica-filled EPDM mixtures were significantly 
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higher than those of the nanoclay- and CB-filled EPDM mixtures with the Tan Delta being 

significantly lower than that of the nanoclay-filled EPDM mixtures. The results further 

confirmed the versatile nature of the ultrasonic devulcanization technique when applied to 

different compounds. Ultrasonic devulcanization of tire rubber particles of 10 and 30 meshes 

using a new ultrasonic twin-extruder was carried out.117 The ultrasonic amplitude and 

devulcanization temperature were varied at a fixed frequency and the degree of devulcanization 

was investigated by measuring the crosslink density, gel fraction, and revulcanization behavior. 

Rubber of 30 mesh exhibited a lower die pressure and higher degree of devulcanization than that 

of rubber of 10 mesh. Revulcanizates with a greater degree of devulcanization exhibited a higher 

elongation at break, whereas those with a lower degree of devulcanization exhibited higher 

strength and modulus. Revulcanizates of rubber of 30 mesh exhibited a consistently higher 

elongation at break.   

        Mechanical methods for recycling scrap rubber also have proved to be effective. For 

example, EPDM rubber crumbs from used tyres were treated in batch and continuous processes 

to produce regenerated material. The effect of EPDM particle size, oil type and concentration as 

well as processing time, temperature, and mixing intensity were controlled for treatment in an 

internal batch mixer and a twin-screw extruder. The crosslink density reduced without the 

addition of a chemical agent.118 A study into the effect of EPDM particles size on its thermo-

mechanical regeneration process in a batch mixer showed the recycled material decomposing 

into particle groups from 125 to 1000 µm in size. There was also a significant crosslink reduction 

at the end of the process.119 EPDM rubber with varying crosslink densities and carbon black 

content as well as commercial EPDM waste ground rubber (WGR) were characterized using 

thermal and thermogravimetric (TGA) analysis. TGA was used to determine the amount of 

carbon black and inorganic material in the rubber and showed crosslink losses during heating.120 

Processability, curing characteristics and vulcanizate properties of EPDM compounds containing 

ground waste EPDM (W-EPDM) were studied.121 The ground waste had particle sizes in the 

range of 2 to 50 µm, with an average size of 10 µm. Mooney scorch time and the maximum 

rheometric torque of the EPDM compound decreased gradually and the processability improved 

on addition of W-EPDM. Furthermore, the vulcanizate properties of the W-EPDM-filled EPDM 

compounds showed the reinforcing nature of the ultrafine W-EPDM particles. When W-EPDM 

was compared with the inert precipitated CaCO3 filler in an EPDM compound, the result showed 
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that W-EPDM could be used as a cheap filler in EPDM compounds. W-EPDM could be 

incorporated into the window seal compound formulation and the drop in properties even at 100 

phr of W-EPDM was within acceptable limit, hence providing a new route for recycling the 

scrap rubber.  

         Recently, Marvin et al.122 reviewed the latest development in rubber recycling including 

chemistry, processing and applications. They concluded that the future of rubber recycling is 

predetermined by two major developments. On one hand the depletion of natural resources such 

as crude oil in the case of rubber, and on the other hand the obligation to reuse as much material 

as possible. The traditional methods of rubber recycling for example grinding and reclaiming 

will maintain their value but the market for these products is limited, hence the quality of 

recycled rubber products must improve. The most serious adverse effect of the existing 

reclaiming processes is their influence on the polymer structure where the functionality of the 

material is not kept intact. Therefore, the future technology for recycling of scrap rubber must 

focus on decrosslinking with minimum effect on the polymer and hence on the functionality of 

the material. This means that catalysts and devulcanization aids must be chosen carefully to 

avoid damage to the polymer. In addition, compounding principles for blends of virgin with 

devulcanized rubber need to be developed. One problem is the presence of curing additives in the 

recycling material, which are still active. Thus the curing system and conditions for a blend of 

virgin and devulcanized rubber must be adjusted to build a network with properties as close to 

the properties of the original material as possible. These authors suggested that rubber products 

should be designed for recycling. Rubber should be looked at as a composite material for easy 

separation of the different components. The polymer network needs to be stable under normal 

service conditions might be triggered by external parameters to dissolve for recycling purposes. 

The study concluded that new sophisticated rubber recycling technologies have a promising 

future because they are solutions to the most urgent problems of depleting raw materials and 

increasing amounts of waste. Tire was identified to be the largest application area for recycling 

and only higher quality devulcanized rubber should be used in large quantities for high-level 

products.   

9. Summary  
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        There are very advanced thermal, mechanical, chemical, and radiation processes available 

for reclaiming rubber waste. They include thermal process, heater or pan process, and digester 

process,8-15 ambient grinding,16-17 cryogenic grinding,18 wet grinding,19-24 chemical 

devulcanization,25,26 thermal devulcanization,27,28 mechanical,29 chemomechanical,30-39 

thermomechanical.40 thermochemical,41-48 ultrasonic devulcanization,49-55 and many other less 

efficient methods.56,57 Numerous techniques for recycling rubber waste have also been developed. 

They are autoclave,82 microwaves heater,83-85, ultrasonic reactor,49-55,80 twin screw extruder, 86,87 

and internal batch mixer.6,58,59 The analytical methods for testing and characterizing 

devulcanized rubber waste are: solvent swelling,88 thermogravimetry analysis (TGA),64,74,76,78 

solid-State H neutron mass spectroscopy (NMR),93,95-100 differential scanning calorimeter 

(DSC),101 atomic absorption spectroscopy,93,101 inductively coupled plasma atomic emission 

spectroscopy (ICP-AES),93,101 inductively coupled plasma optical emission spectroscopy (ICP-

OES),93,101 and elemental analysis which involves the determination of the mass fraction of 

carbon, hydrogen, nitrogen,93,101 and heteroatoms (X) (CNHX).93,101  In addition to these 

techniques and processes, and methods for characterizing and testing of vulcanized rubber which 

can also be applied to revulcanized scrap rubber,88-90 kinetics of chemical revulcanization of 

devulcanized scrap rubber can be  measured too.80,81  Moreover, the modern analytical 

techniques mentioned above will be instrumental in characterizing recycled/devulcanized rubber 

waste for efficient reuse with virgin rubber in blends and subsequent revulcanization of the 

virgin/devulcanized rubbers for industrial applications. The author and co-workers64,82,87 utilized 

some of these techniques and procedures to successfully devulcanize some EPDM scrap rubber.  

        Extensive studies91-122 have shown promising results for reusing devulcanized rubber waste, 

for example reclaimed EPDM rubber waste, with virgin EPDM and other polymers without 

causing detrimental effects on the mechanical properties of the final product. Therefore, 

reclaimed EPDM rubber waste can be mixed with virgin EPDM and thermoplastics to make 

products such as carpets, mats, and possibly window seals for automobiles,64,82,87 and as 

mentioned earlier,112 it can also be applied to waterproofing membranes. It is increasingly 

evident that in a near future rubber waste can be recycled on a much larger scale than currently is 

done, offering major benefits to health, safety, and also the environment. In their review paper, 

Marvin et al.122 stated that the most serious adverse effect of the existing reclaiming processes is 

their influence on the polymer structure where the functionality of the material is not kept intact. 
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They concluded that the future technology for recycling of scrap rubber must focus on 

decrosslinking with minimum effect on the polymer and its functionality. Also, Horikx92 showed 

that scission to crosslinks and rubber chains can be differentiated in the devulcanization process.  

Therefore, there is scope to improve the current recycling processes and procedures to recover 

the rubber more efficiently.   

 

10. Conclusions  

        We are likely to see major advances in the recycling of scrap rubber in the near future, using 

the processes and methods mentioned above. In addition, the modern analytical techniques 

referred to above will be instrumental in characterizing recycled/devulcanized rubber waste for 

efficient reuse with virgin rubber in virgin/revulcanized rubber blends for industrial applications. 

Though, the main concern will be to avoid scission to the polymer chains and increase efficiency 

of the sulfur crosslink scission. Previous studies92 have shown that these two processes can be 

differentiated during the devulcanization process of scrap rubber, and this will help to create a 

more promising route to the recycling of rubber waste. Further research will be needed to 

advance the current state of the art in rubber waste management and recycling with a view to 

extend the application of devulcanized rubber waste to produce more high quality products for 

industrial uses.    

 

 

 

 

 

 

 

 



28 
 

11. References 

1  V. V. Rajan, W. K. Dierkes, R. Joseph, and J. W. M. Noordermeer, Prog. Polym. Sci. 31, 811  
    (2006). 
2  V. L. Shulman, Introduction to Tire Recycling. European Tire Recycling Association (ETRA),  
   2008. 
3 ASTM Spec. Tech. Publ. N184A Glossary of terms relating to rubber and rubber technology.  
  American Society for Testing and Materials, 1987. 
4 P. Sutantu, Development  of  a continuous process for EPDM Devulcanization in an Extruder,  
  Ph.D dissertation: University of Twente, Netherland; 2006. 
5 J. Olmsted, and G. M. Williams,  Chemistry: The Molecular Science: Mosby; 1997. 
6 P. Sutanto, F. L. Laksmana, F. Picchioni, and L. P. B. M. Janssen, Chemical Eng. Sci. 61, 6442  
  (2006). 
7 K. A. J. Dijkhuis, I. Babu, J. S. Lopulissa, J. W. M. Noordermeer, and W. K.  Dierkes, Rubber   
   Chem. Technol. 81, 190 (2008). 
8 E. W. Owen, Rubber Chem. Technol. 17, 544 (1944). 
9 D. S. Le Beau, Rubber Chem. Technol. 21, 895 (1948).  
10 W. C. Cook, Rubber Chem. Technol. 21, 166 (1948).  
11 D. S. Le Beau, Rubber Chem. Technol. 22, 560 (1949). 
12 J. C. Amberlang and G. E. P. Smith Jr., Rubber Chem. Techmol. 28, 322 (1955).  
13 J. M. Ball, “Introduction to Rubber Technology,” M. Morton, ed., van Nostrand Reinhold,    
    1959, ch. 7.   
14 J. Paul, paper #50 presented at a meeting of the Rubber Division, ACS, Oct. 4-7, 1977,  
    Cleveland; abstract in Rubber Chem. Technol. 51, 384 (1978).   
15 A. Nourry Editor, “Reclaim Rubber Its Development, Applications, And Future,” MacLaren  
    and Sons, London, 1962.   
16 R. Kohler and J. O’Neill, paper #35 presented at a meeting of the Rubber Division, ACS, Oct.  
    17-20, 1995, Cleveland, abstract in Rubber Chem. Technol. 69, 146 (1996).   
17 T. C. P. Lee, W. Millns, (to Gould, Inc.) U.S. 4,049, 588 (Sept. 20, 1997). 
18 G. B. Mottershead “Commercial Opportunities in Cryogenic Tire Recycling,” Rubber  
    Association of Canada Seminar, October 1998.   
19 K. Khait, paper#24 presented at a meeting of the Rubber Division, ACS, Apr. 19-22, 1994  
    Chicago; abstract in Rubber Chem. Technol.73, 734 (1994).  
20 K. Khait, Rubber World, 216(2), 38 (1997).  
21 K. Khait,”Solid-State Shear Pulverization,” Technomics, Lancaster, 2001. 
22 W. F. Watson, paper#117, presented at a meeting of the Rubber Division, ACS, Sep. 21-24,   
    1999, Orlando; abstract in Rubber Chem. Technol. 73, 172 (2000). 
23 K. F. Kelly and V. G. Nikolski, V. N. Balyberdine, N. Benham, I. Morris, B. M. Kelly,  
    paper#98 presented at a meeting of the Rubber Division, ACS, Oct. 21-24, 1997, Cleveland;  
    abstract in Rubber Chem. Technol. 71, 146 (1998).   
24 ASTM  D 5603-01, Classification for Rubber Compounding Materials-Recycled Vulcanizate  
    Particulate Rubber, ASTM Book Stand. 09.01, p.821.  
25 P. P. Nicholas, Rubber Chem. Technol. 55, 1499 (1982).  
26 M. Myhre and D. A. MacKillop, paper#21, presented at a meeting of the Rubber Division.,  
    ACS, Oct. 17-20, 1995, Cleveland; abstract in Rubber Chem. Technol. 69, 142 (1996).   
 



29 
 

27 S. Yamashita, Japan-USSR polym. Symp. (Proc. Eng) 1976, 355-364; Chem. Abstracts, 85,  
    34333f, (1976).  
28 D. S. Novotny (to Goodyear Tire & Rubber Company) US 4, 104, 205 (1978).  
29 K. Baranwal, J. W. Rogers, P. M. Standley, paper #39 presented at a meeting of the Rubber  
    Division, ACS, Sept. 29-Oct. 2, 1998. Nashville; abstract in Rubber Chem. Technol. 72, 235  
    (1999).  
30 F. B. Menadue, Rubber Age 56, 511 (1945).  
31 D. F. Twiss, A. J. Hughes, P. H. Amphlett, Brit. 577,868 & 578,482, 1946.  
32 STIK Polymers America Promotional Publication.  
33 K. K. Hon, F. Siesseger, B. C. Sekhar, S. W. Sin, paper #55, presented at a meeting of the  
    Rubber Division ACS, Oct. 17-20, 1995., Cleveland; abstract in Rubber Chem. Technol. 69,  
    151 (1996).  
34 R. Kohler and J. O’Neill, paper #58, presented at a meeting of the Rubber Division, ACS,    
     Oct. 8-11, 1995, Louisville; abstract in the Rubber Chem. Technol. 70, 162 (1997).   
35 R. Newell, Int. Rubber Conf., Manchester UK, 17-21, June 1996.  
36 D. De, B. Adhikari, S. Mait, J. Poly. Mate. 14, 333 (Dec. 1997).  
37 D. De, S. Maiti, B. Adhikari, J. Appl. Polym. Sci. 73, 2951 (1999).   
38 Y. Watabe, Y. Fuji, S. Anzai, J. Furukawa (to Bridgestone Tire Co.), US. 4,211,676 (July 8,  
    1980).  
39 M. Mouri, A. Usuki, N. Sato, (to Kabushiki Kaisha Toyota Chuo Kenky-usho) US. 5,672,630  
    (1977).  
40 M. Mouri, et al. as written, paper #84 presented at a meeting of the Rubber Division, ACS,  
    Apri, 13-16, 1999, Chicago; abstract in Rubber Chem, Technol. 72, 805 (1999).  
41 E. H. Cotton and R. A. Gibbons, US. 2,408,296,194 (Sept. 24, 1940).  
42 R. V. Le Beau (to Midwest Rubber Reclaiming) US. 2,423, 032 and 033 (June 24, 1947); 2,      
    363,873 (1945); 2, 372,584 (1945).  
43 H. E. Albert (to Firestone) U S. 2,605, 241 (Jul. 29, 1952).  
44 W. S. Cook (to Firestone) US. 2,560,050 (Jul. 10, 1951).   
45 J. R. Lewis (to Hercules Powder Co.) US. 2,558,764 (Jul. 3, 1951).  
46 W. A. Hensley and H. E. Albert (to Firestone) US 2,686,162 (August 10, 1954).  
47 W. G. Kirby, L. E. Steinle (to U. S. Rubber Co.) U.S. 2,359,122 (Sept. 26, 1994).  
48 H. Hildibrant, Continental G-W, A. G., Ger. P 1,244,390, 1967; Chem. Abstracts, 70, 82835w,  
    (1969). 
49 A. I. Isayev (to University of Akron) U.S. 5,258,413 (Nov. 2, 1993). I. Isayev (to University  
    of Akron) U.S. 5,284,625, (Feb. 8, 1994).  
50 A. I. Isayev, J. Chen, A. Tukachinsky, Rubber Chem. Technol. 68, 267 (1995).  
51 V. Y. Levin et al. as written, paper #57 presented at a meeting of the Rubber Division, ACS,  
    Oct. 17-20, 1995, Cleveland; abstract in Rubber Chem. Technol. 69, 151 (1996).   
52 A. I. Isayev, S. H. Kim, V. Y. Levin, paper #62 presented at a meeting of the Rubber  
    Division, ACS, Oct, 8-11, 1996, Louisville; abstract in the Rubber Chem. Technol. 70, 163  
    (1997).  
53 M. Tapale, A. I. Isayev, paper#83, presented at a meeting of the Rubber Division, ACS,  
    Oct. 21-24, 1997, Cleveland; abstract in Rubber Chem. Technol. 71, 142 (1998).    
54 S. H. Kim, V. Y. Levin, A. I. Isayev, paper #99, presented at a meeting of the Rubber  
    Division, ACS, Oct. 21-24, 1997, Cleveland; abstract in Rubber Chem. Technol. 71, 141  
    (1998).   



30 
 

55 S. H. Kim and A. I. Isayev, paper#55, presented at a meeting of the Rubber Division, ACS,  
    Sept. 29-Oct. 2, 1998, Nashville; abstract in Rubber Chem. Technol. 72, 241 (1999).  
56 M. Meysami, P. Mutyala, S. Zhu, and C. Tzoganakis. 72nd Annual Technical Conference of  
    the Society of Plastics Engineers: The Plastics Conference, ANTEC 2014; Las Vegas;  
    United States; 28 April 2014 through 30 April 2014; Code 113016, 2, 1025.   
57 P. Mutyala, M. Meysami, S. Zhu, and C. Tzoganakis. 71st Annual Technical Conference of  
    the Society of Plastics Engineers 2013, ANTEC 2013; Cincinnati, OH; United States; 22  
    April 2013 through 24 April 20143; Code 105955. 2, 1224.   
58 P. Sutanto, F. L. Laksmana, F. Picchioni, and L. P. B. M. Janssen. Chem. Eng. Sci. 61,  
    6442 (2006).  
59 M. A. L. Verbruggen, L. van Der Does, J. W. M. Noordermeer, M. van Duin, and H. J.  
    Manuel. Rubber Chem. Technol. 72, 731 (1999).  
60 M. Mouri, N. Sato, H. Okamato, M. Matsushita, H. Honda, K. Nakashima, K. Takeushi, Y.  
    Suzuki, and M, Owaki, Int. Poly. Sci. & Technol. 27, 17 (2000).      
61 K. Fukumori, M. Matsushita, H. Okamoto, N. Sato, Y. Suzuki, K. Takeuchi. Recycling  
    Technology of Tire  Rubber, J.S.A.F. Review.23, 259 (2002).  
62 F. Cavalieri, F. Padella, F. Cataldo, J. Appl.  Polym. Sci. 90, 1631 (2003). 
63 M. Magini, F. Cavalieri, and F. Padella, Mater. Sci. Forum 386-388:263-268 (2002). 
64 S. Ostad Mohaved, A. Ansarifar, S. Karbalaee Nezhad, S. Atharyfar . Poly. Degrad. Stabil.  
    111, 114 (2015). 
65 M. Kojima, M. Tosaka, and Y. Ikeda, Green Chem. 6, 84 (2004). 
66 M. Kojima, M. Ogawa, and H. Mizoshima. Rubber Chem. Technol. 76, 957 (2003). 
67 J. Kim, and J. Park,  J. Appl.  Polym.  Sci. 72, 1543 (1999). 
68 K. Bredberg, M. Christiansson, M. Bellander, B. Stenberg, and A. Holst, Prog.  Rubb. &   
    Plast. Technol. 17, 149 (2001). 
69 K. Jiang K, J. Shi, Y. Ge, R. Zou, P.Yao, X. Li, and L. Zhang. J.  Appl.  Polym.  Sci.      
    127, 2397 (2013). 
70 J. Guangming, and Z. Suhe.  J.  Appl.  Polym.  Sci.  116, 2768 (2010). 
71 L. Mingchao, L. Xiaoxue, L. Shuangquan, and Z. Yanfang,  Adv. Mat. Res. 554-556:181- 
    186 (2012). 
72 L. M. Lopez, A. B. Cosgrove, J. P. Hernandez Ortiz, and T. A. Osswald,  Polym. Eng.  Sci.  
    47, 675 (2007).  
73 V. Pistor, F. G. Ornaghi, R. Fiorio, A. J. Zattera, Thermochim Acta.  510, 93 (2010). 
74 T. A. Ozawa, Bulletin Chem. Soc. Jpn. 38, 1881 (1965). 
75 T. A. Ozawa,  Bulletin Chem. Soc. Jpn. 39, 2071(1966). 
76 J. H. Flynn, and L. A. Wall,  J. Res. Natl. Bur. Stand A Phys. Chem . 70,  487 (1966). 
77 M. Poletto, V. Pistor, M. Zeni, and A. J. Zattera,  Poly. Degrad. Stabil.  96, 679 (2011). 
78 L. Nu´n˜ez, F. Fraga, M. R. Nu´n˜ez, M. Villanueva, Polymer 41, 4635 (2000). 
79 L. Nu´n˜ez, M. Villanueva, M. R. Nu´n˜ez, and B. J. Rial,  J. Appl. Polym. Sci.          
    92, 1199 (2004). 
80 A. I. Isayev, and B. Sujan, J.  Elast.  & Plast.  38, 291 (2006). 
81 I. Han, C. B. Chung, and J. W. Lee, Rubber Chem. Technol. 73, 101 (2000). 
82 S. Ostad Movahed , A. Ansarifar , G. Zohuri, N. Ghaneie , and Y. Kermany,. J.  Elast. &  
    Plast. Published on line November 13, 2014.  
83 E. Thostenson, T. Chou, Composites part A 30, 1055 (1999). 
84 D. E. Clark, D. C. Folz, J. K. West, Mater. Sci. Eng. A 287, 153 (2000). 



31 
 

85 V. Pistor, and A. Zattera,  J.  Elast.  & Plast. 46, 69 (2014).  
86 P. Sutanto, F. Picchioni, and L. P. B. M. Janseen. Chem. Eng. Sci. 61, 7077 (2006).  
87 S. Ostad Movahed , A. Ansarifar, S. Karbalaee Nezhad, and S. Athary Far,  Prog. Rubb. Plast,   
    & Recyl. 31, 87 (2015).   
88 S. Wolff,  Rubber Chem. Technol. 66, 163 (1993). 
89 F. P. Baldwin, and G. Verstrate,  Rubber Chem.  Technol. 45, 709 (1972). 
90 ASTM designation, Standard Test Method for Determination of Percent Devulcanization of  
    Crumb Rubber Based on Crosslink Density: ASTM  D6814-02;2008. 
91 A. Bani, G. Polacco, and G. Gallone. J. Appl. Polym. Sci. 120, 2904 (2011).  
92 M. M. Horikx. J Polym. Sci., 19, 445 (1956).  
93 H. Liang, J. M. Hardy, D. Rodrigue, and J. Brisson, Rubber Chem. Technol. 87, 538 (2014).   
94 M. D. Ellul, A. H. Tsou,  and W. Hu, Polymer 45, 3351 (2004). 
95 M. Aluas, and C. Filip, Solid State Nucl.  Magn.  Reson. 27, 165 (2005). 
96 V. M. Litvinov, and W. Barendswaard,  Rubber Chem.  Technol. 71, 105 (1998). 
97 V. M. Livinov, Macromolecules 39, 8727 (2006). 
98 V. M. Litvinov, R. A. Orza, M. Klupel, Van Duin, P. C. M. M. Magusin, Macromolecules  
    44, 4887 (2011). 
99 D. Moldovan, R. Fechete, D. E. Demco, E. Culea, B. Blumich, V. Hermann, and M. Heinz,   
    J. Magn.  Reson.  208, 156 (2011). 
100 R. A. Ozra, P. C. M. M. Magusin, V. M. Litvinov, M. van Duin, M. A. Michels, J   
    Macromol symp.  230, 144 (2005). 
101 S. Bhattacharjee, H. Bender, and D. Padliya, Rubber Chem.  Technol. 76, 1057 (2003). 
102 Z. Niloofar Kalantar, M. Rehan Karim, and A. Mahrez, Constr. Build. Mater. 33, 55  
     (2012). 
103 H. Nabil, H. Ismail, and A. R. Azura, Mater. & Des. 50, 27 (2013). 
104 H. Nabil, and H. Ismail, Mater. & Des. 56, 1057 (2014). 
105 H. Nabil, and H. Ismail,  Int. J.  Polym. Anal. Ch. 014;19:159 (2014). 
106 H. Nabil, H. Ismail, and A. R. Azura,  Mater. & Des. 53, 651 (2014). 
107 H. Nabil, H.Ismail, and A. R. Azura, Polym. Testing 32, 385 (2013). 
108 H. Nabil, H, Ismail, and A. R. Azura, Iran Polym. J. 23, 37 (2014). 
109 H. Nabil, H. Ismail, and A. R. Azura, Polym. Testing 32, 631 (2013). 
110 P. Mahallati, and D. Rodrigue, Int  Polym. Proc. 29, 280 (2014). 
111 H. Ismail, S. Ishak, and Z. A. A. Hamid,  J. Vinyl. Addit. Tech:Published online 9 June,   
     2014. 
112 C. Wang, Q. Xie, and H. Bian, Key Eng.  Mat. 501, 311 (2012). 
113 V. Pistor, F. G. Ornaghi, R. Fiorio, and A. J. Zattera.  J.  Elast.  & Plast. 42, 417 (2010). 
114 G. C. Santos, D. M. Carmo, C. G. F. Rezende, A. J. Zattera, M. G. Oliveira, and P. J.  
      Oliveira,  J.  Appl.  Polym.  Sci. 122, 948 (2011). 
115 A. Jalilvand, I. Ghasemi, M. Karrabi, and H. Azizi, Iran Polym. J. 16, 637 (2007). 
116 H. Tan and A. I. Isayev. Rubber Chem. Technol. 81, 138 (2008).  
117 A. I. Isayev, T. Liang, and T. M. Lewis. Rubber Chem. Technol. 87, 86 (2014).   
118 A. Macsiniuc, A. Rochette, and D. Rodrigue. Prog. Rubb. Plast, & Recy. Technol., 26, 51    
      (2010).  
119 A. Macsiniuc, A. Rochette, and D. Rodrigue. Prog. Rubb. Plast & Recy. Technol. 28, 43  
     (2012).  
120 H. Liang, J-M. Hardy, D. Rodrigue, and J. Brisson. Rubber Chem. Technol. 87, 538 (2014).   



32 
 

121 C. Jacob, A. K. Bhowmick, P. P. De, and S. K. De. Rubber Chem. Technol. 76, 36 (2003).  
122 M. Myhre, S. Saiwari, W. Dierkes, and J. Noordermeer. Rubber Chem. Technol. 85, 408  
      (2012).   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



33 
 

 

 

FIG. 1.— Difference between the molecular structures of virgin raw rubber, vulcanized rubber, 
and devulcanized rubber.4 

 

 

FIG. 2.—Composition and molecular structure of ethylene–propylene–diene rubber (EPDM).6 

 

FIG. 3. — A general devulcanization reaction mechanism.60 
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FIG. 4.—Breakages of crosslinks in high shear flow: (a) model for the network chain; (b) 
deformation of the network chain (particularly S–S bonds) by shearing.61 

 

FIG. 5.—Capture of the macro-radical products in the presence of BHT.62,63 
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FIG. 6. — Devulcanization mechanism by combined heat, shearing force, and devulcanizing 
chemical agent 2-mercaptobenzothiazole disulfide (MBTS).64 

 

 

FIG. 7. — Mechanism of crosslink cleavage reaction using diphenyl disulfide in scCO2.65,66 
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Fig. 8.—Mechanism of devulcanization by T.ferrooxidans.70 

 

Fig. 9.—Comparison of the devulcanization percentage of the rubber compounds as a function of 
devulcanization temperature.82 
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FIG. 10.—TGA traces of a typical automotive EPDM rubber waste powder.64,82,87

 

FIG. 11.—Differential scanning calorimetry endotherms of some selected samples. Comparison 
of EPDM waste ground rubber samples.93 


