

This item is held in Loughborough University’s Institutional Repository
(https://dspace.lboro.ac.uk/) and was harvested from the British Library’s
EThOS service (http://www.ethos.bl.uk/). It is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

A STEMMING ALGORITHM FOR LATVIAN

by

Karlis Kreslins

A Doctoral Thesis
Submitted in partial fulfilment of the requirement for

the award of Doctor of Philosophy
of

Loughborough University

October 1996

Supervisors: Mr Alan Poulter, BA, MA, Msc, ALA

Mrs Inese A. Smith, BA, MA, FLA

Department of Information and Library Studies

0 1996 by Karlis Kreslins

CONTAINS DISKETTE

UNABLE TO COPY

CONTACT UNIVERSITY

IF YOU WISH TO SEE

THIS MATERIAL

To my parents and my godmother

who helped and supported me

ABSTRACT

The thesis covers construction, application and evaluation of a stemming algorithm for

advanced information searching and retrieval in Latvian databases. Its aim is to examine

the following two questions:
Is it possible to apply for Latvian a suffix removal algorithm originally designed

for English?

Can stemming in Latvian produce the same or better information retrieval results

than manual truncation?

In order to achieve these aims, the role and importance of automatic word conflation
both for document indexing and information retrieval are characterised. A review of
literature, which analyzes and evaluates different types of stemming techniques and

retrospective development of stemming algorithms, justifies the necessity to apply this

advanced IR method also for Latvian. Comparative analysis of morphological structure
both for English and Latvian language determined the selection of Porter's suffix

removal algorithm as a basis for the Latvian sternmer.

An extensive list of Latvian stopwords including conjunctions, particles and adverbs,

was designed and added to the initial sternmer in order to eliminate insignificant words
from further processing. A number of specific modifications and changes related to the

Latvian language were carried out to the structure and rules of the original stemming

algorithm.

Analysis of word stemming based on Latvian electronic dictionary and Latvian text

fragments confirmed that the suffix removal technique can be successfully applied also
to Latvian language. An evaluation study of user search statements revealed that the

stemming algorithm to a certain extent can improve effectiveness of information

retrieval.

ACKNOWLEDGMENTS

I should like to express the deepest gratitude to my supervisors Mr Alan Poulter and
Mrs Inese A. Smith for their invaluable and outstanding guidance, support and help

throughout all my study. I should also like to thank my Director of Research Dr Paul

Sturges for his advice and administrative work while I was studying at the University.

I am also indebted to Professor Margaret Evans, Head of Department, and Professor

John Feather, Pro-Vice Chancellor, for their support during my study. I would like to

express my very special thanks to all staff members of the Department for their help and

guidance on many occasions.

My deepest gratitude to the British Council, the Soros Foundation Latvia and the
Latvian Educational Foundation (UK) for their sponsorship and financial support.

I would like to express my appreciation to Ms Olga Rogova who helped me to solve a

number of complex programming problems. I am greatly thankful to Andrejs Spektors,

Arts Klints, Aivars Liepa, Ivars Indans, Inguna Greitane and Edgars Gasins for their

advice and help not only in programming and information retrieval but also in

linguistics. Many thanks to Ainars Bruveris and Lursoft Company as well as SWH

Riga for allowing the use of their databases in the evaluation study.

Special thanks are due to Dace Gasina, Baiba Sporane, Inga Grinfelde, Valda Laucina,
Baiba Holma, Baiba Muze, Marina Sanuka and Uldis Zarins for their willingness to

participate in the evaluation study of my stemming algorithm. I would also like to

express my gratitude to Dr Viktorija Drizule, Dr Sarma Klavina and Mrs Anna Maulina
for their advice and suggestions regarding the evaluation of Latvian word stemming.

Finally, my deepest thanks to Mr Andris Vilks, Director of the National Library of
Latvia, and all the other colleagues in Latvia who provided moral support and
encouragement during the period of my research in the UK.

ii

TABLE OF CONTENTS

Abstract i

Acknowledgments ii

Table of contents iii

List of tables vi

List of figures vii

Chapter I Introduction

1.1 Aims and objectives 1

1.2 Scope of thesis 1

1.3 Hypothesis 2

1.4 Methodology 2

1.5 Structure of thesis 2

Chapter 2 Main characteristics of information retrieval systems
2.1 General concepts of information retrieval 4

2.2 Document indexing 8

2.3 Best match searching and relevance feedback 14

2.4 Further developments in IR systems 17

2.5 Conclusion 18

Refere nces 20

Chapter 3 Word conflation and stemming algorithms
3.1 Introduction and definition 23
3.2 Types of stemming algorithms 24
3.2.1 Table lookup method 25
3.2.2 Successor variety 27
3.2.3 N-gram sternmers 31
3.2.4 Affix removal stemming algorithms 33
3.3 Review of automatic stemming algorithms for English 34
3.3.1 Early achievements in sternmer construction (1965-1970) 35
3.3.2 Next generation of stemming algorithms (1970-1980) 37
3.3.3 Latest developments (1980 -) 40
3.3.4 Automatic stemming and OPAC's 44
3.4 Construction of non-English language stemming algorithms 45
3.4.1 Stemmer for French terms 46
3.4.2 Slovene stemming algorithm 47

III

3.4.3 Algorithm for stemming in Latin 47

3.4.4 Word sterm-ning in other languages 48

3.5 Evaluation of stemming algorithms 51

3.6 Conclusion 54

Refere nces 56

Chapter 4 Structure of Latvian language

4.1 Introduction 60

4.2 Latvian alphabet and pronunciation 60

4.3 Morphological system in Latvian language 62

4.3.1 The concept of morphology and morphemes 62

4.3.2 The inflectional system of Latvian words 63

4.4 Comparative analysis of English and Latvian morphology 70

4.5 Conclusion 73

References 75

Chapter 5 Design of a Latvian stopword list

5.1 Introduction 77

5.2 Research on computing linguistics and information retrieval
in Latvia 78

5.3 Construction of the Latvian stoplist 80

5.4 Conclusion 82

References 84

Chapter 6 Construction of a Latvian stemming algorithm
6.1 Introduction 86
6.2 Description of the initial stemming program 87
6.3 Development of the Latvian stemmer 91
6.3.1 General modifications 91
6.3.2 List of Latvian endings 91
6.3.3 Consonant palatalisation 93
6.3.4 Design of the Latvian suffix list 94
6.3.5 Special conditions 94
6.3.6 Testing and analysis of the sternmer 95
6.4 Conclusion 95
References 97

IV

Chapter 7 Evaluation of a Latvian stemming algorithm

7.1 Introduction 98

7.2 General methodology 99

7.3 Test collections 101

7.3.1 Electronic dictionary 102

7.3.2 Full-text database 102

7.3.3 Online bibliographic databases 103

7.4 Analysis of results 106

7.4.1 Standard word stemming 106

7.4.2 Word sternming in a text corpus 110

7.4.3 Stemmer performance in information retrieval ill.

7.5 Effectiveness of the stemming algorithm 121

7.6 Conclusion 124

References 126

Chapter 8 Conclusion

8.1 Introduction 127

8.2 Summary of results 127

8.3 Further research 128

Bibliography 129

Appendices

Appendix I Latvian stoplist 136

Appendix 2.1 Main stemming program STEMMER. C 143

Appendix 2.2 Initial stemming program STEM. C 146

Appendix 2.3 Latvian stemming algorithm 155

Appendix 2.4 Main program for Latvian sternmer (STEMMER. C) 182

Appendix 3.1 List of Latvian endings 185

Appendix 3.2 List of consonant palatalisation 185

Appendix 3.3 List of Latvian suffixes 185

Appendix 4.1 Evaluation form for stemmed Latvian words 186

Appendix 4.2 Examples of Latvian word stemming
in standard forms 188

Appendix 4.3 Evaluation form for the Analytical information
system for periodicals 195

Appendix 4.4 A set of full, truncated and stemmed queries used
in the main test 196

V

LIST OF TABLES

Table 3.1 Example of term storing for table lookup method 25

Table 3.2 Successor varieties for the test word ELECTRIC 28

Table 3.3 Similarity coefficients for terms A to D 32

Table 3.4 Variety of affix removal sternmers, 52

Table 4.1 Inflective endings of Latvian nouns 65

Table 4.2 Example of deverbal reflexive nouns 66

Table 4.3 Example of flection for irregular personal pronouns 67

Table 4.4 Endings and flectional pattern for definite adjectives 68

Table 4.5 Basic characteristics of Latvian and English morphology 73

Table 5.1 Example of word frequency in Latvian texts 79

Table 7.1 Ranked evaluation results of stemmed Latvian words 107

Table 7.2 Basic information on participants 112

Table 7.3 Quantitative characteristics of unsternmed and stemmed
search queries 113

Table 7.4A Number of documents retrieved by the first set of queries 115

Table 7.413 Number of documents retrieved by the second set of queries 115

Table 7.5 Median of documents retrieved in the pilot test 116

Table 7.6 Main subject areas covered by queries 117

Table 7.7 Number of documents retrieved per each query 118

Table 7.8 Median number of documents retrieved in the main test 121

Table 7.9 Recall and precision values based on queries from the
main test 122

Table 7.10 Median of recall and precision ratios for all types of queries 123

Table 7.11 Median recall and precision ratios of all queries used in the
main test 124

vi

LIST OF FIGURES

Figure 2.1 General pattern of information retrieval system 5

Figure 2.2 Functional view of statistically based IR system 7

Figure 2.3 Multidimensional vector representation of query space 16

Figure 3.1 Word conflation techniques 24

Figure 3.2 Example of B-tree approach for table lookup stemmers 26

Figure 3.3 Example of single link structure 32

Figure 4.1 Location of morphemes in Latvian words 63

Figure 4.2 Types of English morphemes 71

Figure 4.3 Structure of English inflectional suffixes 71

Figure 6.1 Flowchart of the main sternmer (STEMMER. C) 89

Figure 6.2 Flowchart of the stemming procedure for English (STEM. C) 90

Figure 6.3 Flowchart of the Latvian stemming algorithm 92

Figure 7.1 Recall and precision of full, truncated and stemmed queries 124

Vil

Chapter I

INTRODUCTION

The development of information technology and electronic media in Latvia is growing

more and more rapidly. Access and use of the Internet and WWW search engines are
becoming part and parcel of everyday life not only in Latvia but also in the rest of the
Baltic countries. Networking of educational institutions and organisations (i. e.

universities, colleges) as well as business companies and firms is in progress and

several international projects with other European countries related to global area

networks (e. g. LIBNET) have been started recently.

Along with networks and access to the Internet, there is evidence of a rapidly growing

number of Latvian databases and information systems. To date there are more than a
100 different types of bibliographic, factographic and full-text databases. Moreover, as

a candidate state for joining the European Union and NATO, Latvia together with
Estonia and Lithuania have been provided with access to a variety of EU and NATO

databases.

The above mentioned factors helped determine the intension to introduce new,

advanced and efficient information retrieval facilities (including stemming) for end-

users in Latvia. This thesis, therefore, examines the design and evaluation of a

stemming algorithm for Latvian in order to provide automatic word conflation both for

document indexing and document searching in advanced information retrieval systems

and databases. Research in information retrieval has confirmed that stemming is a
challenging area not only for an English language environment, but also for other
languages, including Latvian. This research has been undertaken to help fill the gap
relating to stemming in inflective non-English languages using Latvian as a case study.

1.1 Aims and objectives

The aim of this thesis is to investigate the possibility of applying automatic word

conflation to Latvian and to design a stemming algorithm for Latvian. In order to

achieve this aim, the research covers the following three stages:

analysis and evaluation of existing automatic word conflation methods for

information retrieval in English and their relevance to a Latvian language

environment;

construction of the Latvian stopword list and development of a Latvian

stemming algorithm based on one of the English automatic word conflation

algorithms;

performance analysis and evaluation of the designed Latvian sternmer including

effectiveness of the sternmer in information retrieval.

The objective of this thesis is to achieve automatic word stemming for Latvian and to

examine the performance and effectiveness of the Latvian stemming algorithm in

information retrieval.

1.2 Scope of thesis

This thesis defines the role of the stemming procedure in advanced infon-nation retrieval

system. All basic types of automatic word conflation algorlthms are presented and

analyzed. Because of the relevance to Latvian language, the retrospective overview of

stemming algorithms includes only affix removal sternmers. The structure and

complexity of the language determined that the Latvian stemming algorithm will

comprise only suffix removal and exclude any kind of prefix removal. The Latvian

sternmer was tested and evaluated using three different test collections.

The algorithm was not implemented and evaluated in any existing Latvian information

retrieval systems and/or Latvian online databases because, during the evaluation period,

no software packages were available in Latvia which can link the stemming algorithm

with appropriate database or information system.

The evaluation study did not cover any comparison of the performance between the
Latvian stemming algorithm and other English and non-English sternmers because the
designed stenu-ning algorithm was the first for Latvian and the grammatical structure of
Latvian is distinct from English and other languages for which stemming algorithms
have been already applied.

1.3 Hypotheses

This thesis tests the following two hypotheses:

it is possible to apply for Latvian a suffix removal algorithm originally designed

for English;

stemming in Latvian will produce the same or better information retrieval

performance results than manual truncation.

2

1.4 Methodology

The methodology used in this thesis covers the following areas:

overview of previous research in construction and development of sternmers for
advanced information retrieval systems both in English and non-English
languages;
analysis and comparison of English and Latvian linguistics based on
morphology;
construction of a Latvian stopword list;
design and development of a Latvian stemming algorithm based on one of the
English stemming algorithms;
analysis and evaluation of this Latvian stemming algorithm.

Detailed description of the general methodology used for testing and evaluation of the

Latvian sternmer is presented in Section 7.2.

1.5 Structure of thesis

This thesis consists of three parts. The first part covers a conceptual framework of

stemming in information retrieval. Definitions and explanations of basic components in

information retrieval systems as well as the role and place of stemming in document

indexing and information retrieval are presented in Chapter 2. Analysis and description

of existing approaches to automatic stemming of terms are covered by Chapter 3. This

chapter also comprises a retrospective review of affix removal stemming algorithms

which were applied to English and non-English languages. Finally, Chapter 4 analyzes
the structure of Latvian and presents a comparison of English and Latvian morphology.

The second part deals with the construction and development of the Latvian stemming

algorithm. Chapter 5 defines the basic principles of stopword selection and describes

the design and implementation of a Latvian stopword list. Chapter 6 analyzes the

structure of an initial English stemming algorithm and presents the development and

modifications of the Latvian stemming algorithm based on this English algorithm.

Finally, the third part of this thesis covers the analysis and evaluation of the Latvian

stemming algorithm. Examination and testing of Latvian word stemming using the

Latvian electronic dictionary and Latvian text fragments is given in Chapter 7. This

chapter also comprises the comparative evaluation of infon-nation retrieval effectiveness

using manually truncated and automatically stemmed search statements. Chapter 8

presents a summary of conclusions based on previous chapters and outlines areas for

further research.

3

Chapter 2

MAIN CHARACTERISTICS OF INFORMATION
RETRIEVAL SYSTEMS

2.1 General concepts of information retrieval

Information retrieval covers a wide scope of disciplines related to non-numerical

computing i. e. database management systems, computerised natural language

processing, information searching algorithms, multimedia information systems etc. (l)

Historically the terms 'Information retrieval' and 'document retrieval' have been often

used as synonyms because the information being processed usually comprises
documents. As noted by Salton (2), information retrieval deals with the representation,

storage and access to documents or document surrogates (i. e. abstracts, annotations).
In that context information retrieval systems can alternatively been defined as document

retrieval systems which cover the following basic functions i. e.

to process and store documents into the database (i. e. to enter, change

and delete information);

to search for documents and to present them to the user according to

his/her query (3).

However, the basic strategy for information retrieval systems is to provide access to

document contents which have been stored in the database. It means that the system

should determine the most appropriate documents in the database according to users'

needs. Moreover, van Rijsbergen mentioned that relevance of retrieved information is

important criterion and therefore, the end purpose of document retrieval systems is "to

retrieve all the relevant documents at the same time retrieving as few of the non-relevant
documents as possible"(4).

Figure 2.1 represents a general model of information retrieval system and its main

components. Each document before being stored in the database, usually has assigned

special descriptors (subject terms, keywords) which characterise its content. User

search queries can also be processed (truncated, conflated) to match relevant documents

in the database.

4

innut

indexed documents

Figure 2.1 General pattern of information retrieval system

Computerised information retrieval (IR) systems have been known since late 50's when
Keyword-In-Context indexing (KWIC) and Selective Dissemination of Information

(SDI) systems were introduced. These systems used serial files for information retrieval

stored mainly on magnetic tapes. The development of computer and telecommunication

networks provided access to large, remote databases. The majority of conventional IR

systems include two common features:

0 inverted file structure;

0 use of Boolean operators.

Harman defines invertedfile as "the sorted list (or index) of keywords (attributes), with

each keyword having links to the documents containing that keyword" (5). The inverted

file includes keywords, document identification codes and field identification codes as

the main entry elements. A dictionary file and a postings file form the structure of the

inverted file. The dictionary file comprises all indexing terms in alphabetic order
including the total number of documents in which those terms appear. The postings file

covers all indexing terms which are coupled with the accession number of each
document in which the term occurs. Even though the inverted file structure requires

additional storage space and maintenance, its essential advantage over serial file

organisation is rapid access to and retrieval of documents according to user queries.

5

documents retrieved

Inverted file organisation, which is based on separate individual terms and document

reference numbers, allows the use of traditional Boolean operators because the search
terms associated with AND, OR, NOT can be correspondingly arranged into

intersection set, union set and difference set. However, as mentioned by Ashford (6)

the use of Boolean search strategies in conventional IR systems encounter several

problems:

1) end-users who are not familiar with Boolean operators have difficulties

formulating correct queries, so they require assistance from trained
intermediaries;

2) there is no control over the number of documents retrieved by a definite

query;
3) Boolean search does not provide any kind of ranking mechanism

therefore, all records in the database are simply divided into two

subsets- those which are retrieved by the particular query and those

which are not.

To overcome the above mentioned problems and to ensure more effective document

searching as well as to provide the use of natural language in users' queries, several

advanced operational and experimental information retrieval systems (i. e. SMART,

INSTRUCT, MASQUERADE) incorporate statistically based approaches. Figure 2.2
illustrates a statistically based information retrieval system and the main IR techniques

covered by the system.

Document, database and user as well as the mutual interaction between those elements
form the core of information retrieval system. Each document, before being added to
the database, has to be appropriately processed to guarantee its successful retrieval from

the database. According to Figure 2.2, the whole text is broken into separate words to

select definite indexing terms or keywords which describe the contents of particular
document.

Document indexing for statistically based IR systems usually involves a stemming

procedure. According to Frakes (7) stemming is the automated conflation of related
terms, by reducing the words to a common root form. Before the term is stemmed, it

has to be matched against the stopword list, to separate meaningful terms from words

of zero indexing value i. e. articles, prepositions, very general terms. After that, all

remaining nonstoplist terms are stemmed, using an automated word conflation

procedure.

6

document
input

tenn weighting

words
reak into

S word
L)

stemmed
words

term weights

ranking

ranked
documents

user

DATABASE

relevance judgements

query

query expansion

parse query

non-stoplist
words

stenuning

stemmed words

ste ng
I

non-stoplist
words

words
stoýp-liýst -r-ý

Figure 2.2 Functional view of statistically based IR system

In addition to automatic indexing, each stemmed term can be analysed and evaluated

according to its statistical weight. The term weighting mechanism assigns each stem a
definite measure of importance which is used in a document ranking procedure as well

as to determine the most appropriate identifiers for document indexing. Finally, all

relevant indexing terms for a particular document along with the document are added to

the database. Therefore, automatic indexing together with word conflation and a term

weighting procedure form the core for document/information input.

As described in Figure 2.2, the starting point for document/information output is the

user's query which in advanced IR systems can be formulated in natural language.

After the query has been entered, it is parsed into separate query terms. Similar to the

above mentioned document indexing procedure, each query term is than checked

against the stoplist and all remaining terms are conflated via a stemming algorithm.
Finally, the stemmed query terms are compared with document content identifiers in the

database and the whole matched document set is than presented to the user in a ranked

order. Best match search evaluates the set of query stems against the set of stems for

corresponding document in the database and along with a statistical term weighting

7

function, it is one of the most often used methods for document ranking. Advanced

information retrieval systems also allow the user to make certain judgments about the

relevance of retrieved documents. One of the approaches, which is based on user
feedback, is query expansion. Depending on the number and quality of retrieved items,

the initial query can be automatically expanded by adding new terms from relevant
documents and deleting nonrelevant terms.

Overall, Figure 2.2 reveals, that successful document retrieval in advanced statistically
based IR systems to the certain extent depends on following information retrieval

principles:

0 selection of relevant terms for automatic document/text indexing;
use of appropriate automatic word stemming techniques both to

determine document content descriptors and to process query terms;

implementation of the best match search including a statistical term

weighting method to determine relevance of documents in the database

as well as relevance of retrieved information based on users' queries.

The following section will describe the indexing procedure with the emphasis on

automatic term selection. A separate section deals with query expansion, best match

search and term weighting techniques. Detailed description and analysis of word

conflation methods and types as well as a review on affix removal stemming algorithms
(algorithms which remove prefixes and/or suffixes) is given in Chapter 3

2.2 Document indexing

As noted by Willett (8), document indexing is used to characterise the contents of
documents in the database and to ensure the retrieval of documents, which match a

user's query. Indexing can involve either symbols (i. e. classification codes) or terms.
Compared with symbols, content descriptors based on keywords and/or subject terms

are more commonly used both in manual and automatic document indexing.

Manual indexing which usually is performed by experienced indexers, is still widely

used for document description in catalogues and databases. Normally the manual

indexing procedure incorporates either uncontrolled vocabulary (i. e. keywords) or

controlled vocabulary - thesaurus. It was observed that in many cases where trained

indexers were involved, the use of controlled vocabulary for document indexing was

preferred rather than keywords. Thesaurus construction requires from indexers a good
knowledge in the particular subject area as well as the ability to maintain accuracy and

8

consistency to identify main, broader, narrower and related terms when building the

hierarchical dictionary. It means that indexing personnel should assign the same
indexing terms for documents with similar contents to guarantee retrieval of relevant
items.

However, practice reveals that manual indexing has certain limitations. As noted by

Harter(9), lack of consistency among indexers often creates drawbacks in human

prepared indexes and dictionaries. Controlled vocabulary seems to be complicated also
for end-users as they have to translate the chosen query words into terms of an artificial
language and to find the most appropriate words for relevant document retrieval.

The disadvantages of manual indexing prompted an alternative approach of document

content description - automatic indexing. As noted by van Rijsbergen, in automatic

indexing "it is anticipated that. by processing documents in a computerised manner, the

output will be a representation of the content. "(10). Research and experiments on

automatic indexing have shown that it is a fast and inexpensive method and can produce

a recall ratio (the proportion of relevant items retrieved out of all relevant items in a

system) and precision ratio (the proportion of relevant items retrieved out of all items

retrieved) at least equivalent to that obtained in manual indexing (11,12). Van

Rij sbergen(I 3) also indicated that even the use of simple automatic indexing procedures
for selection of indexing terms in earlier IR systems, e. g. the SMART Project,

performed good document retrieval results. Although a wide range of automatic
indexing methods have been introduced and used in information retrieval, there is a

general agreement that the automatic indexing system should cover following basic

modules:
selection of indexing terms or descriptors;

term conflation or stemming;

weighting of terms (14).

As was mentioned before, indexing requires the selection of relevant terms to describe

the content of each document stored into the database. Especially, in terms of advanced
document retrieval systems with natural language search, it is necessary to identify all

the terms which characterise the subject of interest, so that it is possible correctly
distinguish the relevant and the nonrelevant documents retrieved for the particular user

query (15). Usually appropriate indexing terms can be found in document titles and

abstracts or in the document text itself. One of the methods used for automatic term

selection is the linguistic approach.

9

There have been several attempts to introduce linguistic methods for selection of
indexing terms. In a majority of cases as noted by Smeaton(16), the complexity of

natural language and the complexity of natural language texts were the basic reasons

why the integration of automatic language processing into information retrieval failed.

However, some of the latest experiments on automatic natural language processing

revealed that the linguistic technique can be applied quite successfully for semantic and

syntactic construction of term phrases. For example, a natural language parser designed

by Spark Jones and Tait(17), produced acceptable noun phrases which can be used for

searching in document abstracts. Another example is a Fully Automatic Syntactically

Based Indexing System (FASIT) which parses a text into phrases according to certain

syntactic categories and than use the most meaningful words and/or phrases as units for

indexing (18). Retrieval results indicated that the main concept of FASIT - to group

significant terms/phrases using a syntactic approach, is valid and can improve document

retrieval.

Nevertheless, certain drawbacks of the linguistic approach for single term selection

such as limitations of removing ambiquity from nouns and complexity of linguistic

analysis systems, resulted in the development of statistically based techniques. Many

useful mathematical models based on the vector space approach and probability theory

have been introduced and used for successful document indexing since the seventies.
Moreover, as stated by van Rijsbergen(19), Luhn's hypothesis in the late 50s already

stated that term power or significance drops off at higher frequency. It means that

frequently used words tend to be short function terms which are unable to determine

distinction between relevant and nonrelevant documents. Several tests based on the

constant rank frequency law of Zipf, have been carried out to confirm the above

mentioned theory of frequently used terms. Zipf s law states that, if the distinct terms in
the text are arranged in the decreasing order of their frequency of occurrence, then the
frequency of occurrence of a word in the frequency order multiplied by its rank in the

order is approximately constant i. e.

rx f(r) = constant

(where Y is a rank of term by frequency and f(r)' is frequency of term at rank Y).

For example, if the term is 'and' with rank r=3 and the frequency of term at rank
f(r)=29 than the constant will be:

constant -rx
f(r)

= 0.087
N

(where N= 1000 and covers the number of terms in the document sample).

10

Test results indicated that authors often repeat certain amount of terms instead of

substituting them by new words. It was also observed, that medium frequency words

can be good indicators for relevant document retrieval. However, Salton emphasised

that:
the elimination of high frequency terms can cause losses in recall;

elimination of low frequency terms may affect precision;
there is no certain criterion to distinguish relevant medium frequency

terms (20).

Finally, good indexing terms must retrieve relevant documents to which they are

assigned as well as distinguish those documents from the whole collection of materials.
To disclose the relevant terms more precisely, several additional automatic term

extraction and statistical weighting models have been introduced for document indexing

i. e.:
inverse document frequency model;

signal noise ratio model;
term discrimination method (2 1).

The inverse documentfrequency model measures how frequently a definite term occurs
both in the text of individual document and in the whole document collection. It has

been proposed that term significance is proportional to the standard occurrence
frequency of each word k in each document i, and inversely proportional to the total

number of documents in which a word k occurs. In that case the formula for inverse

document frequency will be:

IDFk = 1092 n+I
DOCFREQ k

where n is the total number of documents in the database and DOCFREQk is the
document frequency of the definite ten-n k. For example, if within the collection of 1000

documents, the term PHYSICS occurs in 500 documents and the term
BIOCHEMISTRY in 100 documents then the inverse document frequency for

PHYSICS will be 2.000 but for BIOCHEMISTRY = 4.322. Therefore, the inverse

document frequency method revealed that the most relevant indexing terms will be those

which occur in a relatively small number of documents.

The signal noise ratio model determines term concentration in the document collection.
The noise of an index term k for collection of n documents can be calculated as follows:

FREQik TOTFREQk NOISEk
TOTFREQ kx

log
FREQik

where FREQik is the frequency of occurrence for term k in each document and

TOTFREQk is the frequency of occurrence for term k in the whole document collection.

For example, if the term k=PHYSICS occurs once in each document and there are 1000

documents in the collection, then the noise ratio for this term will be

NOISEk -= yIX 1092
1=

1092 1000 =3
nn

(n=number of documents in the collection). If the term occurs evenly in each document

of the collection, the noise is growing. Non-specific terms tend to be evenly distributed

and usually have a high noise ratio. An inverse function of the noise is signal ratio,

which determines the most rarely used terms in the document. The signal for term k

can be calculated as follows:
SIGNALký1092(TOTFREQO-NOISEk

However, tests showed that signal value does not ensure effective performance in an

information retrieval process. Overall, use of signal noise ratio method will retrieve

only those documents which have indexing terms both with low document and
document collection frequencies.

Term discrimination model is another method for selection of terms for automatic
indexing. This method measures the degree to which the use of a term can help to

distinguish documents from each other. If Di and Dj are two documents and each of

them is identified by a stem of index terms and if the similarity has been calculated for

all pairs of documents (Di, Dj), then the average similarity value, which represents the

average document pair similarity in the collection, can be calculated as:
nn

AVGSIM = CONSTANT IxI SIMILAR (Di I Dj)
j=l i#j j=l

If the term k is removed from all documents in the collection and if (AVGSIM)k shows

the document space density (the degree to which the document is clustered in the
"space" of documents) then the discrimination value for each term k can be calculated as
follows:

DISCVALUEk--': (AVGSIM)k - AVGSIM

The DISCVALUEk can be calculated for all terms k and the terms will be ranked in

decreasing order according to their discrimination values. For example, terms PANEL

and FLUTTER from the Cranfield 424 document collection have the lowest

DISCVALUE, so they will be placed on the top of the ranked list, whereas terms
NUMBER and FLOW from the same collection contained high DISCVALUE, therefore

12

they will be ranked as poor discriminators (22). Ideal retrieval environment should be

multidimensional index term space were all documents are apart as far as possible. The

quality of term discrimination can be evaluated taking into account inter-document

operations i. e. when the term is and when the term isn't used for indexing. A good

indexing term will increase inter-document separation and decrease the space density.

Experiments confirmed that the best term discriminators are medium frequency terms in

the document collection in which they occur (23). However, Biru (24) suggested that

medium frequency indexing terms can include also terms with poor discrimination

capabilities. Overall, the perfect indexing term would be one "which minimises the

separation of the relevant documents" (25).

As mentioned above, experimental evaluation tests confirmed that statistically based

term selection methods can be effective in document indexing and information retrieval

processes (26). However, the complexity of statistical term selection determined that

instead of implementing one or another mathematical model for relevant term retrieval, it

is easier to extract all keywords from the document and the query, and then differentiate

them using an automatic word conflation approach coupled with appropriate term

weighting module. The exception are terms with extremely high frequency which can

be eliminated by the stopword list. It means that non-context bearing words would be

automatically refused as document indexing terms as well as being stripped out from the

user query. The extraction of stopwords increases the separation of documents in the

database and also reduces the size of dictionary file in the structure of inverted file.

Along with the before mentioned mathematical models, word conflation based on

automatic stemming algorithms is widely used in document indexing procedures. After

elimination of frequently used words (via stoplist), sternmers determine most

appropriate word stems (indexing terms) which represent document content. Despite

there existing some experimental systems which deal with phrases i. e. the statistically
based phrase indexing systems INDEX and INDEXD, the majority of term conflation

algorithms process single terms i. e. MARS, MORPHS. Experiments and tests with

several information retrieval systems which incorporate word conflation procedure i. e.
SMART, also confirmed that automatic indexing based on single terms can

considerably improve the document recall ratio. As computerised term conflation is one

of the basic elements in the majority of statistically based advanced information retrieval

systems, a detailed overview on word conflation procedure and stemming algorithms

will be given in Chapter 3.

13

2.3 Best match searching and relevance feedback

Besides automatic word conflation, which ensures term selection based on words

stems, the best match search method and relevance feedback coupled with term

weighting functions can also be used to improve information precision and recall ratio.

A best match search is often called nearest neighbour method or ranked output search.

This approach compares a set of keyword stems from the query against the set of stems

of indexing terms which represent document content in the database (27). After that a

measure of similarity between the query and each document in the database is calculated

and all documents are presented to the end-user in ranked order (28).

The advantages of best match retrieval comparing with the conventional Boolean

search, are following:

best match search does not require users to compose Boolean

operations;
term weighting mechanism helps to determine relevance between the

query and documents in the database;

ranked list of documents gives possibly the most relevant items from the

top;
if the system incorporates a query expansion module, the end-user can

make his/her own judgments about the relevance of retrieved
documents.

The basic requirements for successful implementation of the best match search are:

0 choice of effective nearest match algorithm and

use of appropriate term weighting mechanism.

An inverted file structure may be useful for the implementation of nearest neighbour

searching as such structure allows the scanning all documents in a database for ranked

output to be avoided (29).

Query expansion based on relevance feedback is another approach which can improve

recall ratio in information retrieval systems. User queries often contain terms which do

not match document indexing terms, therefore resulting in no document retrieval (30).

Modification of the initial search query by adding and/or deleting search terms can
increase the retrieval of relevant documents from the database.

14

There are two basic components which are used for query expansion and relevance
feedback:

a change of terms in the initial query;
41 reweighting of query terms (probabilistic theory).

Early tests and experiments on query expansion suggested to calculate and add closely

related terms to the original query using vector space model. For example, in the

SMART system documents and queries are represented by a vector of terms, where
"term" means any form of document and/or query content identifier i. e. a stem of a

word (3 1). Therefore, a document DOC I can be identifiedby a collection of terms

(stems) e. g. DOC, = STEM,, STEM2 STEMt. A document collection may be

represented as an array of terms e. g.

STEMI--ýjTEM2
...

STEMt

DOC, STEM,, STEM12
...

STEMit

DOC2 STEM21 STEM22
...

STEM2t

DOCn STEMj STEMn2
... STEM,,,

Similarly, a query can be identified as a vector of query terms (stems) i. e. QUERY

QSTEMI, QSTEM2 ... QSTEMt.

Figure 2.3 represents an example where three stems identify documents according to

the queries. Each axis match a different stem and the position of each document vector
in the space is determined by the weight of the stems in that particular vector. The

similarity between any two vectors is represented as a function inversely related to the

angle between them. The retrieved documents may be arranged to the user in decreasing

order of their similarity values according to the search requests.

15

STFM i

, STEM 12, STEM 13)

rEM21, STEM22, STEM23)

STEM 3

,
STEM32, STEM33)

Figure 2.3 Multidimensional vector representation of query space

Research related to term (stem) reweighting without query expansion is mostly based

on the probabilistic model which determines distribution of terms in relevant and

nonrelevant documents. For example, Robertson and Spark Jones introduced a formula

for calculation of term (stem) weights:

Wij--': 1092 rI(n-r
(R - r) N- n- R+ r-)

where Wij is the stem weight for stem i in query j; r= the number of relevant documents

for query j with a stem i; R= the total number of relevant documents for a query j; n=
the number of documents in the collection having stem i and N= the total number of
documents in the collection (32). For example, if the stem ELECTRIC in a query
ELECTRICAL ENGINEERING has 23 relevant documents, if the total number of

relevant documents for this query is 3 1, if the total number of documents in the

collection having stem ELECTRIC is 56 and the total number of documents in the

collection is 164, then the weight of a stem ELECTRIC in a query ELECTRICAL

ENGINEERING will be:

23 (56-23) 23 33
W

-=
1092 : -- 1092 -/=0.94 (31-23) (164 - 56 - 31 + 23) 8 100

According to this example, the stem ELECTRIC for the query ELECTRICAL

ENGINEERING has high weight, so therefore it is a good document content
discriminator.

16

The above described method assumes that the number of relevant documents is known

before an initial query is submitted. Nevertheless, tests with manually indexed

Cranfield 1400 collection performed good results (33). Salton suggested reweighting

query terms by increasing weights of terms from relevant documents and decreasing

weights of terms from nonrelevant documents (34). Along with the mentioned term

reweighting approaches, the inverse document frequency (IDF) method described in the

Section 2.2 is also used for determination of relevant terms for the query. It means that

IDF calculates the most important terms within the document collection and within the

particular document, and presents those for users for expansion of the initial query.

The initial query can be expanded without term weighting i. e. by using a thesaurus

which automatically adds synonyms, broader terms and other relevant words. There

have been several attempts to construct a thesaurus which would be based on a term to

term association or clustering methods. For example, Harman (35) analysed term-term

association (nearest neighbour technique) and suggested that users should have a

possibility to ! filter the new query terms. It means that users can select relevant terms
from the list and add them to a new query. User filtering method with a selection of

additional terms from relevant documents performed considerably better results then use

of term to term clustering approach.

Query expansion and best match document ranking have been implemented in several

experimental systems i. e. OKAPI, CITE. For example, in the CITE system after a user
has entered the query in natural language, a list of ranked documents will be offered

asking for his/her evaluation and eventual query expansion by adding new terms to the
initial query.

2.4. Further developments in IR systems

There are several new areas of research, which might change IR systems in the future:

cluster analysis or automatic classification;
knowledge based approach and expert systems for automatic natural
language processing (36).

Automatic classification or cluster analysis is a multi-level statistical method which
determines the automatic identification of groups or clusters of similar objects. There

are two types of clustering which can radically enhance retrieval of relevant documents:

document clustering on the basis of common terms;

term clustering on the basis of the documents in which they occur.

17

Use of document clustering can improve performance as the relationships between the
file organisation, search mechanism and the documents in a database. Term clustering
can enhance document recall ratio as this approach involves term classification to

substitute each document term and/or query term by the identifier of the cluster which
contains that term. Term classification can also be used to expand the query by adding
terms from the clusters which contain one of the initial query terms. Therefore, term

classification ensures additional matches between sets of document and query terms.

implementation of expert systems may also improve access to relevant documents and
information in the database. Along with offline query formulation and automatic logon,
intermediary systems can also include relevance feedback and advisory techniques

which guide the user during the search. Intelligent front-ends are another important part
of such expert systems which provide user the opportunity to formulate queries in a
natural language. Moreover, intermediary information retrieval system may also help

user to select most appropriate search terms and search strategy. Research on
knowledge-based information retrieval techniques (i. e. that suggested by Tong and
Shapiro) revealed that the implementation of rule-based methods can provide retrieval of
factual information from textual databases.

2.5 Conclusion

Automatic document indexing, query expansion and best match searching coupled with
computerised word conflation are the basic elements for relevant document search and
retrieval in an advanced IR system. Experiments and tests revealed that use of stemming
for selection of document content identifiers (during document indexing procedure) as
well as for query processing and modification performed far more better results then

manual indexing and right'hand truncation. Stemming is also the core method for query
expansion and document ranking based on user relevance feedback. It allows
augmention of the initial query by changing or adding new stems, therefore increasing

precision in document retrieval. Stemming together with term (stem) weighting
approaches i. e. term discrimination, inverse document frequency model, can also
improve the choice of equivalent indexing terms as well as will determine appropriate
terms for expansion of the initial query.

Research and experiments also revealed that advanced information retrieval systems are

able:
to retrieve larger amount of relevant information than conventional IR

systems;

18

to replace trained and experienced intermediaries by user friendly front-

ends for end-users with limited experience, i. e. advanced IR systems

which include query expansion and best match search modules will
present all retrieved documents in a ranked order as well as allow the

user to change the initial query.

As mentioned before, stemming allows successfully carry out automatic indexing,

query expansion and best match search. The following chapter will analyse the basic

types of stemming algorithms and give an overview both of English and non-English
language sternmers, which have been designed and implemented in various information

retrieval systems.

19

References

Willett, Peter. Introduction. In: P. Willett, ed. Document retrieval systems,
1988, p. 1.

Salton, Gerard & Michael J. Mc. Gill. Introduction to modern
information retrieval, 1983, p. 7.

3. Frakes, W. B. Introduction to information storage and retrieval systems. In:
William B. Frakes & Ricardo Baeza-Yates, eds. Information retrieval: data

structures and algorithms, 1992, p. 2.

Van Rijsbergen C. J. Information retrieval, 1975, p. 6.

5. Harman, Donna et al. Inverted files. In: William B. Frakes & Ricardo
Baeza-Yates eds. Information retrieval: data structures and algorithms, 1992,
28-29.

6. Ashford, John & Peter Willett. Text retrieval and document databases,
1988, p. 64.

7. Frakes, ref. 3, p. 5

8. Willett, Peter. Automatic indexing of documents and queries. In: P. Willett,

ed. Document retrieval systems, 1988, p. 4.

9. Harter, Stephen P. A probabilistic approach to automatic keyword indexing.
Journal of the American Societyfor Information Science, 1975,26(4), 285.

10. Van Rijsbergen, ref. 4, p. 23.

Scharnber, Linda. Relevance and information behavior. In: Martha E.
Williams, ed. Annual review of information science and technology, 1994, p.
13.

12. Salton, ref. 2, p. 59.

13. Van Rijsbergen, ref. 4, p. 23.

20

14. Willett, ref. 8, p. 4.

15. Peat, Helen J. & Peter Willett. The limitations of term co-occurence data
for query expansion in document retrieval systems. Journal of the American
Society for Information Science, 1991,42 (5), 378.

16. Smeaton, Alan F. Natural language processing and information retrieval.
Information Processing and Management, 1990,26(l), 19.

17. Spark Jones, K. & J. I. Tait. Automatic search term variant generation.
Journal of Documentation, 1984,40(l), 58-60.

18. Dillon, Martin & Ann S. Gray. FASIT: A fully automatic syntactically
based indexing system. Journal of the American Society for Information
Science, 1983,34(2), 99-108.

19. Van Rijsbergen, ref. 4, p. 25.

20. Salton, ref. 2, p. 62.

21. Ibid, p. 63.

22. Ibid, 66-68.

23. Ibid, p. 63.

24. Biru, Tesfaye et al. Inclusion of relevance information in the term
discrimination model. Journal of Documentation, 1989,45(2), 86.

25. Ibid, p. 95.

26. Smeaton, ref. 16, p. 19.

27. Willett, Peter. Best match searching. In: P. Willett, ed. Document retrieval
systems, 1988, p. 10.

28. Ashford, ref. 6, p. 65.

21

29. Perry, Shirley A. & Peter Willett. A review of the use of inverted files
for best match searching in information retrieval systems. Journal of
Information Science, 1983,6,59.

30. Harman, Donna. Relevance feedback and other query modification
techniques. In: William B. Frakes and Ricardo Baeza-Yates, eds. Information

retrieval: data structures and algorithms, 1992,241-263.

31. Salton, ref. 2,118-156.

32. Robertson, S. E. & K. Spark Jones. Relevance weighting of search
terms. Journal of the American Society for Information Science, 1976,27,
129-146.

33. Ibid, p. 135.

36 Salton, ref. 2,59-75.

35. Harman, ref. 30.

36. Willett, Peter. Other research areas. In: P. Willett, ed. Document retrieval
systems, 1988,19-22.

22

Chapter 3

WORD CONFLATION AND STEMMING ALGORITHMS

3.1 Introduction and definition

According to Frakes(l), word conflation is a process of matching morphological term

variants. As noted in Chapter 2, conflation or reduction of word variants to a single

canonical form is used both in document indexing procedures to define most

appropriate document content descriptors as well as in information retrieval to

determine relevant query terms which match document indexing terms. Therefore,

word conflation can be done at indexing time and/or at search time.

Conflation of terms can be achieved either manually or automatically. Right hand

truncation is one of the most often used techniques for manual conflation. Many

conventional online systems i. e. ERIC, STN allow the searcher to truncate query terms

by using wildcard characters i. e. asterisk (*). For example, more records on the subject

ELECTRICITY will be retrieved if the initial search term is truncated to ELECTRIC*.

However, users often are unfamiliar with the truncation approach. Willett(2) stressed

that two major problems are associated with the manual right hand truncation:

0 over truncation which means that the remaining stem of a word is too

short after truncation;
under truncation which causes retrieval of too few related relevant

words.

For example, in the case of a user over truncating the word ELECTRONICS to ELEC,

then both all words related to ELECTRICITY and ELECTRONICS as well as

completely unrelated words i. e. ELECTIONS will be retrieved. In the case of a word
being under truncated, a user will retrieve very few if any relevant word e. g. if the

word COMPUTERS is truncated to COMPUTER, than all relevant documents related

to COMPUTING and COMPUTATIONAL will not be retrieved. Walker and Jones (3)

also observed that manual truncation is not often used by users as it demands certain

experience and skills. Therefore, the use of manual word conflation in information

retrieval systems and OPACs requires trained intermediaries who can help users to

overcome the above mentioned problems.

23

Automatic term conflation includes special programs called stemming algorithms or

sternmers which reduces morphological variants of a word to a one, single form.

Lovins, who designed one of the first automatic word conflation programs, defines a

stemming algorithm as a "computational procedure which reduce all words with the

same root (or, if prefixes are left untouched, the same stem) to a common form, usually

by stripping each word of its derivational and inflectional suffixes" (4).

The following section of this chapter will characterise four types of automatic conflation

methods. It will be followed by an analysis and evaluation of existing stemming

algorithms used in operational and experimental IR systems. A separate section will

deal with the design and development of non-English language sternmers. Finally, the

last section will investigate several experimental evaluation methods for stemming

algorithms.

3.2 Types of stemming algorithms

Automatic term conflation comprises four different approaches which are summarised
in Figure 3.1

table lookup;

successor variety;

n-gram method;

affix removal (5).

Conflation methods

Manual (Automatic (stemming algorithms)

Table lookup I ISuccessor variety II n-gram

Longest match

Figure 3.1 Word conflation techniques

removal

Iteration

24

The following paragraph outlines general principles of each automatic conflation

procedure mentioned above. Detailed description of automatic stemming methods are

given below in separate subsections.

In the table lookup method stemming is done via tables which contain index terms and

their stems. User query terms can than be stemmed through those tables using a B-tree

or hashing. Successor variety is an approach were a stemming algorithm is used to

analyse letter sequences in a document corpus. First of all the letter successor varieties

for a word are determined and than the word is segmented using cutoff, peak and

plateau, complete word or entropy methods. When the word has been segmented, the

most relevant stem is selected. The n-grarn conflation method is based on term digrams

or n-grams. First of all a word is divided into digrams and the unique digrams for each

word is determined. After that a similarity matrix is calculated and terms will be

grouped together using single link clustering. Finally, affix removal algorithms remove

suffixes and/or prefixes from the word leaving a root/stem. Affix removal stemmers

can incorporate either iterative (endings and suffixes will be removed step by step) or

longest match approach (suffix will be stripped in one step) or both.

3.2.1 Table lookup method

The table lookup method stores all terms and their corresponding stems in a table (See

Table 3.1). Each query term is than stemmed via table lookup using B -tree or hashing.

B-tree is a multi-level tree-structured index, where all associated terms are stored in

leaves or buckets. The search for a definite stem can be done by moving down the tree

structure and choosing the appropriate branch.

Table 3.1 Example of term storing for table lookup method
Terms Stems

ELECTRICITY ELECTRIC

ELECTRICIAN ELECTRIC

FLECTRIC iELECTRIC

For example, to find the corresponding stem for words ELECTRICITY and

ELECTRICAL, the B-tree stemmer will search for a pointer to the appropriate stem(s)

(Figure 3.2). It means, that table lookup method locates both words ELECTRICITY

and ELECTRICAL in the B-tree and than follows the pointer to their stem in a separate
lookup table.

25

E
N L

CI

c

N

Figure 3.2 Example of B-tree approach for table lookup stemmers

Hashing is another method, which can be used in stemming via table lookup. Hashing

maps a key (letters in a word) to a value in a given range. A hashing function produces

values which are evenly distributed over a given range. The hashing value gives the

table lookup for a stem. For example, the word ELECTRICITY can be hashed as

follows. If the letter E has been assigned the integer 5, L= 12, C=3, T=20, R= 18,1=9

and Y=25, than the signature or address for ELECTRICITY will be the sum of

corresponding integers i. e. H= Y_E+L+E+C+T+R+I+C +1 +T+ Y= 129.

At position 129 in the lookup table will be a pointer to the stem of "ELECTRICITY".

The case when two or more different terms have the same address or signature is called

collision. It means that if the hashing value of terms ELECTRICITY, TECHNOLOGY

and COMPUTING is equal, they will be stored in the same slot of hashing table.

Collision can be overcome by using either open addressing or overflow addressing

techniques. Open addressing approach rehashes the collided term into a table by

computing a new index value. It means that double hashing is used there to calculate a

new signature for the term. However, some problems may arise if the hashing table is

becoming full. In that case the structural reorganisation in the table must be done.

In overflow addressing the collided terms are stored in an overflow area and all terms

with the same hashing values are linked together. The limitation of this method is that

the search may be degenerated to a simple linear search.

Recently several hybrid methods have been devised to improve information retrieval

time on B-trees and to range searches in hashing tables, i. e. the bounded disorder

technique, which organises leaves in B-trees as hashing tables.

The use of table lookup method has several limitations:

A table is required for all words and their stems in a particular language.

It is unlikely that such a table would contain every word in the language.

2. Storage of this table usually requires a considerable amount of disk

space.

26

3.2.2 Successor variety

The successor variety method deals with letter distribution in the word and word

segmentation to determine word and morpheme boundaries in the lexical text. Hafer

and Weiss (5) who designed the letter successor variety sternmer, defined a as a test

word with the length n, ai as a prefix of word a with the length i. D was defined as a

corpus of words and D, j as a subset of D containing words whose first i letters match ai

exactly. The successor variety of ai denoted Sai is defined as the number of distinct

letters that are in the i+ I st position of words in the word subset Dai. A test word with

the length n has n successor varieties S. I. Sa2
...

San- It means that the successor

variety of the string (corpus of words) is the number of different letters that follow in

words in the corpus.

For example, if the test word is ELECTRIC and the corpus D,, i contains following

words:
ENERGY
ELLIPSE
ELEMENT
ERROR
ELASTICITY
DATABASE

than to determine the letter successor variety for ELECTRIC, each letter in this test

word must be compared with corresponding letters in the word corpus. The first letter

of ELECTRIC is "e" and it is matched by five words. "e" is followed by three letters

"n't, "I" and "r" so, the successor variety of "e" is three. The next successor variety

would be also three as "a", "e" and "I" follows "el". The complete word ELECTRIC

matches no terms therefore, it has a successor variety of zero. Table 3.2 summarises
letter variety counts for ELECTRIC.

Table 3.2 Successor varieties for the test word ELECTRIC

Letters of terms Successor variety Letters of successor
variety

E 3 N, L, R

EL 3 L, E, A

ELE I M

ELECTFJC 0 blank

It was observed, that within a word, the ith letter is independent to a certain degree on

the i-1 letter that precede it. For example, the first letter "e" in the word ENERGY is

unrestricted as there are no predecessors. The next letter "n" becomes more restricted as

27

it must be compatible with "e". Within the word units the successor variety tends to

decrease from left to right, and especially near the end of a long word the successor

variety Sj becomes small.

After the successor varieties for a word has been found, the obtained results are used to

segment the word. Hafer and Weiss (6) defined four basic strategies for word

segmentation:

0 cutoff method;

peak and plateau technique;

complete word method;

entropy method.

The cutoff method segments a word by selecting some cutoff value K. The word

boundary (stem and affix) is identified if its successor or predecessor variety reaches or

exceeds the cutoff value. The method is easy to implement but it requires selecting of

the suitable cutoff value, because if the value is too small, many incorrect cutoffs will

be done. If the value is too large, than many correct cuts will be left out.

Using the peak and plateau strategy, the cut in a word is done after the prefix aj, if only

the successor variety S, j ý! S,,
-, and S, j ý! S,,,. It means that the segmentation is done

after a character which letter successor variety exceeds the successor variety value of

the letter preceding it and/or following it. This method eliminates the necessity to define

a specific cutoff value.

The complete word method produces the segmentation after the prefix of a word or
before the suffix of the word, if the prefix and/or suffix is a complete word in the

corpus. For example, if the test word is ANTIELECTRIC and ANTI appears as a word
in the corpus, the break will be made after ANTI. However, use of this

The three above mentioned approaches are based on the variety of successor and

predecessor letters, whereas the entropy method uses distribution of those letters in a

word. For words with unusually high successor or predecessor counts i. e. foreign

words or abbreviations, the calculation of letter distribution in those words help to

avoid segmentation errors. The entropy approach allows the weighting of the

importance of each successor and/or predecessor letter in a word by its probability of

occurrence. For example, if ID. I is the number of words in a text fragment with the i

length sequence of letters (x and ID,,
jl is the number of words in ID,,, l with the

28

successor letter j, than the probability that a word of D,,, has the successor letter j can

be calculated as follows:

laxiij
ID(xi I

The entropy Hai of all words IDui I in a text fragment can be determined using

following formula:
26 LD.

_ J21
LD_j I

HX 1092

P=j
IDOI IDwl

For example, if two words WI and W2 with i letter prefix both have successor variety

10, and the first i letters of W] match 100 words in the text corpus whereas the first i

letters of W2 match only 19 words, the probability of WI and W2 hence is 0.1 and

0.53. According to the formula, the entropy H for the i letter prefix of WI is 3.3 and

for W2 is 2.5.

This equation can also be used to calculate entropy measures for predecessor letters in a

word. A cut in the test word can be done if one or both entropies have reached some

cutoff value.

Hafer and Weiss carried out 15 various experiments to evaluate correctness and

efficiency of the above described word segmentation methods. Analysis revealed that

none of the methods performed with satisfactory results, although the use of cutoff

and/or peak and plateau approaches may increase the number of relevant word cuts.

After a word has been segmented, the most relevant segment, which can be used as a

stem must be considered. Hafer and Weiss (7) introduced the rule, that if the first

segment occurs in more than 12 words in the corpus, than it is likely a stem of those

words. It means that many segments come from one word.

Overall, the successor variety method comprises three stages:

0 determination of letter successor varieties in a word;
word segmentation based on one of the above mentioned segmentation

methods;

selection of the appropriate stem.

For example, for a test word CHANGEABLE first of all the letter successor variety

was determined. After that the most appropriate word segmentation method was

selected. In the case, if a word corpus contained CHANGE, the most relevant

29

techniques for word segmentation was either complete word segmentation or peak and

plateau method. Both these approaches segmented CHANGEABLE into CHANGE and
ABLE. Finally, the relevant segment of the word, which was used as a stem, has been

chosen. Assuming that the first segment occured in more than in one word in a corpus

and according to the Hafer and Weiss rule, the stem for the word CHANGEABLE was
CHANGE.

The stemming process via successor variety is more mechanical, when compared with

other algorithms because it does not require human effort to prepare suffix lists and/or

specific affix removal rules. It was observed that the successor variety method is

flexible for the determination of segmentation rules and is more adaptable for various
kinds of document collections as well as for new languages. However, stemming

results also revealed that often words have not been associated with correct stems e. g. a

word WIVES was not associated with words which are belonging to the stem WIFE.

In several cases a word will be associated with a completely wrong stem i. e. the word
ELECTRICAL associated with the stem ELECT.

3.2.3 N-gram stemmers

Automatic word stemming can be also done by using the digram method. A digram is a
pair of consecutive letters. The n-gram method allows to calculate association measures
between pairs of words based on shared unique digrams.

The example below demonstrates how the words ELECTRIC and ELECTRONICS can
be divided into digrams:

electric = el le ec ct tr ri ic
unique digrams = el le ec ct tr ri ic

electronics = el le ec ct tr ro on ni ic cs
unique digrams = el le ec ct tr ro on ni ic cs

The word ELECTRIC has seven digrams, all of which are unique. The are ten unique
digrams in the word ELECTRONICS. Both words share six unique digrams i. e. el le

ec ct tr ic.

After the unique digrams for a word pair have been identified, a similarity measure can
be calculated using Dice's coefficient:

2xC
(A + B)

where A is the number of unique digranis in the first term, B is the number of unique

30

digrams in the second term and C the number of unique digrams shared by A and B.

Dice's coefficient for the words ELECTRIC and ELECTRONICS will be:

2x6 12
S=--=. 70

(7 + 10) 17

The similarity measures of the all pairs of words in the database are forming a similarity

matrix. As noted by Frakes (8), Dice's coefficient is symmetric, so a lower triangular

similarity matrix can be implemented e. g.

word, word2 word3 word,, -,
word,
word2

S21

word3 S31 S32

word,, S., Sn2 SO
...

Sn(n-1)

After the similarity matrix has been defined, all terms can be clustered using a single
link clustering method. The single link combines together the most similar pairs of

words in a data set.

Table 3.3 Similarity coefficients for terms A to D

Step Pair Similarity
I AD 0.8

2 AC 0.6

3 BD 0.6

4 BC 0.6
5 AB 0.7

16 CD P. 6

For example, Table 3.3 presents similarity coeficients for each pair of four words,
which are labelled A to D where A= ELECTRONICS, B= ELECTRIC, C=
ELECTRICITY and D= ELECTRONICAL. Figure 3.3 shows how all four words
according to calculated similarity values can be clustered together using the single link

approach.

31

Single link structure
0.8

AZ"'ý
0-6

C

B

Figure 3.3 Example of single link structure

It has been defined that the distance between two clusters is the distance between the

closest pair of words in one of the two clusters. Therefore, there is no need to

determine some central cluster and/or to recalculate the similarity matrix. Van

Rijsbergen's algorithm and the SLINK algorithm are the most often used methods for

presenting single link clusters (9). Van Rijsbergen's algorithm generates the single link

hierarchy, which presents the similarity values in any order and does not require the

storage of the similarity matrix. The SLINK algorithm is based on a number of

operations by which a determination of the single link hierarchy and its updating can be

optimally done, therefore the algorithm is efficient for large data collections.

Overall, the n-gram method is based on the clustering principle which means that

similar words are grouped together. After determination of unique and shared digrams

and computing the similarity coefficient for each pair of words in the set, these

coefficients are used for a clustering algorithm. Automatic word conflation is achieved

32

K '"I)

AD

by considering that all words in a given cluster are equivalent. Stemmed words may

comprise different spellings of the same word as well as morphological variants.

The n-gram stemming approach performed good results in particular subject areas i. e.

chemistry by testing definite type of words i. e. document titles. For example, Adamson

and Boreham (10) observed that the n-gram method correctly calculated similarity

measures and successfully clustered document titles from Chemical Titles. However,

implementation of the n-gram method requires an extremely large amount of

computation to cluster any data dictionary (11).

3.2.4 Affix removal stemming algorithms

Affix removal is the most often used method, which removes suffixes and/or prefixes
from the word leaving a stem. According to the Figure 3.1 affix removal sternmers
incorporate either iteration or the longest match approach, or both.

The iterative procedure removes suffixes in several steps starting from the end of the

word. For example, using Porter's sternmer, which is based on the iterative method,
the word ELECTRICITY will be processed in two steps. First of all, the letter Y will be

substituted by letter I and after that the ending -ICITI will be transformed to -IC
(ELECTRIC), by removing -ITI from the end of the stem.

The longest match approach removes an ending of a word in one step. It means that

within each group of endings, if there is more than one relevant match, than the longest

ending will be removed from the stem. For example, the Lovins longest match sternmer
will remove ending -ICAL from the word ELECTRICAL in one iteration. Comparing

with iterative sternmers, the longest match algorithms are often easier to program.
However, as longest match sterm-ners include all compound suffixes, the size of a
suffix dictionary is much bigger than it is for iterative stemmers.

Both longest match and iterative sternmers comprise certain rules i. e. conditional and/or
recoding rules, which control the removal of relevant affixes from stems. Conditional

rules often involve minimum length conditions, which prevent oversternming. For

example, in Lovin's sternmer code B after definite endings states that suffix stripping
will be carried out if the minimum stem length is at least three characters (12).
Conditional rules can include also term specific rules, which prevent from stemming
terms with certain endings.

33

Recoding rules usually deal with modifications of a term's resultant stem. For

example, character -Y may be replaced by -1 to retrieve more relevant stems (ENERGY-

ENERGI). In case when the stem ends with a double consonant (e. g. GG) one of them

will be removed by the certain recoding rule. The construction and implementation of

recoding and conditional rules is one of the most difficult parts in affix removal

algorithms, as they require a lot of time and have to be properly designed to produce

relevant stems. The following section will deal with development of definite affix

removal stemming algorithms as this type of sternmer, according to a number of

evaluation studies (13), has achieved good information retrieval performance results.

3.3 Review of automatic stemming algorithms for English

Affix removal algorithms are one of the most often used sternmers for automatic word

conflation, which give good recall and precision results in information retrieval.
Therefore, the main emphasis in this overview is on stemming algorithms incorporating

either longest match approach (word ending is removed in one step) or iteration method
(suffixes are removed in several steps), or both.

3.3.1 Early achievements in stemmer construction (1965 - 1970)

One of the first automatic affix removal algorithms, which was based on longest match
principle, was constructed in the sixties as the part of Project Intrex (1965-1973).
The main purpose of this project was to design and develop an experimental integrated
information storage and retrieval system, which would provide a user with interactive

online access to documents including full texts of documents covering by this database
(14). The subject area comprised information in Materials Science and Engineering.
Subject indexing was done manually and each document in the database was given a
phrase consisting of no more than ten nouns. Subject terms for each document were
extracted from the subject index phrases by modifying the phrases into single words
and by stemming those words. Subject word stems were arranged in alphabetical order
and totally for 20,000 documents in the database, more than 3 1,000 different word
stems has been stored in the alphabetical file.

34

One of the basic reasons for introducing a stemming procedure in Project Intrex was to
improve retrieval effectiveness especially regarding recall and precision. Lovins (15)

who designed and developed the stenuning algorithm, mentioned three major previous

attempts to construct affix removal algorithms. Tukey (16) had built a context sensitive

partially iterative sternmer which grouped all endings into four groups. The first group

covered only the letter s which can't be removed after i, s or u. The second group was

recursive, the third was non-recursive and the fourth group included remaining terminal

consonants. All groups had restrictions on stem lengths. Tukey's approach was

complex because one group was based on the longest match principle; other on the

iterative method.

The second algorithm was designed by Michael Lesk (17) at Harvard University. This

sternmer was based on an iterative search for a longest match ending. If no more

relevant matches were found, terminals (vowels) i, a and e were removed and then

terminal consonants.

Dolby (18) in California developed the third sternmer which involved three stages. The

first stage used a set of context dependent rules. The second stage was based on the
longest match approach and was context free which meant that the first ending in any

group which matched the term was accepted as valid. In this stage the endings were

removed in any order and the only restriction was a minimum stem length of two

syllables. The final stage was context dependent regarding inflectional forms of terms.
Some principles and results from the above mentioned algorithms were used in building

the Intrex sternmer. For example, a preliminary list of endings for the stemming

algorithm of Project Intrex was partly based on a list of 194 term endings which was
transferred from Lesk's work at Harvard University. The preliminary list of Intrex

sternmer was analysed and evaluated against the output list of endings from Tukey's

iterative stemmer.

Preliminary lists for the stemming algorithm were organised according to the endings
from both normal and reverse English words. The structure of preliminary lists allowed
to determine whether the removal of an ending will result in:

two different stems;
0a stem not matching another relevant stem which it should match.

Both those conditions required to add new endings, to dispose of old ones and to apply
new context sensitive rules. The final list contained 260 endings which were divided
into eleven separate subsets, where endings were grouped according to their length.
Within the each subset, endings were arranged in alphabetical order and each ending

35

was followed by one of 29 condition codes (context sensitive rules). The condition

code consists of an alphabetical letter which characterises certain restrictions for the

stem preceding the ending. For example, the resultant list of endings covers two

different endings -ANCING in subset . 06. and -ING in subset . 03. for the test term

DANCING. The first ending -ANCING cannot be removed as the condition code B

requires the minimum stem length consisting of three characters. Code N which follows

after the ending -ING, determines that the minimum stem length should be four

characters if the next letter is s or three characters in other cases. It means that using this
longest match algorithm the ending -ING will be removed from the term DANCING,

leaving the stem DANC, which is four characters long.

There is a two step stemming routine in the Intrex algorithm which means that after

removing the valid ending, each stem is checked against the list of 34 recoding rules.
Recoding rules deal with the removal of double consonants from remaining stems e. g.

consonant I from the stem coll (collate-col) as well as transferring one stem into another

e. g. -ix to -ic (appendix - appendices).

The Intrex or Lovins longest match stemmer predominated good results in use.
Overhage and Reintjies(19) observed that use of the word stemming algorithm, which

removes all stopwords from the initial query and than compares the stemmed form of

remaining words with stemmed indexing terms, is more superior than other information

retrieval techniques. Choice of relevant search terms can also evidently improve

information recall and precision ratio. For example, after modifying the initial search

query "irradiation embrittlement of metals" to "irradiation embrittlement" the recall ratio
changed from zero to 2 per cent with 100 per cent relevance. Further alternations of the

same query which included the removal of "embrittlement" leaving only the word
"irradiation", resulted in 90 per cent recall with 40 per cent relevance of retrieved
documents (20). A modified version of Lovins stemming algorithm was used for

stemming indexing terms in the experimental in-house information retrieval system
MASQUERADE, which covered various types of documents in geology and
exploration (2 1).

The experimental fully automatic information system SMART was also designed in the

middle of the sixties (22). The system involves a longest match sternmer which was
based on a modified version of Lovin's algorithm. The SMART stemming algorithm
included a list of more than 260 suffixes and several recoding rules. The sternmer
operated as follows: for each word the longest possible suffix was determined, leaving

valid length of stem which was not less than three characters. After that the word stem
was matched against the exception list and in a case of a successful pass, the resultant

36

stem was formed. This last stage involved the use of recoding rules i. e. to change letter

-Y to -1 or to remove double consonant from the final stem.

3.3.2 Next generation of stemming algorithms (1970 - 1980)

Two stemming algorithms were analysed and evaluated for an information storage and

retrieval system, which was part of the RADCOL project and which was designed in

1973 by Informatics for the Rome Air Development Centre (23). The first sternmer

covered two stage passes through a list containing 95 suffixes. The other stemming

algorithm which was based on a longest match approach, used only a single pass

through a more extensive list of endings covering 570 suffixes, so this algorithm was

chosen for the RADCOL project.

To create the suffix list, all characters of words which appeared in the index more than

ten times were reversed. The reversed terms then were arranged in an alphabetical

order. All the characters in neighbouring terms were compared and in a case of a match,

strings of characters containing 1,2,3, ... n letters were grouped in a separate list. For

example, besides the character string and suffix -ATION (i. e. for the term
ORGANISATION), there were also such strings of letters as -N, -ON, -ION, -TION.
All strings were systernatised and the most frequent endings were grouped together for

the final suffix list. This suffix list was also analysed and compared with the list of

endings from Lovin's sternmer. Despite the extensive list of suffixes, the RADCOL

longest match algorithm included only three recoding and two condition rules.

In 1974 the above described Intrex longest match algorithm was changed and modified
by Dawson (24) who added more plural and simple suffixes to the list of endings. The
final list comprised almost 1,200 suffixes which were arranged in reverse order
according to their length to avoid problems related to storage and processing time.

Dawson's sternmer was based on a partial matching approach which means that terms

are matched if their stem endings are almost identical e. g. -MIT and -MIS. The sternmer
includes nearly fifty of such nearly identical groups of stem endings, and if two stems
match on a definite number of characters and the remaining letters of each stem belong

to the same group of stem endings, than both stems are stemmed to the same form. For

example, if there are two test terms ADMISSION and ADMITTANCE with similar
stems ADMISS and ADMITT, than after removing endings -ION and -ANCE as well
as one of the double consonants s and t, the remaining stems according to the

appropriate conditional rule would be transferred to one single stem ADMIS. The suffix

37

list and conditional rules for Dawson's sternmer were constructed manually using a Key

Letter In Context (KLIC) index.

The KLIC index was also used for creating the word ending lists and corresponding

conditional rules for the INSPEC sternmer (25). Single index words, which were

assigned to each document, formed the basis of KLIC index. Each word was then

stored under its constituent character and all terms were grouped in an alphabetical

order. The KLIC index covers also a frequency count for each type of term and for each

term ending.

The INSPEC algorithm was developed in 1975 and it comprised both longest match

and iteration approaches. Along with recoding and conditional rules, the word

stemming was carried out by three separate algorithms. The first, partly iterative

sternmer (Algorithm 0) removed stopwords and the most common endings i. e. plural

forms of terms. Terms which did not match the stopword list, were stemmed by

Algorithm I which was based on the longest match principle. During this stage the

majority of suffixes were removed according to context sensitive rules and a minimum

stem length. Algorithm 2 modified the word stem using as a basis definite stem length.

The principle of multi stage term stemming was later implemented in the experimental

online catalogue OKAPI, which is described in Section 3.3.4

The basic principles of the SMART information retrieval system described before were
implemented in the Flexible Information Retrieval System for Text (FIRST) which

was designed in the middle of seventies. The system incorporated a longest match

stemming algorithm, which along with a list of 350 stopwords included a suffix
dictionary of approximately 250 suffixes.

At the beginning each term was matched against the stoplist and after a successful pass,
the number of characters in the word was checked. If the term was less than three

characters long, it was added to the stem dictionary. Terms would not be included in the

dictionary if:

a stem with an added suffix matched the term, e. g. ORGAN + ZATION

= ORGANIZATION;

a stem had a double consonant and an added suffix matched the term,

e. g. ADMIT +T+ ANCE = ADMITTANCE;

0a vowel e was removed from the stem and a suffix which is beginning

with vowel, matched the word;

a stem had ending y which had been changed to i and an added suffix

matched the term e. g. HURR -Y + IED = HURRIED (26).

38

New words were added to the stem dictionary unless they were suffix variations of the

existing stem entries. Therefore, the stem dictionary covered words rather than only

their actual stems. A unique stem number was associated with each stem entry in order

to find a relevant stem through the lookup algorithm by comparing a word with the

corresponding stem number.

Minicomputer Operated Retrieval (Partially Heuristic) System MORPHS was designed

in the seventies to substitute for an existing manual thesaurus based system (27).

Stemming was used for indexing terms and for search terms. MORPHS stemming

algorithm included both longest match and iteration procedures. The algorithm also

involved standardisation of word forms and special role indicators for affix removal.

The word standardisation usually changed plurals to singular forms i. e. COMPUTERS-

COMPUTER. However, in some cases to maintain a consistency, terms were

standardised to plural forms i. e. words HALF and HALVES were transferred to

HALVE, thus avoiding the term INVOLVES being processed as INVOLF.

Role indicators encompassed specific information about the function of terms (28).

After a word passed the standardisation procedure, its suffix in most cases would be

substituted by the corresponding role indicator, which would define whether the suffix

could be removed or not. Role indicators searches based on term roots or the derived

forms of terms. For example, the search could be done either using the root COMPUT,

or COMPUT (role A) implying COMPUTING, or COMPUT (role D) implying

COMPUTED. The implementation of role indicators ensured:

9 the reduction of term lengths;

the bringing together different word forms e. g. DEFLEXION and
DEFLECTING would have the resultant root DEFLECT.

The MORPHS sternmer incorporated a comprehensive suffix list which covered a

number of exceptions as well as specific chemical suffixes e. g. OSE for term

FRUCTOSE. Along with suffix stripping, the algorithm also provided removal of

prefixes. A set of rules regarding the stem length prevented removal of invalid prefixes
from terms i. e. PRE from PRESSURE or ANTI from ANTIMONY.

39

3.3.3 Latest developments (1980 -)

in early and mid-eighties construction of stemming algorithms for English language

texts and databases reached its highest level of development. As noted by several

authors, after this stage any further changes in stemming rules and/or codes will either

decrease performance and efficiency of a sternmer or leave it at the same level (29).

Martin Porter at the University of Cambridge in 1980 constructed a sternmer which

was based on an iterative suffix removal method (30). The algorithm covered a list of

term endings and a set of rules including minimum stem length which determined

whether the particular suffix could be removed or not.

The principle that vowels and consonants in English terms were arranged in a certain

order was built in Porter's sternmer. It meant that all characters could be divided into

two groups containing a set of vowels and a set of consonants. Porter denoted vowels

by v and consonants by c. A list of consonants ccc ... >0 was denoted by C and a list of

vowels vvv ... >0 was marked as V. In that case every term or a part of term can be

described in one of the following four forms:

cvcv c

cvcv
...

v

vcvc
...

c

vcvc
...

v

These forms can be summarised by the expression:

[C] vcvc [V]
where the square brackets means that the presence of C and/or V is optional. Finally,

using m as a measure for the word or a part of the word, the above mentioned formula

can be expressed as follows [C] (VC)- [Vj, where the combination VC repeats m

times. The measure m facilitates to determine either the suffix has to be removed or not.
According to Porter's sternmer, the case m=O included the null word, m=1 covers the

first word i. e.

m=O TR, EE, TREE

m=l TROUBLE, TREES

m=2 TROUBLES, PRIVATE.

For example, no suffix would be removed from the term TREE, but ending S would be

stripped from the word TROUBLES as in> 1.

Porter's algorithm also included several conditional rules which were described in the

form SI --S2. It meant that if the term ended with the suffix SI and the stem before SI

satisfied the given condition, SI was replaced by S2. For example, if the test word was

40

REPLACEMENT with Sl=EMENT and S2=0, than the algorithm would remove

suffix EMENT leaving the stem REPLAC. The algorithm included also other conditions

i. e.
*s- meant that the stem ends with letter s (the same principle also for other

letters);

v- denoted that the stem contains a vowel;
*d- that stem ended with a double consonant (i. e. -TT, -SS);
*0- that stem ended as a string cvc, where the second c was not W, X or Y

(i. e. WIL but not TEX).

The stemming algorithm operated in five steps. The suffix dictionary included about 60

suffixes which were grouped in five different categories. Step la and lb dealt with

plurals and past participles. The conditional rules for this step were m>1 and *S or *T

which meant that the sternmer operated with words which ended S or T. Step I also

checked for double consonants in the term endings, except consonants L, S, Z

(condition *d not *L or *S or *Z). For example, in step 1 the plural form of TIED

would be changed to TI (ending -ED will be removed), but in step lb the past participle

of FIZZED would be transferred to FIZ. Step lc contained condition (*v*) Y-I which

changes ending Y to I if m>O, e. g. HAPPY - HAPPI.

Step two, three and four stripped suffixes and modified word stems according to the

suffix tables, if m>O (in step 4 m>l). For example, for the term ORGANIZATION,

suffix -ATION would be removed and the remaining stem ORGANIZ would be

modified to ORGANIZE. Step 5a included condition (m>]) E --> but m=1 and not *o)

E--> which dealt with terms ending with vowel E. For example, PROBATE would be

transferred to PROBAT but RATE would remain without any changes, because in is

less than 1. Step 5b removed double consonants in the remaining stem - condition m>1

and *d and *1. Complex suffixes were removed in several steps. For example, for the

term OSCILLATORS first of all the ending -S would be removed, leaving

OSCILLATOR (step la). After that ending -OR would be replaced by -E i. e.
OSCILLATE (step 2). Step 4 would remove suffix -ATE leaving OSCILL. Finally,

step 5b stripped double consonant -L leaving the resultant stem OSCIL.

Tests revealed that after passing the list of stopwords, the majority of terms were

stemmed in step 1. It was also observed that despite the algorithm not stemming

prefixes, the presence of prefixes decreased the number of errors in stemming process.
Overall, the algorithm was simple, it included only a few context sensitive rules and

was economical in response time and storage.

41

Porter's algorithm was implemented in the experimental information retrieval systems
CATALOG and INSTRUCT as well as in an online catalogue OKAPI. As noted by

Frakes (31), the CATALOG system, which was introduced in 1984, produced good

results in information retrieval and provided user friendly front-ends for inexperienced

users. The INteractive System for Teaching Retrieval Using Computational Techniques

(INSTRUCT) software package was designed in early eighties for students in Library

and Information Studies (32). The system covered documents from LISA database for

year 1992. The main purpose of the INSTRUCT system was to help the searcher to

select the most relevant items which has been identified by the system. Despite Porter's

sternmer, which forms the basis of INSTRUCT, having limitations, it produced good

results in information retrieval. As the OKAPI catalogue is one of the very few OPAC's

which contains the stemming procedure, it will described below in a separate section in

more detail.

Porter's stemmer has been redesigned and implemented by B. Frakes and C. Cox in

1986 and changed by C. Fox in 1991. Frakes (33) mainly changed the structure and

renamed functions and variables in the algorithms as well as restricted scopes of
functions and variables. Fox added ANSI C declarations and carried out complete

testing of the whole stemming algorithm.

Another stemming algorithm MARS was also designed in the early eighties to provide

access to all searchable terms in the database which were morphologically related to a

given search term. The system used linguistic analysis and word decomposition

techniques based on morphological lexicon. The MARS stemming algorithm checked

each term against the list of stopwords and then split terms into prefix, stem,
derivational and inflectional suffixes using a morpheme dictionary and morpheme

grammar (34).

All word stems were grouped together in a stem file where special pointers provided
links between text terms and stems to enable successful retrieval of those terms. The

morpheme dictionary covered affixes, inflectional endings and fillers, where the

morpheme is the longest possible string which was obtained from all possible
derivations. The list of morphemes was presented as a tree. For example, the term

'TRADITIONALLY'would be a derivation of 'TRADITION' and not'TRAD(E)'. The

morpheme dictionary also included two smaller lists:

'irregular' stems such as Latin and Greek plurals and irregular verb
forms;

strings which regularly underwent grammatical change i. e. -Y to -IE
(ENTRY - ENTRIES).

42

A pre-processor evaluated whether the string transformations were necessary or not. It

was followed by three lists which processed each word using decomposition grammar.
A certain stage in a word had to be reached and certain conditions had to be fulfilled to

allow the term to be passed to the next stage. All the conditions were listed in the

morpheme grammar for the language.

The Paice/Husk stemming algorithm was designed and implemented at Lancaster

University in the middle eighties (35). The stemmer was iterative and incorporated one

table of rules, where each rule specified either deletion or replacement of an ending.
Each line in the rule table included a separate stemming rule. For example, the rule
" sei3y> I -ies > -y I" meant that if the word ended in " -ies ", then the last three letters

would be replaced by -y i. e. LORRIES-LORRY (braces cover comments about the

action of each rule), and after that the sternmer would be applied again to the stemmed
form of a word. There were three basic and two optional components in each rule:

1) an ending which included one or more characters and which are held in

reverse order;
2) an optional intact flag fl*";

3) a digit which specified the total remove;
4) an optional appended string of one or more characters;
5) a continuation symbol ">" or ". ".

For example, the rule "su*2. f -us >- if intact I" meant that if the word had ending -us
and if the word was intact, then the last two letters would be removed and the stemming

would be terminated i. e. -us would be removed from the word SURPLUS leaving

SURPL, but not from EXHAUS (the stem from a word EXHAUSTION). All rules

were arranged into separate sections according to the final letter of the suffix and stored
in an array, which ensured a quick access to the rule table by looking up the final letter

of the current or stemmed word.

Overall, the sterm-ning algorithm included the following steps:

selection of relevant action, which meant that the final letter of a word or

part of a word was checked. If no section of the rules corresponded to

that letter, the process was terminated.
2) testing applicability of the rule. Before applying any of matching rules, a

simple acceptability test for each word was carried out. If the final letters

of the word did not match the reversed ending in the rule or if the ending

matched and the intact flag is set but a word is not intact than go to step
4.

43

3) application of the rule;
4) look for another rule.

The Paice/Husk sternmer has not been formally evaluated, however it works efficiently

and is easy to implement.

3.3.4 Automatic stemming and OPAC's

There are very few experimental online catalogues which incorporate stemming

algorithms. One of the main reasons is the extensive amount of information in different

subject areas covered by OPACs, which means that the sternmer has to process various

types of indexing and search terms. OKAPI is a computerised catalogue which

incorporates a stemming operation based on Porter's algorithm (36). OKAPI was

developed at the Polytechnic of Central London in 1984-1986. In OKAPI Porter's

sternmer is split into two separate algorithms which cover weak and strong stemming.
Weak stemming (step 1) removes regular English plurals as well as -ED and -ING
endings. After that the double consonant endings are reduced to single. The algorithm
involves also a minimum stem length which is at least four characters. Strong stemming
(steps 2-5 in Porter) removes suffixes according to the specific conditional rules and

suffix tables. In order to achieve better information performance, records retrieved with

weak stems are displayed before the records which has been found using strong stems.
Overall, it was also observed that weak stemming in online catalogues is more

successful and efficient in information retrieval than use of strong stemming.

Computerised Information Transfer in English (CITE) is another online catalogue

which was designed in eighties and uses a stemming algorithm to improve access to a

collection of monographs at the National Library of Medicine in Maryland (37). The

sternmer includes a suffix dictionary which is organised as a pseudo-tree structure and

contains terms from Medical Subject Headings (MeSH). There are eight levels in the

tree and each level corresponds to the character position of the suffixes. The maximum

suffix length is up to eight characters. CITE catalogue uses iterative stemming algorithm

which strips endings according to specific combinations of conditions and actions

associated with those combinations. For example, combination A 1&3 means that

suffix is detected, but it is a part of a larger suffix (code I means- node letter begins a

suffix, code 3- letter preceding node letter is part of a suffix). Action A determines that

the searching should be continued in order to remove the largest possible suffix, but if

the remaining root is less than five characters long, than the shorter suffix should be

stripped. Condition D 2&4 states that the character is not a suffix and the stemming

process have to be terminated (code 2- node letter does not begin a suffix, code 4- letter

44

preceding node letter is not a part of a suffix). Action D terminates the stemming

process. Design and implementation of the suffix list for CITE catalogue confirmed,

that many words in medical English morphologically and syntactically do not differ

from general English words, therefore traditional affix removal techniques can be

applied also for those terms.

3.4 Construction of non-English language stemming
algorithms

All sternmers described in the previous section have been designed for an English

language environment. Design and use of various conditional and recoding rules form

the most crucial part in the process of construction stemming algorithms. However,

those rules can be applied also to other languages, if the semantic importance of the

particular language is based on stems rather than on suffixes. Moreover, as noted

before, to date any further developments of English stemming algorithms will not

significantly increase effectiveness of information retrieval, whereas improvements can

be successfully carried out for a number of more complex non-English languages.

Grammatical characteristics and especially morphological complexity determine the

adoption of conflation techniques in other languages. For example, it is difficult to

apply any English stemming algorithms for German language, as the later consists of

many compound terms (38). Descriptions of stemming algorithms which have been

designed and implemented for non-English languages e. g. French, Turkish, Slovene,

Latin etc. are given below.

3.4.1 Stemmer for French terms

French is an inflective language and has a number of irregularities in morphology and

orthography. Even the application of the weakest English sternmer for French language

will require a comprehensive suffix dictionary of about 3,000 inflectional suffixes.
French terms also have differences between linguistic and semantic meanings.
However, the French dictionary is more constant and stable than English or German.

According to Savoy(39), the stemming procedure for French texts consists of two

stages:
1) morphological analysis of terms;

2) removal of derivational suffixes according to the grammatical categories.

45

The morphological analysis requires a dictionary file and a declension file. In dictionary

file each term is associated with a certain declension number, gender and grammatical

category. For example, the term ROBUSTE (robust) is characterised as adjective,

which uses declension number five and the term is masculine in singular form.

Declension number five can be found in the declension file which states that ending -s

will be removed if the term is in masculine or feminine and in plural form. All

declension forms are organised in a truncated digital search tree which determines that

the morphological analysis starts from the end of a word. Apart from removing

inflectional suffixes, the morphological analysis evaluates the past participle and returns

the infinitive form of the verb. For example, the term NEUVES (new) will be

processed in following way: first of all three last characters in reverse order i. e. -SEV

will be removed from the term (one character at time) and after that character F will be

added to the remaining stem NEU forming the stem NEUR

The derivational process is similar to Porter's iterative affix removal approach.

Derivational suffixes can be determined by using a suffix list based on four tables

which correspond to four grammatical categories- nouns, adjectives, verbs and

adverbs. Each grammatical category covers special rules and several restrictions

regarding gender and/or the remaining stem length. When the grammatical category and

suffix of the term are determined, it is possible to find a term's stem and the

grammatical category of the corresponding stem. For example, for the adjective
VOLCANIQUE (volcanic) suffix -IQUE will be removed leaving the stem VOLCAN

(volcano) which is a noun.

The French stemmer has been evaluated using three basic tests. The first experiment

covered weak stemming which removed inflectional suffixes (plurals, past participle)
from 50 test terms. According to results all 50 terms were stemmed correctly. The

second test was dealing with prefix removal and the success rate was also high. Finally,

the third test which evaluated suffix removal procedure from terms containing only
derivational suffixes, also revealed high ratio of correct results. It was also observed

that the use of grammatical categories can decrease number of overstemmed terms.

3.4.2 Slovene stemming algorithm

The Slovene language is similar to English in the sense of creating words by adding

suffixes to a basic stem. However, Slovene is an inflective language and covers six
different cases where nouns, verbal nouns, adjectives, numerals and pronouns can be

not only in singular and plural forms, but also in dual form. A stemming algorithm for

Slovene language was developed in 1990/91 by Popovic(40). The sternmer is based on

46

Porter's algorithm and includes a comprehensive list of 5276 Slovene suffixes together

with a set of context sensitive rules. Each suffix is associated with a minimum stem

length and one of eight codes which determine the definite context sensitive rule that can

be applied for the particular term. After the suffix has been removed, three sets of

recording rules check the remaining stem to determine whether it should be modified or

not. The stemmer is accompanied by an extensive list of stopwords.

Tests and experimental evaluation of the Slovene stemming algorithm were based on the

system INSTRUCT which has been mentioned before in section 2.3.9. First of all, the

Sign Test which calculates the probabilistic number of relevant documents, was used to

determine the difference between the manual word truncation and automatic stemming.

Results revealed that the number of relevant documents retrieved by stemmed and

truncated searches were almost equal. However, a further statistical analysis and testing

based on the two-tailed Sign Test and Kendall's Coefficient of Concordance showed

that the performance between conflated and nonconflated text is far greater in favour of

stemming. Moreover, the modified version of Porter's algorithm for Slovene language

performed considerably better then the original one.

3.4.3 Algorithm for stemming in Latin

Another example of automatic word conflation for non-English language is a stemming

algorithm for searching databases of Latin words and texts, which was developed at the

University of Sheffield (41) Along with the above described French and Slovene, Latin

is inflective language which includes five declensions for nouns and adjectives as well

as four conjugations for verbs.
Because of the complexity of Latin language e. g. many words have more than one
distinct stem, manual right hand truncation usually produces poor results. Moreover,

users have to have sufficient knowledge of Latin morphological structure not to

undertruncate or overtruncate a search word(s). To overcome this problem, all Latin

words were grouped into two separate classes:

nouns and adjectives

verbs

Two distinct sets of rules based on the above mentioned classes of words were
implemented into the stemming algorithm. The first set of rules removed suffixes from

nouns and adjectives in all five declension forms, whereas the second set was stripping

suffixes associated with four conjunctions of verbs. The structured form of the

stemming algorithm allowed to avoid of proceeding all classes of words through the

same stemming routine which means that words with suffixes relevant to nouns would

47

not be processed by the stemming rules for verbs. After the stemming procedure was

completed, the algorithm generated two stem dictionaries which included all the

resultant word stems.

Similarly to the before described stemming algorithms for French and Slovene, the

Latin stemmer was written in C programming language and used a number of Porter's

data structures and stemming rules. The algorithm incorporated the longest match suffix

removal approach leaving the minimum stem length at least three characters. Because

of the complexity of language and to distinguish different words with similar roots, the

sternmer in many cases intentionally used understernming rather than oversternming.

Analysis and evaluation of the stemming algorithm based on several test collections

revealed that automatic word conflation for Latin is more efficient than manual right
hand truncation. For example, evaluation of the sample test collection C consisting of
49 complete selected documents, in average reached the success rate of 99%.

3.4.4 Word stemming in other languages

Besides the above mentioned stemming algorithms for French and Slovene languages,

attempts to use automatic term conflation approach have been done also for Turkish,

Finnish, Russian and Arabic. Because of the complexity of morphological and

grammatical structure, none of those languages have tried to test and/or implement any

of the before described stemming algorithms for English language.

Some experimental parsing algorithms have been constructed for Turkish language.

Turkish can be characterised as an agglutinative language where words are formed by

combining together root terms and morphemes. Morphemes in agglutinative languages

often have no strict boundaries from the root terms. One of the first parsing algorithms
for automatic word analysis was designed by Koksal. The algorithm involves the

minimum stem length which is presented in a root dictionary. Each term is processed
from the left to right and after a root is determined, the remaining part of the term is

searched in a suffix morpheme dictionary to identify morphemes. However, this

parsing algorithm did not cover any semantic analysis of terms, which is essential for

Turkish and other agglutinative languages, as the most suffixes can be linked only to

the limited number of roots. Another drawback of the previous parser was explicit use

of iterative procedure for suffix derivation, which is not effective for Turkish, as the

number of iterations is not high in this language.

48

Therefore, Solak(42) designed a parser which is mostly based on morphological

analysis of the structure of Turkish words. The purpose of this algorithm was to use it

as a spelling checker with a further possibility to develop it as a stemming algorithm for

information retrieval system. The morphological analysis of Turkish terms comprises

three stages:
1) root deten-nination;

2) morphophonemic checks;
3) morphological parsing.

The first stage deals with root determination and it is based on the dictionary of 23,000

words containing a root term and several flags which help to detect certain features of

the particular term. Difficulties can arise if the root of the term is deformed, which

means that the last consonant in some roots may change to another one. After the root

has been found, the rest of the word is considered as suffix(es). At this stage the vowel

harmony and usage of passing vowels and consonants are checked according to the

specific morphological rules. Finally, the morphological parsing includes two sets of

rules which are used for two main root classes. When the root is determined, the class

of roots involves the appropriate set of rules. The whole process of morphological

analysis is carried out by the lexical analyser (LEX) and Yet Another Compiler-

Compiler (YACC) which generates a parser for examining input terms and grouping

them into syntactical clusters.

Finnish is another example of an agglutinative language, where suffixes often are

added to the root to modify and/or extend the meaning of a term. One of the

experimental algorithms for removing suffixes from the end of the term was produced
by Brodda and Karlsson. No stem dictionary is involved in this approach and after the

suffix removal from a term, the remaining part is assumed to be the root.

Suffix removal algorithm for Greek is one of the first attempts to construct stemming

algorithm for language which is based on non-Latin character set (43) The grammatical

structure of Greek language covers a rich inflectional system which includes 41 forms

of suffixes. Similarly to the above mentioned Slovene, Latin languages, nouns in

Greek have four different cases and the declension is carried out according to 41

categories of nouns e. g. 14 for the masculine, 14 for the feminine and 13 for neutrer.

The iterative algorithm was based on two stage suffix removal procedure:

analysis and removal of inflectional suffixes;

removal of derivational suffixes which correspond to their grammatical

categories.

49

All suffixes were grouped into three different tables according to three classes of words:

nouns;
adjectives;
verbs.

The total 65 types of different suffixes were included into the final version of the

algorithm. Conditional rules for suffix removal covered several restrictions on the

suffix length depending on a resulting stem and the minimum length of a stem was no
less than three characters. The algorithm was supplied by a stoplist which removes

stopwords e. g. definite and indefinite articles, conjunctions, prepositions, pronouns,
before the actual suffix removal procedure was started.

Preliminary evaluation based on two small test collections covering documents in

medicine and computing as well as analysis of user enquiries revealed that the majority

of errors were caused by understernming. Although the algorithm have not been

implemented into any of Greek databases and/or tested using large document

collections, the initial evaluation showed that in 90% of all cases the Greek sternmer

produced correct stems.

Sagvall designed a morphological analyser for Russian language which checks an
initial substring of the word in a root dictionary. After that possible suffixes, which can
follow the root of a term, are determined according to grammatical rules and categories.

An experimental information retrieval system for a collection of 23,000 documents in
Arabic language was introduced by Al-Kharashi(44). The main purpose of this system
was to compare which of the following three choices is the best for automatic indexing

and information retrieval:

use of the complete term;
the stem of a term;

the root of a term.

The Arabic language is based on a root and pattern structure which means that majority
of terms are derived from a short list of roots. Root is the part of a word without
prefixes, affixes and endings. Stem is the part of a word without the ending. The

experiment involved manually developed word-root-stem dictionary which ensured to

identify the stem or the root for each term as well as exclude stopwords. For 355

records, the dictionary included 1,126 terms, 725 stems and 526 roots. A

corresponding stem and root structure was determined for each keyword. Similarity

50

measurements based on cosine, Dice and Jaccard binary coefficients were involved, to

evaluate recall and precision ratio for information retrieval using a complete term or

term's root and/or stem. Results confirmed that the stem and root retrieval methods are

efficient and can retrieve more relevant documents than the one based on full word.
Statistical tests i. e. the Sign test also revealed good results in favour of stem and root

retrieval approaches. It was also mentioned that in future the word-stem-root dictionary

should be replaced by a morphological algorithm for more efficient word conflation in

IR system.

Overall, the complexity of design and implementation of non-English stemming

algorithms to a certain extend depends on the morphological structure of a particular
language. English affix removal sternmers can be successfully applied for languages

which use single, separate terms to form the text and where each term has strictly
determined root and suffix boundaries i. e. French, Slovene, Latin. Moreover, the
Slovene and Latin stemming algorithm achieved even better information retrieval results
than the similar algorithm for English language environment. It is more difficult is to
design and implement stemmers for agglutinative languages i. e. Turkish, Finnish as

well for languages which use a non-Latin alphabet i. e. Arabic, Chinese, Russian so
therefore, at present very few automatic word conflation approaches have been

introduced for those languages.

3.5 Evaluation of stemming algorithms

Sections 3.3 and 3.4 revealed that affix removal is one of the most often used stenuning
approaches in information retrieval systems. The majority of sternmers described in the

section 3.3 incorporate longest match approach which in some cases is coupled by the
iteration method. However, many of those sternmers are actually modified versions of
previously designed algorithms i. e. Dawson's suffix removal algorithm is based on the
Lovin's longest match sternmer. The iterative approach has been successfully applied
for non-English language stemming algorithms. All the affix removal stemming
algorithms mentioned before in section 3.3 are summarised in table 3.4.

51

Table 3.4 Variety of affix removal stemmers
Stenumng algorithm Longest match Iteration Other

LOVINS (INTREX) x
DAWSON x
INSPEC x x
RADCOL x
SMART x
FIRST x
MORPHS x x
MARS x

PORTER x
INSTRUCT x
PAICE/HUSK x

To determine the difference and efficiency between the variety of term conflation

algorithms, several evaluation studies and tests have been carried out for sternmers in

information retrieval systems. One of the first experimental studies was done by

Salton(45) who compared retrieval results based on iterative longest match method

using fully stemmed words and terms with suffix 's' removed. Three document

collections i. e. IRE-3 covering 780 computer science abstracts and 34 user queries,
ADI consisting of 82 documents and 35 queries and Cranfield-I covering 200

aerodynamics abstracts and 42 queries, have been used for the evaluation study.
Calculations based on 14 dependent variables for each query i. e. rank recall, log

precision, normalised recall, normalised precision and precision for ten recall levels

were used to compare both the above mentioned stemming methods. Related group t

tests and sign tests were used to analyse the calculated data.

For the IRE-3 collection, there were 272 cases, which favoured full stemming, in 132

cases the preferrence was given to suffix 's' stemming and in 72 cases neither one nor

another method was preferred. The effect size for the IRE-3 collection was . 175. For

the ADI collection, in 254 cases the preferrence was given to full stemming, 107 cases
favoured suffix 's' stemming and 129 cases did not favoured to any of both stemming

approaches. The effect size for ADI collection was . 20. For the Cranfield- I collection,
full sterm-ning method was chosen in majority cases and the effect size for this collection

was . 235. Results revealed that sternining may significantly affect retrieval performance
depending on the type of vocabulary i. e. the Cranfield collection is more technical and
homogenous than ADI and IRE-3, therefore the results were better for that collection.

52

Van Rijsbergen (46) evaluated Porter's stemmer against the Dawson's longest match

algorithm using the Cranfield-I collection. The results based on ten paired recall -
precision levels revealed that Porter's stemmer was slightly better than the Dawson's

sten-imer. No statistical results have been reported on this evaluation study.

Another evaluation was carried out by Lennon(47) who analysed the retrieval

effectiveness and inverted file compression of several stemming algorithms i. e.
RADCOL, Hafer & Weiss, Lovins, INSPEC, Porter. Tests were based on Cranfield-

1400 document collection which covered 1,396 documents and 225 user queries. For

each sternmer, words from document titles and user queries were stemmed and stems

were replaced by stem numbers for easier processing. The effectiveness of document

search was defined by measure E, which can be calculated using the following formula:

(I + b') PR

b2P+R

where P=precision, R=recall and b measures the relative importance added to recall and

precision by the user in a case if relevant documents are retrieved.

The evaluation study covered analysis of the relative effectiveness of stemming vs

nonsternming. All stemmers except Hafer and Weiss successor variety algorithm

performed better information retrieval results than unsternmed terms. The relative

performance of various sternmers was also evaluated and experiments revealed that

there is a little difference using one or another stemming algorithm in terms of retrieval

effectiveness.

Walker and Jones(48) analysed Porter's sternmer using an online book catalogue RCL.
It was observed that stemming can considerably increase recall. Experiments also
revealed that weak stemming does not decrease precision, which strong stemming does.
Weak stemming also performed better document retrieval results for OPACs e. g.
OKAPI than strong stemming. Therefore, it was recommended to use weak stemming
first and to reserve strong stemming for those cases, when no documents have been

retrieved by the weak stemming approach.

Three different sternmers Le SMART based on Lovins' longest match algorithm,
Porter's iterative sternmer and 'S' algorithm, which conflates singular and plural term
forms, have been evaluated by Harman(49). Experiments were based on IRX system

which covered Cranfield- 1400, Medlars and CACM document collections. Recall and
precision ratio were analysed for each group of documents. Tests with the Cranfield

collection revealed that stemming did not increase significantly performance. The best

53

results in terms of relevance has been retrieved from CACM collection. The

experimental study for evaluation of sternmers involved such methods as:

reweighting of term expansions;

selective stemming based on query length;

selective stemnung based on term importance.

Tests revealed that Porter's sternmer produced more term variants for a given word

therefore, expanding the initial query. Lovins algorithm retrieved a larger number of

term variants after matching the given root of a term. It was observed that after the

stemming process, nonrelevant documents often received higher ranking scores than

relevant items. Overall, the study confirmed that all three stemmers did not evidently
improved infon-nation performance.

Frakes(50) carried on experimental study covering the evaluation of right hand

truncation vs automatic stemming. Results showed that there is no evidential difference

between right hand truncation and involvement of stemming procedures. However, as it

was mentioned by Harman, stemmed query terms are more convenient for end users
than use of truncation and wildcard characters.

Summarising the above mentioned experimental studies, the evaluation of stemming

procedure in infon-nation retrieval systems can be based on:

comparison of different stemming algorithms i. e. Harman's study;

analysis of use of full word vs stemmed term i. e. Lennon's test;

comparison of truncation vs stemming i. e. Frakes study.

3.6 Conclusion

Several of recent information retrieval systems i. e. CITE, MARS, INSTRUCT

incorporate one or another of stemming methods e. g. stemming based on

morphological analysis of terms, stemming covering suffix dictionaries etc. According

to Willett(5 1), automatic term conflation in information retrieval systems:

may reduce the number of distinct terms and therefore the size of
dictionary;

may increase information retrieval effectiveness and particularly the

recall ratio as the conflation procedure can easily determine semantically

similar terms.

54

Evaluation studies analysing stemming techniques and sternmers confirmed that

automatic word conflation can improve information retrieval performance. There is also

no evidence that stemming can degrade retrieval effectiveness. Tests also determined

that stemming results often depends on the type of vocabulary, involved in a

information retrieval process. It was also observed that stemming increases recall ratio

but at the cost of decreasing precision.

Overall, at present most research and experiments regarding stemming procedure and

stemming algorithms has been carried out in English language environment and based

on English materials. Analysis of computerised term conflation in non-English

languages (section 3.4) reflected, that very few stemming algorithms have been

developed or adopted for information retrieval purposes in other languages than

English. The complexity of language structure is often the main reason for such

restrictions. To date no stemming algorithms exist also for Latvian. In order to

determine the appropriateness of implementation of automatic term conflation for

information retrieval in Latvian, it is necessary to characterise the morphological

structure of Latvian language which is described in Chapter 4.

55

References

Frakes W. B. Stemrnmg algorithms. In: William B. Frakes & Ricardo Baeza-

Yates, eds. Information retrieval: data structures and algorithms, 1992, p. 13 1.

2. Willett, Peter. Autoamtic indexing of documents and queries. In: P. Willett

ed. Document retrieval systems, 1988, p. 8.

3. Walker, Stephen & Richard M. Jones. Improving subject retrieval in

online catalogues. I.: Stemming, automatic spelling correction and cross-

reference tables. London: The Polytechnic of Central London, 1987, p. 21.

4. Lovins, Juliet. Development of a stemming algorithm. Mechanical

Translation and Computational Linguistics, 1968,11(l), 22.

5. Hafer, Margaret A. & Stephen F. Weiss. Word segmentation by letter

successor varieties. Information Storage and Retrieval, 1974,10,372.

6. Ibid., pp. 373-375.

7. Ibid., p. 375.

Frakes, ref. 1, p. 137.

9. Rasmussen, Edie. Clustering algorithms. In: William B. Frakes & Ricardo

Baeza-Yates, eds. Information retrieval: data structures and algorithms, 1992,

pp. 430-43 1.

10. Adamson, G. &J. Boreham. The use of an association measure based on

character structure to identify semantically related pairs of words and document

titles. Inforination Storage and Retrieval, 1974,10,253-260.

Lennon, Martin, David S. Pierce, Brian D. Tarry & Peter Willett.

An evaluation of some conflation algorithms for information retrieval. Journal

of Information Science, 1981,3,179-180.

12. Lovins, ref. 4, pp. 29-30.

13. Frakes, ref. 1, pp. 143-147.

56

14. Overhage, Carl F. J. & J. Francis Reintjes. Project Intrex: a general

review. Information Storage and Retrieval, 1974,10,157-188.

15. Lovins, ref. 4, pp. 24-25.

16. Ibid.

17. Salton, Gerard & M. E. Lesk. The SMART automatic document retrieval

system. Communications of the ACM, 1965,8 (6), 391-398.

18. Lovins, ref. 4, p. 24.

19. Overhage & Reintjes, ref. 14, p. 174.

20. Ibid.

21. Brzozowski, J. P. MASQUERADE: searching the full text of abstracts using

automatic indexing. Journal of Information Science, 1983,6,69.

22. Salton, G. & M. J. McGill. The SMART and SIRE experimental retrieval

systems. In: Peter Willett, ed. Document retrieval systems, 1988, pp. 192-229.

23. Lennon et al., ref. 11, p. 178.

24. Walker & Jones, ref. 3, p. 28.

25. Popovic, Mirko. Implementation of a Slovene language based free-text

retrieval system, 1991, pp. 42-43.

26. Dattola, Robert T. FIRST: Flexible information retrieval system for text.

Journal of the American Societyfor Information Science, 1979,30(l), 9-14.

27. Jones, Kevin P. & Colin L. M. Bell. The automatic extraction of words
from texts especially for input into information retrieval systems based on
inverted files. In: C. J. van Rijsbergen, ed. Research and development in

information retrieval, 1984, p. 409.

28. Bell, Colin L. M. & Kevin P. Jones. A minicomputer retrieval system

with automatic root finding and roling facilities. Program, 1976,10(l), 16-2 1.

57

29. Harman, Donna. How effective is suffixing? Journal of the American

Society for Information Science, 1991,42(l), 7-15.

30. Porter, Martin. An algorithm for suffix stripping. Program, 1980,14 (3),

130-137

31. Frakes, W. B. Term conflation for information retrieval. In: C. J. van

Rijsbergen, ed. Research and development in information retrieval, 1984, pp.

383-389.

32. Hendry, Ian G., Peter Willett & Frances E. Wood. INSTRUCT: a

teaching package for experimental methods in information retrieval. Part 1. The

user's view. Program, 1986,20(3), 245-263.

33. Frakes, ref. 1, pp. 151-160.

34. Niedermair, G. Th. G. Thurmair & 1. Bfittel. MARS: a retrieval tool on

the basis of morphological analysis. In: CT van Rijsbergen, ed. Research and
development in information retrieval, 1984, pp. 375-378.

35. Paice, Chris D. Another sternmer. ACM SIGIR Forum, 1990,24(3), 56-61.

36. Walker, Stephen. OKAPI: evaluating and enhancing an experimental online

catalog. Library Trends, 1987,35(4), 631-645.

37. Urnschneider, John E. & Tarnas Doszkocs. A practical stemming

algorithm for online search assistance. Online Review, 1983,7(4), 305-314.

38. Fuhr, Norbert von. Zur Überwindung der Diskrepanz zwischen
Retrievalforschung und -praxis [Bridging the gap between retrieval research and

practice]. Nachrichten für Dokumentation, 1990,41(1), 3-7.

39. Savoy, Jacques. Stemming of French words based on grammatical

categories. Journal of the American Society for Information Science, 1993,

44(t), 2-7.

40. Popovic, Mirko & Peter Willett. The effectiveness of stemming for

natural-language access to Slovene textual data. Journal o the American Society !f
for Information Science, 1992,43(5), 384-390.

58

41. Schinke, Robyn et al. A stemming algorithm for Latin text databases.
Journal ofDocunzentation, 1996,52(2), 172-187.

42. Solak, Aysin & Kemal Oflazer. Design and implementati ing 'on of a spell' C-1
checker for Turkish. Literary and Linguistic Coniputing, 1993,8(3), 113-124.

43. Kalamboukis, T. Z. Suffix stripping with modern Greek. Program, 1995,
29(3), 313-321.

44. Al-Kharashi, Ibrahim A. & Martha W. Evens. Comparing words,

stems and roots as index terms in an Arabic information retrieval system.
Journal of'the American Society for Information Information Science, 1994,
45(8), 548-560.

45. Salton, Gerard. Automatic information organization and retrieval, 1968, pp.
280-349.

46. Frakes, ref. 1, p. 144.

47. Lennon et al., ref. 11, pp. 180-183.

48. Walker & Jones, ref. 3,25.

49. Harman, ref. 29.

50. Frakes, ref. 1,146-147.

51. Willett, ref. 2,7-9.

59

Chapter 4

STRUCTURE OF LATVIAN LANGUAGE

4.1 Introduction

Latvian along with Lithuanian and the extinct Old Prussian and Curonian languages

forms a separate Baltic branch of the Indo-European language family (1). Because of a

few shared features, some linguists have placed Baltic languages in the same group as

Slavic languages (2). Nevertheless, over the centuries Latvian has been much

influenced by German, Russian and Scandinavian languages.

The structure of Latvian language is similar to Lithuanian; however, Latvian in several

aspects is more modem than Lithuanian. For example, the reduction of vowels in final

syllables has progressed further in Latvian than in Lithuanian. Also by the influence

from Scandinavian languages, word accent in Latvian is fixed on the first syllable (3).

This chapter comprises a brief introduction to Latvian character set, which is followed

by the detailed description of Latvian morphology as the concept of word formation is

the basis for automatic word stemming. Finally, a comparative analysis of Latvian and
English language structure, including common and distinguished features of both

languages, is presented.

4.2 Latvian alphabet and pronunciation

Latvian, similar to English and other European languages uses the Latin alphabet, but

there are several diacritic marks for some letters. Contemporary Latvian language

consists of 33 characters: A, A, B, C, 6, D, E, E, F, G, Q?, H, 1, i, J, K, K, L, 1,, M, N, N,

0, P, R, S, 8, T, U, 0, V, Z, 2. Character Y is optional and it is used in Latgalian

(Latvian dialect) and Livs languages (predecessor of the Latvian language) i. e. puyrs -

puhr. Latvian texts can also contain the so called softened r (r) i. e. karý - war (4).

All Latvian characters can be divided into two basic groups - vowels and consonants.

There are four short vowels i. e. A, E, 1, U and four long vowels i. e. A, E, 1,0, in

Latvian language.

0 vowel & (e. g. m5ja -a house) is pronounced similar to the a of English

word father;

60

vowel 6 represents two different phonemes: "closed 6" (e. g. v6j§ - wind),

which is pronounced similar to the first "e" in the English word there

and
'6open 6" (e. g. 16mums -a decision), which is pronounced as "a" in the

English bad;

vowel i (e. g. pile -a duck) is similar to the English "ea" i. e. sea, but a little

more closed;

vowel 0 (e. g. lasis -a lynx) is pronounced as the English "oo" i. e. room, but

more closed.
Vowel 0 can be either short or long, depending on the specific word. For example, in

the word ozols (an oak) both o are "closed" and their pronounciation is similar to

English oa in the word cloakroom. Word foto (a photo) contains "long or open o"

which is pronounced as o in the English word got.

Latvian language contains the following consonants: B, C, 6, D, F, G, Q, H, J, K, K, L,

ý, M, N, N, P, R, S, 8, T, V, Z, 2. Several consonants are pronounced as they are

spelled. Pronounciation of those consonants, which differ from English, is given
below:

consonant c (e. g. cilv6ks -a person) is pronounced like the ts of the English

word slots;
6 (e. g. 60ska -a snake) is pronounced like the ch of English child;

g (e. g. gabals -a piece) is pronounced like the g of the English word goose;

there is no definite English equivalent for consonant 6 (e. g. 6itara -a
guitar). However, English speakers can perceive it as an odd kind of d (e. g.

similar to de in the word Dewey);

j (e. g. j6rs -a lamb) is pronounced like the y of the English word yellow;

consonant ý (e. g. ýengurs -a kangaroo) has no equivalent letter(s) in

English, but it can be likely perceived as an odd kind of t (e. g. similar to tu in

the word tulip);

consonant I (e. g. jaunurns - evil) is pronounced as the combination of letters

W in the English word million;

ý (e. g. HQýis -a circle) is pronounced as the combination of letters n+i in the
English onion;

consonant § (e. g. §autene -a gun) is pronounced like the sh of the English

shelf;

consonant 2 (e. g. 2urn5ls -a magazine) is pronounced like the s of the
English word measure.

61

For better description of morphernic alternations caused by the Latvian inflectional

morphology, all consonants can be further classified into the following groups:

sonorants i. e. j, 1,1, m n, p, r;

obstruents, which can be divided into

voiced consonants i. e. b, d, g, 6, v, z, 2 and corresponding

voiceless consonants i. e. p, t, k, ý, f, s, §, c, 6, h (5).

The following sections will highlight that the position of sonorants and obstruents at the

end of the stem is often important in the change of stems and suffixes during the

inflection of words. For example, according to the grammatical rule, voiced consonants

before voiceless consonants in pronounciation become voiceless i. e. logs (a window)

sounds like loks (an arc) (6).

4.3 Morphological system in Latvian language

4.3.1 The concept of morphology and morphemes

As noted by Anderson "Morphology is the study of the structure of words, and of the

ways in which their structure reflects their relation to other words - both within some

larger construction such as sentence and across the total vocabulary of the language"

(7). Each word consists of morphemes. The morpheme is the smallest unit of a

language that cannot be segmented further and which contains a constant meaning (8).

Root, suffix, prefix and ending or flection are the basic types of morphemes.

root is a morpheme, which contains the meaning of a word;

ending or flection is a morpheme, which is located at the end of a word and

which is flective according to the case and declension of a word;

suffix is a morpheme, which is located between the root and the flection;

prefix is a morpheme, which is located before the root.

Grammatical concepts, i. e. word-final and stem, are also used for the description of a

word. The word-final is a part of a word which contains the last suffix together with

the flection (9). According to different schools of linguists the stem can be definied

either as

0a part of a word without the flection (10)

or

a part of a word without the flection and the last suffix (11).

The latter definition of the stem will be used for this dissertation as it has been approved

and used by the majority of computing linguistics experts in Latvia (12).

62

Figure 4.1 illustrates the basic order of morphemes i. e. roots, suffixes, prefixes and

flections in the words of the Latvian language (13).

R QZ1V - root for the word life)

R+F QZ1V +E- life)

R+S+F QZIV + NIEK +S- animal)

R+Sj +S2 +F (DZIV + 1G + LIM +S- vitality)

P+ R+S+F (AT + DZIV + INA +T- to revive)

P+R+S, + S2 +F (PAR + DZIV + OJ + UM +S- experience)

Pl +P2+R+S+F (NE + AP + DZtV + OT +S- uninhabited)

R, + R2 +F (DZiV + SUDRAB +S- quick silver)

R2 +R, +F (PUS + DZIV +S- half dead)

R= root, F= flection, S= suffix, P= prefix.
Figure 4.1 Location of morphemes in Latvian words.

In addition to the above mentioned, morphemes can be also classified into the following

groups:
lexical and grammatical morphemes,
free and bound morphemes.

Lexical morphemes, i. e. Nouns and verbs, have a meaning in and of themselves, while

grammatical morphemes (e. g. articles, conjunctions) have no such meaning and they

express relationship between lexical morphemes. Free morphemes can stand alone as

words and they may be either lexical or grammatical, while bound morphemes cannot

form a separate word, e. g. the plural ending -s in a word dogs (14).

In Latvian language there are either bound morphemes (e. g. in the word suns- a dog

sun is the root and s is the ending) or grammatical morphemes (e. g. the conjunction

bet- but). Practically, there are no lexical and/or free morphemes in Latvian grammar.

In order to characterise the morphological complexity of the Latvian language, the

following subsection will introduce the basic categories of words and inflections

associated with those categories.

4.3.2 The inflectional system of Latvian words

Latvian is an inflective language and has ten general categories or classes of words:

I. nouns (e. g. koks -a tree, m5ja -a house);

63

2. pronouns (e. g. tu - you, mans - my);
3. verbs (e. g. skriet - to run, lasit - to read, to pick);

4. adjectives (e. g. saulains - sunny, dzeltens - yellow);

5. numerals (e. g. pieci - five, simts -a hundred);

6. adverbs (e. g. p6m - last year, gandriz - nearly);

7. prepositions (e. g. ar - with, p5r - across);

8. conjunctions (e. g. tom6r - however, ja - if);

9. particles (e. g. vienigi - only, vis - most);

10. interjections (e. g. skat! - look, sveiks! - cheers).

All the above listed word classes can be divided into inflectional and non- inflectional

categories. Nouns, pronouns, adjectives, verbs and numerals form the inflectional

category of words, while adverbs, prepositions, conjunctions, particles and

interjections belong to the non-inflectional category (15). Non-inflectional categories or

words containing only grammatical morphemes are also called non-content bearing

words, which can be considered to be included in a stopword list for an information

retrieval system. Structure and characteristics of nouns, adjectives, pronouns and verbs

are described in separate subsections, as these are the core elements of the Latvian

inflectional system.

Nouns

There are six declensions and six basic cases, i. e. nominative, genitive, dative,

accusative, instrumental and locative for nouns in the Latvian grammar. Vocative case
is optional and usually it has the same ending as the nominative or some special ending,

or no ending e. g. akmen! (stone). Nouns in the 1,11 and III declension are in the

masculine gender, but the majority of nouns in the IV, V and VI declension belong to

the feminine gender (one of the exceptions is puika -a boy, which belongs to the IV

declension, but is in masculine gender). International words with vocalic endings i. e.

5, C-, e, o, u, 0 form a group of nondeclinable nouns, e. g. radio, kanoe (canoe). Table

4.1 reflects inflectional endings of nouns. If the declension and the case contain more

than one ending, variants are respectively indicated in brackets. The asterisk

specifies palatalisation of the final root (stem) consonant.

64

Table 4.1 Inflective endings of Latvian nouns
Declensions 1 11 111 IV V VI

Number Case/Gender Masculine Feminine

S Nominative -S (-9) -is (S) -us -a _e -S
I Genitivc -a -a* (-s) -us -as -cs -S
N Dative -am -im -um -ai -ei -ij
G Accusative _u _U _u
U Instr-umental _u _u _u
L Locative

A

R

p Nominative -i -i -as -es -is
L Genitive _u -U* _u _u -u*(-u) -u*(-u)
U Dative -iem -iem* -iem -am -em -Im
R Accusative -us -us* -us -as -es is

A Instrumental -iem -iem* -iem -am -Om -im
L Locative -os -Oslý -os -as -cs -is

Palatalisation of the final stem consonant changes the root of a noun and it is one of the

basic criteria, which determine the complexity of inflective Latvian grammar. As seem
in Table 4.1 nouns in the 11, V and VI declension have the palatalisation of consonants,

which is carried out in the following way:

consonant b is changed to bj (b+j) e. g. quibis (a swan) - gulWi (swans);

c to 6 e. g. Eicis (a bay) - 1-6 (bays);

d to 2 e. g. lode (a bullet) - lo2u (bullets');

1 to I e. g. brdlis (a brother) - Ordli (brothers);
I-

nji (moles); rn to rnj e. g. kurmis (a mole) - kurrr

n to p e. g. suns (a dog) - suni (dogs);

p to pj e. g. upe (a river) - upiu (rivers);

s to § e. g. lasis (a salmon) - la§i (salmons);

t to 9 e. g. naktS (a night) - nak§u (nights);

v to vj e. g. cirvis (an axe) - cýrjvi (axes);

0z to 2 e. g. birzs (a birch grove) - bir2u (birch groves')

In addition, the combination of consonants s+t (st) changes to § e. g. pAksts (a pod) -

pkk, §u (pods'), sn changes to 6Q e. g. kr5sns (a stove) - KrMnu (stoves') and zn to

65

zq e. g. zvaigzne (a star) - zvaiq2nu (stars). Regressive assimilation occurs when

consonant I changes to 1, n to Q and z to 2, and these are preceded by 1, s or z, which

become respectively 1, § and 2, i. e. 11 changes to 11, sl to §1, A to 21. For example,

the noun lelle (a doll) in singular nominative case changes to lellu (dolls) in plural

genitive, or the singular nominative case of the word zizlis (a staff) changes to zi2li

(staves) in plural nominative case. Palatalisation of the final stem consonants g and k

to dz and c, respectively, applies for nouns in a diminutive form, i. e. kQgs (a

window) lodzigg (a little window), or v5ks (a lid) vdciQ§ (a little lid). In modern
Latvian grammar the former r to r palatalisation no longer applies (16).

There is a special group of nouns so called 'deverbal' reflexive nouns, which are
formed with the suffix -§an e. g. v616 the verb (wishes) + §an + &s = v616-§ands (a

wish). These nouns are always feminine and have only nominative, genitive,

accusative and instrumental case. Table 4.2 shows the inflectional endings of deverbal

reflexive nouns.

Table 4.2 Example of deverbal reflexive nouns
Case / Number SINGULAR PLURAL

Norninative -as (velegands a wish) -as (veleý, ands)
Genitive -, qs (veleganas) -os (vele§anos)

Accusative -os (veleganos) -as (velegands)
Instrumental -os (ar veleganos)

Nouns are usually derived with word finals (suffixes + endings) from:

1) other nouns e. g. skola (a school) + otdjs = skolqtks (a teacher);

2) adjectives e. g. saids (sweet) - saidumi (sweets);

3) verbs e. g. klausities (to listen) - klausi§anas (listening);

4) numerals e. g. viens (one) - vienatne (solitude);

5) adverbs e. g. tagad (now) - tagadne (the present).

Nouns can also be derived using various prefixes i. e. 5r- (drzemes - abroad), zem-
(zemOdene - submarine), pie- (pkepils6ta - suburbs). Because a nominal stem may
have a palatalisation in the final consonant, both the nominative and genitive stems are
used for derivation.

66

Pronouns

Pronouns, similar to nouns, are a category of words, which is characterised by a
declension, case, number and gender. Pronouns can be divided into the following

groups:

0 personal pronouns i. e. tu (you), viQ§ (he);

10 possesive pronouns i. e. mans (my), tav6js (yours);

the reflexive pronoun sevis (myself);

demonstrative pronouns i. e. §is (this), tas (that);

relative pronouns i. e. k5ds (somebody);

indefinite pronouns i. e. da2s (some), cits (other).

There are also interrogative (e. g. kur§ - who), general (e. g. ikviens - eveybody),
definite (e. g. pats - myself) and negative (neviens - nobody) pronouns. Personal

pronouns in the first and second persons both in singular and plural have irregular

flectional form, which are presented in Table 4.3. Third person pronouns use the same
flectional pattern as nouns of the I and IV declension.

Table 4.3 Example of flection for irregular personal pronouns
SINGULAR PLURAL

Case lst person 2nd person I st person 2 nd person
Nom. es (1) tu (you) mes jus

Gen. manis tevis mfisu jusu

Dat. man tev mums jums
Acc. mani tevi mus jfis
Instr. mani tevi mums jums
Loc. man! tev! musos jusos

All other types of pronouns follow the same flectional patterns as I and IV declension

nouns. A specific morphological case covers demonstrative and relative pronouns,

which synchronically have the roots consisting of one letter, i. e. §, t and k, and from

which all other forms are derived by suffixation, e. g. adjectives with the suffix -ýid
(65ds - such).

Adjectives

Latvian language uses a definite and an indefinite form of adjectives. Indefinite

adjectives correspond to the same form of flection as masculine nouns of the I

67

declension and feminine nouns of the IV declension. Definite adjectives are derived

from indefinite endings using specific rules, which comprise lengthening the indefinite

endings, i. e. a becomes a (respectively, in the plural -as changes to -as), u changes

to o, and i to ie. For example, the definite form for an indefinite adjective and a noun

balta roze (a white rose) will be baltd roze (the white rose). In definite adjectives

syllabic and consonantal endings are preceded by -aj e. g. skaistaj5 parka (in the

beautiful park). The possible endings for definite adjectives are shown in Table 4.4.

Table 4.4 Endings and flectional pattern for definite adjectives
Masculine Feminine

Case Singular Plural Singular Plural

Nom. -ais -ie -a as

Gen. -a -0 -as -0
Dat. -ajarn -ajiem -ajai ajam

Acc. -0 -os -0 -as
Instr. -0 -ajiem -0 -ajqm
Loc. -aja -ajos -aja -ajas

Some compound nouns in the genitive case may adopt an adjectival function, i. e.

§aurslie2u (narrow-track), which consists from 6aurs (narrow) and sliede (a track).

Morphologically they are not declinable and they do not contain comparative degrees.

The comparative degree of adjectives is formed by the suffix -dk, i. e. b5ls (pale) -
b5laks (paler). The superlative degree is composed by the suffix -5k, the definite

ending and the preposition vis-, e. g. visskaistakais (the most beautiful). Similar to

nouns, adjectives may be derived from nouns, adjectives, numerals, pronouns, verbs

and adverbs using suffixes (i. e. -5d, -ain, -fl, -en, -gan, -ig, -iQ, -isk) and appropriate

endings, e. g. vC-j§ (wind) - v6jains (windy), liels (big) - lielisks (splendid), run5t

(to talk) - rundfLgs (talkative).

Verbs

Latvian verbs are divided into two broad groups: primary and secondary verbs.
Conjugation is another criterion, which characterises a verb. All verbs can be grouped
into three conjugations. Primary verbs belong to the I conjugation and their infinitive

form consists of a root and a flection (R+F) e. g. rakt (to dig), celt (to build).

Secondary verbs belong either to the 11 or to the III conjugation. The 11 conjugation

verbs have the infinitive form R+Td+F, where Td is type designator. The type

68

designator is always a long vowel, i. e. 5,6, i, o, 0. The following verbs are examples

of secondary verbs in the 11 conjugation: dom5t (to think), medit (to hunt), balsot (to

vote), dabOt (to get). The III conjugation contains secondary verbs, which in the

present tense have the form R+Fe. g. zin5t - to know (in the present tense: es zinu -
I know).

Verbs can also have a reflexive form, which is indicated by the lengthening of the

vowel + s. Vowel lengthening is carried out in the following way: a becomes a, i

changes to ie, and u to o, e. g. sm6ja - sm6jaS (was laughing). The infinitive form

of reflexive verbs always includes the morphemes ie and s, e. g. sacensties (to

compete).

Derivation by suffixation is based on the following stems:
the past tense stem;
the infinitive stem;

0 the participial stem.

There are several rules both for primary and secondary verbs for deriving the infinitive

form from the past tense stem and vice versa. For primary verbs, past tense roots with

the stem final consonants b, g, k, 1, m, p, r, s will have the same stem as in infinitive

form, e. g. lika - likt (to put). Another rule for primary verbs determines that

morphemes -5j, -6j, -ij in the past tense change to -5, -6, -i +t in the infinitive form

e. g. Ida - lit (to rain). Respectively, -uv changes to -D+t, e. g. kluyu - klOt (to

become) and -&v to -au+t e. g. §dva - §aut (to shoot). Primary verbs also have

palatalisation of final stem consonants, i. e. c, dz change to k, g+t and t, d to s+t,

e. g. sauca - saukt (to call), IOdza - lOgt (to ask). For secondary verbs, the past stem
is derived from the infinitive stem by deleting the infinitive ending -t and adding the

concatenator -j +F (corresponding flection) e. g. sekot - sekola (to follow -
followed).

Participles are usually derived from:

the present tense stem by adding suffixes -am, -5m, -o§, -ot e. g. zinu -
zinams (I know -known);
the infinitive stem by the suffix -dam e. g. skriet - skriedams (to run -
running);
the past stem with the suffix -us e. g. st&stija - st5stijusi (told - has been

told).

69

Numerals, similar to nouns, are defined by case, gender and number, and they follow

the same flectional patterns as nouns. Adverbs belong to the non-inflectional group of

words. Adverbs can be derived from other classes of words by deleting the flection or

by adding suffixes, i. e. -am, -iem, 5m, -im, -u, -i etc., e. g. vakars (an evening) -

vakar (yesterday), dtrs (quick) - ýitri (quickly). Prepositions, conjunctions,
interjections and particles consist only of the root element or grammatical

morpheme, e. g. zem - under, p6c - after. Occasionally, they may have derivatives,

i. e. p6c (after) - p6c5k (later). As non-content bearing words and because of the

grammatical structure, prepositions, conjunctions, interjections and particles are the

most appropriate and relevant candidates for a Latvian stopword list.

In order to compare the morphological system of English and Latvian, the following

section will describe the basic structure of English words. The main emphasis will be

on affixation in English grammar, as this concept covers the inflectional aspect, which
is one of the core elements in Latvian language.

4.4 Comparative analysis of English and Latvian morphology

The English language, as does Latvian, belongs to the Indo-European language group

and its character set is based on the Latin alphabet. Both in English and Latvian words

are created by adding suffixes and/or prefixes to a basic stem (root) i. e. nation + al =
national. However, contrary to Latvian grammar, English morphology contains also
lexical free morphemes i. e. nouns, verbs (e. g. land, buy). Figure 4.2 describes types

of morphemes used in English (17).

Modem English grammar recognises the following categories of words: nouns, verbs,

adjectives, adverbs, prepositions, conjunctions and determiners or articles. Nouns can
be divided into pronouns, proper nouns and common nouns, while verbs (auxiliary

verbs) can be grouped into modal and non-modal verbs (18). English nouns, similar to

those in Latvian, have a number (singular and plural), e. g. a sister - sisters, and a case
(possessive case), e. g. sister's. Finiteness is one of the elements which characterises

verbs. Finite verbs have either imperative or tensed mood, while non-finite verbs

contain infinitive or perfect aspect. Adjectives in English, as in Latvian, contain the

comparative degrees, i. e. normal, comparative and superlative. Nouns, verbs and

adjectives are the three classes of words which, as shown in Figure 4.2, contain
inflectional bound grammatical morphemes or inflectional affixes (suffixes).

70

Figure 4.2 Types of English morphemes

The inflective nature of the above mentioned classes of English words is determined by

eight inflectional suffixes. The hierachical structure of those suffixes is presented in

Figure 4.3 (letter m denotes morpheme).

Suffix

ms mEd ming mEn

FI
mss mEs

Figure 4.3 Structure of English inflectional suffixes

mEr mEst

71

Suffix or ending -s and, respectively, suffixes -ss and -es are used in plural nouns,

i. e. a wing - wing5-, a church - churches. Possessive nouns also contain suffix -s,

e. g. vehicle's. Verbs may contain suffixes -ed, -ing, -en and -s, i. e. all present tense

verbs have the ending -s (e. g. to like - she likeJs, past tense verbs include the suffix -

ed (e. g. talkedD. Suffix -ing is usually found in verbs in the present participle, e. g.

walking, while past particles contain the suffix -en, e. g. chosen. Comparative

adjectives contain the suffix -er, e. g. smaller, but suffix -est is found in superlative

adjectives i. e. nearest. Along with the above mentioned inflectional suffixes, some

linguistic theories additionally recognise suffix -n't, which is common for the negative

form of verbs e. g. didn't (19). Besides the inflectional suffixes, English grammar

includes a certain number of derivational affixes (both suffixes and prefixes) i. e.:

the suffix -ise is used to change a noun or an adjective into the

corresponding verb, e. g. a critic - to criticise, real - to realise;

the suffix -ful changes a noun into the corresponding adjective, e. g. care -
careful;
the suffix -ly may be attached to an adjective and change it to the adverb or -ly
is also used to change a noun into the corresponding adjective, e. g. quick -
quickly, a neighbour - neighbourly;

-un, -dis, -a, -anti are the most frequently used derivational prefixes, e. g.

unassuming, ýtypical, _ý
Lisproportionate(20).

Some English nouns similar to Latvian nouns may have consonant palatalisation, i. e.

consonant f in the plural changes to v, e. g. a life - lives. English morphology also

contains indefinite and definite forms of words, but contrary to Latvian grammar, these

forms are determined by the indefinite article a (an) and the definite article the, e. g. 4

nice house - the nice house. Table 4.5 summarises the basic common and distinct

features of both English and Latvian languages.

72

Table 4.5 Basic characteristics of Latvian and English morphology

Cha racteristies/Language Latvian English

Language family Indo - European Indo - European

Alphabet Latin (with diacritics) Standard Latin

Types of morphemes

Lexical x

Grammatical x x

Free X

Bound x x

Consonant palatalisation Nouns in the II, V and VI Some nouns and only in the
declensions both in the plural
singular and plural

Inflectional system For nouns, pronouns, For nouns, verbs and adjectives
adjectives, verbs and determined by eight/nine
numerals according to the inflectional suffixes
case, declension, gender,
conjugation and number

Indefinite and definite form Determined by the endings of Determined by indefinite and I I

adjectives definite articles

4.5 Conclusion

From the discussion above about the Latvian morphological system, the following

points can be stressed:
The Latvian language contains a rich inflectional morphology both in verbal

and in nominal systems;
Latvian morphology covers various morphernic alternations, which

appear in stems (roots) and in suffixes during inflection.

Palatalisation of the final root consonant is one of such alternations,

which determines the complexity of the language, especially in terms of

computerised word and text processing, i. e. truncation.

Comparison of Latvian and English grammars reveals that the basic principles and

methods used for English language with certain modifications might also be applied in

Latvian language. However, the complexity of the Latvian inflectional morphology
determines that certain types of automatic word conflation methods described in
Chapter 3, i. e. successor variety and n-gram stemmers, are basically impossible to

apply for Latvian. For example, the successor variety method requires determination of

the successor varieties for a word which in many cases is extremely complicated for

Latvian words.

73

As described in Chapter 3, many non-English sternmers are based on the affix removal

approach, e. g. a sternming algorithm for Slovene language which incorporates Porter's

sternmer. Affix removal algorithms involve human preparation of stoplists, suffix lists

and recoding/condition rules, which therefore allow definition of specific suffix

removal rules for each particular case.

The following chapter (Chapter 5) will describe methods and principles used for

creating a list of stopwords for Latvian. A brief description on research and
development related to stoplist design in Latvia is also included.

74

References

Shabad, Theodore. Latvia. In: The Encyclopedia Americana, vol. 17,

1978, pp. 55-57.

2. Btrziva-Baltiva, V. Latide,,; u valodas gramatika [The grammar of

Latvian language], 1965, pp. 8-9.

3. Latvian language. In: The New Encyclopaedia Britannica. Micropaedia,

15th ed., vol. 7,1988, p. 186.

4. Fennell, Trevor G. & Henry Gelsen. A grammar of modern
Latvian, vol. 1, pp. XXIII-XXVIII.

5. BiErziVa-BaltiVa, ref. 2, pp. 19-20.

6. Ziemele, Lidija. Praktiska laMei-; u valodas un pareizrakstibas

maciba (Practical Latvian grammar and spelling], 1979, pp. 47-50.

7. Anderson, Stephen A. Morphological theory. In: Frederick J.

Neumeyer, ed. Linguistic theory. Part of Linguistics: the Cambridge

survey, vol. 1,1988, p. 146.

8. Parker, Frank. Linguistics for non-linguists, 1986, p. 66.

9. Ceplite, B. & L. Ceplitis. LaMegu valodas praktiski gramatika
[The practical grammar of Latvian language], 199 1, pp. 6-7.

10. Ibid.

Interview with Dr. Sarma Kjavipa, Department of Baltic Languages,
University of Latvia, Riga, Latvia, 4 April 1996.

12. Ibid.

13. Metuzdle-Kangere, Baiba. A derivational dictionary of Latvian, 1985,

P. XXXII.

14. Parker, ref. 8, p. 68.

75

15. Ceplite, ref. 9, pp. 8-9.

16. Metuzdle-Kangere, ref. 10, p. XII.

17. Parker, ref. 8, pp. 65-82.

18. Hudson, Richard. English word grammar, 1991, pp. 167-188.

19. Ibid.

20. Parker, ref. 8, pp. 73-74.

76

Chapter 5

DESIGN OF A LATVIAN STOPWORD LIST

1 Introduction

As noted in Chapter 3, almost all automatic word conflation algorithms (i. e. FIRST,

MARS, MORPHS) incorporate so called stoplists or lists of stopwords. It was

observed already in the early stage of automatic information retrieval that non-content
bearing words and frequently occurring words are poor indexing and search terms, so
they should be eliminated from further consideration. For example, Luhn (1) stated that

the frequency of words in a text is related to the importance of those words for content

representation and that many frequently appearing words in English are short function

words which therefore are worthless as indexing terms. Salton (2) emphasised that a

search using words with low discrimination value will retrieve almost every document
in a database, therefore such words must be included in a stoplist. Fox (3) defines a

stoplist as "a list of words filtered out during automatic indexing because they make
poor index terms". The same author presents two approaches on how to filter stoplist

words from an input stream:

to examine the output of lexical analyser and eliminate any stopwords;
to remove stopwords as a part of lexical analysis (4).

Lexical analysis is the first stage of automatic indexing and query processing which
converts an input string of characters into a stream of words. It means that lexical

analysis allows the removal of all non-alphabetic characters i. e. digits, hyphens and
other punctuation from the input word before it is further processed i. e. stemmed.
Besides that, lexical analysers usually convert all characters either to lower or upper
case as the case of letters is not significant neither for indexing terms nor for query
search terms.

Both above mentioned methods are similar and usually, depending on the type of
sternmer, they are built into the initial stemming program. The first method mentioned
above removes stopwords from the output of lexical analyser. It means that each word
after lexical analysis is checked against the stoplist and eliminated if found. The second
approach allows the exclusion of stopwords as a part of lexical analysis. Removal of
Latvian stopwords is based on the first technique as the lexical analyser is incorporated

77

within the stemming algorithm before the stoplist. After examination of input

characters, the sternmer matches all words against the list of stopwords and removes if

found. Overall, elimination of stopwords increases the speed of automatic indexing,

saves disk space and improves effectiveness of information retrieval.

This chapter will cover a brief overview on research and development in computing
linguistics and information retrieval with particular emphasis on design and construction

of Latvian stopword lists. It will be followed by a section on the basic principles and

criteria of creating a list of stopwords for Latvian language.

5.2 Research on computing linguistics and information
retrieval in Latvia

Research on computerised analysis and processing of Latvian language started in early
1970's when V. Drizule at the Institute of Electronics and Computing Technology

designed an algorithm for the morphological analysis of Latvian words (5). The main

purpose of this experiment was to examine and evaluate correlation between the

grammatical nature of a word and the final letters which form the ending of this word.
The algorithm contained one table-matrix of endings which consisted of two letters and
36 matrixes which contained endings with three or four letters. Basically, the program

analysed Latvian words extracted from scientific and technical documents and defined

grammatical forms of those words i. e. nouns, adjectives etc. based on their final letters.

It was recommended that this computerised morphological analyser of Latvian words be

implemented into an information and/or document retrieval system. However, due to
financial problems and several technical reasons i. e. the algorithm was created in

BASIC programming language and based on mini personal computers "WANG", it has

never been developed to such a level.

In 1970's the Laboratory of Mathematical Linguistics of the Institute of Linguistics and
Literature together with the Institute of Electronics and Computing Technology created a
frequency dictionary of Latvian language (6). The dictionary contained words which

were taken from more than 300 Latvian texts in science and humanities and which were

arranged according to their computed frequency value. Table 5.1 shows an example of
the most frequently used Latvian words which are taken from the frequency dictionary.

The Artificial Intelligence Laboratory of the Institute of Mathematics and Computing

Science in 1990 created an electronic dictionary which covers more than 35,000 Latvian

words i. e. nouns, adjectives, verbs (7). This dictionary was based on the Latvian
inverse dictionary (8) which was compiled using a Latvian-Russian bilingual dictionary

78

published in 1964. The main purpose of developing such an electronic dictionary was

to have the majority of Latvian words in a computerised form which could eventually be

used in morphological and grammatical evaluations. The computerised analysis of

sentences and automatic declination of Latvian words are also research areas of this

laboratory.

Table 5.1 Example of word frequency in Latvian texts

Words Frequency*
un (and) 9899/300
bFit (to be) 7868/300
tas (this) 5607/300

ar (with) 5027/300

no (from) 3651/299
kas (what) 2692/295
§is (that) 2653/298

ari (also) 2605/29
par (about) 2585/294
ka (because) 2429/285
k5 (such as) 1921/297
var6t (to be able) 1874/277

the number shows how many times totally and in how many texts a word has
been used e. g. 9899/300 means that the word un was used 9899 times and it
appears in 300 documents. There were 300 documents in the sample.

In early 1990's the information and translation company TILDE designed the first spell

checker for Latvian language. The spell checker breaks up each word into syllables and
than compares the divided word with the original one from the built-in dictionary.

At present there are two integrated information and library systems in Latvia which

offer advanced information retrieval capabilities. The majority of university (academic)

libraries in Latvia use the integrated library and information system ALISE (Advanced

Library Information Service) originally designed and developed at the University of
Latvia (9). Along with the traditional information access points i. e. author, title,
keyword(s), subject etc., the system also offers right hand truncation of search terms.
For example, in order to retrieve all documents on economics, economy, economical

etc. user can enter a truncated form of those words i. e. ns=econom or ns=economic (ns

is Latvian abbreviation for title). Both Boolean and comparative operators are used in

ALISE, too.

LIBER is the integrated library and information system installed at the Latvian

Academic Library (before known as the Main Library of the Latvian Academy of
Sciences). Similarly to ALISE, the system offers traditional information retrieval criteria

79

as well as Boolean operators and word truncation (10). The complexity of Latvian

grammar is one of the main reasons why a stemming algorithm for Latvian language

has not been developed yet. However, the morphological comparison of English and

Latvian languages discussed in Chapter 4 revealed, that advanced information retrieval

methods i. e. stemming used for English, with certain modifications might be also

applied for Latvian language. Moreover, both of the present information systems in

Latvia mentioned above incorporate lists of some Latvian stopwords mostly

prepositions and conjunctions. At present the ALISE information system incorporates a

list of 19 prepositions and conjunctions created by librarians of the University of Latvia

Library i. e. AIZ (beyond), AR (with), BET (but), JA (if), JA (yes), KA (that), KA

(how), KO (what), NE (not), NE (no), PA (along, on), PAR (about), PAR (over),

PEC (after), PIE (at), UN (and), UZ (on) VAI (whether), ZEM (under) (11).

LIBER integrated information system also includes a short list of 8 English, German

and Latvian articles and conjunctions i. e. A, THE, DER, DIE, DAS, UN (and), VA I

(whether) and BET (but) (12). Both integrated information systems offer the

opportunity to develop an individual stoplist within each organisation/ institution which

uses the particular system.

A number of information and computing specialists in Latvia i. e. 1. Greitane from the

Institute of Mathematics and Computing Science (13) and A. Klints from the ALISE

Information Systems Ltd company (14) suggested that a longer list of Latvian

stopwords will increase the efficiency of information retrieval and that such stoplist at
least should include all conjunctions, prepositions and particles. Moreover, Dr. V.

Drizule an expert of computing linguistics at the University of Latvia, recommended

adding the majority of Latvian adverbs which are not containing meaningful information

into the stoplist, too (15).

5.3 Construction of the Latvian stoplist

As it was pointed out before, non-content bearing words or function words as well as
high frequency words are the most commonly used candidates for a negative dictionary

(stoplist). Traditionally, a list of stopwords includes following word classes:

prepositions

conjunctions

particles

auxiliary verbs

80

For example, Van Rijsbergen's stoplist covers 250 English prepositions, conjunctions,

articles and pronouns (16). Along with the above mentioned word groups, a list of
Slovene stopwords also comprises substantive and adjectival pronouns, numerals,

adverbs and predicates (17). The total amount of words covered by the stoplist can

vary, e. g. the commercial information system ORBIT has only eight English stopwords
but the Slovene stemming algorithm includes a stoplist with more than 1.500 words

(18). However, the design and implementation of relevant stopword list can evidently
increase the speed and efficiency of information retrieval.

According to the analysis of general categories of words discussed in Chapter 4 and

taking into account the existing stoplists, the first candidates for Latvian stoplist were:

prepositions

conjunctions

particles

Overall, 33 prepositions, 48 conjunctions and 15 particles has been included into the

stoplist (See Appendix 1). A number of conjunctions consist of more than one word

where often both words are the same e. g. ne - ne (neither nor), gan - gan (as as) etc. In

that case only the first word was included into the stoplist. The same principle was also

used for compound conjunctions and particles which means that those compound

auxiliary words consisting of the same words as single conjunctions and particles, were

not repeated in the stopword list e. g. lai (may), ari (also), lai arl (may also), it (in

particular), kd (how), it k5 (whatsoever).

Along with prepositions and conjunctions, the Latvian stoplist also contains 461

pronouns. The number of pronouns in the stoplist is so high because in Latvian both

indefinite and definite pronouns in masculine and feminine cases both in singular and

plural forms have six declensions, and the stopword list covers all types and forms of

pronouns in all declensions. Pronouns which have the same form in more than one
declension, were included in the stoplist only once e. g. mana (mine - masculine,

genitive), mana (my - feminine, nominative).

As mentioned before, a number of stoplists contain auxiliary verbs therefore, it was
decided to include all four Latvian auxiliary verbs bOt (to be), tikt (to arrive), tapt (to

become), kjQt (to become) into the list of stopwords. Because of the different modes

and tenses, totally there are 55 forms of the above mentioned infinitive auxiliary verbs

which are covered by the stoplist. Three forms of the auxiliary verbs were excluded
from this stoplist as they overlap with corresponding nouns which are not stopwords

81

PI (present tense from Lapt and a i. e. tapa (past tense from tapt and a noun - spigot), lp i

noun - tops) and fiksii (future tense from tikt and a name of the Far North city).

No Latvian verbs apart from var6t (to be able) were included in the stoplist as this verb
has very high frequency coefficient (19). All forms of this verb except varu (am able)

and varam (are able) which overlap with a noun copper in genitive and dative

declensions, were chosen for the list. The stoplist also covers 25 most often used
interjections which were extracted from the electronic dictionary compiled at the

Institute of Mathematics and Computing Science. Finally, according to suggestions 189

adverbs e. g. kdp6c, kdd6l (why), t5lab, t5labad (because), dikti (very) etc. were

chosen for the stoplist (20). Because of complexity and variety i. e. number of
declensions, indefinite and definite case etc., no numerals were included into the

stoplist.

The total amount of words chosen for the list of Latvian stopwords was 839. There

exists two basic methods for adding a stoplist to the stemming algorithm:

0 to create a separate list of stopwords with a link to the main stemming

algorithm;
to place stopwords in the original sternmer by adding a separate set of

rules for the stoplist.

The number of stopwords and the flexibility of an algorithm used for Latvian word

stemming determined to choose a second approach for the Latvian stoplist. To filter

stopwords in the stemmer, a separate set of rules i. e. static RuIeList stepOa to step On

were created (See Appendix 2.3). The stopword removal rules along with the stoplist

were placed before stemming rules to ensure that stopword elimination is carried out
before the actual word stemming starts.

5.4 Conclusion

The design and construction of a Latvian list of stopwords involves the same principles

and methods as the majority of existing stoplists i. e. only non-content bearing words

and frequently used words have been chosen for the stoplist. Stopwords from both

ALISE and LIBER integrated systems were transferred into the final list of Latvian

stopwords. Because of morphological complexity, no particular frequency

measurements of Latvian words have been carried out. However, all candidates for the
Latvian stoplist were compared and analysed against the automatically compiled
Frequency Dictionary of Latvian Words. Not all frequently used words listed in the

82

Dictionary were relevant for the stoplist because the Dictionary covers words in specific

subject areas, whereas the Latvian stemmer is designed for general texts.

Because the list of Latvian stopwords is placed within the structure of Latvian stemming

algorithm, the evaluation of Latvian stoplist will be carried out along with analysis and

evaluation of the whole Latvian stemmer (Chapter 7). The next chapter (Chapter 6) will
justify the choice of algorithm for Latvian sternmer. It will be followed by the

description of methods and principles used for design and construction of the Latvian

stemming algorithm.

83

References

Luhn, H. P. A statistical approach to mechanized encoding and searching of

library information. IBM Journal of Research and Development, 1957,1(4),

309-317.

Salton, Gerard & Michael J. McGill. Introduction to modern

information retrieval, 1983,131-132.

3. Fox, Christopher. Lexical analysis and stoplists. In: William B. Frakes &

Ricardo Baeza-Yates, eds. Infonnation retrieval: data structures and algorithms,
1992, p. 113.

Ibid., p. 116.

5. DrizuIe, Viktorija. Razrabotka priblizhennih metodov awomaticheskovo

morfologicheskovo analiza tekstov latysskovo jazyka [Design of proximate

methods for morphological analysis of Latvian language]: A summary of
dissertation, 1975, pp. 3-18.

6. Jakubaite, T. et al. LaMe, ýu valodas bie2uma vArdnica [Frequency

dictionary of Latvian language], vol. 4: Science, 1976,644 p.

7. Interview with Andrejs Spektors, Institute of Mathematics and Computing

Science, Riga, Latvia, 26 March 1996.

8. Soida S. & S. Kýavi4a. LaMe, ýu valodas inversa vardnica [Inverse

dictionary of Latvian language], 1970,256 p.

9. Arts Mints to Karlis Kreslins, 25 January 1996.

10. Interview with Aivars Liepa, Latvian Academic Library, Riga, Latvia, 3

January 1996.

11. Arts Mints to Karlis Kreslins, 27 January 1996.

12. Aivars Liepa to Karlis Kreslins, 14 September 1996.

13. Inguna Greitane to Karlis Kreslins, 14 September 1995.

84

14. Mints, Ref. 9.

15. Interview with Vlktorija Drizule, Riga, 4 April 1996.

16. Van Rijsbergen, C. J. Infonnation retrieval, 1975, pp. 17-19.

17. Popovic, Mirko. Implementation of a Slovene language based free-text

retrieval system, 199 1, p. 98.

18. Fox, ref. 3

19. Jakubaite, ref. 6, p. 25.

20. Drizule, ref. 15.

85

Chapter 6

CONSTRUCTION OF A LATVIAN STEMMING
ALGORITHM

6.1 Introduction

The grammatical structure of language is one of the basic factors which determine the

choice of appropriate stemming algorithm for automatic word conflation in this
language. According to Chapter 3, the majority of non-English sternmers i. e. French

(1) or Slovene (2) algorithms are based on either longest match or iterative stemming

principle. Conclusions from Chapter 4 confirm that suffix removal algorithm will be the

most relevant stemming method also for the morphological structure of Latvian

language.

The above mentioned conclusion was approved by linguistic experts in the Latvian

language. V. Drizule said that one of the first ending and suffix removal algorithm for

Latvian language which was designed and tested in 1970's and which achieved good
test results, was based on iterative affix removal principle (3). It was emphasised also
by S. Klavina that the complexity of Latvian grammar i. e. different declensions,

conjunctions, consonant palatalisation required the use of specific type of stemming
algorithm which allowed the definition of the length of each ending and/or suffix
individually according to the size of a word (4). Taking into account the requirements
for automatic word conflation in the Latvian language discussed previously, Porter's

stemming algorithm modified by B. Frakes. C. Cox and S. Fox was chosen as the
basis for a Latvian sternmer. Moreover, the rules and conditions of Porter's sternmer

were successfully used for word stemming in Slovene language. As both Latvian and
Slovene are inflective languages, the chosen algorithm should be also relevant for

sternming Latvian words.

This chapter will cover basic characteristics of the original stemming algorithm
designed by Porter and implemented by Frakes, Cox and Fox. It will be followed by a
detailed description of modifications and changes which were carried out to the initial
structure of the sternmer in order to construct the stemming algorithm for Latvian
language.

86

6.2 Description of the initial stemming program

Porter's stemmer is one of the suffix removal algorithms which processes the word

using an iterative stemming approach. Detailed description of the original Porter's

algorithm is given in Chapter 3, therefore this section will cover main modifications and

changes which were carried out by B. Frakes, C. Cox and C. Fox.

B Frakes and C. Cox in 1986 and C. Fox in 1990 implemented the Porter algorithm

and added following new features to the initial program:

designed a deterministic finite automata for computing the word size

restructured existing structures of the algorithm

renamed functions and variables

0 restricted function and variable scopes (5).

The Deterministic Finite Automation (DFA) is used to control the validity of a word size
based on vowel-consonant pairs. DFA calculates the number of vowel-consonant pairs
in a word ignoring initial consonants and final vowels. The finite automata includes

three different arcs for measuring the word length. Arc 0 checks the first letter of a

word. If the initial letter is a vowel, then the DFA switches to arc 1 which is the vowel
arc . 1f the initial letter is a consonant or y, then the machine changes to arc 2 which is a
consonant arc. The result counter is incremented on the transition from arc I to arc 2 as
this transition occurs after calculation of a vowel-consonant pair. For example, the

word size of "town" is 1 as there is only one vowel-consonant pair 'ow', but the word
length of "level" is 2 because the word has two consonant-vowel pairs 'le' and 've'.

The structure of the initial Porter's algorithm was also changed by the above mentioned
authors. For example, all five basic Porter's rules (6) were arranged into separate rule
lists and within the rule list each rule was numbered. Besides that a definite condition
was added to each rule which determined the length of ending and/or suffix and the

minimal valid length of the resulting word stem. The size of a word before stemming
was calculated by the DFA using condition rules mentioned before.

Several rules were rewritten and a number of functions and variables were renamed by
Frakes, Fox and Cox. For example, rules 106 and 107 in the rule list steplb - rules
were applied only if the word parameter contained a vowel. It meant that a word had to

contain a vowel either as its first letter or in any other letters in a remaining stem. Rule
502 in the static rule list step5a-rules was applied only if the current word met a special
condition for removing letter "e" i. e. the state of a word root was no less than I and

87

there was no consonant-vowel-consonant combination at the end of a word.

Apart from the rewritten rules, several variables and functions have been renamed

and/or added e. g. 'integer word size' which counts the length of a word, integer

replace end which replaces the end of a word if the corresponding rule and condition is

valid, and others. The modified program also contains restricted functions and scopes

of variables i. e. integer for minimum root size, integer for replacing the end of a word.

In July 1991 the modified program was changed by C. Fox who:

0 added ANSI C declarations

designed a program STEMMER. C for testing the validity of input character

stream.
It means that the stemmer was fully implemented in the C programming language. An

additional program STEMMER. C was created which checks the validity of each input

word (See Figure 6.1). According to the flowchart in Figure 6.1, the basic stemming

program STEM. C is embedded into the STEMMER. C which means that after the input

word has been tested, it will processed by the stemming procedure and then the end

result will be output on the screen using the main program STEMMER. C.

Overall, the English version of the stemming algorithm processes a word as follows

(Figure 6.1 and 6.2):

1) each word is scanned to separate and remove non-alphabetic characters i. e.
digits, punctuation, other symbols (STEMMER. C);

2) after the scanning all upper case letters are changed to the lower case
(STEMMER. C);

3) additional testing is carried out to determine whether a word contains any

vowels. No stemming action will be taken if the test word contains only
consonants (STEMMER. C)

4) the valid word is matched against the first set of rules (step Ia and step lb). If it

meets conditions and the root length of a word is valid, the ending is replaced or
removed (STEM. C)

5) after that the modified word is matched against the list of suffixes and if the test

word contains a valid suffix it will be replaced (step Ibl, Ic, 2 and 3) and
then removed (step 4) (STEM. C);

6) if the word ends with -e and root length is valid, it will be removed (step 5a)

and if the word contains the ending -11, the second -1 will be removed (step 5b);
(STEM. C)

7) finally, the stemmed word is output to the screen (STEMMER. Q.

88

Start the program

NO
Are there any words
in input?

YES

NO
Does a word contain
alphabetic characters?

I

YES

Finish the program

Remove non-
alphabetic characters

Go to stem. c
(see Figure 6.2)

Close the input and print
on the screen (output)

Figure 6.1 Flowchart of the main stemmer (STEMMER. C)

89

I start stem. c program I

Does a wor(I contain
capital letters?

I
NO

uoes a wora containj
vowels?

YES
Does a word contain
relevant ending?
(stepla and steplb)

I
NO

L)oes a wora stem
contain double
consonants (step IbI
(See Appf-. ýdix 2 1)

I
NO

L)oes a wora eno
with letter y?
(step IC)

NO

contain a relevant
suffix (steps 2,3

1
NO

Does a word en NO
with e or double I
(steps 5a and 5b)?

IM

I
Go to STýE

ýER.
C

case
YES

NO

YES se minima NO
root size valid?

YES

Replace the ending

YES NO Is the minimim
root size valid?

YES

Remove the consonant
or replace the ending

YES
I Replace letter y

with i

YES Is the minimal root
i size valid?

YES

Remove or repla-c-e-w
remove suffixes

NO

NO
the minimal root size valid?

YES

Remove e or I and
replace the word (See
Armendix 2.1

Figure 6.2 Flowchart of the stemming procedure for English (STEM. C)

90

6.3 Development of the Latvian sternmer

The construction of a stemniing algorithm for Latvian includes the following steps:

0 design of Latvian stoplist

0 general modifications of the original algorithm

0 creation of list of endings

0 modification of rules for Latvian consonant palatalisation

0 design of Latvian suffix list

0 creation of additional rules

0 testing and modification of the designed sternmer
All the mentioned components will be described below in separate sections except of
design and implementation of the Latvian stoplist, which was discussed before in

Chapter 5.

6.3.1 General modifications

Development and modifications of the Latvian stemming algorithm which initially were

carried out using Borland C++2.0 DOS version have been converted to Object

Windows version 4.0 for Borland C++ programming language. Figure 6.3 presents the
flowchart of the Latvian stemming algorithm. Initial modifications were related to the
Latvian character set (See Appendix 2.3). A new integer isLatv was introduced to

recognise Latvian letters. Additional static integers *SLatv and *BLatv were defined to

switch also upper case letters with diacritics to lower case.

Apart from the Latvian character set, all Latvian vowels were defined separately in

'Private Defines and Data Structure', which determines all integers i. e. minimal root
size, suffix size etc. in order to comput the word size using DFA. Because of the

similar grammatical structure of both Latvian and English words, no changes except for

the addition of Latvian vowels, were applied to the deterministic finite automata (DFA).
All conditional and recoding rules for English in the 'Initialised Private Data Structures'

were replaced with Latvian ones.

Modifications which were added to the program STEMMER. C i. e. integer for checking
the validity of Latvian letters, are placed in Appendix 2.4 and highlighted in bold.

6.3.2 List of Latvian endings

Endings of Latvian nouns, verbs and adjectives were placed in a separate set of rules
(static rule list step la to step la6) which follows the lists of Latvian stopwords (step Oa

91

Start stem. c program

Does a word containj Change to iower
oapital letters? YO

Nip
case

NO

NO
Does a word contain
vowels?

YES

sit a stopwor YES
- emove the worT FR

(step0a to step0n) I(See Appendix 1)

NO

Does a wor contain YES Ils the minimal
valid ending? - root size> I?
(step Ia to I a6)

YES

NO
, nUmi Remove the en inj

((s (see ý See Appendix 3.1

a word contain YES
nant palatalisa Is the minim7root
; teplbl)? size>l ?

I
NO

I
YES

I (See Appendix 3.2)

Do-es a YES
contai Replace the s suffix (step 2)?

ndix 3.3

NO

76-es i
YES

s the minimal root
any suffix ? size>l?
(step 3 and 4) YES

4
NO

Remove suffix(es) Ts it a special NO
condition (step6)?

I
YES

_

Replace the word

Figure 6.3 Flowchart of the Latvian stemming algorithm

NO

Go to stemmer. c
(Figure 6.1)

NO

YES

NO

92

to step On). Latvian morphology produces a large number of word variants which
include a number of distinct endings. An ending is the last letter or letters in a word

which follow after the root or the stem. Latvian words especially nouns and adjectives

are usually used not only in a standard Nominative case but also in other declensions

i. e. Genitive, Dative etc. Therefore, all forms of declension both in singular and plural

are covered by the list of Latvian endings (See Appendix 3.1).

In terms of the word size, the majority of endings will be removed only if the word has

two or more syllables (vowel and consonant pairs). These restrictions regarding the

word size were introduced, because for short Latvian words consisting of three or four

characters the final root after removing endings can be common for multiple different

words which in information searching will cause retrieval of many nonrelevant
documents. For example, for the word aka (a well) following additional words will
have the same root ak, if the ending -a will be removed:

akacis -a bog
akacija - an acacia
akad6mija - an academy
akcija -a share
akents - an accent
akcize - an excise tax

6.3.3 Consonant palatalisation

Rules 108 to 117 in the static RuleList steplbl deal with the consonant palatalisation

which is characteristic for certain 11 declension Latvian nouns in plural Genitive and/or
Nominative cases i. e. dz6rve (a crane) - dz6rvju (cranes'). According to the above

mentioned rules, all words containing the consonant palatalisation will be converted
from the plural Nominative and/or Genitive case to the singular Nominative (See
Appendix 3.2).

However, nine out of twenty cases of consonant palatalisation described in the textbook

of Latvian grammar (7), are covered by the Latvian stemming algorithm because there

are several exceptional words i. e. homographs for which one or another type of

consonant palatalisation can be determined only from the context e. g. a word Io2u can

contain either consonant 2-d palatalisation if it means bullets' (in possessive case), or z-
2 palatalisation if it is used as the term lottery tickets' or the same word can contain no
consonant palatalisation if it means boxes'. Because of the morphological complexity,
the following Latvian consonant palatalisations were not possible to include into

conditional rules of the stemming algorithm:

consonant Q-n palatalisation;

93

consonant 1-I palatalisation;

palatalisation of consonants t-

palatalisation of consonants d-2;

consonant C-6 palatalisation;

consonants -ý palatalisation;

consonant z-2 palatalisation;

palatalisation of consonants kst -k§;
palatalisation of consonants st - §.

6.3.4 Design of the Latvian suffix list

Since Latvian compared to English language is characterised by a wider range of

suffixes which have three or more letters, it is difficult to define a relevant threshold for

automatic choice of suffixes. A suffix is a part of the word between the root and the

ending. Therefore, the selection of suffixes for the Latvian stemming algorithm was

carried out manually, using textbooks of Latvian grammar (8,9) as well as

recommendations from linguists (10,11).

All selected Latvian suffixes are grouped into three separate sets of rules: static RuIeList

step-2 rules, static RuIeList step3-rules and static RuIeList step4-rules (See Appendix

2.3). Rules 203 to 214 are modifying resulting word stems by removing suffixes

which are proceeding word endings. For example, suffix -iecib in the word
lauksaimnieciba (agriculture) will be changed to -iec by removing -ib. Rules 301 to

322 and 401 to 437 are listing suffixes which are grouped according to their type and
length and which will be removed from a word if the remaining stem satisfies a certain
condition of the minimal stem length. For example, in the above mentioned word
lauksaimnieciba suffix -iec will be removed after stripping the ending -a, if the

minimal length of a remaining word is more than two syllables.

6.3.5 Special conditions

Apart from the sets of rules covering endings, suffixes and cases of consonant

palatalisation in Latvian words, a separate rule dealing with the stem -§un was added to

the sternmer. The case was classified as a special condition because the word knelis is

the only one where consonant §-s palatalisation is at the beginning of a word. After the

ending -is and the suffix -el is removed from the initial word §unelis (a doggle), the

rule 601 converts remaining stem §un to sun which is a stem of the word suns (a dog).

94

Because the diminutive form of this word is completely different from the normal form,

it was not possible to process the word and its remaining stem using any of the above

mentioned sets of rules.

6.3.6 Testing and analysis of the stemmer

Detailed analysis of the Latvian stemming algorithm using several evaluation

approaches i. e. electronic dictionary, user enquiries etc. as well as final corrections and

modifications which were carried out to the sternmer according to the obtained results

of evaluation, is discussed in the following chapter (Chapter 7). However, in order to

observe and to assess generally the relevance and success of automatic Latvian word

conflation procedure performed by the sternmer, simple preliminary tests based on

single Latvian words were carried out.

For example, several test words e. g. FIZIKA, INFORMACIJA with a maximum length

three syllables and containing no suffixes were entered in the test file to check the

accuracy and consistency of Latvian ending removal. Test revealed that the algorithm

correctly removed standard endings and with a few exceptions e. g. endings in plural
Dative, also endings in different declensions.

To check the correctness of suffix stripping and relevance of the remaining stem, a

small number of Latvian test words i. e. nouns, adjectives, verbs containing one or

more suffixes e. g. MAJA, BIBLIOTEKA, SKOLA etc. were processed by the sternmer.
Test results showed that overall the majority of words were stemmed correctly.

6.4 Conclusion

Porter's iterative stemming algorithm which have achieved good results in automatic
word conflation both for English and non-English languages i. e. Slovene, has been

chosen also for the construction of the Latvian sternmer. Basic principles and the

structure of the initial Porter's algorithm was maintained in the stemming algorithm for

Latvian. However, the complexity of Latvian language and its morphological structure
required the additional removal or change of several rules in the initial stemmer e. g.
rules dealing with consonant palatalisation, as well as to carry out a number of general
modifications concerning Latvian diacritics, word length etc.

Because the detailed analysis of the Latvian sternmer will be discussed in Chapter 7,

only preliminary tests were carried out to assess the general operation and functions of

95

the stemming algorithm. Along with evaluation methods which were used to analyse
the effectiveness of the designed Latvian stemming algorithm including recall and

precision criteria, the following chapter will also describe general methodology applied
for detailed evaluation of the sternmer. All additional modifications to the sternmer,

which were carried out according to the results obtained, are covered by Chapter 7,

too.

96

References

Savoy, Jaques. Stemming of French words based on grammatical

categories. Journal of the American Societyfor Information Science, 1992,44

(1), 2-7.

2. Popovic, Mirko & Peter Willett. The effectiveness of stemming for

natural - language access to Slovene textual data. Journal of the American

Society for Information Science, 1992,43 (5), 384-390.

3. Interview with Viktorija Drizule, Riga, 4 April 1996.

4. Interview with Dr. Sarma Klavina, Department of Baltic languages, University

of Latvia, Riga, Latvia, 4 April 1996.

5. Frakes W. B. Stemming algorithms. In: William B. Frakes & Ricardo Baeza-

Yates, eds. Information retrieval: data structures and algorithms, 1992, pp.
151-160.

6. Porter, Martin. An algorithm for suffix stripping. Program, 1980,14 (3),

130-137.

7. Ceplite, B&L. Ceplitis. Latviegu valodas praktisk5 gramatika [A practical

grammar of Latvian language], 1991, pp. 25-50.

8. Metuz&le-Kangere, Baiba. A derivational dictionary of Latvian, 1985,

pp. XXV- XXVIII.

9. Ceplite, ref. 7.

10. Drizule, ref. 3.

Interview with Andrejs Spektors, Institute of Mathematics and Computing

Science, Riga, Latvia, 10 April 1996.

97

Chapter 7

EVALUATION OF A LATVIAN STEMMING ALGORITHM

1 Introduction

As noted by Hull (1), the most often used methodology for the evaluation of a new
information retrieval strategy i. e. sternming incorporates the following steps:

choice of relevant test collection(s) with user search statements;
testing of the new retrieval method by carrying out an information retrieval

experiment and comparing results, using a baseline, which is obtained from a

standard approach e. g. manual truncation;

calculation of traditional evaluation measures i. e. precision and recall.
The superiority of the new information retrieval technique is justified if it achieves better

results than the standard baseline.

The above mentioned approach to information retrieval evaluation is common, because

it provides an objective means of evaluation and requires a minimum of experimental

work, if relevant test collections are available. The summary of Chapter 3 also revealed
that the comparison of traditional manual word truncation versus automatic word

stemming is one of the generally used evaluation procedures for stemming algorithms
(2). As the described methodology has been successfully applied for the analysis and

evaluation of both English and non-English language e. g. Slovene (3) sternmers, it was

also chosen as the basis for evaluation of the Latvian sternming algorithm.

Evaluation of the Latvian stemming algorithm is based on the following test collections:

an electronic dictionary of Latvian nouns, adjectives, verbs and adverbs in their

standard forms;

text fragments from a Latvian full-text online database of legal documents,

protocols, laws etc.;

a set of user search enquiries to a Latvian online bibliographic database of
articles from periodicals.

The first two collections were used to analyze morphological correctness of stemmed

words both in standard forms and in declensions, whereas the latter was used to test the

effectiveness of information retrieval using non-stenu-ned and stemmed forms of search
terms. A detailed description of test collections is given in Section 7.3.

98

The next section (7.2) of this chapter outlines the general methodological framework

which was applied to the analysis of the Latvian sternmer. It is followed (7.3) by

justification of criteria used for the selection of relevant collections as well as

characteristics of the chosen Latvian test collections. A separate section (7.4) deals with
the results obtained from testing the Latvian sternmer using all three types of test

collections. Finally, Section 7.5 evaluates the effectiveness of the Latvian sternmer in

information retrieval based on recall and precision measurements.

7.2 General methodology

As outlined in Chapter 1, this thesis exarnines the following two hypotheses:

1a suffix removal stemming algorithm based on the design of an English

language environment can be applied for Latvian;

2. stemming in Latvian will produce the same or better information retrieval

results as manual right hand truncation.

The general methodology applied for the evaluation of the designed stenu-ning algorithm

and for testing of the above mentioned hypotheses, consisted of the following

components:

0 selection of relevant test collections,
testing and examination of the sternmer based on the chosen test collections,

analysis and evaluation of the results obtained.

In order to test both the morphological accuracy of stemmed Latvian words and the

effectiveness of information retrieval, three different test collections were selected:

electronic dictionary of all basic classes of Latvian words ie. nouns, adjectives,

verbs and adverbs,
text fragments extracted from a full-text Latvian database of legal acts and
documents,

user search statements of a test collection consisting of 60 different queries and
applied to the Analytical information system of periodicals database.

The grammatical correctness of stemmed Latvian words both in standard forms and in

different declensions and conjugations was tested by the electronic dictionary and the

text fragments. Fragments of Latvian texts were also used to examine the accuracy of
stopword removal. Testing and analysis of information retrieval performance, including

calculation of recall and precision ratio, were based on non-stemmed and stemmed
words from a set of user search enquiries.

99

As noted before, performance of the Latvian stemming algorithm was examined in three
different ways The first stage of evaluation, which assessed validity of remaining

word stems and which was based on electronic dictionary of Latvian words in standard
forms, was carried out as follows:

four word classes e. g. nouns, verbs, adjectives and adverbs covered by the
Latvian electronic dictionary were fed into and processed by the stemming

algorithm;

0 the obtained stems were browsed and, in case of incorrectness, appropriate

modifications to the set of stemming rules were done;

incorrectly stemmed words were repeatedly tested by the algorithm;

remaining stems were assessed by Latvian experts in morphology and

computing linguistics, and results of their observations as well as

recommendations were filled in special evaluation forms;

final modifications to the stemmer based on suggestions from Latvian linguists

were carried out and incorrectly stemmed words were fed into and tested by the

algorithm.

The next level of examination tested the correctness of stopword removal as well as the

correctness of stems obtained from words in different declensions and conjugations.
This part of the evaluation was based on Latvian text fragments and incorporated the
following procedures:

five fragments of Latvian texts were fed into and processed by the stemmer;
the obtained stems were checked against the original texts both to examine the

correctness of suffix and ending removal from Latvian words in different

declensions and conjugations and to test the accuracy of stopword stripping;
in the case of incorrect stopword removal and/or stemming, appropriate

modifications to the stopword list and to the set of stemming rules were carried
out;
incorrectly stemmed words and/or unremoved stopwords were repeatedly
tested by the modified stemming algorithm.

Finally, the impact of the Latvian sternmer on the information retrieval process was

examined using a set of user search statements based on a Latvian online bibliographic

database. The last stage of evaluation included the following methods:

a relevant Latvian online database with comprehensive annotations and with a

sufficient number of records was chosen;

100

0 two independent users were selected to carry out a pilot test which included

writing down in specifically designed forms five full search statements and then

truncating them using right hand truncation. Both sets of full search enquiries

were swapped between the users and manually truncated for comparision;

9 full search statements were fed into and processed by the sternmer to produce

stemmed search statements;

0 nonsternmed, manually truncated and stemmed words from each search

statement were listed down and compared with each other;

0 document retrieval using the online Latvian database was carried out using

nonsternmed, manually truncated and stemmed search statements gained from

the pilot test;

retrieved documents were browsed and evaluated in terms of their relevance;
in the full test an additional ten independent users were selected and each of
them created five full search statements which they manually truncated

afterwards. All sets of full search queries were swapped between the users and

manually truncated for comparison;

nonsternmed user search queries were processed by the stemming algorithm;

correlation between nonsternmed, truncated and stemmed words within the each

search statement were listed down and compared;

0 document retrieval using the online Latvian bibliographic database was carried
out using full, manually truncated and stemmed user search queries;

0 all retrieved documents were browsed and their relevance was evaluated;

recall and precision measures based on nonstemmed, right hand truncated and

stemmed user search statements were calculated;

0 obtained results were analyzed and evaluated.

More detailed description of the selected Latvian test collections will be presented in the

next section, which will be followed by the analysis and evaluation of results obtained
from testing those collections by the developed stemming algorithm.

7.3 Test collections

As noted before in Section 7.2, the following Latvian test collections were selected in

order to evaluate performance of the Latvian sternming algorithm:

a electronic dictionary of all main Latvian classes of words;
fragments of texts from a Latvian full-text database;

Latvian online database for testing user search queries.

101

This section will justify the choice of test collections stated above as well as examine the
Latvian databases which were selected for extracting words and text fragments, and for

testing user search statements.

7.3.1 Electronic dictionary

The electronic dictionary of Latvian words was selected in order to test the performance
of the stemming procedure for words in standard forms. The dictionary was created in
1990 by the Artificial Intelligence Laboratory of the Institute of Mathematics and
Computing Science. A Latvian inverse dictionary (4) which was compiled using a
Latvian-Russian bilingual dictionary, formed the basis of the electronic dictionary.
Additional 6000 words were entered into the dictionary by linguistic computing
specialists of the Institute.

The electronic dictionary covered more than 40,000 Latvian words which were stored
into 15 separate files. All words in the dictionary were grouped into four classes i. e.
Nouns, Adjectives, Verbs, Adverbs, and within the each class, words were arranged
according to their endings and final suffixes. For example 25,500 nouns were classified
into eight different files, where the first file included all nouns ending with iba, -ica, -
nica, -ada, -6da, -dja, -6ja, -ija, etc. Similarly 10,000 verbs, 4000 adjectives and 800

adverbs were grouped correspondingly into four, two and one files.

Overall, the following criteria favoured selection of the electronic dictionary:

0 it included all main classes of words;
words covered broad range of subject areas;
all words were in standard forms i. e. nouns, adjectives were listed in
Nominative declension etc.;
it was the only available dictionary of Latvian words in computerised form.

7.3.2 Full-text database

To examine the removal of stopwords and to test the stemming of words in different
declension forms and conjugations, several fragments of Latvian texts were extracted
from an online full-text database. The Latvian Legal Database (NAIS - Normafivo Aktu
Informdcijas Sist6ma) which is the largest online full-text database, was selected as a
source for text fragments mentioned above.

The database was created in 1991 by Software House Riga, the biggest computer
company in Latvia, and to date it covers more than 23,000 legal acts and documents

102

adopted by the Parliament and the Cabinet of Ministers of Latvia as well as international
documents, protocols and agreements translated in Latvian. The Latvian Legal Database
is a commercial database and updates are carried out on a weekly basis.

All legal acts and documents in the database can be accessed using following search
parameters:

0 topic/subject area,

0 department which issued the document,

0 type of document,

0 date of issue,

title of document,

document contents.
The selected text fragments were mostly extracted from legal acts related to the Ministry

of Foreign Affairs as well as from regulations dealing with transport registration, bank

activities and the process of privatisation.

7.3.3 Online bibliographic databases

Information retrieval performance based on the Latvian stemming algorithm was
evaluated using sets of search enquiries related to a Latvian online bibliographic
database. In order to create relevant search statements and to carry out the evaluation
study, the potential database had to meet following requirements:
0 it should be online and accessible via Internet to retrieve documents and to

evaluate them using unsternmed and stemmed search queries;
the database should contain not only bibliographic information on documents,
but also detailed annotations;

0 contents should only be in Latvian;

along with traditional infon-nation retrieval techniques, the database should offer
a full and truncated keyword search in annotation (contents) field;
there should be reasonable number of documents i. e. no less than 1000 records
in the database.

Four bibliographic databases, which most closely matched the above mentioned
features, were considered as the test database:

Culture and Arts Information Database;
Database on articles from periodicals published in Latvia;
Database on books published in Latvia;
Analytical Information System of Periodicals.

103

The database on culture and arts information was developed in 1988/1989 by

the National Library of Latvia. It covers around 600 journal articles in Latvian, English,
German and other languages. Documents in Latvian formed less than one sixth of the
total amount of records. Along with document bibliographic description, each record
was supplied with content descriptors (keywords) in Latvian and in a number of cases
with Latvian annotations. Retrieval of records was based on traditional information

search parameters e. g. author, title, keywords in contents field, journal title, year of
publication. The database is off-line and available only on the site. The last update was
carried out early in 1994.

A database on books published in Latvia and a database on articles from periodicals
published in Latvia both were developed in 1992/1993 by the Institute of Bibliography

at the National Library of Latvia. More than 3000 records are covered by the database

on Latvian books and each record contains standard bibliographic information e. g.
author, title, subject etc. as well as in several cases a brief description of contents.
Although the majority of materials in the database are in Latvian, about 10% of
documents are in other languages e. g. Russian, English, German. All records are
arranged according to subjects and within the subject they are listed in alphabetical
order.

The database on articles from periodicals contains more than 10,000 records
which are arranged similarly to the database of books. Each article covers bibliographic
information on author, title and source as well as a short annotation. The following

example shows the structure of a record:
KrFimin, §, Maris. Futbola sezona Eiropd tuvojas beig5m H Ned6la Tev. - 1995. - 12. /18.
jOn. - Al 8.

Both databases are updated daily however, to date there are no search facilities available
in any of those databases and the access to records is provided only on the site.

More than 6000 articles from the biggest Latvian newspapers are covered by the
Analytical information system of periodicals developed by the Lursoft

company. The commercial database was created in 1994/1995 and it mostly contains
materials related to politics, law and legislation, economics, financial and banking

systems. Information of each record is presented in following fields:
date of publication;
title of periodical;
title of article;

author of article;
0 number of page;

104

text (annotation);

main subject areas (maximum three).

Record retrieval can be carried out using one or combination of following search

parameters:
date of publication (range from ... to);

title of periodical;
title of article;

author of article;
full or truncated keywords from annotation;

subject (s) from pop-up menu;

Boolean AND, OR operators.

Retrieved documents can be viewed either as a list of titles or as full records. The

searcher can also specify the maximum number of records to be retrieved. The

following example shows the structure of a record in the database:

Publik5cijas datums: 31.01.96
lzdevums: DIENA
Virsraksts: Kauls nevarot viens tikt gald ar lauksaimniecibu
Autors: MeInace Baiba
Lappuses nr.: 1
Teksts: PakeizCajais zemkopibas ministrs, Ministru

prezidenta biedrs Alberts Kauls (Vienibas partija)
uzskata, ka Latvijas lauksaimniecibas sf6rd ir tik
daudz dardmd, ka viQam vajadz6tu kjGt par
atbriivoto Ministra prezidenta biedru,
nodarboties ar lauksaimniecibas jautdjumiem, bet
zemkopibas ministra amatu ieQemt Kaula partijas
biedram (Roberts Dilba).
Ministru prezidents Andris ý1ý61e TV zinu raidijum5
"Panor&ma" 30. Janvdn teica, ka valclibas veido6anas
laika "tdds jaut.; 7ijums tika cliskutiýts, bet noraidits".

T6ma nr. 1 VALDiBA
T6manr. 2 PERSONAS
TC-ma nr. 3 LAUKI

The analytical information system of periodicals is available online and accessable on
the Internet using following URL address:

<URL: http: //www. lursoft. bkc. lv>

Although the Analytical information system described above contained certain
drawbacks in its information retrieval mechanism e. g. incomplete implementation of
standard Boolean AND and OR operators for truncated keywords in document

annotation field, it was the database which most closely matched the majority of
requirements for a test database listed before. Moreover, the analytical information

system of periodicals was also recommended by information and computing specialists

105

in Latvia (5) who confirmed, that it was the only database which covered both basic

specifications:
coverage of documents in Latvian with detailed annotations;

accessibility and information retrieval via Internet.

A description of query development based on the selected online bibliographic database

of periodicals is presented in section 7.4.3 before the analysis of information retrieval

performance.

7.4 Analysis of results

According to the general methodology outlined in Section 7.2, the evaluation of Latvian

stemming algorithm involved three stages:
1) testing of standard Latvian word stemming based on the electronic dictionary;

2) testing of stopword removal and word stemming in different declensions using
fragments of Latvian texts;

3) examination of the stemming procedure in information retrieval based on user
search statements.

This section will discuss and analyse results obtained from the above mentioned
evaluation studies.

7.4.1 Standard word stemming

The initial testing of the developed Latvian stemming algorithm was based on the

electronic dictionary which covered all basic classes of Latvian words. For this purpose
15 files of Latvian nouns, adjectives, verbs and adverbs described in section 7.3.1 were
fed into and processed by the sternmer. According to the first test results, on average
words were stemmed correctly however, there were several obvious stemming errors
which can be clustered into the following groups:

overstemming in short words leaving only one or two letters e. g. gars (a spirit)

and g after removing ending -s and suffix -ar or upe (a river) and up after
removing -e;
incorrect removal of endings, especially in verbs e. g. liet instead of I ieto in a
verb lietot (to use);
incorrect suffix removal leaving only a root instead of a stem e. g. kanad instead

of kanddiet in a word kanddiete (Canadian);

106

understernming in long nouns especially in compound words e. g.

elektroenerdij instead of elektroenerý in a word elektroeneroija (electrical

energy);

In order to correct the above listed stemming errors, a number of modifications in suffix

and ending removal rules related to the length of resulting stem were carried out. For

example, the length of a word containing ending -s (rule 104 in a static RuIeList step

1 a4) was changed from -1 to 0 which means that the ending -s will be removed only if

the word contains at least three characters. Similar modifications were done in rule 427

(static RuIeList step4) where to avoid understemming, the length of a word with the

suffix -ij was changed from 2 to 1.

All Latvian words were repeatedly processed by the modified stemming algorithm and

resulted stems were printed out. Three independent Latvian experts in computing and
linguistics were selected in order to evaluate the printed version of all stemmed Latvian

words:
Anna MauliQa, linguist, Head of the Research Department at the National
Library of Latvia;
Dr. Sarma KlaviQa, expert in computing linguistics and senior lecturer at the
Department 4 Baltic languages, University of Latvia;
Dr. Viktorija DCizule, expert in computing linguistics and senior lecturer at the
Language Centre, University of Latvia.

The evaluation results in ranked order for each separate class of Latvian words together

with suggestions and comments were presented in special evaluation form (See

Appendix 4.1). Table 7.1 displays the results of Latvian word stemming ranked by

each respondent including average evaluation mark for all Latvian nouns, adjectives,

verbs and adverbs.

Table 7.1 Ranked evaluation results of sternimed Latvian words

Evaluator #1 Evaluator #2 Evaluator #3 Average

Nouns 4 3 4 3.6

Ad ectives i 4 4 4 4

Verbs 4 3 4 3.6

Adverbs 4 4 3 3.6

where 5= excellent, 4= good, 3= average, 2= poor, I= very poor

107

According to the comments pointed out in evaluation forms, the majority of Latvian

nouns were stemmed correctly and the resulting stems were acceptable. However, the

following three problems were revealed by the Latvian linguistic specialists:

I inconsistency in suffix removal from nouns which contain suffix-ica

and/or -nica e. g. a word kafejnica (a cafe)was stemmed as kafej but t6jnica (a

tea house) as t6jn;

2) misinterpretation of the meaning a root and a stem, which for some nouns

caused word oversternming, leaving only the root of a word instead of its stem

e. g. a word ieskramb5jums (a scratch) was stemmed as ieskramb instead of

ieskrambaj;

3) removal of ending o from short words leaving a stem which is common for a

number of other different nouns e. g. the stem from a word auto (a car) is aut

which is also common for autors (an author), autentisks (authentic), autoriz6ts
(authorised) etc.

All three respondents evaluated the stemming of Latvian adjectives as adequate and the

only recommendation regarding suffix removal from this class of words was as
follows:

not to remove suffixes -c5b and -ib as they are not typical for Latvian language

and very few words contain this type of suffixes.

The following comments were outlined in terms of suffix removal from Latvian verbs:

a inaccurate stemming of reflexive verbs with morphemes -ie and -s e. g. the verb
kardties (to hang) was stemmed as karat whereas the correct form would be

kar5;
few inconsistences in stemming verbs which contain vowel and/or consonant
palatalisation in the stem e. g. a verb sappot (to dream) have to be stemmed as
sapQo instead of sapQ;
it was recommended to include some secondary forms of modal verbs into the

stoplist e. g. pabOt (to be), noklOt (to reach).

Majority of Latvian adverbs were stemmed correctly and both following suggestions

related only to the extension Latvian stoplist:

several meaningless adverbs should be added to the list of Latvian stopwords

e. g. ndkamreiz (next time), beidzot (finally);

108

only those adverbs which were generated from adjectives and which have

comparative degrees, should be stemmed e. g. kIusffiQdm (silently),

pak5peniski (gradually).

In general, all three experts evaluated the stemming of standard Latvian words as

adequate, correct and essential both for Latvian morphology and information retrieval

purposes. In order to explain problems and suggestions more in detail, each respondent

separately agreed to participate in a half an hour interview, based on questions from

evaluation forms.

Results from evaluation forms and interviews were analysed and following

modifications to the Latvian stemming algorithm were carried out:

all suffixes from the static RuIeList step2, step3 and step4 were repeatedly

checked and appropriate corrections regarding the length of suffixes were

made. For example, in order to avoid inconsistency in stemming words

with suffix -ic and -nic, the length of suffix -ic (Rule 420) was changed
from 2 to 1, but the length of suffix -nic (Rule 305) from I to 2. In this case

both incorrectly stemmed words kafejnica and t6jnica described before will be

stemmed as kafej and t6j;

several modifications concerning the length of endings were done in the static
RuleList steplal to stepla6. For example, to ensure that only those words

with the ending -o will be stemmed, which contain four or more characters, the

length of -o in the static RuleList stepla6 Rule103 was changed from -1 to 0.

Similarly, in order to stem correctly reflexive verbs, the length of -ie in the static
RuleList step 1 a4 was changed from 0 to 1;

according to suggestions, more than 180 meaningless adverbs were added to the
list of Latvian stopwords;

no additional verbs were shortlisted for the stoplist because secondary forms of
modal verbs are different and contain certain meaning which can be useful for
information retrieval.

Finally, both incorrectly and correctly stemmed words were repeatedly processed by the

modified stemming algorithm and the relevance of resulting stems was evaluated.
Examples of unsternmed and stemmed forms of Latvian nouns, adjectives, verbs and
adverbs are presented in Appendix 4.2.

109

7.4.2 Word stemming in a text corpus

As described before, the first stage of testing the performance of the Latvian stemming

algorithm was based on Latvian words only in their standard forms. However, along

with standard forms, words in Latvian texts normally are used in various declensions

including consonant palatalisations etc. During the initial stage of evaluation, it was

mentioned by Latvian linguistic experts that the stemmer testing should involve not only

words from the electronic dictionary, but also Latvian words in a text corpus (6).

Therefore, in order to evaluate stemming of Latvian words in different declensions and

conjugations as well as to test removal of stopwords, five short fragments of Latvian

texts were selected. As noted in Section 7.3.2, all text fragments were extracted from

the full-text online Latvian database of legal documents. The selected test sample

contained 2071 words and covered fragments from legislative documents and

regulations on the following topics:

property privatisation;
handling and transportation of hazardous goods;
bank exchange rates;

customs taxes on motor vehicles;

0 Ministry of Foreign Affairs.

All text fragments were stored in a separate file which was processed by the stemming

algorithm. In total 1574 words were stemmed and 497 were removed during the

stemming procedure. Overall, all stopwords including adverbs and pronouns e. g. kurd,

arpus, to were stripped correctly and no unremoved stopwords were identified in the

remaining text corpus. Because of the lexical analyser which was built into the Latvian

sternmer and which was described in Section 5.1, all non-alphabetic characters e. g.
numbers and punctuation marks (hyphens, semicolons etc.) were automatically

removed from text fragments.

The majority of Latvian words which were in different declensions and conjugations,

were stemmed correctly and contained a valid resulting stem. Understemming of some

words was the only drawback which was revealed during the analysis of the stemmed

test sample. For example, a word starptautiskajda (in international) was stemmed as

starptautiskaj, by removing only the ending -5, whereas the relevant stem would be

starptautisk, by removing also the suffix -aj. After completing modifications to the

stemming algorithm e. g. adding rule 438 to the static RuleList step4 which determines

110

removal of suffix -aj, the whole file of test sample was repeatedly tested and analysed.
The following example comparatively characterises an unsternmed and stemmed
fragment of Latvian text:

Arlietu ministrija ir valsts pdrvaldes iestdde, kura izstrddd un realize Latvijas Republikas
arpolitiku, piedalds Latvijas drbjas ekonomiskds politikas veido§ana un kuras uzdevums ir ar
politiskiem un diplom5tiskiem lidzekliem nodro§inat Latvijas Republikas drpolitikas koncepcijas
realiz6§anu, lai raditu maksim'ili labv6ligus apst5klus Latvijas Republikas starptautiskajai dro§ibai
un iek§politiskajai stabilitdtei, k5 ari sekm6tu Latvijas Republikas ieklau§anos starptautiskajd
aprit6. Arlietu ministrija darbojas saskatýd ar Latvijas_Republikas Satversmi, spC-kd eso§ajiem
likumdo§anas aktiem un §o nolikumu. Savd darbib5 Arlietu ministrija ir tie§l paklauta Ministru
kabinetam.

; 7trliet* ministr* valst* pdrvald* iestad* izstrdd* realiz* latv* republik* arpolit* piedal* latv*
dr6j* ekonom* politik* veid* uzdevum* polit* diplom* lidzek* nodro§in* latv* republik* drpolit*
koncepc* realiz6* radit* maksimal* labv6l* apstdk* latv* republik* starptautisk* dro§ib* iekgpolitisk*
stabilit* sekm6t* latv* republik* ieklau6an* starptautisk* aprit* arliet* ministr* darboj* saskatý* latv*
republik* satversm* sp6k* eso§aj* likumd* akt* nolikum* darbib* 5rliet* ministr* tie§* paklaut*
ministr* kabin*

7.4.3 Stemmer performance in information retrieval

The final stage of evaluation tested effectiveness of the designed stemming algorithm in

information retrieval. For this purpose, 60 search queries based on the Latvian online
bibliographic database described in Section 7.3.3, were created by 12 independent

users. As noted by Tague (7), a query is the statement of user's requirement which is

usually expressed in a form of short question or statement. It was also mentioned that a

user must be aware about the content and scope of a particular database as well as the

search statement must be correctly definied and formulated (8).

The selection of respondents for query development was based on the following

criteria:

experience in information retrieval;
availability and willingless;
job title;

type of organisation / institution.

The last two factors were chosen to ensure the variety of participants in terms of their

professional background and job title as well as to show the possible impact of those
factors in creating search queries. Following table (Table 7.2) summarises the basic
background data of all 12 respondents.

Table 7.2 Basic information on participants

Code of
respondent

Job title Organisation Years of
experience

I Engineer - programmer Latvian Academic Library 7

2 Lecturer University of Latvia 5

3 Programmer & information
specialist

Company ARCIS 22

4 Head of Laboratory Institute of Maths and Computing 34

5 Head of Library Bank of Latvia 23

6 Information specialist Centre of the US Information
Services

12

7 Head of Department Institute of Bibliography 18

8 Internet administrator Parliament of the Republic of Latvia 10

9 System analyst & project
manager

Company ALISE IS Ltd. 4

10 Head of Department University of Latvia 20

11 Undergraduate student University of Latvia 3

12 Senior bibliographer University of Latvia Library 18.5

According to Table 7.2 the majority of respondents (67%) had 10 and more years of

experience in information retrieval and only two participants were less than five years
involved in information searching. The present work and or job position of all

participants to a certain extent was related to information management and information

technology however, only a half of them had relevant educational background i. e. in

infon-nation and library science.

All respondents before they generated search statements, were farniliarised with the

main characteristics of the test database including scope of materials, subject areas,
sources of information. When it was possible to access the database, users were able to
browse a brief demo version. As outlined in the general methodology (Section 7.2)

each user had to create five different search statements and then manually conflate them

using right hand truncation. Five full search queries where photocopied and swapped

with the next respondent for another manual truncation. It meant that the second

participant truncated first five search statements, the third processed the second set of

enquiries etc., but the first user manually truncated the last five full search queries. The
background information of each respondent e. g. name, organisation, job position etc.
was coded and separated from the search statements as well as it was confidential for

the rest of users. All search enquiries were filled in a structured form which is presented
in Appendix 4.3.

112

Before presenting detailed analysis of each separate set of search statements, Table 7.3
lists the main quantitative parameters of all search queries.

Table 7.3 Quantitative characteristics of unsternmed and stemmed search queries
Quantitative parameters Before stemming After stemming

Total number of search queries 60 60

Total number of words in queries 300 245

Median number of words per query 5 4

Maximum number of words in a query 10 7

Minimum number of words in a query 3 2

According to Table 7.3, the longest search statement before stemming contained 10

words whereas the shortest included only three words. After the stopword removal the
maximum and minimum number of words in a query was respectively seven and two.
Average number of words per unsternmed search statement was five, but the median
number of words per stemmed query was four.

The first two sets of ten search statements generated by respondent I and 2 were used
as the pilot test. The following five search statements covered the first set of enquiries:
1) Ddnijas - Latvijas universita§u sakari (Relations between universities in Denmark and

Latvia);
2) Baltijas valstu robe2u stridi (Sea border disputes between the Baltic States);
3) Jaunds 100 doldru naudas zimes (New 100 dollar notes);
4) Eiropas Kopienas materidli par Latviju (European Community materials on Latvia);
5) Jaunumi Disneja filmu studijd (New releases from Disney Film Studio).

The manual truncation and stemming which was applied to the above listed search
statements, modified those enquiries as follows:

1)

2)

3)

4)

Dänij* Latvij* univers* sakar* (T1)
Dän* Latvij* universit* sakar* (T2)
dän* latv* universitä* sakar* (S)

Balt* robe2* strid* (T1)
Balt* valst* robe2* strid* (T2)
balt* valst* robei* strid* (S)

Jaun* dolär* naud* (T1)
Jaun* 100 dolär naudaszim* (T2)
jaun* dolär naudaszim* (S)

Eirop* Kopien* materiäl* latv* (T1)
Eirop* Kopien* materiäl* Latvij* (T2)
eirop* kopien* material* latvij* (S)

Key:

TI Truncated by the first user

T2 Truncated by the second user

S Stemmed by the algorithm

113

5) Jaun* Disnej* film* (TI)
Disnej* film* studij* (T2)
jaunum* disnej* film* studij* (S)

Both manual truncation and the stemming algorithm removed stopword par from the
forth search statement. Because of the built-in lexical analyser, the sternmer also
stripped number 100 from the third search enquiry, which can be a reason for retrieval

of non relevant documents.

The second set of search statements also included five different queries:
1) Par Latvijas banku st5vokli 1996. g. martd (On the situation of Latvian banks in

March 1996);
2) Par Latvijas un Igaunijas ligumiem zvejniecibd (On Latvian and Estonian fishing

agreements);
3) Par inform5cijas aizsardzibas likumu Latvijd (On the Law of information protection in

Latvia);
4) Par deputtitu ienakumu deklardcijdm (On the declarations of MP's salaries);
5) Par pa§valdibu finansidlo situ5ciju (On the financial situation of local governments).

As for the first set of queries all five full search statements were manually truncated and
stemmed by the algorithm as follows:

1) Latv* bank* 1996. g. mart* (TI)
Latvij* bank* 1996. mart* (T2)
latv* bank* stdavokl* g mart* (S)

2) Latv* Igaun* ligum* zvej* (TI)
Latvij* Igaunij* ligum* zvejniec* (T2)
latv* igaun* ligum* zvejniec* (S)

3) inform* aizsardz* likum* Latvij* (TI)
Latvij* informac* aizsardzib (T2)
informdc* aizsardz* likum* latvij* (S)

4) deputat* iendkum* deklar* (TI)
deputdt iendkum* deklar5c* (T2)
deput* ien5kum* deklar5c* (S)

5) pa§vald* finans* (TI)
pa§valdib* finans* situdcij* (T2)
pa§vald* finansi5l* situac* (S)

All five search queries contained only one stopword par which was removed both by

manual truncation and by stemming. In two search statements respondents decided to

exclude two meaningless nouns e. g. in query #3 the word Rum (law) was removed
but the word situdciju (situation) was deleted from the query #5. The lexical analyser of
the ste=er automatically removed a year 1996 from the first query.

114

After the truncation and stemming of all search statements was completed, both full and

conflated versions of queries were used to search for relevant documents in the Latvian

bibliographic database of periodicals. Tables 7.4A and 7AB comparatively present the

total number of documents retrieved by each search query as well as the number of

relevant documents per each type of search enquiry

Table 7.4A Number of documents retrieved by the first set of queries

Query Full Truncated (I st user) Truncated(2nd user) Stemmed

Total Relevant Total Relevant Total Relevant Total Relevant
#1 0 0 0 0 0 0 0 0

#2 50 1 50 1 50 2 50 2

#3 0 0 2 0 2 0 2 0

#4 3 1 3 1 3 1 3 1

#5
1

0
11

0 0
1

0
1

0
1

0
1

0
1

0
11

Table 7AB Number of documents retrieved by the second set of queries

Query Full Truncated (I st user) Truncated(2nd user) Stemmed

Total Relevant Total Relevant Total Relevant Total Relevant
#1 11 1 50 9 50 9 50 9

#2 9 0 44 2 11 1 11 1

#3 0 0 2 2 2 2 2 2

#4 0 0 1 1 1 1 1 1

#5 1 1 3 2 3 2 2 2

According to Table 7AA full, truncated and stemmed version of two queries (#I and
#5) in the first set of search statements matched zero hits whereas manually truncated

query #3 retrieved two documents which were both irrelevant. Unsuccessful retrieval
of information based on the above mentioned search statements can be justified because

of the irrelevance of requests to the content of a database e. g. the Analytical system of
Latvian periodicals do not cover any materials on films and videos (Query #5) as well
as there being no documents on international links related to higher educational
institutions (Query #1). Limited access to the database content was the basic reason of
irrelevant search statements. Because of the very specific requirement e. g. information
on 100 dollar notes, no relevant documents were matched by Query #3. The broadness

115

of the topic covered by search statement #2 was one of the main reasons why so many

records dealing with Baltic sea borders in general were retrieved. Moreover, as the

second user removed a word valstu (countries' in possessive case) from the above

mentioned truncated query, the total amount of documents retrieved reached 44 which
included all records not only on the Baltic countries, but also on the Baltic sea.

Analysis of results obtained from the second set of queries (Table 7.4B) revealed that

the majority of documents retrieved by full, truncated and stemmed versions were

relevant and matched initial search requests. A large number of non relevant documents

were retrieved by manually truncated and stemmed query #1 because of the ambiguous
formulation of the search request e. g. The truncated version of Latvijas banku covered

not only all documents related to Latvian banks in general, but also records containing
information on Bank of Latvia. Overall, the pilot test confirmed that full, truncated and

stermned search statements could be used with the selected Latvian online bibliographic

database in order to retrieve relevant documents. The initial test also revealed that there
is no significant difference between documents retrieved by the different manual
truncations of the source query as well as between the truncated and stemmed search

statements. Table 7.5 shows the median number of retrieved relevant and irrelevant

documents based on all queries used for the pilot test, except of those which matched

zero records. Statistical measures characterising the effectiveness of the stemming

algorithm i. e recall and precision were calculated for the whole set of queries including

those used in the pilot study and will be presented in Section 7.5.

Table 7.5 Median of documents retrieved in the pilot test

Type of query Median of retrieved
documents in total

Median of relevant
documents

Full 10 1

Truncated by the I st user 22 3

Truncated by the 2nd user 17 3

Stemmed 17 3

Analysis of the remaining set of search queries generated by ten different respondents
followed the same principle which was applied in the pilot study. The basic subject
areas covered by 50 search statements are summarised in Table 7.6.

116

Table 7.6 Main subject areas covered by queries

Subject area Number of queries

Finances / banks /exchange rates 10

Fishing and disputs on sea borders 6

Foreign investments 3

Latvian army 4

Citizenship 3

International economical cooperation 4

Criminal situation in Latvia 3

Information systems, libraries, culture 5

Education 2

European Union / politics in general 2

Elections of Parliament 3

Small enterprises I

Local governments I

Miscellaneous 3

As shown in Table 7.6, the majority of search statements were dealing with banks,

finances, economicy, politics, defence and law which were relevant topics and

corresponded to materials covered by the database. The number of queries related to
fishing and sea borders was high, because at the time of generating search statements
i. e. March, April 1996 the topic was covered by the mass media e. g. disputs on sea
borders between Latvian and Estonia were discussed on TV news and presented in

periodicals. All unsternmed queries as well as manually truncated and automatically

stemmed search statements are presented in Appendix 4.4.

In order to discuss and analyze information retrieval results, Table 7.7 comparatively
presents the total number of documents retrieved and the number of relevant documents

retrieved per query. All queries are grouped in the same order as they were listed in
Appendix 4.4. Search statements which resulted into zero hits or which retrieved no
relevant records, were not included in the table.

117

Table 7.7 Number of documents retrieved per each query

of Query Unstemmed Truncated (1) Truncated (2) Stemmed

Total Relevant Total Relevant Total Relevant Total Relevant

1 0 0 1 1 1 1 1 1

2 0 0 1 1 1 1 1 1

3 9 0 36 0 36 1 11 2

4 0 0 1 1 1 1 1 1

5 5 5 6 6 6 6 6 6

6 0 0 3 1 3 1 3 1

7 4 3 6 4 5 4 6 4

11 0 0 4 3 4 3 4 3

12 7 1 10 1 10 1 10 1

13 0 0 3 3 3 3 3 3

16 24 5 24 5 27 5 27 5

17 21 12 50 14 50 14 25 14

18 1 1 7 5 7 5 7 5

19 9 1 9 1 9 1 9 1

21 4 4 6 6 6 6 6 6

22 6 6 50 43 50 43 45 43

23 7 1 14 1 9 1 13 1

24 4 3 29 11 27 10 27 10

25 2 2 2 2 2 2 10 2

26 0 0 1 1 1 1 1 1

27 1 1 1 1 45 1 1 1

31 6 2 19 6 19 6 19 6

32 2 2 2 2 4 4 4 4

33 23 4 28 6 50 0 30 0

34 3 2 28 0 2 1 3 2

35 0 0 25 1 1 1 1 1

37 0 0 3 2 3 2 3 2

38 5 2 13 3 13 3 13 3

40 2 2 5 3 4 3 4 3

42 5 2 0 0 13 4 13 4

43 1 1 1 1 1 1 1 1

47 2 1 2 1 2 1 2 1

49 2 2 6 4 6 4 4 4

50 1 1 1 1 1 1 1 1

118

Assessment of document relevance was judged by the researcher on the basis of
information obtained from the title and annotation of each retrieved document. The

reliability of this approach for determing the total amount of relevant records, which is

one of the values for calculating recall ratio, was reasonably high (about 90%) because

of the managable amount of records at the time (i. e. all 800- 1000 records was possible
to browse). All retrieved documents to be judged for relevance consisted of the pooled

output of four different types of search e. g. unsternmed, truncated by the first user,
truncated by the second user and stemmed by the algorithm. The following two reasons
determined the use of this particular principle for document relevance assessment:

geographical location e. g. all respondents who generated search queries were
residing in Latvia and for document evaluation purposes only some of them

could be remotely accessable via e-mail or Internet;

security system and restrictions of the database e. g. the Analytical information

system of periodicals is a commercial database and only authorlsed users who
have paid subscription fees are provided with full access to the database. The
database security system allows the printing of a certain number of retrieved
documents therefore, it would be impossible to provide respondents with a
complete set of retrieved documents in a printed form.

According to Table 7.7 the majority of full, truncated and stemmed search queries
matched certain amount of records in the database. In 22 cases there were either minor
or no differences between number of documents retrieved in total and number of
relevant documents. For example, six relevant documents out of six were retrieved
using both manually truncated and stemmed versions of Query #5:

Par Baltijas banku (On the Bank Baltija)

Similar results were achieved with full, truncated and stemmed Query #43:
Zivju pdrstr5des uzQC-mumi Latvij5 (Fish processing enterprises in Latvia).

Several search statements were not clearly defined and contained some ambiguous
words which resulted in retrieving a high number of documents in total, but a low

number of relevant documents. For example, one relevant record out of nine was
retrieved by the Query #19:

Skanddis ar "Parex" bankas garanfijcdm (Scandal on the guaranties of Parex
bank).

because of the multiple meaning of a word garanfij5m.

Retrieval of irrelevant documents was also caused by the overtruncation and/or
oversternming of words in a search statement as well as because of removing
meaningful words or numbers from the query.

119

For example, 24 irrelevant records and only one relevant record matched truncated

Query #35:

Valsts un priv5fie monopoluzQ6mumi Latvijd (State and private monopoly
enterprises in Latvia)

because the word monopoluzQ6mumi was manually overconflated as monopol* which

resulted into retrieval of documents related to the state policy on alcohol monopoly.

Another example shows the automatic removal of the meaningful number 21 from the

stemmed Query #25:

Par "Klubs - 21" dalibnieku iesaisfi§anos polifiskajd darbib5 (On the
involvment of "Club -21" into political activities)

resulted into retrieval of eight irrelevant and two relevant records whereas manually

truncated and unsternmed form of this query matched two relevant documents out of

two in the total.

Several unsternmed queries hit zero records because they contained words in different

declensions which did not match appropriate words in the documents' contents
(annotation) field. For example, Query # 13:

Klirings un citas nor6ýinu sist6mas (Clearing and other systems of

payment)

matched zero records because there were no documents containing a word nor6ýinu in

Accusative declension.

Sixteen unstemmed, manually truncated and stemmed search statements retrieved zero
documents as they were defined incorrectly and/or because they covered a subject area

not relevant to the database content. The main reason for incorrect search queries was
lack of detailed information on topics covered by the information system. For example,

completely irrelevant requirement was formulated in Query #30:

Ritdienas laika prognoze (Weather broadcast for tomorrow).

Similar inadequate search statement was definied in Query #41:
lzstade "Datortehnika'96" (Exhibition "Computer technology '96")

The median number of relevant documents and the median number of documents in

total retrieved by unsternmed, truncated and stemmed queries are presented in Table

7.8. Queries which retrieved zero documents or which retrieved no relevant documents

where not included in calculations.

120

Table 7.8 Median number of documents retrieved in the main test

Type of query Median of retrieved
documents in total

Median of relevant
documents

Full 5 2

Truncated by the I st user 12 4

Truncated by the 2nd user 12 4

Stemmed 9 4

According to Table 7.8 there is no difference between the total number of documents

retrieved by manually truncated queries carried out by the first and by the second

respondent. The median number of relevant documents both using truncated and

stemmed queries was the same. Stemmed search statements produced slightly less

irrelevant records than manually truncated queries. Because of the search words which

were used in different declensions, the median number of records retrieved by full

queries was relatively small. The following section (Section 7.5) will evaluate the

effectiveness of the Latvian stemming algorithm in information retrieval using recall and

precision measurements.

7.5. Effectiveness of the stemming algorithm

The effectiveness of a stemming algorithm in information retrieval is usually calculated

using two standard measures:

0 recall,

precision (10).

Recall value shows the ratio between the number of relevant documents retrieved per

query and the total number of relevant records in the collection e. g.

Recall =
Number of relevant records

Total number of relevant records

Precision measure can be calculated as the proportion between relevant records retrieved

per query and total number of records retrieved per query e. g.
Number of relevant records

rieclsioll =
Total number of records

As mentioned in the general methodology (Section 7.2) the effectiveness of the Latvian

stemming algorithm in information retrieval based on full, manually truncated and
stemmed search queries will be also evaluated using standard recall and precision

values. Table 7.9 summarises recall and precision measures for all queries used in the

main test except those which retrieved zero records.

121

Table 7.9 Recall and precision values based on queries from the main test

of Query Unstemmed Truncated (1) Truncated (2) Stemmed

R p R p R p R p

1 0 0 1 1 1 1 1 1

2 0 0 1

3 0 0 0 0 0.5 0.03 1 0.18

4 0 0 1 1 1 1 1 1

5 0.83 1 1 1 1 1 1 1

6 0 0 1 0.33 1 0.33 1 0.33

7 0.75 0.75 1 0.66 1 0.8 1 0.66

I1 0 0 1 0.75 1 0.75 1 0.75

12 1 0.14 1 0.1 1 0.1 1 0.1

13 0 0 1 1 1 1 1 1

16 1 0.20 1 0.20 1 0.19 1 0.19

17 0.86 0.57 1 0.28 1 0.28 1 0.56

18 0.2 1 1 0.71 1 0.71 1 0.71

19 1 0.11 1 0.11 1 0.11 1 0.11

21 0.66 1 1 1 1 1 1 1

22 0.14 1 1 0.86 1 0.86 1 0.96

23 1 0.14 1 0.07 1 0.11 1 0.08

24 0.27 0.75 1 0.38 0.90 0.37 0.90 0.37

25 1 1 1 1 1 1 1 0.2

26 0 0 1 1 1 1 1 1

27 1 1 1 1 1 0.2 1 1

31 0.33 0.33 1 0.32 1 0.32 1 0.32

32 0.5 1 0.5 1 1 1 1 1

33 0.66 0.17 1 0.21 0 0 0 0

34 1 0.66 0 0 0.5 0.5 1 0.66

35 0 0 1 0.04 1 1 1 1

37 0 0 1 0.66 1 0.66 1 0.66

38 0.66 0.4 1 0.23 1 0.23 1 0.23

40 0.66 1 1 0.6 1 0.75 1 0.75

42 0.5 0.4 0 0 1 0.31 1 0.31

43 1 1 1 1 1 1 1 1

47 1 0.5 1 0.5 1 0.5 1 0.5

49 0.5 1 1 0.66 1 0.66 1 1

50 1 1 1 1 1 1 1 1

R= rccall P= prccision

122

According to Table 7.9, recall and precision values obtained from both manually

truncated search queries are almost equal. There is a relatively small difference between

recall and precision measures using truncated and stemmed queries. However,

comparing both information retrieval performance ratios obtained from unstemmed

queries and truncated/stemmed search statements is significant. The main reason of

such difference is the use of search words in different declensions which matched a

very small number (if any) of records.

In order to show and to evaluate the overall information retrieval performance results,

Table 7.10 presents the median number of recall and precision values based on full,

truncated and stemmed search queries which were used in the main test.

Table 7.10 Median of recall and precision ratios for all types of queries

Query Recall Precision

Full 0.53 0.47

Truncated by the I st user 0.90 0.58

Truncated by the 2nd user 0.94 0.61

Stemmed 0.97 0.64

Table 7.10 confirms that truncated/stemmed queries in Latvian language produce

significantly better recall and precision results in information retrieval than use of

unsternmed search statements e. g. full queries retrieved only 53% (0.53) relevant

records whereas stemmed search statements matched more than 90% of all relevant

records. The table also reveals that there is no major difference in information retrieval

performance using stemmed or truncated queries. However, stemmed search statements

were more efficient and produced slightly better recall and precision values than

manually truncated queries. Figure 7.1 graphically shows the performance of full,

truncated and stemmed queries in information retrieval.

123

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0 Recall

EJ Precision

Figure 7.1 Recall and precision of full, truncated and stemmed queries

Recall and precision measures in both Table 7.10 and Figure 7.1 exclude queries which

matched zero records in the database. Table 7.10 presents the median recall and

precision measures of document retrieval using all 50 full, truncated and stemmed

queries.

Table 7.11 Median recall and precision ratios of all queries used in the main test

Query Recall Precision

Full 0.30 0.27

Truncated by the I St user 0.51 0.33

Truncated by the 2nd user 0.53 0.34

Stemmed 0.55 0.36

7.6 Conclusion

The main objective of this evaluation study was to test general performance of the

Latvian stemming algorithm using both Latvian words in their standard forms and

words in declensions as well as to analyse and evaluate the effectiveness of the Latvian

stemmer in information retrieval based on user search statements.

124

Full Truncated (1) Truncated (2) Stemmed

The evaluation results confirmed both hypothesis outlined in the general methodology:

a sternming algorithm designed for English language can be applied for Latvian;

use of stemming in information retrieval performs the same or better results than

manual right hand truncation.

Initial testing of Latvian words from the electronic dictionary revealed that the

stemming algorithm correctly and in an appropriate way removes suffixes from

standard Latvian words. Because of the language complexity some rules in the sternmer

were changed allowing to remove all suffixes and endings from a word leaving instead

of the stem only the root of a word.

Results obtained from the testing of Latvian text fragments showed that the algorithm

produces relevant stems of Latvian words used in different declensions and

conjugations. Information retrieval performance results based on recall and precision

measures confirmed that truncated and stemmed queries can be more efficient and can

retrieve significantly more relevant documents than unsternmed search statements.

Because of the time limits and due to some technical problems e. g. the lack of

appropriate software package for linking and hardware, the Latvian stemming algorithm

over the period of evaluation was not been implemented in any of existing Latvian

databases. However, evaluation results of information retrieval effectiveness revealed

that queries stemmed by the Latvian stemming algorithm produced a better ratio of

relevant documents than manually truncated search statements.

125

References

Hull, David A. Stemming algorithms: a case study for detailed evaluation.

Journal of the American Societyfor Information Science, 1996,47 (1), 70-72.

2. Frakes W. B. Stemming algorithms. In: William B. Frakes & Ricardo Baeza-

Yates, eds. Information retrieval: data structures and algorithms, 1992, pp. 143-

147.

3. Popovic, Mirko. Implementation of a Slovene language basedfree-text

retrieval system, 1991.

4. Soida S. & S. KjaviQa. Latviegu valodas invers5 v5rdnica [Inverse dictionary

of Latvian language], 1970.

5. Wars Indans to Karlis Kreslins, 5 February 1996.

6. Interview with Sarma Klavina, Department of Baltic languages, University of

Latvia, Riga, Latvia, 4 April 1996.

7. Tague J. M. The pragmatics of information retrieval experimentation. In: K.

Spark-Jones, ed. Information retrieval experiment, 1981, pp. 59-102.

8. Ibid.

9. Hull, ref. 1.

126

Chapter 8

CONCLUSION

8.1 Summary of results

As indicated in Chapter 1, the aim of this thesis was to introduce automatic word

conflation for Latvian in order to improve the effectiveness of access to Latvian

databases and information systems. The requirement for design and implementation of

advanced information retrieval techniques (i. e. stemming) is determined by two factors:

the anticipated growth in the number of Latvian online bibliographic, full-text

and other types of databases;

increasing user demands for relevant and easy retrievable information.

The Latvian stemming algorithm which is based on the English sternmer can be also

used to provide access to international databases (e. g. EU and/or NATO databases),

therefore allowing users to formulate their search queries in a native language and

providing document retrieval in English.

To date the retrieval software for Latvian databases and information systems is based

on traditional Boolean search operators, which pose problems for unexperienced users

e. g. in formulating correct search queries. Implementation and use of the Latvian

sternmer as the front-end of different databases to a great extent can help end-users in

the process of information searching and retrieval e. g. it will allow them to formulate a

search query in the natural language without any assistance from trained intermediaries.

Comparative analysis of the English and Latvian languages and their grammatical

structures revealed that words in both languages are created by adding suffixes to a
basic stem. This statement justified the selection of an English algorithm as the basis for

the Latvian sternmer. However, the morphological complexity of the Latvian language

determined that extensive modifications to the structure of the initial stemming

algorithm were necessary. Overall, the initial rules for English language were replaced

with the new knowledge base comprising conditional and recoding rules for Latvian

e. g.:

extensive Latvian stopword list;

separate list of Latvian word endings;

rule lists of Latvian suffixes according to their length;

special rules of consonant palatalisation;

special conditions.

127

Conditional and recoding rules for Latvian language were placed into the structure of
Porter- Frakes' suffix removal algorithm because to date it is one of the most flexible

sternmers and gives good information retrieval results both for English and non-English
languages. If there is a more advanced sternmer, than the same knowledge base could
be used for this stemming algorithm. The knowledge base of the Latvian sternmer (e. g.

the stopword list) can be also modified and developed according to the area in which
the sternmer is going to be implemented.

The initial testing and examination of the Latvian stemming algorithm using an

electronic dictionary of Latvian nouns, adjectives, verbs and adverbs, as well as
fragments of Latvian texts, confirmed that the Latvian sternmer stems both Latvian

words in standard forms and in declensions correctly and leaves relevant resulting

stems of words as well as removes appropriate stopwords.

Evaluation results of information retrieval effectiveness proved that search statements

processed by the Latvian stemming algorithm produced more relevant documents than

traditional manual right hand truncation.

Latvian language was used as an example of an inflective language. The knowledge

base of this stemming algorithm can be adapted to other inflective languages which
belong to the same language family as Latvian (i. e. Italian, Celtic, Germanic, Slavic)

and which use both Roman and non-Roman character sets. Moreover, even if the
language does not belong to the same language group, but its morphological structure is

similar to Indo-European languages, the algorithm might be applicable for this
language. For example, the knowledge base could not be implemented for agglutinative
languages (e. g. Finnish or Turkish) or Chinese but possibly it could be applied for the
Semitic language group (e. g. Arabic, Hebrew).

8.2 Further research

40 A more extensive evaluation study of the Latvian stemming algorithm covering
additional statistical methods for examination e. g. Anova test and/or T-test

could be carried out, if the algorithm was implemented in some of the existing
Latvian databases and tested by users of these databases. To date several
information and computer software companies in Latvia e. g. Software House
Riga, Lursoft Ltd. etc. expressed their interest in applying the stemming
algorithm for information retrieval from their databases.

128

0 Additional modifications and improvements to the structure of stemming

algorithm regarding the complexity of Latvian language e. g. to cover all cases

of consonant palatalisation, can be done.

Comparative analysis of stemming both English and Latvian words using
different types of stemming algorithms e. g. n-gram, successor variety

stemmers can be carried out.

Analysis and evaluation of the Latvian stemming algorithm used in a

multilingual database or infon-nation system can be completed.

129

BIBLIOGRAPHY

Adamson, G. & J. Boreham. The use of an association measure based on

character structure to identify semantically related pairs of words and document titles.

Information Storage and Retrieval, 1974,10,253-260.

Al-Kharashi,, Ibrahim A. & Martha W. Evans. Comparing words, stems and

roots as index terms in an Arabic information retrieval system. Journal of the American

Society for Information Science, 1994,45(8), 548-560.

Ashford, John & Peter Willett. Text retrieval and document databases. Bronfley:

Chartwell-Bratt, 1988.

Bell, Colin L. M. & Kevin P. Jones. A minicomputer retrieval system with

automatic root finding and roling facilities. Program, 1976,10(l), 14-27.

Biru, Tesfaye et al. Inclusion of relevance information in the term discrimination

model. Journal of Documentation, 1989,45(2), 85-109.

Brzozowski, J. P. MASQUERADE: searching the full text of abstracts using

automatic indexing. Journal of Information Science, 1983,6,67-73.

Ceplite, B. & L. Ceplitis. Latvle, ýu valodas praktiska gramatika [The practical

grammar of Latvian language]. Riga: Zvaigzne, 199 1.

Dattola, Robert T. FIRST: Flexible information retrieval system for text. Journal of

the American Societyfor Information Science, 1979,30(l), 9-14.

Dillon, Martin & Ann S. Gray. FASIT: A fully automatic syntactically based

indexing system. Journal of the American Society for Information Science, 1983,

34(2), 99-108.

Drizule, Viktorija. Razrabotka priblizhennih metodov awomaticheskovo

morfologicheskovo analiza tekstov latyshskovo jazyka [Design of proximate methods
for morphological analysis of Latvian language]: A summary of dissertation. Minsk,

1975.

130

Dubois, C. P. R. Multilingual information systems: some criteria for the choice of

specific techniques. Journal of Information Science, 1979,1,5-12.

Ekmekcioglu, Cuna F., Alexander M. Robertson & Peter Willett.

Effectiveness of query expansion in ranked-output document retrieval systems. Journal

of Information Science, 1992,18(2), 139-147.

Fagan, Joel L. The effectiveness of a nonsyntactic approach to automatic phrase

indexing for document retrieval. Journal of the American Society for Information

Science, 1989,40(2), 115-132.

Fennell, Trevor G. & Henry Gelsen. A grammar of modern Latvian. 3 vols.

The Hague: Mouton, 1980.

Frakes, William B. & Ricardo Baeza-Yates. Information retrieval: data

structures and algorithms. Englewood Cliffs, N. J.: Prentice Hall, 1992.

Fuhr, Norbert von. Zur Überwindung der Diskrepanz zwischen Retrievalforschung

und- praxis [Bridging the gap between retrieval research and practice]. Nachrichtenffir

Dokumentation, 1990,41(1), 3-7.

Hafer, Margaret A. & Stephen F. Weiss. Word segmentation by letter

successor varieties. Information Storage & Retrieval, 1974,10,371-385.

Hancock-Beaulieu, Micheline & Stephen Walker. An evaluation of automatic

query expansion in an online library catalogue. Journal of Documentation, 1992,

48(4), 406-421.

Hancock-Beaulieu, Micheline & Stephen Walker. Query expansion: advances
in research in online catalogues. Journal of Information Science, 1992,18(2), 99-103.

Harman, Donna. How effective is suffixing? Journal of the American Societyfor

Information Science, 1991,42(l), 7-15.

Harter, Stephen P. A probabilistic approach to automatic keyword indexing.

Journal of the American Societyfor Information Science, 1975,26,280-289.

131

Hendry, Ian G., Peter Willett & Frances E. Wood. INSTRUCT: a teaching

package for experimental methods in information retrieval. Part 1. The users' view.

Program, 1986,20(3), 245-263.

Hendry, Ian G., Peter Willett & Frances E. Wood. INSTRUCT: a teaching

package for experimental methods in information retrieval. Part 2. Computational

aspects. Program, 1986,20(4), 382-393.

Hudson, Richard. English word grammar. Oxford: Basil Blackwell, 1991.

Hull, David A. Stemming algorithms: a case study for detailed evaluation. Journal of

the American Society for Information Science, 1996,47(t), 70-84.

Jakubaite, T. et al. LaMegu valodas bie2uma vardhica [Frequency dictionary

of Latvian language], vol 4: Science. Riga: Zinatne, 1976.

Johnson, Bonnie & Elaine Peterson. Reviewing initial stopword selection.

Information Technology and Libraries, 1992,11(2), 136-139.

Jones, Leslie P., Edward W. Gassie & Sridhar Radhakrishnan. INDEX:

the statistical basis for an automatic conceptual phrase-indexing system. Journal of the

American Socielyfor Information Science, 1990,41(2), 87-97.

Jung Soon, Ro. An evaluation of the applicability of ranking algorithms to improve

the effectiveness of full-text retrieval. 11. On the effectiveness of ranking algorithms on
full-text retrieval. Journal of the American Society for Information Science, 1988,

39(3), 147-160.

Kalamboukis, T. Z. Suffix stripping with modern Greek. Program, 1995,29(3),

313-321.

Keen, Michael E. The use of term position devices in ranked output experiments.
Journal of Documentation, 1991,47(l), 1-22.

Lennon, Martin et al. An evaluation of some conflation algorithms for information

retrieval. Journal of Inforination Science, 1981,3,177-183.

132

Lochbaum, Karen E. & Lynn A. Streeter. Comparing and combining the

effectiveness of latent semantic indexing and the ordinary vector space model for

information retrieval. Information Processing and Management, 1989,25(6), 665-676.

Lovins, J. B. Development of a stemming algorithm. Mechanical Translation and

Computational Linguistics, 1968,11(l), 22-3 1.

Lovins, Julie B. Error evaluation for stemming algorithms as clustering algorithms.

Journal of the American Societyfor Information Science, 1971,22(l), 28-40.

Luhn, H. P. A statistical approach to mechanical encoding and searching of library

information. IBM Journal of Research and Development, 1957,1(4) 309-317.

Metuzdle-Kangare, Baiba. A derivational dictionary of Latvian. Hamburg: Buske,

1985.

Neumeyer, Frederick J., ed. Linguistics, the Cambridge survey. Vol. 1.

Linguistic theory, foundations. Cambridge: Cambridge University Press, 1988.

Overhage, Carl F. J. & Francis J. Reintjes. Project INTREX: a general

review. Information Storage and Retrieval, 1974,10,157-188.

Paice, C. Another sternmer. ACM SIGIR Forum, 1990,24(3), 56-6 1.

Parker, Frank. Linguistics for non-linguists. London: Taylor and Francis, 1986.

Peat, Helen J. & Peter Willett. The limitations of term co-occurrence data for

query expansion in document retrieval systems. Journal of the American Society for

Information Science, 1991,42(5), 378-383.

Perry, Shirley A. & Peter Willett. A review of the use of inverted files for best

match searching in information retrieval systems. Journal of Information Science,

t983,6,59-66.

Pietilainen, Pirkko. Local feedback and intelligent automatic query expansion.
Information Processing and Management, 1983,19(l), 51-58.

Popovk, Mirko. Implementation of a Slovene language-based free text retrieval

system: PhD Thesis. Sheffield: University of Sheffield, 199 1.

133

Popovk, Mirko & Peter Willett. The effectiveness of stemming for natural

language access to Slovene textual data. Journal of the American Society for

Information Science, 1992,43(5), 384-390.

Porter, Martin. An algorithm for suffix stripping. Program, 1980,14(3), 130-137.

Robertson, S. E. On relevance weight estimation and query expansion. Journal of

Documentation, 1986,42(3), 182-188.

Robertson, S. E. On term selection for query expansion. Journal of Documentation,

1990,46(4), 359-364.

Robertson, S. E. & M. M. Hancock-Beaulieu. On the evaluation of IR

systems. Information Processing and Management, 1992,28(4), 457-466.

Robertson, S. E. & K. Spark Jones. Relevance weighting of search terms.

Journal of the American Society for Information Science, 1976,27,129-146.

Salton, Gerard. Automatic information organization and retrieval. London:

McGraw-Hill Book Company, 1968.

Salton, Gerard. Automatic text processing: the transformation, analysis and retrieval

of information by computer. Wokingham: Addison-Wesley, 1989.

Salton, Gerard, ed. The SMART retrieval system: experiments in automatic
document processing. Englewood Cliffs, N. J.: Prentice Hall, 197 1.

Salton, Gerard & Christopher Buckley. Term weighting approaches in

automatic text retrieval. Information Processing and Management, 1988,24(5), 513-

523.

Salton, Gerard & M. E. Lesk. The SMART automatic document retrIeval system.
Communications of the ACM, 1965,8(6), 391-398.

Salton, Gerard & Michael J. McGill. Introduction to modern information

retrieval. London: McGraw-Hill, 1983.

Savoy, Jacques. Stemming of French words based on grammatical categories.
Journal of the American Societyfor Information Science, 1993,44(l), 1-9.

134

Schinke, Robyn et al. A stemming algorithm for Latin text databases. Journal of

Documentation, 1996,52(2), 172-187.

Selkirk, Elisabeth 0. The syntax of words. London: MIT Press, 1982.

Smeaton, Alan F. Natural language processing and information retrieval.

Information Processing and Management, 1990,26(l), 19-20.

Soida, S. & S. Kjav#ia. LaMegu valodas inversa vardhica [Inverse dictionary

of Latvian language]. Riga: Zindtne, 1970.

Solak, Aysin & Kemal Oflazer. Design and implementation of a spelling checker

for Turkish. Literary and Linguistic Computing, 1993,8(3), 118-130.

Spark Jones, K. & J. 1. Tait. Automatic search term variant generation. Journal

of Documentation, 1984,40(l), 50-66.

Spark Jones, Karen. Information retrieval experiment. London: Butterworths,

1981.

Ulmschneider, John & Tamas Doszkocs. A practical stemming algorithm for

online search assistance. Online Review, 1983,7(4), 301-318.

Van Rijsbergen, C. J., ed. Infonnation retrieval. 2Nd ed. London: Butterworths,

1979.

Van Rijsbergen C. J., ed. Research and development in information retrieval.
Cambridge: Cambridge University Press, 1984.

Vickery, Brian & Alina Vickery. An application of language processing for a

search interface. Joumal of Documentation, 1992,48(3), 255-275.

Vickery, Brian C. & Alina Vickery. Information science in theory and practice.
London: Butterworths, 1987.

Wade, Stephen J. & Peter Willett. INSTRUCT: a teaching package for

experimental methods in information retrieval. Part 3. Browsing, clustering and query

expansion. Program, 1988,22(l), 44-6 1.

135

Walker, Stephen. OKAPI: evaluating and enhancing an experimental online catalog.

Library Trends, 1987,35(4), 631-645.

Walker, Stephen & Rachel de Vere. Improving subject retrieval in online

catalogues. 2. Relevance feedback and query expansion. London: The British Library

Research and Development Department, 1990.

Walker, Stephen & Richard M. Jones. Improving subject retrieval in online

catalogues. 1. Stemming, automatic spelling correction and cross-reference tables.

London: The Polytechnic of Central London, 1987.

Willett, Peter, ed. Document retrieval systems. London: Taylor Graham, 1988.

Wong, S. K. M. & Y. Y. Yao. Query formulation in linear retrieval models.
Journal of the American Societyfor Information Science, 1990,41(5), 334-341.

Wu, Zimin. A partial syntactic analysis-based pre-processorfor automatic indexing

and retrieval of Chinese texts: PhD Thesis. Loughborough: Loughborough University

of Technology, 1992.

136

APPENDICES

APPENDIX I

LATVIAN STOPLIST

Prepositions

aiz ap ar apak§ arpus

aug§pus bez caur d6l, gar
iek§ iz kop§ labad lejpus

Hdz no otrpus pa par

pdr P-C pie pirms pret

priek§ starp §aipus uz ViQpus

virs virspus zem apak§pus

Conjunctions

un bet jo ja ka

lai tom6r tikko turprefi ari
kaut gan tdd6l t5 ne
tikvien vien kiýi ir te

vai kam6r

Particles

ar diezin dro§i diem261 nebOt
ik it tadu nu pat
tiklab iek§pus nedz tik nevis
turpretim jeb iekam iek5m iek5ms
kolidz lidzko tikIldz jeb§u t5lab

tap6c nekd itin ja jau
jel n6 nezin tad tikai

vis tak iekams vien

138

es
manis
man
mani
mani
m6s
MOSU
mums
MOS
mclsos

sevis
sev
sevi
sevi
kas
kä
kam

ko

kur

mans
mana
manam
manu
man5
mani
maniern
manus
manos

Pronouns

tu ViQ§ kur6

tevis
tev
tevi
tevi
jas
josu
jums
josos

viQa
viQam
ViQu
ViQ5
ViQi
viQiem
ViQus
ViQos
viQas
viQai
ViQam
ViQ5S

kura

kuram

ku ru
ku rd
ku ri
kuriem

kurus

kuros

kuras

kurai

kur5m

kurds

tas
ta
tam
to
taj5
tai
tani
tas
tie

manas
manai
mandm
mands
tavs
tava
tavam
tavu
tav5

tiem
tos
tais
tajos
tanis
t5m
taj5s

tavi
taviem
tavus
tavos
tavas
tavai
tav5m
tavc5s

gis
§i
§ä
ýim

§ai
gajä
§ini

savs
sava
savam
savu
sav5
savi
saviem
savus

viss

visa
visam
visu
ViS5
visi
visiem
visus
visos
visas
visai
visam
visas

ýis
§äs
§ie
§iem
§äm
§os
§ais
gajos
§ajäs
§inis

savos
savas
savai
sav5m
savds

139

cits da2s kdds kur§ tdds

cita da2a kdda ku ra tada

citam da2am k5dam kuram t5dam

citu da2u kadu kuru tadu

cita da25 k5d5 kura tad5

citi da2i kadi ku ri tddi

citiem da2iem kadiem kuriem t5diem

citus da2us kddus kurus tadus

citos da2os kados kuros tados

citas da2as kadas kuras tddas

citai da2ai k5dai ku rai t5dai

cit5m da2dm k5dam kurdm t5dam

cit5s da2as k5d5s kur5s tddas

§5ds katrs man6js man6jais tav6ji

§dda katra man6ja manflo tav6jiem

§5dam katram manflam man6jie tav6jus

§adu katru manflu man6j5s tav6jos

Wd katra manfla manflai tavflais

§5di katri manfli man6jdm tav6jo

§ddiem katriem manC-jiem man6jas tav6jie
§5dus katrus man6jus tav6js tavbjds

Mdos katros man6jos tav6ja tavC-jai
§5das katras tav6jam tav6j&m

§adc5m katrai tav6ju tav6jas

§5dds katr5m tavbjd

katr5s

sav6js ViQ6js joscjs mcisbjs §itas

savC-ja viQ6ja j6s6ja m u- s e- ja §ita

sav6jam viQ6jam jOs6jam m0s6jam 6itam

sav6ju ViQcju jos6ju mu-se-ju §ito

savC-jd ViQ6j5 jos6jc; i mosfla §itai

savfli ViQ6ji jos6ji mos6ji §itie

sav6jiem viQC3jiem jQs6jiem m u- s e- ji em §itiem

sav6jus ViQc3jus jas6jus mos6jus §itos

sav6jos ViQc3jos jos6jos mos6jos §itas

savflais viQ6jais jGs6jais mGs6jais §it5m

140

savejo
sav6jie
sav6jds
sav6jai
sav6jdm
sav6jas

§itdds

6it5da

Nt5das

gitddu

NtM5

§itddas

§itc5dai

§itddi

§itddiem

Nt5dus

git5dos

§itdddm

git5d5s

ikviens

ikviena

ikvienam

ikvienu

ikviend

ikvienas

ikvienai

ikvieni

ikvieniem

ikvienus

ikvienos

ikvien5m

ikviends

viQejo
vip6jie
ViQ6j5s
viQi§jai
ViQ6j5m
viQ6jas

ikkatrs

ikkatra

ikkatram

ikkatru

ikkatrd

ikkatras

ikkatrai

ikkatri

ikkatriem

ikkatrus

ikkatros

ikkatrdm

ikkatrds

nekas
nekd
nekam
neko
nek5ds
nek5da
nek5dam
nek5du
nekdd5
nek5das
nek5dai

jusepe
jOs6jie
jos6jas
jOs6jai
jos6jdm
jOs6jas

jebk5ds

jebkdda

jebkcMam

jebk5du

jebk5dd

jebk5das

jebk5dai

jebk5di

jebkadiem

jebkddus

jebkados

jebkddam

jebkddas

nek5di

nekddiem

nek5dus

nek5dos

nekdddm

nek5d&s

neviens

neviena

nevienam
nevienu
nevien5
nevienas
nevienai

mosc-jo
mQs6jie
mos6jas
mOs6jai
m0s6jam
mOs6jas

jebkas

jebk5

jebkam

jebko

jebkur§

jebkura

jebkuram

jebkuru

jebkurd

jebkuras

jebkurai

jebkuri

jebkuriem

jebkurus

jebkuros

jebkur5m

jebkur5s

nevieni
nevieniem
nevienus
nevienos
nevien5m
nevien5s
pats
pa§a
pa§am
pa§u
pa§5
pati
pa§as

ikkur§

ikkura

ikkuram

ikkuru

ikkur5

ikkuras

ikkurai

ikkuri

ikkuriem

ikkurus

ikkuros

ikkuram

ikkur5s

pasai

pa§i

pa6iem

pa§us

pa§os

pa§am

pa6ds

141

Modal verbs

bFit tikt tapt klOt klO6u

biju tiku tapi kluvu klOsi

biji tiki tap5t kluvi klOs

bija tika topat kluva klOsim

bijdm tikdm tap6u kluv5m klOsiet

bij5t tikdt tapsi kluvdt

esmu tieku taps klOstu

esi tiec tapsim klOsti

esam tiek tapsiet klOst

esat tiekam klOstam

bFj§u tiekat klOstat

bOsi tik§u
bFis tiks
bFisim tiksim
bOsiet tiksiet

Verbs

var6t var6ju var6j5m var6gu var6sim
var varfli var6jc; it varC-si var6siet
varat varfla var6s

Interjections

klau re ak skat parau
lük pag paiük paskat tpü
üja raug nudien paklau vau

urrä paraug ekur Qau redz

urä ai kug rau

142

Adverbs

k5p6c §e p5rdk aplam iepretim

kdd6l tdd6j5di agrdk piem6ram prom
k5lab visddi vair5k apm6ram patlaban
t5lab visvis5di visvairdk nepagalam diezgan

k5labad cit5di maz5k pavisam varbOt
tdiabad parasti dr-iz5k nepavisam 6eitan

kamd6l dikti visbie25k paretam secen
tamd6l loti cik §imbrii2am §obaltdien

bezgala velti necik joproj5m k5dudien

nenieka p6k§Qi §itik aumal5m citudien

sam6rd respektivi atkal 16n5m da2dien

v6rd lidzi tOdal pamazdm mO2dien

visup6c preti pakal gau2dm arvien
tagad lab5k iepakal aizgFitn6m aizvien
kad p6c5k nopakal pdrp5r6m varen
jebkad cit5d5k visnotal caurcaur6m sen

nekad savdddk atpakal pamazit6m pasen
6ad turpm5k palaikam pretim nesen
b5ztin sensenis nelabpr5t da2k5rt k5dreiz

drusciQ vairs manuprdt nost vairakreiz
tolip papildus mOsupr5t parlieku cikreiz

mazlietiQ pcdrmijus fi6uprdt §eit tikreiz

neparko blakus tavuprat tolit v6lreiz

vienkop ieblakus ciet pirmit n5kamreiz
kurp lidztekus mazliet maýenit viQreiz
6urp aplinkus vieviet atstatu §oreiz

turp izklaidus vienuviet maz toreiz

visp5r vienlaidus da2viet pamaz pa6reiz

viscau r nevilus beidzot nemaz n.; iko§reiz
jebkur abpus visbeidzot vismaz citreiz

nekur vienpus vairakkdrt daudzmaz citureiz

visur katrpus pirmk5rt bezmaz daudzreiz
6ur otrpus vienk5rt vienlidz uzreiz
tur virspus galvenok5rt puslidz da2reiz

citu r papriek§ apk5rt daudz d riz
vietumis iepriek§ visapkc;: irt nedaudz gand6z

143

retumis kidt citk5rt reiz alla2
reizumis labprat daudzk5rt ikreiz

144

APPENDIX 2.1

Main stemming program STEMMER. C

stemmer. c

" Program to demonstrate and test the Porter stemming function. This
" program takes a single filename on the command line and lists stemmed
" terms on stdout.

#include <stdio. h>
#include <ctype. h>

#include "stem. h"

Private Defines and Data Structures

#define EOS 1\01

Private Function Definitions

#ifdef
-STDC-

static char * GetNextTerm(FILE *stream, int size, char *term

#else

static char * GetNextTermo;

#endif

GetNextTerm(stream, size, term

Returns: char * -- buffer with the next input term, NULL at EOF

Purpose: Grab the next token from an input stream

Plan: Part 1: Return NULL immediately if there is no input
Part 2: Initialize the local variables
Part 3: Main Loop: Put the next word into the term buffer
Part 4: Return the output buffer

Notes: None.

static char *
GetNextTerm(stream, size, term

FILE *stream; /* in: source of input characters
int size; /* in: bytes in the output buffer */
char *term; P in/out: where the next term in placed

145

I
char *ptr; /* for scanning through the term buffer
int ch; /* current character during input scan */

/* Part 1: Return NULL immediately if there is no input
if (EOF == (ch = getc(stream))) return(NULL);

/* Part 2: Initialize the local variables
*ten-n = EOS;
ptr = term;

/* Part 3: Main Loop: Put the next word into the term buffer
do
f

/* scan past any leading non-alphabetic characters
while ((EOF != ch) && ! isalpha(ch)) ch = getc(stream);

/* copy input to output while reading alphabetic characters
while ((EOF ch) && isalpha(ch)

t
if (ptr (term+size-1)) ptr = term;
*Ptr++ ch;
ch = getc(stream);
I

/* temiinate the output buffer
*Ptr = EOS;
I

while ((EOF != ch) && ! *term

/* Part 4: Return the output buffer
return(tenn);

I /* GetNextTerm */

/* ** ** * **** * ******************* ************ *********** *** ********* ***

main(argc, argv)

Returns: int -- 0 on success, I on failure

Purpose: Program main function

Plan: Part 1: Open the input file
Part 2: Process each word in the file
Part 3: Close the input file and return

Notes: None

int
main(argc, argv

int argc; /* in: how many arguments
char *argv[]; /* in: text of the arguments
I
char term[64]; /* for the next term from the input line

146

FILE *stream; /* where to read characters from

/* Part 1: Open the input file */
if (! (stream = fopen(argv[l], "r"))) exit(l);

/* Part 2: Process each word in the file
while(GetNextTerm(stream, 64, term))

if (Stem(term)) (void)printf(" %s\n", term);

/* Part 3: Close the input file and return
(void)fclose(stream
return(0);

I /* main

147

APPENDIX 2.2

Initial stemming program STEM-C

stem. c

Purpose: Implementation of the Porter stemnýing algorithm documented
11 in: Porter, M. F., An Algorithm For Suffix Stripping, "

Program 14 (3), July 1980, pp. 130-137.

Provenance: Written by B. Frakes and C. Cox, 1986.
Changed by C. Fox, 1990.
- made measure function a DFA
- restructured structs
- renamed functions and variables
- restricted function and variable scopes
Changed by C. Fox, July, 1991.

added ANSI C declarations
branch tested to 90% coverage

Notes: This code will make little sense without the the Porter
article. The stemming function converts its input to
lower case.

* *1

Standard Include Files

#include <stdio. h>
#include <string. h>
#include <ctype. h>

Private Defines and Data Structures

#define FALSE
#define TRUE
#define EOS

#define IsVowel(c)

typedef struct
int id;
char *old

- end;
char *new-end;
int old_offset;
int new-offset;
int rrun-root-size;
int (*condition)();
I Rulel-ist;

0
1

('a'==(c) I 1'e'==(c) I IT==(c) I l'o'==(c) I l'u'==(c))

/* returned if rule fired
/* suffix replaced */
/* suffix replacement
/* from end of word to start of suffix
/* from beginning to end of new suffix
/* min root word size for replacement
/* the replacement test function */

static char LAMBDA[1] P the constant empty string */
static char *end; P pointer to the end of the word

148

Private Function Declarations

#ifdef
-STDC

static int WordSize(char *word);
static int ContainsVowel(char *word);
static int EndsWithCVC(char *word);
static int AddAnE(char *word);
static int RemoveAnE(char *word);
static int ReplaceEnd(char *word, RuleList rule

#else

static int WordSize(/* word
static int ContainsVowel(/* word
static int EndsWithCVC(/* word
static int AddAnE(/* word */);
static int RemoveAnE(/* word
static int ReplaceEnd(/* word, rule

#endif

Initialized Private Data Structures

static RuIeList step I a-rules [I

101, "sses", 'Issil, 3, 1, -1, NULL,
102, "ies", flilt, 2, 0, -1, NULL,
103, "ss", lissti, 1, 1, - 1, NULL,
104, "s", LAMBDA, 0, -I, -l, NULL,
000,

1;
NULL, NULL, 0, 0, 0, NULL,

static RuIeList steplb-rules[I

105, "eed", fleell, 2, 1, 0, NULL,
106, "ed", LAMBDA, 1, -1, -1, ContainsVowel,
107, "ing", LAMBDA, 2, -1, -1, ContainsVowel,
000,

1;
NULL, NULL, 0, 0, 0, NULL,

static RuIeList steplbl_rules[] =

108, " at ate ", I, 2, -1, NULL,
109, "bl", "ble", I, 2, -1, NULL,
110, "iz", "izet', I, 2, -1, NULL,
111, "bb", "b", I, 0, -I, NULL,
112, "dd", "d", 1, 0, -1, NULL,
113, "ff", "fil, 1, 0, -1, NULL,
114, "gg", 11 9", 1, 0, -1, NULL,
115, "Mm", I'M", 1, 0, -1, NULL,
116, " nn ", "n", 1, 0, -1, NULL,
117, "pp"' P", 1, 0, -1, NULL,
118, "rr", 'Y', 1, 0, -1, NULL,
119, "tt", it 11, 1, 0, -1, NULL,

149

120, "ww", "WII, 1, 0, -1, NULL,
121, "xx", 1, 0, -1, NULL,
122, LAMBDA, -1, 0, -1, AddAnE,
000,
1;

NULL, NULL, 0, 0, 0, NULL,

static RuIeList steplc-rules[]
f

123, lty 11, "ill, 0, 0, -1, ContainsVowel,
000,

1;
NULL, NULL, 0, 0, 0, NULL,

static RuIeList step2_rules[I =

203, "ational", 11 ate", 6, 2, 0, NULL,
204, "tional", "tion", 5, 3, 0, NULL,
205, "enci", "ence", 3, 3, 0, NULL,
206, "anci", 'lance", 3, 3, 0, NULL,
207, "izer", "ize", 3, 2, 0, NULL,
208, "abli", "able", 3, 3, 0, NULL,
209, "alli", 11 11 al , 3, 1, 0, NULL,
210, "entli", 'lent", 4, 2, 0, NULL,
211, "eli", IIII e, 2, 0, 0, NULL,
213, "Ousli", 'IOUs", 4, 2, 0, NULL,
214, "ization", ltize", 6, 2, 0, NULL,
215, "ation", "ate", 4, 2, 0, NULL,
216, "ator", 'fate", 3, 2, 0, NULL,
217, "alism", "al", 4, 1, 0, NULL,
218, "iveness", 'live", 6, 2, 0, NULL,
219, "fulnes", Iffulff, 5, 29 0, NULL,
220, "ousness", 'IOUs", 6, 2, 0, NULL,
221, "aliti", 11 al it ,

4, 1, 0, NULL,
222, "iviti", 'live", 4, 2, 0, NULL,
223, "biliti", III 'ble ,

5, 2, 0, NULL,
000,

1;
NULL, NULL, 0, 0, 0, NULL,

static RuIeList step3-rules[]

301, "icate", ,, 11 ic
, 4, 1, 0, NULL,

302, "ative", LAMBDA, 4, -1, 0, NULL,
303, "alize", "al", 4, 1, 0, NULL,
304, "iciti", ilic", 4, 1, 0, NULL,
305, "ical", "ic", 3, 1, 0, NULL,
308, "ful", LAMBDA, 2, -1, 0, NULL,
309, "ness", LAMBDA, 3, -1, 0, NULL,
000,

1;
NULL, NULL, 0, 0, 0, NULL,

static RuIeList step4-rules[]
t
401, "al", LAMBDA, 1, -1, 1, NULL,
402, "ance", LAMBDA, 3, -l, 1, NULL,
403, "ence", LAMBDA, 3, -1, 1, NULL,
405, "er", LAMBDA, 1, -1, 1, NULL,
406, "ic", LAMBDA, 1, -1, 1, NULL,
407, "able", LAMBDA, 3, -l, 1, NULL,
408, "ible", LAMBDA, 3, -l, 1, NULL,

150

409, "ant", LAMBDA, 2, -1, 1, NULL,
410, "ement", LAMBDA, 4, -1, 1, NULL,
411, "ment", LAMBDA, 3, -1, 1, NULL,
412, "ent", LAMBDA, 2, -l, 1, NULL,
423, "sion", s 3, 0, 1, NULL,
424, "tion", 11C, 3, 0, 1, NULL,
415, "Ou", LAMBDA, 1, -1, 1, NULL,
416, "ism", LAMBDA, 2, -1, 1, NULL,
417, "ate", LAMBDA, 2, -1, 1, NULL,
418, "iti", LAMBDA, 2, -l, 1, NULL,
419, "Ous", LAMBDA, 2, -t, 1, NULL,
420, "ive", LAMBDA, 2, -1, 1, NULL,
421, "ize", LAMBDA, 2, -1, 1, NULL,
000,

1;
NULL, NULL, 0, 0, 0, NULL,

static RuIeList step5a-rules[]

501, LAMBDA, 0, -1, 1, NULL,
502, LAMBDA, 0' -I' -I' RemoveAnE,
000,

1;
NULL, NULL, 0, 0, 0, NULL,

static RuIeList step5b-
f

rules[]

503, "ll", "1", 1, 0, 1, NULL,
000,

1;
NULL, NULL, 0, 0, 0, NULL,

Private Function Declarations

/**

WordSize(word)

Returns: int -- a weird count of word size in adjusted syllables

Purpose: Count syllables in a special way: count the number
vowel-consonant pairs in a word, disregarding initial
consonants and final vowels. The letter "y" counts as a
consonant at the beginning of a word and when it has a vowel
in front of it; otherwise (when it follows a consonant) it
is treated as a vowel. For example, the WordSize of "cat"
is 1, of "any" is 1, of "amount" is 2, of "anything" is 3.

Plan: Run a DFA to compute the word size

Notes: The easiest and fastest way to compute this funny measure is
with a finite state machine. The initial state 0 checks
the first letter. If it is a vowel, then the machine changes
to state 1, which is the "last letter was a vowel" state.
If the first letter is a consonant or y, then it changes
to state 2, the "last letter was a consonant state". In
state 1, ay is treated as a consonant (since it follows
a vowel), but in state 2, y is treated as a vowel (since
it follows a consonant. The result counter is incremented
on the transition from state I to state 2, since this

151

transition only occurs after a vowel-consonant pair, which
is what we are counting.

* *1

static int
WordSize(word

char *word; /* in: word having its WordSize taken
I
register int result; /* WordSize of the word
register int state; P current state in machine

result = 0;
state = 0;

/* Run a DFA to compute the word size
while (EOS *word)

I
switch (state

t
case 0: state = (IsVowel(* word)) ?12;

break;
case 1: state = (IsVowel(*word)) ?12;

if (2 == state) result++;
break;

case 2: state = (IsVowel(*word) 11 ('y'== *word)) ?12;
break;

word++;
I

retum(result);

I /* WordSize */
/**

ContainsVowel(word)

Returns: int -- TRUE (1) if the word parameter contains a vowel,
FALSE (0) otherwise.

Purpose: Some of the rewrite rules apply only to a root containing
a vowel, where a vowel is one of "aeiou" or y with a
consonant in front of it.

Plan: Obviously, under the definition of a vowel, a word contains
a vowel iff either its first letter is one of "aeiou", or
any of its other letters are "aeiouy". The plan is to
test this condition.

Notes: None

static int
ContainsVowel(word

char *word; /* in: buffer with word checked
I

152

if (EOS == *word)
retum(FALSE);

else
return(IsVowel(*word) 11 (NULL != strpbrk(word+l, "aelouy"))

I /* ContainsVowel */

EndsWithCVC(word)

Returns: int -- TRUE (1) if the current word ends with a
consonant-vowel-consonant combination, and the second
consonant is not w, x, or y, FALSE (0) otherwise.

Purpose: Some of the rewrite rules apply only to a root with
this characteristic.

Plan: Look at the last three characters.

Notes: None

static int
EndsWithCVC(word)

char *word; /* in: buffer with the word checked
I
int length; /* for finding the last three characters

if ((length = strlen(word)) <2
return(FALSE

else
t
end = word + length - 1;
return((NULL strchr(" aeiouwxy ", *end--)) /* consonant

&& (NULL strchr("aeiouy", *end--)) /* vowel */
&& (NULL strchr("aeiou", *end /* consonant

I

I /* EndsWithCVC */

I**

AddAnE(word)

Returns: int -- TRUE (1) if the current word meets special conditions
for adding an e.

Purpose: Rule 122 applies only to a root with this characteristic.

Plan: Check for size of I and a con sonant-vowel-consonant ending.

Notes: None

static int

153

AddAnE(word)
char *word;
t

return((I == WordSize(word)) && EndsWithCVC(word)

/* AddAnE

RemoveAnE(word)

Returns: int -- TRUE (1) if the current word meets special conditions
for removing an e.

Purpose: Rule 502 applies only to a root with this characteristic.

Plan: Check for size of I and no consonant-vowel-consonant ending.

Notes: None

static int
RemoveAnE(word)

char *word;
t

return((I == WordSize(word)) && ! EndsWithCVC(word)

/* Remove AnE

ReplaceEnd(word, rule

Returns: int -- the id for the rule fired, 0 is none is fired

Purpose: Apply a set of rules to replace the suffix of a word

Plan: Loop through the rule set until a match meeting all conditions
is found. If a rule fires, return its id, otherwise return 0.
Connditions on the length of the root are checked as part of this
function's processing because this check is so often made.

Notes: This is the main routine driving the sternmer. It goes through
a set of suffix replacement rules looking for a match on the
current suffix. When it finds one, if the root of the word
is long enough, and it meets whatever other conditions are
required, then the suffix is replaced, and the function returns.

static int
ReplaceEnd(word, rule

char *word; P in/out: buffer with the stemmed word
RuIeList *rule; /* in: data structure with replacement rules
I
register char *ending; /* set to start of possible stemmed suffix
char tmp_ch; /* save replaced character when testing */

154

while (0 rule->id
I
ending end - rule->old-offset;
if (word <= ending)

if 0 == strcmp(ending, rule->old-end)

tmp_ch *ending;
*ending EOS;
if (rule->min-root-size < WordSize(word)

if ! rule->condition 11 (*rule->condition) (word)

(void)strcat(word, rule->new__ýend
end = ending + rule->new-offset;
break;
I

*ending tmp__, ch;
I

rule++;
I

return(r-ule->id

I /* ReplaceEnd */

Public Function Declarations

Stem(word)

Returns: int -- FALSE (0) if the word contains non-alphabetic characters
and hence is not stemmed, TRUE (1) otherwise

Purpose: Stem a word

Plan: Part 1: Check to ensure the word is all alphabetic
Part 2: Run through the Porter algorithm
Part 3: Return an indication of successful stemming

Notes: This function implements the Porter stemming algorithm, with
a few additions here and there. See:

Porter, M. F., "An Algorithm For Suffix Stripping, "
Program 14 (3), July 1980, pp. 130-137.

Porter's algorithm is an ad hoc set of rewrite rules with
various conditions on rule firing. The ten-ninology of
,, step 1 a" and so on, is taken directly from Porter's
article, which unfortunately gives almost no justification
for the various steps. Thus this function more or less
faithfully refects the opaque presentation in the article.
Changes from the article amount to a few additions to the
rewrite rules; these are marked in the Rulel-ist data
structures with comments.

int
Stem(word

char *word; /* in/out: the word stemmed

155

I
int rule; /* which rule is fired in replacing an end

/* Part 1: Check to ensure the word is all alphabetic
for end = word; *end != EOS; end++)

if ! isalpha(*end)) return(FALSE
else *end = tolower(*end

end--;

/* Part 2: Run through the Porter algorithm
(void)ReplaceEnd(word, stepla-rules
rule = ReplaceEnd(word, step lb_rules
if ((106 == rule) 11 (107 == rule))

(void)ReplaceEnd(word, steplbl-rules
(void)ReplaceEnd(word, steplc-rules

(void)ReplaceEnd(word, step2_rules

(void)ReplaceEnd(word, step3-rules

(void)ReplaceEnd(word, step4-rules

(void)ReplaceEnd(word, step5a-rules
(void)ReplaceEnd(word, step5b-rules);

/* Part 3: Return an indication of successful stenuning
return(TRUE

I /* Stem */

156

APPENDIX 2.3
Latvian stemming algorithm

stem. c

Purpose: Implementation of the Porter stemming algorithm documented
in: Porter, M. F., "An Algorithm For Suffix Stripping, "
Program 14 (3), July 1980, pp. 130-137.

Provenance: Written by B. Frakes and C. Cox, 1986.
Changed by C. Fox, 1990.

- made measure function a DFA
- restructured structs
- renamed functions and variables
- restricted function and variable scopes

Changed by C. Fox, July, 199 1.
- added ANSI C declarations
- branch tested to 90% coverage

Changed by K. Kreslins, 1995/1996.
- restructured structurs; according to the Latvian language
- added Latvian stoplist
- changed rules
- modified suffix lengths

Notes: This code will make little sense without the Porter
article. The stemming function converts its input to
lower case.

Standard Include Files

#include <c: \bc4\include\stdio. h>
#include <c: \bc4\include\string. h>
#include <c: \bc4\include\ctype. h>

Private Defines and Data Structures

#define FALSE 0
#define TRUE I
#define EOS 1\01

#define IsVowel(c)
(V==(c) I IW== (c) I IV==(c) I IW==(c) I I' i, == (C) I N, ==(C) I 1,0, == (C) IV U'==(C) IIG, ==(C))

typedef struct I
int id;
char *old_end;
char *new-end;
int old_offset;
int new-offset;
int nun-root_size;
int (*condition)();
I RuIeList;

/* returned if rule fired
/* suffix replaced */
/* suffix replacement
/* from end of word to start of suffix
/* from beginning to end of new suffix
/* min root word size for replacement
/* the replacement test function */

static char LAMBDA[I] = ;P the constant empty string */
static char *end; P pointer to the end of the word */

157

Private Function Declarations

#ifdef STDC

static int WordSize(char *word);
static int ContainsVowel(char *word);
static int EndsWithCVC(char *word);
static int AddAnE(char *word);
static int RemoveAnE(char *word);
static int ReplaceEnd(char *word, RuIeList rule

#else

static int WordSize(/* word */);
static int ContainsVowel(/* word
static int EndsWithCVC(/* word
static int AddAnE(/* word */);
static int RemoveAnE(/* word
static int ReplaceEnd(/* word, rule
static int CompStopW(/* word, rule
static int ReplaceW(/* word, rule */

#endif

int islatv(int ch);
int SmallLatv(int ch);
static int IsLatVowel(/* word

Initialized Private Data Structures

static RuleList stepOa-rules[]

001, "aiz", LAMBDA, 2, -l, -l, NULL,
002, "ap", LAMBDA, 1, -1, -1, NULL,
003, "ar", LAMBDA, 1, -1, -1, NULL,
004, "apak§% LAMBDA, 4, -l, -l, NULL,
005, "5rpus", LAMBDA, 4, -l, -l, NULL,
006, "aug§pus", LAMBDA, 6, -l, -l, NULL,
007, "bez", LAMBDA, 2, -l, -l, NULL,
010, "caur", LAMBDA, 3, -l, -l, NULL,
011, "d6l", LAMBDA, 2, -l, -l, NULL,
012, "gaý% LAMBDA, 2, -l, -l, NULL,
013, lek§% LAMBDA, 3, -l, -l, NULL,
014, "if" LAMBDA, 1, -1, -1, NULL,
015, "kopg% LAMBDA, 3, -l, -l, NULL,
016, "labad", LAMBDA, 4, -l, -l, NULL,
017, "lejpus", LAMBDA, 5, -l, -l, NULL,
020, lidz", LAMBDA, 3, -l, -l, NULL,
021, "no", LAMBDA, 1, -1, -1, NULL,
022, "otrpus", LAMBDA, 5, -l, -l, NULL,
023, "pa", LAMBDA, 1, -1, -1, NULL,
024, "par", LAMBDA, 2, -l, -l, NULL,
025, "pdr% LAMBDA, 2, -l, -l, NULL,
026, "p6c", LAMBDA, 2, -l, -l, NULL,
027, "pie", LAMBDA, 2, -l, -l, NULL,
030, "pirms", LAMBDA, 4, -l, -l, NULL,

158

031, "pret", LAMBDA, 3, -l, -l, NULL,
032, "priek§% LAMBDA, 5, -l, -l, NULL,
033, "starp", LAMBDA, 4, -l, -l, NULL,
034, "§aipus", LAMBDA, 5, -l, -l, NULL,
035, "uz", LAMBDA, 1, -1, -1, NULL,
036, "ViQpus", LAMBDA, 5, -l, -l, NULL,
037, "virs", LAMBDA, 3, -l, -l, NULL,
040, "virspus", LAMBDA, 6, -l, -l, NULL,
041, "zem", LAMBDA, 2, -l, -l, NULL,
042, "un", LAMBDA, 1, -1, -1, NULL,
043, "bet", LAMBDA, 2, -l, -l, NULL,
044, "jo", LAMBDA, 1, -1, -1, NULL,
045, "ja", LAMBDA, 1, -1, -1, NULL,
046, "ka", LAMBDA, 1, -1, -1, NULL,
047, "lai", LAMBDA, 2, -l, -l, NULL,
050, "tom6r", LAMBDA, 4, -l, -l, NULL,
051, likko", LAMBDA, 4, -l, -l, NULL,
052, "turpreti", LAMBDA, 7, -l, -l, NULL,
053, "aff', LAMBDA, 2, -l, -l, NULL,
054, "kaut", LAMBDA, 3, -l, -l, NULL,
055, "gan", LAMBDA, 2, -l, -l, NULL,
056, Idd6l", LAMBDA, 4, -l, -l, NULL,
057, "ta", LAMBDA, 1, -1, -1, NULL,
060, "ne", LAMBDA, 1, -1, -1, NULL,
061, likvien", LAMBDA, 6, -l, -l, NULL,
062, "vien", LAMBDA, 3, -l, -l, NULL,
063, "k5", LAMBDA, 1, -1, -1, NULL,
064, "ir", LAMBDA, 1, -1, -1, NULL,
065, "te", LAMBDA, 1, -1, -1, NULL,
066, "vai", LAMBDA, 2, -l, -l, NULL,
067, "kam6r", LAMBDA, 4, -l, -l, NULL,
070, "apak§pus", LAMBDA, 7, -l, -l, NULL,
071, "ar", LAMBDA, 1, -1, -1, NULL,
072, "diezin", LAMBDA, 5, -l, -l, NULL,
073, "ik", LAMBDA, 1, -1, -1, NULL,
074, "it", LAMBDA, 1, -1, -1, NULL,
075, "ta6u", LAMBDA, 3, -l, -l, NULL,
076, "nu", LAMBDA, 1, -1, -1, NULL,
077, "pat", LAMBDA, 2, -l, -l, NULL,
000, NULL, NULL, 0,0,0, NULL,

static RuIeList step0b-rules[]
I

001, liklab", LAMBDA, 5, -l, -l, NULL,
002, "iek§pus", LAMBDA, 6, -l, -l, NULL,
003, "nedz", LAMBDA, 3, -l, -l, NULL,
004, "tik", LAMBDA, 2, -l, -l, NULL,
005, "nevis", LAMBDA, 4, -l, -l, NULL,
006, "turpretim", LAMBDA, 8, -l, -l, NULL,
007, "jeb", LAMBDA, 2, -l, -l, NULL,
010, "iekam", LAMBDA, 4, -l, -l, NULL,
011, "iek5m", LAMBDA, 4, -l, -l, NULL,
012, "iekc5ms", LAMBDA, 5, -l, -l, NULL,
013, "kolidz", LAMBDA, 5, -l, -l, NULL,
014, "lidzko", LAMBDA, 5, -l, -l, NULL,
015, "tiklidz", LAMBDA, 6, -l, -l, NULL,
016, "jeb§u", LAMBDA, 4, -l, -l, NULL,

159

017, "talab", LAMBDA, 4, -l, -l, NULL,
020, lap6c", LAMBDA, 4, -l, -l, NULL,
021, "nekd", LAMBDA, 3, -l, -l, NULL,
022, "itin", LAMBDA, 3, -l, -l, NULL,
023, "jc5", LAMBDA, 1, -1, -1, NULL,
024, "jau", LAMBDA, 2, -l, -l, NULL,
025, "jel", LAMBDA, 2, -l, -l, NULL,
026, "n&', LAMBDA, 1, -1, -1, NULL,
027, "nezin", LAMBDA, 4, -l, -l, NULL,
030, "tad", LAMBDA, 2, -l, -l, NULL,
031, likai", LAMBDA, 4, -l, -l, NULL,
032, "Vis", LAMBDA, 2, -l, -l, NULL,
033, "dro§i", LAMBDA, 4, -l, -l, NULL,
034, "diern261", LAMBDA, 5, -l, -l, NULL,
035, "tak", LAMBDA, 2, -l, -l, NULL,
036, "nebOt", LAMBDA, 4, -l, -l, NULL,
037, "varbOt", LAMBDA, 5, -l, -l, NULL,
040, "klau", LAMBDA, 3, -l, -l, NULL,
041, l0k% LAMBDA, 2, -l, -l, NULL,
042, "iekams", LAMBDA, 5, -l, -l, NULL,
043, "vien", LAMBDA, 3, -l, -l, NULL,
044, "es", LAMBDA, 1, -1, -1, NULL,
045, "manis", LAMBDA, 4, -l, -l, NULL,
046, "man", LAMBDA, 2, -l, -l, NULL,
047, "mani", LAMBDA, 3, -l, -l, NULL,
050, "mani", LAMBDA, 3, -l, -l, NULL,
051, "m6s", LAMBDA, 2, -l, -l, NULL,
052, "mosu", LAMBDA, 3, -l, -l, NULL,
053, "mums", LAMBDA, 3, -l, -l, NULL,
054, "mos", LAMBDA, 2, -l, -l, NULL,
055, "mosos", LAMBDA, 4, -l, -l, NULL,
056, "tu", LAMBDA, 1, -1, -1, NULL,
057, levis", LAMBDA, 4, -l, -l, NULL,
060, "tev", LAMBDA, 2, -l, -l, NULL,
061, "tevi", LAMBDA, 3, -l, -l, NULL,
062, "tevi", LAMBDA, 3, -l, -l, NULL,
063, "jus", LAMBDA, 2, -l, -l, NULL,
064, "josu", LAMBDA, 3, -l, -l, NULL,
065, "jums", LAMBDA, 3, -l, -l, NULL,
066, "josos", LAMBDA, 4, -l, -l, NULL,
067, "ViQ§", LAMBDA, 3, -l, -l, NULL,
070, "vir? a", LAMBDA, 3, -l, -l, NULL,
071, "viQam", LAMBDA, 4, -l, -l, NULL,
072, "ViQu", LAMBDA, 3, -l, -l, NULL,
073, "Vipa", LAMBDA, 3, -l, -l, NULL,
074, "Vipi", LAMBDA, 3, -l, -l, NULL,
075, "vigiern", LAMBDA, 5, -l, -l, NULL,
076, "ViQus", LAMBDA, 4, -l, -l, NULL,
077, "ViQos", LAMBDA, 4, -l, -l, NULL,
000, NULL, NULL, 0,0,0, NULL,

static RuIeList stepOc-rules[I =

001, "viQas", LAMBDA, 4, -l, -l, NULL,
002, "viQai", LAMBDA, 4, -l, -l, NULL,
003, 'IviQdm", LAMBDA, 4, -l, -l, NULL,
004, 'ViQ5s", LAMBDA, 4, -l, -l, NULL,

160

005, "kur§% LAMBDA, 3, -l, -l, NULL,
006, "kura", LAMBDA, 3, -l, -l, NULL,
007, "kuram", LAMBDA, 4, -l, -l, NULL,
010, "kuru", LAMBDA, 3, -l, -l, NULL,
011, "kurN% LAMBDA, 3, -l, -l, NULL,
012, "kuri", LAMBDA, 3, -l, -l, NULL,
013, "kuriem", LAMBDA, 5, -l, -l, NULL,
014, "kurus", LAMBDA, 4, -l, -l, NULL,
015, "kuros", LAMBDA, 4, -l, -l, NULL,
016, "kuras", LAMBDA, 4, -l, -l, NULL,
017, "kurai", LAMBDA, 4, -l, -l, NULL,
020, "kurdm", LAMBDA, 4, -l, -l, NULL,
021, "kur5s", LAMBDA, 4, -l, -l, NULL,
022, "Viss", LAMBDA, 3, -l, -l, NULL,
023, "visa", LAMBDA, 3, -l, -l, NULL,
024, "visam", LAMBDA, 4, -l, -l, NULL,
025, "visu", LAMBDA, 3, -l, -l, NULL,
026, "visa", LAMBDA, 3, -l, -l, NULL,
027, "Visi", LAMBDA, 3, -l, -l, NULL,
030, "visiem", LAMBDA, 5, -l, -l, NULL,
031, "visus", LAMBDA, 4, -l, -l, NULL,
032, "visos", LAMBDA, 4, -l, -l, NULL,
033, "visas", LAMBDA, 4, -l, -l, NULL,
034, "visai", LAMBDA, 4, -l, -l, NULL,
035, "Visam", LAMBDA, 4, -l, -l, NULL,
036, "visas", LAMBDA, 4, -l, -l, NULL,
037, "sevis", LAMBDA, 4, -l, -l, NULL,
040, "sev", LAMBDA, 2, -l, -l, NULL,
041, "sevi", LAMBDA, 3, -l, -l, NULL,
042, "sevi", LAMBDA, 3, -l, -l, NULL,
043, "kas", LAMBDA, 2, -l, -l, NULL,
044, "ka", LAMBDA, 1, -1, -1, NULL,
045, "kam", LAMBDA, 2, -l, -l, NULL,
046, "ko", LAMBDA, 1, -1, -1, NULL,
047, "kur", LAMBDA, 2, -l, -l, NULL,
050, las", LAMBDA, 2, -l, -l, NULL,
051, la", LAMBDA, 1, -1, -1, NULL,
052, "tam", LAMBDA, 2, -l, -l, NULL,
053, "to", LAMBDA, 1, -1, -1, NULL,
054, lajd", LAMBDA, 3, -l, -l, NULL,
055, "tai", LAMBDA, 2, -l, -l, NULL,
056, lani", LAMBDA, 3, -l, -l, NULL,
057, "tas", LAMBDA, 3, -l, -l, NULL,
060, "tie", LAMBDA, 2, -l, -l, NULL,
061, "tiem", LAMBDA, 3, -l, -l, NULL,
062, "tos", LAMBDA, 2, -l, -l, NULL,
063, "tais", LAMBDA, 3, -l, -l, NULL,
064, "tajos", LAMBDA, 4, -l, -l, NULL,
065, lanis", LAMBDA, 4, -l, -l, NULL,
066, "tam", LAMBDA, 2, -l, -l, NULL,
067, laj5s", LAMBDA, 4, -l, -l, NULL,
070, "§is", LAMBDA, 2, -l, -l, NULL,
071, '&% LAMBDA, 1, -1, -1, NULL,
072, "95", LAMBDA, 1, -1, -1, NULL,
073, "6im", LAMBDA, 2, -l, -l, NULL,
074, "k, " LAMBDA, 1, -1, -1, NULL,
075, "gai", LAMBDA, 2, -l, -l, NULL,
076, "§aj5", LAMBDA, 3, -l, -l, NULL,

161

077, "gini", LAMBDA, 3, -l, -l, NULL,
000, NULL, NULL, 0,0,0, NULL,

1;

static RuIeList stepOd-rules[] =

001
, '%Is", LAMBDA, 2, -l, -l, NULL,

002, '%as% LAMBDA, 2, -l, -l, NULL,
003, "§ie", LAMBDA, 2, -l, -l, NULL,
004, '%iern", LAMBDA, 3, -l, -l, NULL,
005, "gam", LAMBDA, 2, -l, -l, NULL,
006, "ks", LAMBDA, 2, -l, -l, NULL,
007, "§ais", LAMBDA, 3, -l, -l, NULL,
010, "§ajos", LAMBDA, 4, -l, -l, NULL,
011, "§aj5s", LAMBDA, 4, -l, -l, NULL,
012, "§inis", LAMBDA, 4, -l, -l, NULL,
013, "mans", LAMBDA, 3, -l, -l, NULL,
014, "mana", LAMBDA, 3, -l, -l, NULL,
015, "manam", LAMBDA, 4, -l, -l, NULL,
016, "manu", LAMBDA, 3, -l, -l, NULL,
017, "mani", LAMBDA, 3, -l, -l, NULL,
021, "maniern", LAMBDA, 5, -l, -l, NULL,
022, Wanus", LAMBDA, 4, -l, -l, NULL,
023, "manos", LAMBDA, 4, -l, -l, NULL,
024, "manas", LAMBDA, 4, -l, -l, NULL,
025, "manai", LAMBDA, 4, -l, -l, NULL,
026, Wan5m", LAMBDA, 4, -l, -l, NULL,
027, "mands", LAMBDA, 4, -l, -l, NULL,
030, "tavs", LAMBDA, 3, -l, -l, NULL,
031, "tava", LAMBDA, 3, -l, -l, NULL,
032, "tavam", LAMBDA, 4, -l, -l, NULL,
033, "tavu", LAMBDA, 3, -l, -l, NULL,
034, "tavd", LAMBDA, 3, -l, -l, NULL,
035, "tavi", LAMBDA, 3, -l, -l, NULL,
036, "taviern", LAMBDA, 5, -l, -l, NULL,
037, "tavus", LAMBDA, 4, -l, -l, NULL,
040, lavos", LAMBDA, 4, -l, -l, NULL,
041, "tavas", LAMBDA, 4, -l, -l, NULL,
042, lavai", LAMBDA, 4, -l, -l, NULL,
043, lav5m", LAMBDA, 4, -l, -l, NULL,
044, "tav5s", LAMBDA, 4, -l, -l, NULL,
045, "savs", LAMBDA, 3, -l, -l, NULL,
046, "sava", LAMBDA, 3, -l, -l, NULL,
047, "savarn", LAMBDA, 4, -l, -l, NULL,
050, "savu", LAMBDA, 3, -l, -l, NULL,
051, "savd", LAMBDA, 3, -l, -l, NULL,
052, "savi", LAMBDA, 3, -l, -l, NULL,
053, "saviern", LAMBDA, 5, -l, -l, NULL,
054, "savus", LAMBDA, 4, -l, -l, NULL,
055, "savos", LAMBDA, 4, -l, -l, NULL,
056, "savas", LAMBDA, 4, -l, -l, NULL,
057, "savai", LAMBDA, 4, -l, -l, NULL,
060, "sav5m", LAMBDA, 4, -l, -l, NULL,
061, "sav5s", LAMBDA, 4, -l, -l, NULL,
062, "Cits", LAMBDA, 3, -l, -l, NULL,
063, "cita", LAMBDA, 3, -l, -l, NULL,
064, "citam", LAMBDA, 4, -l, -l, NULL,
065, "Citu", LAMBDA, 3, -l, -l, NULL,

162

066, "Cita", LAMBDA, 3, -l, -l, NULL,
067, "Citi", LAMBDA, 3, -l, -l, NULL,
070, "citiem", LAMBDA, 5, -l, -l, NULL,
071, "Citus", LAMBDA, 4, -l, -l, NULL,
072, "Citos", LAMBDA, 4, -l, -l, NULL,
073, "citas", LAMBDA, 4, -l, -l, NULL,
074, "citai", LAMBDA, 4, -l, -l, NULL,
075, "Citc5m, " LAMBDA, 4, -l, -l, NULL,
076, "Citas", LAMBDA, 4, -l, -l, NULL,
077, "da2s", LAMBDA, 3, -l, -l, NULL,
000,

1;
NULL, NULL, 0,0,0, NULL,

static RuIeList stepOe-rules[] =

001, "da2a", LAMBDA, 3, -l, -l, NULL,
002, "da2am", LAMBDA, 4, -l, -l, NULL,
003, "dah", LAMBDA, 3, -l, -l, NULL,
004, "da25% LAMBDA, 3, -l, -l, NULL,
005, "da2i", LAMBDA, 3, -l, -l, NULL,
006, "da2iem", LAMBDA, 5, -l, -l, NULL,
007, "da2us", LAMBDA, 4, -l, -l, NULL,
010, "da2os", LAMBDA, 4, -l, -l, NULL,
011, "da2as", LAMBDA, 4, -l, -l, NULL,
012, "da2ai", LAMBDA, 4, -l, -l, NULL,
013, "da25m", LAMBDA, 4, -l, -l, NULL,
014, "daRis", LAMBDA, 4, -l, -l, NULL,
015, "k5ds", LAMBDA, 3, -l, -l, NULL,
016, "kdda", LAMBDA, 3, -l, -l, NULL,
017, "k5dam", LAMBDA, 4, -l, -l, NULL,
020, "k5du", LAMBDA, 3, -l, -l, NULL,
021, "k5d5% LAMBDA, 3, -l, -l, NULL,
022, "k5di", LAMBDA, 3, -l, -l, NULL,
023, "kddiem", LAMBDA, 5, -l, -l, NULL,
024, "kddus", LAMBDA, 4, -l, -l, NULL,
025, "kddos", LAMBDA, 4, -l, -l, NULL,
026, "kAdas", LAMBDA, 4, -l, -l, NULL,
027, "kddai", LAMBDA, 4, -l, -l, NULL,
030, "k5d5m", LAMBDA, 4, -l, -l, NULL,
031, "k&d5s", LAMBDA, 4, -l, -l, NULL,
032, "kur§", LAMBDA, 3, -l, -l, NULL,
033, "kura", LAMBDA, 3, -l, -l, NULL,
034, "kuram", LAMBDA, 4, -l, -l, NULL,
035, "kuru", LAMBDA, 3, -l, -l, NULL,
036, 'Rurd", LAMBDA, 3, -l, -l, NULL,
037, "kuri", LAMBDA, 3, -l, -l, NULL,
040, "kuriem", LAMBDA, 5, -l, -l, NULL,
041, "kurus", LAMBDA, 4, -l, -l, NULL,
042, "kuros", LAMBDA, 4, -l, -l, NULL,
043, "kuras", LAMBDA, 4, -l, -l, NULL,
044, "kurai", LAMBDA, 4, -l, -l, NULL,
045, "kurdm", LAMBDA, 4, -l, -l, NULL,
046, 'Rurds", LAMBDA, 4, -l, -l, NULL,
047, Idds", LAMBDA, 3, -l, -l, NULL,
050, "t5da", LAMBDA, 3, -l, -l, NULL,
051, "t5dam", LAMBDA, 4, -l, -l, NULL,
052, "t5du", LAMBDA, 3, -l, -l, NULL,
053, "t&dd", LAMBDA, 3, -l, -l, NULL,

163

054, Iddi", LAMBDA, 3, -l, -l, NULL,
055, "t5diem", LAMBDA, 5, -l, -l, NULL,
056, "tadus", LAMBDA, 4, -l, -l, NULL,
057, "t5dos", LAMBDA, 4, -l, -l, NULL,
060, "tadas", LAMBDA, 4, -l, -l, NULL,
061, "t5dai", LAMBDA, 4, -l, -l, NULL,
062, "t5d5m", LAMBDA, 4, -l, -l, NULL,
063, "t5d5s", LAMBDA, 4, -l, -l, NULL,
064, "§dds", LAMBDA, 3, -l, -l, NULL,
065, '%5da", LAMBDA, 3, -l, -l, NULL,
066, '%adam", LAMBDA, 4, -l, -l, NULL,
067, "§ddu", LAMBDA, 3, -l, -l, NULL,
070, "§adW, LAMBDA, 3, -l, -l, NULL,
071, "§ddi", LAMBDA, 3, -l, -l, NULL,
072, "§ddiem", LAMBDA, 5, -l, -l, NULL,
073, '%5dus", LAMBDA, 4, -l, -l, NULL,
074, '%ddos", LAMBDA, 4, -l, -l, NULL,
075, "Was", LAMBDA, 4, -l, -l, NULL,
076, '%ddai", LAMBDA, 4, -l, -l, NULL,
077, "§5ddm", LAMBDA, 4, -l, -l, NULL,
000,

1;
NULL, NULL, 0,0,0, NULL,

static RuIeList stepOf-rules[] =

001, "§dd5s", LAMBDA, 4, -l, -l, NULL,
002, "katrs", LAMBDA, 4, -l, -l, NULL,
003, "katra", LAMBDA, 4, -l, -l, NULL,
004, "katram", LAMBDA, 5, -l, -l, NULL,
005, "katru", LAMBDA, 4, -l, -l, NULL,
006, "katrY, LAMBDA, 4, -l, -l, NULL,
007, "katri", LAMBDA, 4, -l, -l, NULL,
010, "katriem", LAMBDA, 6, -l, -l, NULL,
011, "katrus", LAMBDA, 5, -l, -l, NULL,
012, "katros", LAMBDA, 5, -l, -l, NULL,
013, "katras", LAMBDA, 5, -l, -l, NULL,
014, "katrai", LAMBDA, 5, -l, -l, NULL,
015, "katrdm", LAMBDA, 5, -l, -l, NULL,
016, "katrds", LAMBDA, 5, -l, -l, NULL,
017, "man6js", LAMBDA, 5, -l, -l, NULL,
020, "man6ja", LAMBDA, 5, -l, -l, NULL,
021, "man6jam", LAMBDA, 6, -l, -l, NULL,
022, "manflu", LAMBDA, 5, -l, -l, NULL,
023, "manfld", LAMBDA, 5, -l, -l, NULL,
024, "manfli", LAMBDA, 5, -l, -l, NULL,
025, "manfliem", LAMBDA, 7, -l, -l, NULL,
026, "manflus", LAMBDA, 6, -l, -l, NULL,
027, "man6jos", LAMBDA, 6, -l, -l, NULL,
030, "manflais", LAMBDA, 7, -l, -l, NULL,
032, "manflo", LAMBDA, 5, -l, -l, NULL,
033, "man6jie", LAMBDA, 6, -l, -l, NULL,
034, "man6j5s", LAMBDA, 6, -l, -l, NULL,
035, "man6jai", LAMBDA, 6, -l, -l, NULL,
036, Wanfldm% LAMBDA, 6, -l, -l, NULL,
037, Wanflas", LAMBDA, 6, -l, -l, NULL,
040, lavfls", LAMBDA, 5, -l, -l, NULL,
041, "tav6ja", LAMBDA, 5, -l, -l, NULL,
042, lavflam", LAMBDA, 6, -l, -l, NULL,

164

043, "tavflu", LAMBDA, 5, -l, -l, NULL,
044, lavflY, LAMBDA, 5, -l, -l, NULL,
045, "tav6ji", LAMBDA, 5, -l, -l, NULL,
046, lavCajiem", LAMBDA, 7, -l, -l, NULL,
047, "tav6jus", LAMBDA, 6, -l, -l, NULL,
050, "tav6jos", LAMBDA, 6, -l, -l, NULL,
051, "tavflais", LAMBDA, 7, -l, -l, NULL,
053, "tavflo", LAMBDA, 5, -l, -l, NULL,
054, "tav6jie", LAMBDA, 6, -l, -l, NULL,
055, "tavfl5s", LAMBDA, 6, -l, -l, NULL,
056, "tavflai", LAMBDA, 6, -l, -l, NULL,
057, "tav6jam", LAMBDA, 6, -l, -l, NULL,
060, "tavflas", LAMBDA, 6, -l, -l, NULL,
061, "sav6js", LAMBDA, 5, -l, -l, NULL,
062, "sav6ja", LAMBDA, 5, -l, -l, NULL,
063, "sav6jam", LAMBDA, 6, -l, -l, NULL,
064, "sav6ju", LAMBDA, 5, -l, -l, NULL,
065, "sav6j&", LAMBDA, 5, -l, -l, NULL,
066, "savCaji", LAMBDA, 5, -l, -l, NULL,
067, "sav6jiem", LAMBDA, 7, -l, -l, NULL,
070, "sav6jus", LAMBDA, 6, -l, -l, NULL,
071, "savdjos", LAMBDA, 6, -l, -l, NULL,
072, "sav6jais", LAMBDA, 7, -l, -l, NULL,
074, "sav6jo", LAMBDA, 5, -l, -l, NULL,
075, "sav6jie", LAMBDA, 6, -l, -l, NULL,
076, "sav6jas", LAMBDA, 6, -l, -l, NULL,
077, "sav6jai", LAMBDA, 6, -l, -l, NULL,
000,

1;
NULL, NULL, 0,0,0, NULL,

static RuIeList stepOg-rules[I

001, "sav6jdm", LAMBDA, 6, -l, -l, NULL,
002, "sav6jas", LAMBDA, 6, -l, -l, NULL,
003, "ViQ6js", LAMBDA, 5, -l, -l, NULL,
004, "viQfla", LAMBDA, 5, -l, -l, NULL,
005, "viQflam", LAMBDA, 6, -l, -l, NULL,
006, "ViQ6ju"' LAMBDA, 5, -l, -l, NULL,
007, "ViQfla", LAMBDA, 5, -l, -l, NULL,
010, "ViQ6ji"' LAMBDA, 5, -l, -l, NULL,
011, "vir? 6jiem", LAMBDA, 7, -l, -l, NULL,
012, "ViQcjus", LAMBDA, 6, -l, -l, NULL,
013, "ViQ6jos"' LAMBDA, 6, -l, -l, NULL,
014, "vir? 6jais", LAMBDA, 7, -l, -l, NULL,
016, "ViQ6jo"' LAMBDA, 5, -l, -l, NULL,
017, "viQ6jie", LAMBDA, 6, -l, -l, NULL,
020, "ViQflas"' LAMBDA, 6, -l, -l, NULL,
021, "viQ6jai", LAMBDA, 6, -l, -l, NULL,
022, "ViQ6jam", LAMBDA, 6, -l, -l, NULL,
023, "viQ6jas", LAMBDA, 6, -l, -l, NULL,
024, "jFjs6js"' LAMBDA, 5, -l, -l, NULL,
025,)Fjs6ja", LAMBDA, 5, -l, -l, NULL,
026, "jQs6jam", LAMBDA, 6, -l, -l, NULL,
027, "jos6ju", LAMBDA, 5, -l, -l, NULL,
030, "jasfla"' LAMBDA, 5, -l, -l, NULL,
031, "jos6ji", LAMBDA, 5, -l, -l, NULL,
032, "jQs6jiem", LAMBDA, 7, -l, -l, NULL,
033, "jQs6jus"' LAMBDA, 6, -l, -l, NULL,

165

034, "jas6jos"' LAMBDA, 6, -l, -l, NULL,
035, "jQs6jais", LAMBDA, 7, -l, -l, NULL,
037, "jos6jo% LAMBDA, 5, -l, -l, NULL,
040, "jQs6jie", LAMBDA, 6, -l, -l, NULL,
041, "jcjs6j5s"' LAMBDA, 6, -l, -l, NULL,
042, "jOisflai", LAMBDA, 6, -l, -l, NULL,
043, "jos6jam"' LAMBDA, 6, -l, -l, NULL,
044, "jOs6jas", LAMBDA, 6, -l, -l, NULL,
045, "mosfls", LAMBDA, 5, -l, -l, NULL,
046, "mQs6ja", LAMBDA, 5, -l, -l, NULL,
047, "mFis6jam", LAMBDA, 6, -l, -l, NULL,
050, "mciscaju"' LAMBDA, 5, -l, -l, NULL,
051, "mosflY' LAMBDA, 5, -l, -l, NULL,
052, "mcisfli", LAMBDA, 5, -l, -l, NULL,
053, "mOs6jiem", LAMBDA, 7, -l, -l, NULL,
054, "Mos6jus", LAMBDA, 6, -l, -l, NULL,
055, "MOS6jos", LAMBDA, 6, -l, -l, NULL,
056, "mOs6jais", LAMBDA, 7, -l, -l, NULL,
060, "mFjs6jo", LAMBDA, 5, -l, -l, NULL,
061, "mOs6jie", LAMBDA, 6, -l, -l, NULL,
062, "mcisflas", LAMBDA, 6, -l, -l, NULL,
063, "mOs6jai", LAMBDA, 6, -l, -l, NULL,
064, "mos6j5m"' LAMBDA, 6, -l, -l, NULL,
065, "mOs6jas", LAMBDA, 6, -l, -l, NULL,
066, "§itas", LAMBDA, 4, -l, -l, NULL,
067, "ýitW' LAMBDA, 3, -l, -l, NULL,
070, "§itam", LAMBDA, 4, -l, -l, NULL,
071, "gito", LAMBDA, 3, -l, -l, NULL,
072, "ýitai% LAMBDA, 4, -l, -l, NULL,
073, "§itie", LAMBDA, 4, -l, -l, NULL,
074, "ýitiem% LAMBDA, 5, -l, -l, NULL,
075, "gitos", LAMBDA, 4, -l, -l, NULL,
076, "§it5s"' LAMBDA, 4, -l, -l, NULL,
077, "gitam", LAMBDA, 4, -l, -l, NULL,
000,

1;
NULL, NULL, 0,0,0, NULL,

static RuleList stepOh-rules[]

001, "§itc5ds", LAMBDA, 5, -l, -l, NULL,
002, "§it5da", LAMBDA, 5, -l, -l, NULL,
003, "git5dam", LAMBDA, 6, -l, -l, NULL,
004, "§it5du", LAMBDA, 5, -l, -l, NULL,
005, "§itddd", LAMBDA, 5, -l, -l, NULL,
006, "§it5das", LAMBDA, 6, -l, -l, NULL,
007, "§itadai", LAMBDA, 6, -l, -l, NULL,
010, "§it5di", LAMBDA, 5, -l, -l, NULL,
011, "Madiem", LAMBDA, 7, -l, -l, NULL,
012, "§itddus", LAMBDA, 6, -l, -l, NULL,
013, "Mc5dos", LAMBDA, 6, -l, -l, NULL,
014, "§it5d5m", LAMBDA, 6, -l, -l, NULL,
015, "§itdd5s", LAMBDA, 6, -l, -l, NULL,
016, "ikkatrs", LAMBDA, 6, -l, -l, NULL,
017, "ikkatra", LAMBDA, 6, -l, -l, NULL,
020, "ikkatram", LAMBDA, 7, -l, -l, NULL,
021, "ikkatru", LAMBDA, 6, -l, -l, NULL,
022, "ikkatrd", LAMBDA, 6, -l, -l, NULL,
023, "ikkatras", LAMBDA, 7, -l, -l, NULL,

166

024, "ikkatrai", LAMBDA, 7, -l, -l, NULL,
025, "ikkatri", LAMBDA, 6, -l, -l, NULL,
026, "ikkatriem", LAMBDA, 8, -l, -l, NULL,
027, "ikkatrus", LAMBDA, 7, -l, -l, NULL,
030, "ikkatros", LAMBDA, 7, -l, -l, NULL,
032, "ikkatram", LAMBDA, 7, -l, -l, NULL,
033, "ikkatras", LAMBDA, 7, -l, -l, NULL,
034, "jebk5ds", LAMBDA, 6, -l, -l, NULL,
035, "jebk&da", LAMBDA, 6, -l, -l, NULL,
036, "jebkadam", LAMBDA, 7, -l, -l, NULL,
037, "jebkadu", LAMBDA, 6, -l, -l, NULL,
040, "jebk5dY, LAMBDA, 6, -l, -l, NULL,
041, "jebkadas", LAMBDA, 7, -l, -l, NULL,
042, "jebkadai", LAMBDA, 7, -l, -l, NULL,
043, "jebkadi", LAMBDA, 6, -l, -l, NULL,
044, "jebk5diem", LAMBDA, 8, -l, -l, NULL,
045, "jebkddus", LAMBDA, 7, -l, -l, NULL,
046, "jebk5dos", LAMBDA, 7, -l, -l, NULL,
047, "jebkadam", LAMBDA, 7, -l, -l, NULL,
050, "jebk5d5s", LAMBDA, 7, -l, -l, NULL,
051, "jebkas", LAMBDA, 5, -l, -l, NULL,
053, "jebka", LAMBDA, 4, -l, -l, NULL,
054, "jebkam", LAMBDA, 5, -l, -l, NULL,
055, "jebko", LAMBDA, 4, -l, -l, NULL,
056, "jebkur§", LAMBDA, 6, -l, -l, NULL,
057, "jebkura", LAMBDA, 6, -l, -l, NULL,
060, "jebkuram", LAMBDA, 7, -l, -l, NULL,
061, "jebkuru", LAMBDA, 6, -l, -l, NULL,
062, "jebkurY, LAMBDA, 6, -l, -l, NULL,
063, "jebkuras", LAMBDA, 7, -l, -l, NULL,
064, "jebkurai", LAMBDA, 7, -l, -l, NULL,
065, "jebkuri", LAMBDA, 6, -l, -l, NULL,
066, "jebkuriem", LAMBDA, 8, -l, -l, NULL,
067, "jebkurus", LAMBDA, 7, -l, -l, NULL,
070, "jebkuros", LAMBDA, 7, -l, -l, NULL,
071, "jebkurdm", LAMBDA, 7, -l, -l, NULL,
072, "jebkuras", LAMBDA, 7, -l, -l, NULL,
074, lkkur6% LAMBDA, 5, -l, -l, NULL,
075, "ikkura", LAMBDA, 5, -l, -l, NULL,
076, "ikkuram", LAMBDA, 6, -l, -l, NULL,
077, "ikkuru", LAMBDA, 5, -l, -l, NULL,
000,

1;
NULL, NULL, 0,0,0, NULL,

static RuIeList stepOi-rules[I =

001, "ikkura", LAMBDA, 5, -l, -l, NULL,
002, "ikkuras", LAMBDA, 6, -l, -l, NULL,
003, "ikkurai", LAMBDA, 6, -l, -l, NULL,
004, "ikkuri", LAMBDA, 5, -l, -l, NULL,
005, "ikkuriem", LAMBDA, 7, -l, -l, NULL,
006, "ikkurus", LAMBDA, 6, -l, -l, NULL,
007, "ikkuros", LAMBDA, 6, -l, -l, NULL,
010, "ikkuram", LAMBDA, 6, -l, -l, NULL,
011, "ikkur5s", LAMBDA, 6, -l, -l, NULL,
012, "ikviens", LAMBDA, 6, -l, -l, NULL,
013, "ikviena", LAMBDA, 6, -l, -l, NULL,
014, "ikvienam", LAMBDA, 7, -l, -l, NULL,

167

016, lkvienu", LAMBDA, 6, -l, -l, NULL,
017, lkvienY, LAMBDA, 6, -l, -l, NULL,
020, lkvienas", LAMBDA, 7, -l, -l, NULL,
021, lkvienai", LAMBDA, 7, -l, -l, NULL,
022, "ikvieni", LAMBDA, 6, -l, -l, NULL,
023, "ikvieniem", LAMBDA, 8, -l, -l, NULL,
024, "ikvienus", LAMBDA, 7, -l, -l, NULL,
025, lkvienos", LAMBDA, 7, -l, -l, NULL,
026, "ikviendm", LAMBDA, 7, -l, -l, NULL,
027, "ikvien5s", LAMBDA, 7, -l, -l, NULL,
030, "nekas", LAMBDA, 4, -l, -l, NULL,
031, "nekd", LAMBDA, 3, -l, -l, NULL,
032, "nekam", LAMBDA, 4, -l, -l, NULL,
033, "neko", LAMBDA, 3, -l, -l, NULL,
034, "nekdds", LAMBDA, 5, -l, -l, NULL,
035, "nekada", LAMBDA, 5, -l, -l, NULL,
037, "nekadam", LAMBDA, 6, -l, -l, NULL,
040, "nekc5du", LAMBDA, 5, -l, -l, NULL,
041, "nekddY, LAMBDA, 5, -l, -l, NULL,
042, "nekadas", LAMBDA, 6, -l, -l, NULL,
043, "nekadai", LAMBDA, 6, -l, -l, NULL,
044, "nek5di", LAMBDA, 5, -l, -l, NULL,
045, "nekadiem", LAMBDA, 7, -l, -l, NULL,
046, "nekddus", LAMBDA, 6, -l, -l, NULL,
047, "nek5dos", LAMBDA, 6, -l, -l, NULL,
050, "nekdd5m", LAMBDA, 6, -l, -l, NULL,
051, "nek5d5s", LAMBDA, 6, -l, -l, NULL,
052, "neviens", LAMBDA, 6, -l, -l, NULL,
053, "neviena", LAMBDA, 6, -l, -l, NULL,
054, "nevienam", LAMBDA, 7, -l, -l, NULL,
055, "nevienu", LAMBDA, 6, -l, -l, NULL,
056, "neviend", LAMBDA, 6, -l, -l, NULL,
060, "nevienas", LAMBDA, 6, -l, -l, NULL,
061, "nevienai", LAMBDA, 7, -l, -l, NULL,
062, "nevieni", LAMBDA, 6, -l, -l, NULL,
063, "nevieniem" , LAMBDA, 8, -l, -l, NULL,
064, "nevienus", LAMBDA, 7, -l, -l, NULL,
065, "nevienos", LAMBDA, 7, -l, -l, NULL,
066, "nevienam", LAMBDA, 7, -l, -l, NULL,
067, "nevien5s", LAMBDA, 7, -l, -l, NULL,
070, "pats", LAMBDA, 3, -l, -l, NULL,
071, "pa§a", LAMBDA, 3, -l, -l, NULL,
072, "pa§am", LAMBDA, 4, -l, -l, NULL,
073, "pagu", LAMBDA, 3, -l, -l, NULL,
074, "Pa9d", LAMBDA, 3, -l, -l, NULL,
075, "pati", LAMBDA, 3, -l, -l, NULL,
076, "pa§as", LAMBDA, 4, -l, -l, NULL,
077, "pa§ai", LAMBDA, 4, -l, -l, NULL,
000,

1;
NULL, NULL, 0,0,0, NULL,

static RuIeList step0j-rules[]

001, "pa§i", LAMBDA, 3, -l, -l, NULL,
002, "pa§iem", LAMBDA, 5, -l, -l, NULL,
003, "pa§us", LAMBDA, 4, -l, -l, NULL,
004, "pagos", LAMBDA, 4, -l, -l, NULL,
005, "pagdm", LAMBDA, 4, -l, -l, NULL,

168

006, "pa§ds", LAMBDA, 4, -l, -l, NULL,
007, "bOt", LAMBDA, 2, -l, -l, NULL,
010, "biju", LAMBDA, 3, -l, -l, NULL,
011, "biji", LAMBDA, 3, -l, -l, NULL,
012, "bija", LAMBDA, 3, -l, -l, NULL,
013, "bij&m", LAMBDA, 4, -l, -l, NULL,
014, "bijdf, LAMBDA, 4, -l, -l, NULL,
015, "esmu", LAMBDA, 3, -l, -l, NULL,
016, "esi", LAMBDA, 2, -l, -l, NULL,
017, "esam", LAMBDA, 3, -l, -l, NULL,
020, "esat", LAMBDA, 3, -l, -l, NULL,
021, "W§u% LAMBDA, 3, -l, -l, NULL,
022, "bGsi", LAMBDA, 3, -l, -l, NULL,
023, "bGs", LAMBDA, 2, -l, -l, NULL,
024, "bOsim", LAMBDA, 4, -l, -l, NULL,
025, "b0siet", LAMBDA, 5, -l, -l, NULL,
026, likt", LAMBDA, 3, -l, -l, NULL,
027, liku", LAMBDA, 3, -l, -l, NULL,
030, liki", LAMBDA, 3, -l, -l, NULL,
031, lika", LAMBDA, 3, -l, -l, NULL,
032, likdm% LAMBDA, 4, -l, -l, NULL,
033, likdf, LAMBDA, 4, -l, -l, NULL,
034, "tieku", LAMBDA, 4, -l, -l, NULL,
035, "tiec", LAMBDA, 3, -l, -l, NULL,
037, "tiek", LAMBDA, 3, -l, -l, NULL,
040, liekam", LAMBDA, 5, -l, -l, NULL,
041, liekat", LAMBDA, 5, -l, -l, NULL,
042, lik9u", LAMBDA, 4, -l, -l, NULL,
043, liks", LAMBDA, 3, -l, -l, NULL,
044, liksim", LAMBDA, 5, -l, -l, NULL,
045, liksiet", LAMBDA, 6, -l, -l, NULL,
046, "tapt", LAMBDA, 3, -l, -l, NULL,
047, "tapi", LAMBDA, 3, -l, -l, NULL,
050, lap5f, LAMBDA, 4, -l, -l, NULL,
051, "topat", LAMBDA, 4, -l, -l, NULL,
052, "tap§u", LAMBDA, 4, -l, -l, NULL,
053, "tapsi", LAMBDA, 4, -l, -l, NULL,
054, "taps", LAMBDA, 3, -l, -l, NULL,
055, "tapsim", LAMBDA, 5, -l, -l, NULL,
056, "tapsiet", LAMBDA, 6, -l, -l, NULL,
057, "kilit", LAMBDA, 3, -l, -l, NULL,
060, "ki, mu", LAMBDA, 4, -l, -l, NULL,
061, "kluvi", LAMBDA, 4, -l, -l, NULL,
062, "kluva", LAMBDA, 4, -l, -l, NULL,
063, "kluv&m", LAMBDA, 5, -l, -l, NULL,
064, "kluv5f, LAMBDA, 5, -l, -l, NULL,
065, "Wistu", LAMBDA, 5, -l, -l, NULL,
066, "klOsti", LAMBDA, 5, -l, -l, NULL,
067, "klOst", LAMBDA, 4, -l, -l, NULL,
070, "klOstam", LAMBDA, 6, -l, -l, NULL,
071, "klOstat", LAMBDA, 6, -l, -l, NULL,
072, "kiO§u", LAMBDA, 4, -l, -l, NULL,
073, "kl0si", LAMBDA, 4, -l, -l, NULL,
074, "ki0s", LAMBDA, 3, -l, -l, NULL,
075, "klOsim", LAMBDA, 5, -l, -l, NULL,
076, "ki0siet", LAMBDA, 6, -l, -l, NULL,
000,

1;
NULL, NULL, 0,0,0, NULL,

169

static RuIeList stepOk-rules[] =

001, "Gja", LAMBDA, 2, -l, -l, NULL,
002, "urrd", LAMBDA, 3, -l, -l, NULL,
003, "urW, LAMBDA, 2, -l, -l, NULL,
004, "re", LAMBDA, 1, -1, -1, NULL,
005, "pag", LAMBDA, 2, -l, -l, NULL,
006, "raug", LAMBDA, 3, -l, -l, NULL,
007, "paraug", LAMBDA, 5, -l, -l, NULL,
010, "ai", LAMBDA, 1, -1, -1, NULL,
011, "ak", LAMBDA, 1, -1, -1, NULL,
012, "palOk", LAMBDA, 4, -l, -l, NULL,
013, "nudien", LAMBDA, 5, -l, -l, NULL,
014, "ekur", LAMBDA, 3, -l, -l, NULL,
015, "ku§", LAMBDA, 2, -l, -l, NULL,
016, "skat", LAMBDA, 3, -l, -l, NULL,
017, "paskat", LAMBDA, 5, -l, -l, NULL,
020, "paklau", LAMBDA, 5, -l, -l, NULL,
021, "pau", LAMBDA, 2, -l, -l, NULL,
022, "rau", LAMBDA, 2, -l, -l, NULL,
023, "parau", LAMBDA, 4, -l, -l, NULL,
024, "nu", LAMBDA, 1, -1, -1, NULL,
025, "tpo", LAMBDA, 2, -l, -l, NULL,
026, "vau", LAMBDA, 1, -1, -1, NULL,
027, "redz", LAMBDA, 3, -l, -l, NULL,
030, "varCat", LAMBDA, 4, -l, -l, NULL,
031, "var", LAMBDA, 2, -l, -l, NULL,
032, "varat", LAMBDA, 4, -l, -l, NULL,
033, "varCaju", LAMBDA, 5, -l, -l, NULL,
034, "var6ji", LAMBDA, 5, -l, -l, NULL,
035, "var§ja", LAMBDA, 5, -l, -l, NULL,
036, "vardjam", LAMBDA, 6, -l, -l, NULL,
037, "var6jaf, LAMBDA, 6, -l, -l, NULL,
040, "var6gu", LAMBDA, 5, -l, -l, NULL,
041, "varFasi", LAMBDA, 5, -l, -l, NULL,
042, "var6s", LAMBDA, 4, -l, -l, NULL,
043, "var6sim", LAMBDA, 6, -l, -l, NULL,
044, "var6sief, LAMBDA, 7, -l, -l, NULL,
045, "k&p6c", LAMBDA, 4, -l, -l, NULL,
046, "kdd6j", LAMBDA, 4, -l, -l, NULL,
047, "k&lab", LAMBDA, 4, -l, -l, NULL,
050, "t5lab", LAMBDA, 4, -l, -l, NULL,
051, "kalabad", LAMBDA, 6, -l, -l, NULL,
052, "tdiabad", LAMBDA, 6, -l, -l, NULL,
053, "kamd6l", LAMBDA, 5, -l, -l, NULL,
054, "tamd6l", LAMBDA, 5, -l, -l, NULL,
055, 'bezgala", LAMBDA, 6, -l, -l, NULL,
056, "nenieka", LAMBDA, 6, -l, -l, NULL,
057, "sam6rY, LAMBDA, 5, -l, -l, NULL,
060, "v6rd", LAMBDA, 3, -l, -l, NULL,
061, "Visup6c", LAMBDA, 6, -l, -l, NULL,
062, "tagad", LAMBDA, 4, -l, -l, NULL,
063, "kad", LAMBDA, 2, -l, -l, NULL,
064, "jebkad", LAMBDA, 5, -l, -l, NULL,
065, "nekad", LAMBDA, 4, -l, -l, NULL,
066, "gad", LAMBDA, 2, -l, -l, NULL,
067, "§e", LAMBDA, 1, -1, -1, NULL,
070, ladfl5di% LAMBDA, 7, -l, -l, NULL,

170

071, "vis5di", LAMBDA, 5, -l, -l, NULL,
072, "visvisddi", LAMBDA, 8, -l, -l, NULL,
073, "citddi", LAMBDA, 5, -l, -l, NULL,
074, "parasti", LAMBDA, 6, -l, -l, NULL,
075, "dikti", LAMBDA, 4, -l, -l, NULL,
076, "loti", LAMBDA, 3, -l, -l, NULL,
077, "velti", LAMBDA, 4, -l, -l, NULL,
000,

1;
NULL, NULL, 0,0,0, NULL,

static RuIeList stepOl-rules[]

001, "p6k§Qi",
002, "respekfivi",
003, "fidzi",
004, "prefi",
005, "labdk",
006, "pC-c&k",
007, "cit&d5k",
010, "sav5d5k",
011, "turpm&k",
012, "pdr5k",
013, "agr5k",
014, "vair5k",
015, "visvair5k",
016, "maz5k",
017, "dCiz5k",
020, "visbie2dk",
021, "cik",
022, "neck",
023, "Mik",
024, "atkal",
025, "tOdal",
026, "pakal",
027, "iepakal",
030, "nopakýj",
031, "visnotal",
032, "atpakal",
033, "palaikam",
034, "aplam",
035, "piemCaram",
036, "apm6ram",
037, "nepagalam",
040, "pavisam",
041, "nepavisam",
042, "paretam",
043, "§imbri2am",
044, "joprojdm",
045, "aumaldm",
046, 'Mndrý",
047, "pamaz5m",
050, "gau2dm",
051, "aizgQtn6m",
052, "p&rpdr6m",
053, "caurcaur6m",
054, "pamazit6m",
055, "pretim",
056, lepretim",

LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,

5, -l, -l,
91-11-11

NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,

171

057, "prom", LAMBDA, 3, -l, -l, NULL,
060, "patlaban", LAMBDA, 7, -l, -l, NULL,
061, "diezgan", LAMBDA, 6, -l, -l, NULL,
062, '%eitan", LAMBDA, 5, -l, -l, NULL,
063, "secen", LAMBDA, 4, -l, -l, NULL,
064, "6obaltdien", LAMBDA, 91 -11 -11 NULL,
065, "kddudien", LAMBDA, 7, -l, -l, NULL,
066, "citudien", LAMBDA, 7, -l, -l, NULL,
067, "da2dien", LAMBDA, 6, -l, -l, NULL,
070, W02dien", LAMBDA, 6, -l, -l, NULL,
071, "arvien", LAMBDA, 5, -l, -l, NULL,
072, "aizvien", LAMBDA, 6, -l, -l, NULL,
073, "varen", LAMBDA, 4, -l, -l, NULL,
074, "sen", LAMBDA, 2, -l, -l, NULL,
075, "pasen", LAMBDA, 4, -l, -l, NULL,
076, "nesen", LAMBDA, 4, -l, -l, NULL,
077, "bdztin", LAMBDA, 5, -l, -l, NULL,
000, NULL, NULL, 0, 0, 0, NULL,

static RuIeList stepOm-rules[] =

001, "drusciQ", LAMBDA, 6, -l, -l, NULL,
002, "mazdrusciQ", LAMBDA, 9, -l, -l, NULL,
003, "toliQ"' LAMBDA, 4, -l, -l, NULL,
004, "mazlietiQ", LAMBDA, 8, -l, -l, NULL,
005, "neparko", LAMBDA, 6, -l, -l, NULL,
006, "vienkop", LAMBDA, 6, -l, -l, NULL,
007, "kurp", LAMBDA, 3, -l, -l, NULL,
010, "6urp", LAMBDA, 3, -l, -l, NULL,
011, "turp", LAMBDA, 3, -l, -l, NULL,
012, "vispdr", LAMBDA, 5, -l, -l, NULL,
013, "viscaur", LAMBDA, 6, -l, -l, NULL,
014, "jebkur", LAMBDA, 5, -l, -l, NULL,
015, "nekur", LAMBDA, 4, -l, -l, NULL,
016, "visur", LAMBDA, 4, -l, -l, NULL,
017, "6ur", LAMBDA, 2, -l, -l, NULL,
020, "tur", LAMBDA, 2, -l, -l, NULL,
021, "citur", LAMBDA, 4, -l, -l, NULL,
022, "vietumis", LAMBDA, 7, -l, -l, NULL,
023, "retumis", LAMBDA, 6, -l, -l, NULL,
024, "reizumis", LAMBDA, 7, -l, -l, NULL,
025, "sensenis", LAMBDA, 7, -l, -l, NULL,
026, "vairs", LAMBDA, 4, -l, -l, NULL,
027, "papildus", LAMBDA, 7, -l, -l, NULL,
030, "pc5rmijus", LAMBDA, 7, -l, -l, NULL,
031, "blakus", LAMBDA, 5, -l, -l, NULL,
032, "ieblakus", LAMBDA, 7, -l, -l, NULL,
033, "lldztekus", LAMBDA, 8, -l, -l, NULL,
034, "aplinkus", LAMBDA, 7, -l, -l, NULL,
035, "izklaidus", LAMBDA, 8, -l, -l, NULL,
036, "vienlaidus", LAMBDA, 9, -l, -l, NULL,
037, "nevilus", LAMBDA, 6, -l, -l, NULL,
040, "abp6s", LAMBDA, 4, -l, -l, NULL,
041, "vienpus", LAMBDA, 5, -l, -l, NULL,
042, "katrpus", LAMBDA, 6, -l, -l, NULL,
043, "otrpus", LAMBDA, 5, -l, -l, NULL,
044, "virspus", LAMBDA, 6, -l, -l, NULL,

172

045, "papriek§", LAMBDA, 7, -l, -l, NULL,
046, "iepriekg", LAMBDA, 7, -l, -l, NULL,
047, "kldf, LAMBDA, 3, -l, -l, NULL,
050, "labprat", LAMBDA, 6, -l, -l, NULL,
051, "nelabprdt", LAMBDA, 8, -l, -l, NULL,
052, "manuprat", LAMBDA, 7, -l, -l, NULL,
053, "mCjsupr5f, LAMBDA, 7, -l, -l, NULL,
054, "fi§upraf, LAMBDA, 7, -l, -l, NULL,
055, "tavuprat", LAMBDA, 7, -l, -l, NULL,
056, "ciet", LAMBDA, 3, -l, -l, NULL,
057, "mazliet", LAMBDA, 5, -l, -l, NULL,
060, "vienviet", LAMBDA, 7, -l, -l, NULL,
061, "vienuviet", LAMBDA, 8, -l, -l, NULL,
062, "da2viet", LAMBDA, 6, -l, -l, NULL,
063, "beidzot", LAMBDA, 6, -l, -l, NULL,
064, "visbeidzot", LAMBDA, 91-11-11 NULL,
065, "vairakkart", LAMBDA, 9, -l, -" NULL,
066, "pirmkdrt", LAMBDA, 7, -l, -l, NULL,
067, "vienk5rt", LAMBDA, 7, -l, -l, NULL,
070, "galvenok5rt", LAMBDA, io, -i, -i, NULL,
071, "apkdrt", LAMBDA, 5, -l, -l, NULL,
072, "visapkdrt", LAMBDA, 8, -17 -1, NULL,
073, "citkart", LAMBDA, 6, -l, -l, NULL,
074, "daudzk5rt", LAMBDA, 8, -l, -l, NULL,
075, "da2k&rV, LAMBDA, 6, -l, -l, NULL,
076, "nost", LAMBDA, 3, -l, -l, NULL,
077, "pdrlieku", LAMBDA, 7, -l, -l, NULL,
000, NULL, NULL, 0,0,0, NULL,

static RuIeList stepOn-rules[]

001,
002,
003,
004,
005,
006,
007,
010,
011,
012,
013,
014,
015,
016,
017,
020,
021,
022,
023,
024,
025,
026,
027,
030,
031,
032,

116eit",
litolitil,
"pirmit",
llmaýenif,
"atstatu
llmaz",
"pamaz",
"nemaz",
"vismaz",
"daudzmaz",
"bezmaz",
"vienlidz",
"puslidz",
"daudz",
"nedaudz",
"reiz",
"ikreiz",
"k5dreiz",
"vairakreiz",
"cikreiz",
"tikreiz",
llv6lreiz",
"ndkamreiz",
"viQreiz",
"6oreiz",
"toreiz",

LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,

3, -i, -1,
4, -i, -1,
5, -i, -1,
6, -i, -i,
6, -i, -1,
2, -i, -i,
4, -i, -1,
4, -i, -1,
5, -i, -1,
7, -i, -1,
5, -i, -1,
7, -i, -1,
6, -i, -1,
4, -i, -1,
6, -i, -1,
3, -i, -1,
5, -i, -1,
6, -i, -1,
9, -i, -1,
6, -i, -i,
6, -i, -1,
6, -i, -1,
8, -i, -i,
6, -i, -1,
5, -i, -i,
5, -i, -1,

NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,

173

033, "pa§reiz", LAMBDA, 6, -l, -l, NULL,
034, "ndkokeiz% LAMBDA, 8, -l, -l, NULL,
035, "citreiz", LAMBDA, 6, -l, -l, NULL,
036, "citureiz", LAMBDA, 7, -l, -l, NULL,
037, "daudzreiz", LAMBDA, 8, -l, -l, NULL,
040, "uzreiz", LAMBDA, 5, -l, -l, NULL,
041, "da2reiz", LAMBDA, 5, -l, -l, NULL,
042, "driz", LAMBDA, 3, -l, -l, NULL,
043, "gand6z", LAMBDA, 6, -l, -l, NULL,
044, "alla2", LAMBDA, 4, -l, -l, NULL,
000,

1;
NULL, NULL, 0, 0,0, NULL,

static RuIeList stepl a_rules[I =

100, "ies", LAMBDA, 2, -l, 0, NULL,
101, lem", LAMBDA, 2, -l, -l, NULL,
102, "am", LAMBDA, 1, -1, -1, NULL,
103, "am", LAMBDA, 1, -1, -1, NULL,
104, "6m", LAMBDA, 1, -1, -1, NULL,
000, NULL, NULL, 0, 0,0, NULL,

static RuIeList stepl al -rules[] =

100, "em", LAMBDA, 1, -1, -1, NULL,
101, "im", LAMBDA, 1, -1, -1, NULL,
102, "im", LAMBDA, 1, -1, -1, NULL,
103, "um", LAMBDA, 1, -1, -1, NULL,
104, "us", LAMBDA, 1, -1, -1, NULL,
000,

1;
NULL, NULL, 0,0, 0, NULL,

static RuIeList stepl a2-rules[] =

100, "as", LAMBDA, 1, -1, -1, NULL,
101 , "es", LAMBDA, 1, -1, -1, NULL,
102, "u", LAMBDA, 01-11 -11 NULL,
103, "os", LAMBDA, 1, -1, -1, NULL,
104, "ai", LAMBDA, 1, -1, -1, NULL,
000,

1;
NULL, NULL, 0,0, 0, NULL,

static RuIeList stepl a3-rules[] =

100, Iltil, LAMBDA, 0, -l, -O, NULL,
101, "u", LAMBDA, 0, -l, -O, NULL,
102, "ei", LAMBDA, 1, -1, -1, NULL,
103, "if" LAMBDA, 1, -1, -1, NULL,
104, "is", LAMBDA, 1, -1, -1, NULL,
000,

1;
NULL, NULL, 0, 0, 0, NULL,

static RuIeList stepla4-rules[]

100, "Cis", LAMBDA, 1, -1, -1, NULL,
101, "is", LAMBDA, 1, -1, -1, NULL,
102, "ais", LAMBDA, 2, -l, -l, NULL,

174

103, le", LAMBDA, 1, -1, -1, NULL,
104, "s", LAMBDA, 01 -11 ol NULL,
000, NULL,

1;
NULL, 0, 0, 0, NULL,

static RuIeList stepl a5-rules[]

100,11§111 LAMBDA, 0, -l, -l, NULL,
101, "a", LAMBDA, 0' -l' 0, NULL,
102, 'T" LAMBDA, 0, -l, -l, NULL,
103, "e", LAMBDA, 0, -l, -l, NULL,
104 "a", LAMBDA, 0' -l' 0, NULL,
000, NULL,

1;
NULL, 0, 0, 0, NULL,

static RuIeList stepla6-rules[] =

100, 11611, LAMBDA, 0'-l' 0, NULL,
101, 1111, LAMBDA, 01-11 ol NULL,
102, "0", LAMBDA, 0'-l' 0, NULL,
103, "o", LAMBDA, 0'-l' 0, NULL,
000,

1;
NULL, NULL, 0,0, 0, NULL,

static RuIeList stepl b1
-rules[] =

108, p 0, -i' NULL,
109, "bj", "b", 1, 0, -i' NULL,
110, "mj", limil, 1, 0, -i' NULL,
iii, Ilvill, livii, 1, 0, -i' NULL,
112, %1',

'
lisl", 1, 0, -i' NULL,

113, "2Q", "zn", 1, 0, -i' NULL,
114, "d2", 11 11 dz ,

1, 0,1, NULL,
115, "§Q", 11 11 sn ,

1, 0,0, NULL,
116, "21", lizl", 1, 0, -1' NULL,
117, illn", 1, 0, -1' NULL,
000,
1,

NULL, NULL, 0, 0,0, NULL,

static RuIeList step2-rules[] =

203, "acionäl", acion", 6, 3, 0, NULL,
204, "äcij", äc", 3, 1, 0, NULL,
205, "ärij", 11 11 är

, 3, 1, 0, NULL,
206, "iecib", iec", 4, 2, 0, NULL,
207, "ainib", ain", 4, 2, 0, NULL,
208, "ädib", "äd", 3, 1, 0, NULL,
209, "ätib", liätil, 3, 1, 0, NULL,
210, "dzib", 11 dz", 3, 1, 0, NULL,
211, "äfij", Iläfil, 3, 1, 0, NULL,
212, "omij", 11 11 om, 3, 1, 0, NULL,
213, "Oäij", iloj", 3, 1, 0, NULL,
214, "orij", 11 11 or , 3, 1, 0, NULL,
000,

1 «,
NULL, NULL, 0, 0, 0, NULL,

175

static RuIeList step3-rules[] =

301, "ieW, LAMBDA, 2, -l, 1, NULL,
302, lec", LAMBDA, 2, -l, 1, NULL,
303, "niek", LAMBDA, 3, -l, 0, NULL,
304, "niec", LAMBDA, 3, -l, 0, NULL,
305, "nic", LAMBDA, 2, -l, 1, NULL,
306, "ain", LAMBDA, 2, -l, 0, NULL,
307, "ant", LAMBDA, 2, -l, 2, NULL,
308, ler", LAMBDA, 2, -l, 1, NULL,
309, "iet", LAMBDA, 2, -l, 1, NULL,
310, "in&", LAMBDA, 2, -l, 1, NULL,
311, "ing", LAMBDA, 2, -l, 1, NULL,
312, "ism", LAMBDA, 2, -l, 1, NULL,
313, "isk", LAMBDA, 2, -l, 0, NULL,
314, "ist", LAMBDA, 2, -l, 1, NULL,
315, '%an", LAMBDA, 2, -l, 0, NULL,
316, lem", LAMBDA, 2, -l, 1, NULL,
317, "am", LAMBDA, 1, -1, 1, NULL,
318, "am", LAMBDA, 1, -1, 2, NULL,
319, "drn", LAMBDA, 1, -1, 1, NULL,
320, "em", LAMBDA, 1, -1, 2, NULL,
321, Im", LAMBDA, 1, -1, 2, NULL,
322, "im", LAMBDA, 1, -1, 2, NULL,
323, "urn", LAMBDA, 1, -1, 2, NULL,
000,

1;
NULL, NULL, 0,0, 0, NULL,

static RuIeList step4-rules[] =

401, "ab", LAMBDA, 1, -1, 2, NULL,
402, "ad", LAMBDA, 1, -1, 1, NULL,
403, "ai", LAMBDA, 1, -1, 1, NULL,
404, "al", LAMBDA, 1, -1, 3, NULL,
405, "an", LAMBDA, 1, -1, 1, NULL,
406, "&', LAMBDA, 1, -1, 1, NULL,
407, "at", LAMBDA, 1, -1, 1, NULL,
408, "5z", LAMBDA, 1, -1, 1, NULL,
409, "aZ% LAMBDA, 1, -1, 1, NULL,
410, "al", LAMBDA, 1, -1, 2, NULL,
411, "av", LAMBDA, 1, -1, 1, NULL,
412, "fl", LAMBDA, 1, -1, 2, NULL,
413, "W', LAMBDA, 1, -1, 1, NULL,
414, "Eit", LAMBDA, 1, -1, 1, NULL,
415, "6z", LAMBDA, 1, -1, 1, NULL,
416, "ej", LAMBDA, 1, -1, 1, NULL,
417, "el", LAMBDA, 1, -1, 3, NULL,
418, "er", LAMBDA, 1, -1, 2, NULL,
419, lb", LAMBDA, 1, -1, 1, NULL,
420, "Ic", LAMBDA, 1, -1, 1, NULL,
421, ld", LAMBDA, 1, -1, 3, NULL,
422, iligil, LAMBDA, 1, -1, 1, NULL,
423, "If" LAMBDA, 1, -1, 1, NULL,
424, "it", LAMBDA, 1, -1, 2, NULL,
425, "W" LAMBDA, 1, -1, 2, NULL,
426, "lz", LAMBDA, 1, -1, 1, NULL,
427, 1j", LAMBDA, 1, -1, 1, NULL,
428, "il", LAMBDA, 1, -1, 2, NULL,

176

429, lk", LAMBDA, 1, -1, 2, NULL,
430, 110 11, LAMBDA, 1, -1, 1, NULL,
431, "ol", LAMBDA, 1, -1, 2, NULL,
432, "oQ", LAMBDA, 1, -1, 0, NULL,
433, "on", LAMBDA, 1, -1, 1, NULL,
434, "or", LAMBDA, 1, -1, 1, NULL,
435, "Of, LAMBDA, 1, -1, 1, NULL,
436, "ul", LAMBDA, 1, -1, 2, NULL,
437, "in", LAMBDA, 1, -1, 0, NULL,
438, "aj", LAMBDA, 1, -1, 0, NULL,
000,

1;
NULL, NULL, 0,0, 0, NULL,

static RuleList step6-rules[]

601, "§un", "sun", 0,0,0, NULL,
000, NULL, NULL, 0,0,0, NULL,

1;

static char *iflatv[]={ "AKdE6Q6HKIýýINQý§0022"

_gi,,
Qsuz static char *Slatv[]={ §02"

static char *Blatv[]={ "ACEQIKýNSUZ" I
static char *Vlatv[]={ "5i6ff'

Private Function Declarations

static int IsLatVowel(word)
char *word; /* in: word
I
char *ist;
if (IsVowel(*word)) return(TRUE);
else

ist = strchr(*Vlatv, *word);
if (NULL != ist) return(TRUE); else return(FALSE);

1;
/*IsLatVowel*/

int islatv(ch)
int ch; /* current character during input scan
I

char *ist;
ist = strchr(*iflatv, ch);
if (NULL != ist) return(TRUE); else return(FALSE
/* islatv */

int SmaIlLatv(ch)
int ch; /* current character during input scan
I

union tet

char cha;
int chi;
1 chch;
char *ist;
chch. cha=ch;
ist = strchr(*Blatv, ch),
if (NULL! = ist)
1

177

ist += *Slatv - *Blatv;
chch. cha = *ist;
retum(chch. chi
1;
return(chch. chi
/* SmallLatv

WordSize(word)

Returns: int -- a count of word size in adjusted syllables

Purpose: Count syllables in a special way: count the number
vowel-consonant pairs in a word, disregarding initial
consonants and final vowels. For example, the WordSize of
11sols" (a desk) is 1, of "upe" (a river) is 1, of "Wase" (a class)
is 2, of "pasaule" (the world) is 3.

Plan: Run a DFA to compute the word size

Notes: The easiest and fastest way to compute this measure is
with a finite state machine. The initial state 0 checks
the first letter. If it is a vowel, then the machine changes
to state 1, which is the "last letter was a vowel" state.
If the first letter is a consonant, then it changes
to state 2, the "last letter was a consonant state".
The result counter is incremented on the transition from state 1 to
state 2, since this transition only occurs after a vowel-consonant
pair, which is what we are counting.

static int
WordSize(word

char *word; /* in: word having its WordSize taken
I
register int result; P WordSize of the word
register int state; /* current state in machine

result = 0;
state = 0;

P Run a DFA to compute the word size
while (EOS *word

I
switch (state

I
case 0: state = (IsLatVowel(word)) ?12;

break;
case 1: state = (IsLatVowel(word)) ?12;

if (2 == state) result++;
break;

case 2: state = (IsLatVowel (word) 11 ('y'== *word)) ?I: 2;
break;

I
word++;
I

retum(result);

178

/* WordSize

ContainsVowel(word)

Returns: int -- TRUE (1) if the word parameter contains a vowel,
FALSE (0) otherwise.

Purpose: Some of the rewrite rules apply only to a root containing
a vowel, where a vowel is one of "ade6ilouW or y with a
consonant in front of it.

Plan: Under the definition of a vowel, a word contains
a vowel if either its first letter is one of "ade6ilouO", or
any of its other letters are "a5e6ilouOy". The plan is to
test this condition.

Notes: None

static int
ContainsVowel(word

char *word; /* in: buffer with word checked
I

if (EOS == *word)
retum(FALSE);

else
retum(IsLatVowel(word) 11 (NULL! = strpbrk(word+l, "aeiouy"))

/* ContainsVowel

EndsWithCVC(word)

Returns: int -- TRUE (1) if the current word ends with a
consonant-vowel-consonant combination,
FALSE (0) otherwise.

Purpose: Some of the rewrite rules apply only to a root with
this characteristic.

Plan: Look at the last three characters.

Notes: None

static int
EndsWithCVC(word

char *word; /* in: buffer with the word checked
I
int length; P for finding the last three characters

if ((length = strlen(word)) <2
retum(FALSE

else

179

I
end = word + length - 1;
return((NULL == strchr(" aeiou", *end--)) /* consonant

&&(NULL! = strchr("aeiou", *end--)) P vowel
&& (NULL == strchr("aeiou", *end))); /* consonant

I /* EndsWithCVC */

/*FN **

ReplaceEnd(word, rule)

Returns: int -- the id for the rule fired, 0 is none is fired

Purpose: Apply a set of rules to replace the suffix of a word

Plan: Loop through the rule set until a match meeting all conditions
is found. If a rule fires, return its id, otherwise return 0.
Connditions on the length of the root are checked as part of this
function's processing because this check is so often made.

Notes: This is the main routine driving the sternmer. It goes through
a set of suffix replacement rules looking for a match on the
current suffix. When it finds one, if the root of the word
is long enough, and it meets whatever other conditions are
required, then the suffix is replaced, and the function returns.

static int
ReplaceEnd(word, rule)

char *word; P in/out: buffer with the stemmed word
RuIeList *rule; /* in: data structure with replacement rules
I
register char *ending; P set to start of possible stemmed suffix
char tmp_ch; P save replaced character when testing */

while (0 != rule->id
I
ending = end - rule->old-offset;
if word <= ending)

if 0 == strcmp(ending, rule->old-end)

tmp-ch *ending;
*ending EOS;
if (rule->n-iin-root-size < WordSize(word)

if (! rule->condition 11 (*rule->condition)(word)
f
(void)strcat(word, rule->new - end
end = ending + irule->new-offset;
break;

*ending = tmp-ch;
I

rule++;
I

return(rule->id

180

/* ReplaceEnd

CompStopW(word, rule)

Returns: int -- the id for the rule fired, 0 is none is fired

Purpose: Apply a set of rules to remove the stopword

Plan: Loop through the rule set until a match meeting all conditions
is found. If a rule fires, return its id, otherwise remove the
stopword.

Notes: None

static int
CompStopW(word, rule)

char *word; /* in/out: buffer with the stemmed word
RuIeList *rule; /* in: data structure with replacement rules
I
register char *ending; /* set to start of possible stemmed suffix
char tmp_ch; /* save replaced character when testing

while (0 != rule->id

if 0 == strcmp(word, rule->old-end)

*word = EOS;

rule++;
I

return(rule->id

/* Compstopw

ReplaceW(word, rule)

Returns: int -- the id for the rule fired, 0 is none is fired

Purpose: Apply a set of rules to replace the word

static int
ReplaceW(word, rule)

char *word; /* in/out: buffer with the stemmed word
RuIeList *rule; /* in: data structure with replacement rules
I
register char *ending; /* set to start of possible stemmed suffix
char tmp_ch; /* save replaced character when testing

while (0 != rule->id
I

181

if 0 == strcmp(word, rule->old-end)

*word = EOS;
(void)strcat(word, rule->new-end
I

r-ule++;
I

return(rule->id);

/* Compstopw

Public Function Declarations

Stem(word)

Returns: int -- FALSE (0) if the word contains non-alphabetic characters
and hence is not stemmed, TRUE (1) otherwise

Purpose: Stem a word

Plan: Part 1: Check to ensure the word is all alphabetic
Part 2: Run through the Porter algorithm
Part 3: Return an indication of successful stemming

Notes: This function implements the Porter stemming algorithm, with
a few additions here and there. See:

Porter, M. F., "An Algorithm For Suffix Stripping, "
Program 14 (3), July 1980, pp. 130-137.

Porter's algorithm is an ad hoc set of rewrite rules with
various conditions on rule firing. The terminology of
"step l a" and so on, is taken directly from Porter's
article, which unfortunately gives almost no justification
for the various steps. Thus this function more or less
faithfully refects the opaque presentation in the article.
Changes from the article amount to a few additions to the
rewrite rules; these are marked in the RuIeList data
structures with comments.

* *1

int
Stem(word)

char *word; P in/out: the word stemmed
t
int rule; /* which rule is fired in replacing an end

/* Part 1: Check to ensure the word is all alphabetic
for (end = word; *end != EOS; end++)

if (! islatv(*end)
I

if isalpha(*end)) return(FALSE
else *end = tolower(*end);

182

else *end = SmallLatv(*end);
end--,

/* Part 2: Run through the Porter algorithm
(void)CompStopW(word, step0a - rules
(void)CompStopW(word, step0b_rules
(void)CompStopW(word, step0c_rules);
(void)CompStopW(word, stepOd-rules
(void)CompStopW(word, stepOe-rules
(void)CompStopW(word, stepOf - rules
(void)CompStopW(word, step0g_. rules
(void)CompStopW(word, stepOh-rules
(void)CompStopW(word, step0i_rules
(void)CompStopW(word, step0j_rules
(void)CompStopW(word, step0k_rules
(void)CompStopW(word, stepOl-rules
(void)CompStopW(word, step0m - rules
(void)CompStopW(word, stepOn-rules

(void)ReplaceEnd(word, stepla-rules);
(void)ReplaceEnd(word, steplal_rules
(void)ReplaceEnd(word, stepla2-rules
(void)ReplaceEnd(word, step I a3-rules
(void)ReplaceEnd(word, stepla4-rules
(void)ReplaceEnd(word, stepla5-rules

(void)ReplaceEnd(word, steplbl-rules

(void)ReplaceEnd(word, step2-rules

(void)ReplaceEnd(word, step3-rules

(void)ReplaceEnd(word, step4-rules

(void)ReplaceW(word, step6_rules);

/* Part 3: Return an indication of successful stenu-ning
return(TRUE);

I /* Stem */

183

APPENDIX 2.4

Main program for Latvian stemmer (STEMMER. C)

stenimer. c

" Program to demonstrate and test the Porter stemming function. This
" prograrn takes a single filename on the command line and lists sternmed
" terms on stdout.

#include <c: \bc4\include\stdio. h>
#include <c: \bc4\include\ctype. h>

#include "stem. h"

Private Defines and Data Structures

#define EOS 1\01

Private Function Definitions

#ifdef
-STDC-

static char * GetNextTerm(FILE *stream, int size, char *term

#else

static char * GetNextTermo;

#endif

GetNextTerm(stream, size, term)

Returns: char * -- buffer with the next input term, NULL at EOF

Purpose: Grab the next token from an input strearn

Plan: Part 1: Return NULL immediately if there is no input
Part 2: Initialize the local variables
Part 3: Main Loop: Put the next word into the term buffer
Part 4: Return the output buffer

Notes: None.

static char
GetNextTerm(stream, size, term)

FILE *strearn; /* in: source of input characters
int size; /* in: bytes in the output buffer */
char *term; /* in/out: where the next term in placed

184

I
char *ptr; /* for scanning through the term buffer
int ch; /* current character during input scan */

/* Part 1: Return NULL immediately if there is no input
if (EOF == (ch = getc(stream))) return(NULL

/* Part 2: Initialize the local variables
*term = EOS;
ptr = term;

do
I

/* scan past any leading non-alphabetic characters
fil = islatv(ch);
while ((EOF != ch) && Hsalpha(ch)) 11 fil)

/* Part 3: Main Loop: Put the next word into the term buffer */

ch = getc(stream
fil = islatv(ch);
I;

/* copy input to output while reading alphabetic characters
while (EOF != ch && isalpha(ch) 11 islatv(ch))

if (ptr == (term+size- 1) ptr = term;
*Ptr++ ch;
ch = getc(stream
I

/* terminate the output buffer
*ptr = EOS;
I

while ((EOF != ch) && ! *term

/* Part 4: Return the output buffer
return(term);

/* GetNextTerm.

main(argc, argv

Returns: int -- 0 on success, I on failure

Purpose: Program main function

Plan: Part 1: Open the input file
Part 2: Process each word in the file
Part 3: Close the input file and return

Notes: None

int

185

main(argc, argv)
int argc; /* in: how many arguments
char *argv[]; /* in: text of the arguments
I
char term[64]; /* for the next term from the input line
FILE *stream; /* where to read characters from

/* Part 1: Open the input file */
if (! (stream = fopen(argv[l], "r"))) exit(l);

/* Part 2: Process each word in the file
while(GetNextTertn(stream, 64, term))

if (Stern(term)) (void)printf("%s\n", term);

/* Part 3: Close the input file and return
(void)fclose(stream
return(0);

I /* main

186

APPENDIX 3.1

List of Latvian endings

-ies -um -äm -am -äm
-ein -im -iem -us
-as -es -äs -os -ai

-t -u -ei -ij -is
-äs -is -ais -ie -s
-9 -a -i -e -ä
-ö -i -0

APPENDIX 3.2

List of consonant palatalisation

pi -p bj -b mj -m vj -v §1 - SI
2Q - zn d2 - dz §Q - sn 21 - ZI IQ - In

APPENDIX 3.3

List of Latvian suffixes

-acion -äc -är -iec -ain
-äd -ät -dz -äf -om

-oý -or -niek -niec -nic
-iek -ant -ier -iet -inä
-ing -ism -isk -ist -§an
Aern -ärn -am -C2M -ein
-im -im -um -äb -äi
-äl -än -äz _ä2 -al

-av -öj -äk -ät -öz

-ei -el -er -ib -ic
-id -ig -ij -it -iv
-iz -ii -ii -ik -iQ

-ol -OQ -on -or -ot
-ul -in

187

APPENDIX 4.1

EVALUATION FORM FOR STEMMED LATVIAN WORDS

A. Name of the linguistic specialist

B. Position

c. Institution/organi sation

D. Please rate (tick) the quality of stemmed nouns (5 - very good ... I- very poor):

El 2. o 3. El 4. El 5.0

Problems

Suggestions and comments

E. Please rate (tick) the accurancy of stemmed adjectives:

I. 02. El 3 El 4. [1 5. El

Problems

Suggestions & comments

188

F. Please rate (tick) the accuracy of stemmed verbs:

1. Ei 2. EI 3. Ei 4. EI 5. EI

Problems

Suggestions & comments

G. Please rate (tick) the accuracy of stemmed adverbs:

1. El 2. El 3. [1 4. [1 5.11

Problems

Suggestions & comments

H. Suggestions for further improvements

Thank you

189

APPENDIX 4.2

Examples of Latvian word stemming in standard forms

NOUNS

Unstemmed Stemmed

evolOcija evol0c
p6crevolFicija p6crevol0c

rezolOcija rezol0c
stadija stad
trad6dija tra66d
telestudija telestud
relidija reli6
revizija reviz
2alOzija 2alOz
korozija koroz
boja boj
plauja plauj
salaka salak
kabelis kabel
trifelis trifel
panelis panel
lietusm6telis lietusm6t
sv6telis sv6tel
b6glis b6gl
sl6pnis sl6pn
cietoksnis cietoksn
zveltnis zveltn
gultnis gultn
sOtnis sFjtn
lasitava lasit
klausitava klausit
titava tit
sliclotava sliclot
tirgotava tirgot
prava pr5v
alternativa alternat

190

prerogafiva prerogat
oliva oliv
brig5de brigad

magone magon
grdfiene g raf
deputdte deput

tonalitdte tonalit
berete beret

pOce pac
tC-ze t6z

atelj6 atelj
jaunstr5vnieks jaunstr5v

pesimisms pesim
reformisms reform
organisms organ
mehdnisms mehdn
alpinisms alpin
grebums greb
fotoalbums fotoalb
krQ§dobums krD§dob
iedegums iedeg

aizliegums aizlieg
sniegums snieg
noziegums nozieg
augstspriegums augstsprieg
maigums maig
plapigums plapig
ierosindjums ierosin

nocietinajumns nocietin
apdro§indjums apdro§in
ddvin5jums d5vin
integr5lvienddojums integrdlvien5doj
t6lojums t6loj
tiklojums tikloj

operators operat
radiators radiat
inspektors inspekt

grav6t5js grav6t
organiz6tdjs organiz6t

191

ADJECTIVES

Unstemmed

pozitivs

reaktivs
efektivs

perspektivs

subjektivs

selektivs
instinktivs

stivs

abrazivs
dzivs

precizs
di2s

klaj§

apaig

pusapal§

mierigs

zv6rigs
attungs

pirmklasigs
bravOr-igs

nebalsigs

pr5tigs

s5tigs

simtprocent-igs

pel6ks
daudzgadigs

lo6isks

elektrotehnisks

ekonomisks

personisks

metrisks

satirisks

aizv6sturisks
latvisks

maksimdls

Stemmed

pozit

reakt

efekt

perspekt

subjekt

selekt
instinkt

stiv

abraz
dziv

preciz
di2

klaj

apal

pusap

mier

zv6r

attur

pirmkias
bravOr

nebals

pr5t

sat

simtprocent

peIC-k
daudzgad

lo6isk

elektrotehn

ekonom

person
metr
satir
aizvC-stur
latv

maksim

192

sentiment5ls sentiment
tals tal
kv6ls kv6l
ceremonials ceremoni
jauks jauk
lojals lojal
dokumentals dokument
monument5ls monument
Rams fkarn
m6ms m6m
zilacains zilac
16ns 16n
grumbulains grumbul
caurumains caurum
demurains 6emur
tr-iskr5sains triskras
v5rpatains vdrpat
baltmatains baltmat
moderns modern
kluss klus
ass ass
mundrs mundr
5trs ýitr
populdrs popul
elementdrs element
fragment5rs fragment
§aurs §aur
elegants eleg
sarkanbalts; sarkanbalt
erudits erud
sniegots snieg
skujots skuj
krunkains krunk
komplic6ts komplic
apddvindts apddvin
ciets ciet
riskants risk
jauns jaun
r5tns rdtn

193

VERBS

Unstemmed

apsveicindties

pazemindties
cepindties
nocietin&ties
m6t5ties
25vdties

apieties
saboj5ties
sam&cCities
laim6ties
izarstdties
balot6ties
klauv6ties

zagties
izkliegties
blbdities
2uburoties

vairoties
aizQemties
iepatikties

pumpuroties
pl6sties
berzties

grauzties
atgriezties
kompromitbt
boikot6t

protest6t
start6t
riv6t
dzirkstelot
izstarot

stiebrot
pilvarot
sapQot

Stemmed

apsveicin

pazemin
cepin
nocietin
m6ta
2ava

apiet
saboj5
sam6rc6
laim6
izdrst6
balotC-
klauv6

zagt
izkliegt
bl6di
2uburot

vairot
aizpemt
iepatikt

pumpuro
Pl6st
berzt

grauzt
atgriezt
kompromit6
boikot6

protestb
start6
riv6
dzirkstelo
izstaro

stiebro
pilnvaro
sapQo

194

knäbät knäbä

pasargät pasargä
pogät pogä
nejaudät nejaudä
bradät bradä

taujät taujä
drukät drukä

piükät plükä

pacilät pacilät

mät mät
lamät lamä

sasaldinät sasaldin

apdarinät apdarin

sa§ýidrinät saýýidrin
izvingrinät izvingrin

apmulsinät apmulsin
burät burä

dävät dävä

g räbt gräb
iet iet

riet riet
ratificöt ratif icC-
lädät lädä
lodät lodät

spolät SPOIC-
kontrolät kontrolö

sakarsät sakarsö
izolät izolä

smäýät smäýCt
reaäC-t reaýö

spälc. t spälä

apýärbt apäC-rb

sünot süno

atzarot atzaro

SflPot stipo

uzskaQot uzskaQo
väsmot vösmo
burbulot burbulo

simbolizöt simbolizö

195

ADVERBS

Unstemmed

avansveidd

rokrokd

Stemmed

avansveid

rokrok

pusmast5
personigi
zir)karigi
saderigi
pamatigi
draudzigi
krusteniski

zviedriski
tenteriski

stOriski
gareniski
slepeni
§ovasar
kalnup

ritvakar
pusrik§us
pazag§us
braukýus

piecat5
portug5liski
past5vigi
izcili

pirmdien
p6rnruden
vakar
majup
peldus
s6dus
puszvilus
dika

lejd

kOleniski

ViS261igi

pusmast

person

zipkdr

sader

parnat
draudz

krusten

zviedr
tenter

stFir

garen
slepen
§ovasar
kalnup

ritvakar
pusrik
pazag
brauk

piecat
portug
pastäv
izcil

pirmdien

p6rnruden

vakar

mcdj up

peld

s6d

puszvil
dik
lej
kOlen

ViS261

196

APPENDIX 4.3

EVALUATION FORM FOR THE ANALYTICAL
INFORMATION SYSTEM OF PERIODICALS

Code

Please write five (5) complete search statements based on this database:

(Example: On trade agreements between Latvia and Great Britain)

I.

2.

3.

4.

5.

Please truncate your five search statements excluding stopwords as appropriate:

1.

2.

3.

4.

5.

197

APPENDIX 4.4

A set of full, truncated and stemmed queries used in the main
test

F= full; TI= Truncated by the I st user; T2 = Truncated by the 2nd user; S= Stemmed

Par Latvijas eksportu (F)

Eksport* Latv* (Tl)

Latv* eksport* (T2)

latv* eksport* (S)

2. Par jOras ku6niecibas darbibu (F)

ku6niec* jCjr* (Tl)

jCjr* ku6n* darb* (T2)

jQr* kudniec* darbib* (S)

3. Par zvejniecibu jUrci (F)

ziv* zvejn* (Tl)

zvejn* jOr (T2)

zvejniec* jQr* (S)

4. Par ledusskapju rOpniecibu (F)

ledusskap* sald6t* (Tl)

ledusskap* rCipn* (T2)

ledusskap* rCjpniec* (S)

Par Baltijas banku (F)

Baltij* bank* (Tl)

Bait* bank* (T2)

balt* bank* (S)

6. Par Latvijas bibilot6ku materifflo apg5di (F)

latv* biblio* mater* apgdd* (Tl)

latv* biblio* materi5l* apg5d* (T2)

latv* bibliot6k* materi5l* apg5d* (S)

198

7. Labdaribas fondi Latvijä (F)

labdar* fond* Latv* (Tl)

labdarib* fond* Latv* (T2)

labdar* fond* latvij* (S)

8. Likumi, kas regulä kultüras darbu Latvijä (F)

Likum* regul* kultQ* darb* Latv* (Tl)

Likum* kult* darb* Latv* (T2)

likum* regul* kult0r* darb* latvij* (S)

9. Informficijas sist6ma par Latvijas kult0ru (F)

Inform* sist6m* Latv* kultQ* (Tl)

lnformdc* sist* par Latv* kult* (T2)

informdc* sist6m* Iatv* kult0r* (S)

10. Kultüras struktüras Saeimä un Ministru Kabinetä un to sastävs (F)

Kultü* struktür* Saeim* Ministr* Kabin* sastäv* (T1)

Kult* strukt* Saeim* Ministr* kab* sastäv* (T2)

kultür* struktür* saeim* ministr* kabinet* sastäv* (S)

11. Valsts ligtermina krediti (F)

Valsts ilgterm* kred* (T1)

IlgtermiQa kredit* valst* (T2)

valst* ilgterm* kredit* (S)

12. Likumdo§ana par pils6tu pa§vaidibam (F)

Likumd* pils* pa§vald* (Tl)

Likum* pa§valdib* pils6t* (T2)

likumd* pils6t* pa§vald* (S)

13. Klirings un citas noräýinu sistämas (F)

Kliring* norC-ý* sist* (T1)

Kliring* noräý* sistäm* (T2)

kliring* noräýin* sistäm* (S)

14. Infläciias koeficients un pärtikas grozs ASV (F)

Infläc* koefic* pärtika* groz* ASV (T1)

infläcij* koeficient* pärtika* groz* ASV (T2)

infläc* koefic* pärtik* groz* asv (S)

199

15. Rietumeiropas centrAlo banku struktFira (F)

Rietumeirop* centr* bank* strukt* (T1)

Rietumeirop* central* bank* struktOra (T2)

rietumeirop* centr5l* bank strukt0r* (S)

16. Jaunkarelvju (jauniesaukto) pazemo§ana Latvijas armijä (F)

armija-, ärpusreglament* jauniesaukt* Latvi* (T1)

Latv* armij* jaunkareiv* (T2)

jaunkareiv* jauniesaukt* pazem* latv* armij* (S)

17. Arvalstu investicijas Latvijd (F)

Latvija* invesficija* (Tl)

Invest* Latv* (T2)

drvalst* invest* latvij* (S)

18. Krievljas armijas virsnieku uzturö§anäs atlaujas Latvljä (F)

Krievija* (kriev*) armija* virsniek* Latvij* (T1)

Kriev* arm* virsn* uzturä§* Latv* (T2)

kriev* arm* virsniek* uzturC-* atlauj* latvij* (S)

19. SkandAls ar "Parex" bankas garantijAm (F)

Parex bank* garant* Ddnij* (d5ýu) (Tl)

Parex banka (T2)

skanddi* parex bank* garant* (S)

20. ASV Aizsardzibas ministra V. Perija vizite Latvijci (F)

ViIjam* Perijs Latvij* ASV vizit* (apmekIC-*) (Tl)

ASV aizsardz* min* Perij* vizit* Latv* (T2)

asv aizsardz* ministr* v perij* vizit* latvij* (S)

21. Par "Bankas Baltija" finansicilo krizi (F)

Banka* Baltija* finans* Mize (Tl)

Banka* Baltija* finans* krize (T2)

bank* baltij* finansi5l* kriz (S)

22. Par Pilsonibas likumu Latvijci (F)

Pilson* lik* (Tl)

Pilson* lik* Latv* (T2)

pilson* likum* latvij* (S)

200

23. Par Arvalstu attieksmi pret militAro konfliktu 'bedenijA (F)
Arvalstu attieksme milit* konf* Ced* (Tl)

drvalstu attieksme* mil* konfl* Ce6enij5 (T2)

5rvalst* attieksm* milit* konflikt* 6eden* (S)

24. Latvijas Republikas 6. Saeimas kandidätu izvirziäana (F)

6. Saeim* kand* (Tl)

Latv* Republ* 6. Saeimas kandid* izvirzi§ana (T2)

latv* republik* saeim* kandid* izvirzi* (S)

25. Par "Klubs-21" dalibnieku iesaisti§anos politiskajEi darbibA (F)

Klub* 21 dalibn* (T1)

Klubs-21 dalibn* iesaist* polit* darbibd (T2)

klub* dalibn* iesaisfi* politiskaj* darbib* (S)

26. Lata kurss Latvijas un Arvalstu bankcis (F)

Lata kurss Latv* 5rv* bank5s (Tl)

Lat* kurs* (T2)

lat* kurs* latv* drvalst* bank* (S)

27. Starptautisko organizäciju darbiba Latvijä (F)

Starpt* org* darb* Latv* (T1)
Starptautisk* organizäcij* Latvij* (T2)

starptaut* organizäc* darbib* latvij* (S)

28. Pädäjäs nedC-Ias kriminälhronika (F)

krim* hron* pödäjä* ned* (T1)

kriminälhronik* (T2)

pädöj* nedäl* kriminälhron* (S)

29. Latvijas Prezidenta vizite Anglijä (F)

Latv* prezidenta vizite Anglijä (T1)

prezident* Anglij* Latvij* (T2)

latv* prezident* vizit* anglij* (S)

30. Ritdienas Ialka prognoze (F)

laika prog* rit* (T1)
laik* prognoz* (T2)

ritdien* laik* prognoz* (S)

201

31. Par 6. Saeimas vdlUancim Latvij5 (F)

6. Saeim* v6l* (Tl)
Par 6. Saeimas vd* Latv* (T2)

saeim* v6l6* latvij* (S)

32. Ärpusreglamenta attiecibas Latvijas armijä (F)

armij* 5rpusreglament* latvij* (Tl)

arpusregl* attiec* Latv* arm* (T2)

drpusreglament* attiec* latv* armij* (S)

33. LR lömum! un likumi, kas vörst! uz LR lestääanos ES (F)

Eirop* Savieniba (lämum* likum*) (T1)

LR läm* lik* vC-rsti uz LR iestäg* ES (T2)

Ir lömum* likum* vC-rst* Ir iestä* (S)

34. Latvijas banku sistümas attistiba 1992. -1996. (F)

bank* Latvij* (T1)

Latv* banku sist* atfist* 92. -96. (T2)

latv* bank* sist6m* aftist* (S)

35. Valsts un privätie monopoluz9C-mumi Latvijä (F)

monopol* Latvij* valst* privät* (T1)

valsts priv* monopoluzQ* Latv* (T2)

valst* privät* monopoluzQäm* latvij* (S)

36. Par Latvijas sadarbibas ligurniem jUras liet&s ar Eiropas vaistim(F)
Latv* sadarb* lig* jOras liet5s ar Eir* valstim (Tl)

Latvij* sadarb* ligum* jQr* liet* Eirop* valst* (T2)

latv* sadarb* ligum* jOr* liet* eirop* val* (S)

37. Informäcilas centru darbiba biznesa struktüräs (F)

Inf* c* darb* bizn* strukt* (T1)

Informäc* centr* biznes* struktür (T2)

informäc* centr* darbib* biznes* struktür* (S)

38. Latvijas un Igaunijas jfjras robe2as ligumu v6sture (F)

Latv* un Ig* jOras rob* lig* v6st* (Tl)

Latvij* Igaynij* jGra* robe2* ligum* v6stur* (T2)

latv* igaun* jQr* robe2* ligum* v6stur* (S)

202

39. Latvijas un Islandes ekonomiskie un politiskie sakari (F)

Latv* un IsI* ek* un pol* sak* (T1)

Latvij* Island* ekonom* polit* sakar* (T2)

latv* island* ekonom* polit* sakar* (S)

40. Latvijas un Lielbritänijas tirdzniecibas ligumi (F)

Latv* un Lielbr* tirdzn* lig* (T1)

Latvij* Lielbrit* tirdzn* ligum* (T2)

latv* liebrit* tirdzniec* ligum* (S)

41. Izstäde "Datortehnika'96" (F)

Izstäd* Datortehnik* '96 (T1)

lzstd* Datortehnik* (T2)

izstdd* datortehn* (S)

42. Latvijas un Igaunijas jüras robeia (F)

Latvij* un Igaunij* jür* robe2* (T1)

Latv* Igaunij* jür* robe2* (T2)
latv* igaun* jür* robe2* (S)

43. Zlvju pärsträdes uzpömumi Latvijä (F)

Zivj* pärsträd* Latvij* (T1)

Ziv* pärsträd* uzQäm* Latv* (T2)

ziv* pärsträd* uzQämum* latvij* (S)

44. Latvijas karavir! Bosnijä (F)

Latvij* kar* Bosnij* (T1)

Latv* karavir* Bosni* (T2)

latv* karavir* bosnij* (S)

45. Lata un dolära kursu attiecibas (F)

Lat* un dolär* kurs* (T1)

Lat* dol5r* kurs* aftiec* (T2)

lat* dol5r* kurs* aftiec* (S)

46. Späju metodes izmantoäana pirmsskolas vecuma bC-rnu apmäcibä (F)

Spöl* metod* izmant* pirmsskol* vecum* börn* apmäc* (T1)

Mäcib* pirmsskol* späl* (späl*) (T2)

späl* metod* izmant* pirmsskol* vecum* börn* apmäc* (S)

203

47. Anglu valodas pasnieg§anas metodika (F)

Anglu valod* pasnieg* metod* (T1)

metod* angl* valod* (T2)

angl* valod* pasnieg* metodik* (S)

48. Latvijas un Krievijas kriminälkodeksu salidzino§ä analize (F)

Latv* Kriev* kriminälkodeks* salidz* anali* (T1)

kriminälkodeks* Latvij* Krievij* analiz* (T2)

latv* kriev* kriminälkodek* salidzino§* anal* (S)

49. Pusaudiu kriminäläs uzvedibas psiholoýlja (F)

Pusaud* kriminäl* uzve* psiholoäi* (T1)

psiholo* pusaud* uzvedib* kriminäl* (T2)

pusaud2* kriminäl* uzved* psiholoj* (S)

50. Briv5s tirdzniecibas zonas un off-shore kompAnijas (F)

Bdv* ti r* zon* off -shore kompdni* (Tl)

BCiv* tirdzniec* zon* off-shore kompan* (T2)

briv* tirdzniec* zon* off shor* komp5n* (S)

204

