A study of debinding behaviour and microstructural development of sintered Al-Cu-Sn alloy

A new approach is explored to achieve sintered aluminium alloy from metallic powder mixtures without compression or adding Mg. In this approach, mixtures of micron-sized aluminium powder (average size of 2.5 μm) and nano-sized alloying elemental powder of Cu and Sn (less than of 70nm), at appropriate proportions to compositions of Al-6wt%Cu, Al-6wt%Cu-3wt%Sn with and without adhesive binder were prepared by magnetic stirring. Then, the powder mixture was poured into a crucible and heat treated at a temperature of 600°C for 11 hours in inert atmosphere of N2 or Ar. In this paper, we investigate the debinding behavior of loosely packed Al-based powder mixture and the microstructural development and mechanical property sintered parts using a combination of thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffractrometry (XRD) and hardness test.