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Abstract—This brief presents results on a robust linear
quadratic Gaussian (LQG) damping control scheme for improving
the inter-area mode oscillations of power systems. A technique
is also proposed to guarantee minimum-phase/well-damped
transmission zeros by appropriately “squaring” the design plant,
for the purposes of efficient robust recovery. A 7th-order mul-
tiple-input single-output (MISO) centralized controller is designed
for a 16-machine, 5-area power system (138th order) reinforced
with a thyristor-controlled series capacitor (TCSC) to improve
the damping of the critical inter-area modes by employing ap-
propriate global signal measurements. Loop transfer recovery
(LTR) is then applied to reinforce controller robustness in the
case of faults and unknown disturbances. The performance of
the designed system is assessed in the frequency domain and via
appropriate time-domain simulations based upon the nonlinear
model under a variety of scenaria.

Index Terms—Flexible ac transmission systems (FACTS) de-
vices, inter-area oscillations, linear-quadratic Gaussian, loop
transfer recovery, power systems, reduced order systems, robust
control, transmission zeros.

I. INTRODUCTION

DAMPING inter-area oscillations is one of the major
concerns for the electric power system operators [1].

With ever increasing power exchange between utilities over the
existing transmission network, the problem has become even
more challenging. Secure operation of power systems, thus,
requires the application of robust controllers to damp these
inter-area oscillations [2]. Power system stabilizers (PSSs)
are the most commonly used devices for this purpose [3], [4].
Nowadays, flexible ac transmission systems (FACTS) devices
[5] are receiving growing attention as alternatives to trans-
mission system reinforcement which is otherwise restricted
due to economic and environmental considerations. Besides,
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power flow and voltage control, supplementary control is being
incorporated to these FACTS devices to damp inter-area oscil-
lations at relatively small additional cost. The objective of the
control design exercise is to ensure adequate damping under
credible operating conditions utilizing a thyristor controlled
series capacitor (TCSC).

The task of control design is challenging, owing to the com-
plex nature of the interactions in the inter-area modes of the
system. methods received increased attention in power sys-
tems [6]–[10], however, issues with weighting function selec-
tion make the whole design procedure difficult. Linear quadratic
Gaussian (LQG) control approaches using different FACTS de-
vices have been presented for closed-loop identification in [11],
[12], and power system stabilizer (PSS) for small systems in
[13]. Recently, [14] presented work on a power system network
with a TCSC device which partially relates to this brief, how-
ever, it is only applied to a rather small single-input, single-
output (SISO) system and addresses the loop transfer recovery
(LTR) problem from a simulation point of view.

The contribution of this work is the utilization of LQG/LTR
control in a rigorous manner via a proposed minimum-phase
square system augmentation to guarantee a return ratio for
achieving appropriate robustness properties. The study system
focuses on a 16-machine 5-area power network controlled by a
centralized TCSC device using three global (remote) measure-
ments. Extensive emphasis on model reduction simplifies the
structure of the 138th-order equivalent model representation of
a large power network for straightforward model-based control
design, while the system performance objective is tackled via
the LQR minimization index. The effectiveness of the proposed
technique is verified via both frequency domain assessment and
nonlinear time domain simulations for a variety of operational
scenaria. The study illustrates the fact that multiple swing
modes can be damped through a single actuator (FACTS) using
appropriate control design methodology in the multivariable
framework.

II. SYSTEM MODELING AND DESIGN REQUIREMENTS

A. Study System

The damping control design under study consists of a 16-ma-
chine 5-area power system and is depicted in Fig. 1. The diagram
represents an approximate model of the New England (NETS)
and New York (NYPS) interconnected network. More details on
the system description and its characteristics including machine,
excitation system, and network parameters can be found in [8].

1063-6536/$20.00 © 2006 IEEE
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Fig. 1. 16-machine/5-area study power system.

Fig. 2. Small-signal dynamic model of TCSC.

To facilitate the required power transfer, a TCSC device is in-
stalled in the line between buses #18 and #50. The small-signal
dynamic model of the TCSC is shown in Fig. 2 (more details on
this can be found in [15]). Eigen analysis, displayed in Table V,
revealed the presence of four inter-area modes from which the
first three are poorly damped requiring damping control action
(details can be found in [8]). The TCSC controller (centralized)
needs to provide supplementary damping control action to all
critical inter-area modes of interest. The most effective mea-
surements for control were found to be the power-flow signals in
the lines between buses #51–#45 (P51;45), #18–#16 (P18;16),
and #13–#17 (P13;17), respectively, [15] based on the results of
the modal analysis. These are the lines which are carrying the
amount of power from Area 3, Area 4, and the equivalent gen-
eration G13, respectively.

B. Damping Control Design Objectives

The designed controller should provide a minimum level of
damping in the steady-state condition after a major disturbance
in all the key interconnections. The aforementioned minimum
level of damping corresponds to settling of inter-area oscilla-
tions within 10–15 s [1]. Power systems operate over a wide

range of operating conditions and there is often uncertainty as-
sociated with the simulation models used for evaluating perfor-
mance. Under these circumstances the controller should be ro-
bust and subject to having minimal sensitivity to various system
operating conditions and component parameters. Moreover, in-
teractions with high frequency phenomena, turbine-generator
torsional vibration, and other resonances in the ac transmission
network should be minimal.

III. MODEL REDUCTION

Modern control design methods such as LQG or , pro-
duce controllers of order at least equal to the order of the plant,
and usually higher with the incorporation of the required extra
weights. Model order reduction is required to simplify the de-
sign procedure and, thus, the complexity of the final controller.
The reduced plant used in the design must be a good approxima-
tion of the full order equivalent, for appropriate control design.
Hence, the central problem addressed is as follows.

Given a high-order linear model , derive a low-order ap-
proximation such that the infinity norm of their difference

is sufficiently small.
The same applies in the controller reduction approach. Our

designs involved model and controller reduction based upon the
Schur balanced model reduction procedure [16]. The reduction
objective in this case is defined as follows.

Compute the th-order reduced model
from an th-order full model

such that

(1)
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where denotes the Hankel singular values of , i.e., the
square roots of the eigenvalues of their controllability and ob-
servability grammians (2)

(2)

where is the th largest eigenvalue of and , are
the solutions of the following Lyapunov equalities:

(controllability grammian) (3)

(observability grammian) (4)

Note that , , , and are the state space matrices of the full
order model , while , , , and are the state space
matrices of the reduced-order model . In cases involving
large number of state variables (i.e., ), one might have
to employ numerical techniques, e.g., Krylov subspace-based
technique, as the analytical techniques alone will not work.

A. Remarks on Model Reduction for the Power System

A realistic representation of the power system with supple-
mentary damping controllers includes appropriate washout and
signal transmission delay blocks. In this study, these blocks are
chosen as

(washout) (5)

(signal transmission delay) (6)

The designer can adjust the time constants of the previous
filters in accordance with the actual disturbance caused typi-
cally by the adverse modes and measurement noise. However,
performing model reduction on the plant incorporating these
blocks proves insufficient in terms of correct approximation
for all frequency ranges. The approach adopted in this work is,
first, to reduce the order of the plant without the washout

and delays , and then merge the blocks , into the
reduced order equivalent . Note that in this case the order of
the reduced model for design purposes—i.e., —will be
increased due to the extra blocks, albeit the controller design
will have essential information for the washout and signal delay
characteristics.

The same washout and transmission delay blocks are as-
sumed for each output channel, thus, without loss of generality
these can be replaced by a single washout and a single delay
block at the input channel for the design process.

A 9th-order reduced model (7 states from and 2 states
from the product ) was found to be appropriate for con-
trol design. It includes both sufficient information for the main
modes of interest and closed-loop stability. The comparison be-
tween the reduced- and full-order plants is illustrated in Fig. 3,
where the reduced plant is a very good approximation especially
within the frequency range of interest (by definition depicting
the largest singular of the three output one input system transfer
function). Note that the original model was first scaled
using a diagonal gain matrix, i.e., for the de-
sign procedure (matrix is multiplied by the diagonal matrix

Fig. 3. Model reduction results.

before model reduction). This scaling is later incorporated in
the designed controller. This is a usual practice in multivariable
control as it makes model analysis and controller design (weight
selection) much simpler [17].

IV. LQG/LTR DESIGN PRELIMINARIES

The standard description of the plant and output is given by
the following equations:

(7)

(8)

where is the -dimensional state vector, is the -dimen-
sional vector of inputs, and is the -dimensional vector of out-
puts. The plant is assumed to be strictly proper, linear, time-in-
variant, controllable, and observable. Moreover, and are the
process and sensor noise inputs, respectively, assumed uncor-
related white Gaussian noise processes with known covariance
matrices and , respectively [17].

The LQG control problem is then to obtain the optimal con-
trol which minimizes the following quadratic index:

(9)

where can represent either or a linear combination of the
states (note that in practice it is appropriate to penalise certain
output quantities rather than the full states for feasibility pur-
poses). Matrices and are appropriately chosen weighting
parameters such that and . There are
no specific guidelines concerning the form that and should
take, but in most cases they are diagonal matrices.

Next, we give a review of the LQG problem. The solution
to the LQG control problem is prescribed by the separation
principle [18]. This procedure reduces the problem into two
subproblems, independent of each other, and is summarized as
follows:
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• determine the optimal state-feedback control law [linear
quadratic regulator (LQR) theory];

• obtain the estimates of the required states (Kalman filter
theory).

Of course there is no restriction on which subproblem to solve
first, either can be followed as required. However, the procedure
adopted in this brief is first to solve the LQR problem and then
to obtain the state estimates.

1) Thus, the optimal state-feedback control law is given by

(10)

where and is the unique symmetric
positive semidefinite solution of the algebraic Riccati
equation (ARE)

(11)

subject to being stabilizable, , ,
and has no unobservable modes on the imaginary
axis [19].

2) For practical implementation measuring all the states of
the plant is infeasible, thus, an estimator (Kalman filter)
is employed to provide the required estimates. The struc-
ture of the Kalman filter is that of an ordinary state-esti-
mator with

(12)

is the Kalman filter gain minimizing
, given by

(13)

where is the unique symmetric positive semidefinite
solution of the following are:

(14)

subject to being detectable, , , and
has no uncontrollable modes on the imag-

inary axis. In fact, the optimum estimation problem is
dual to the deterministic optimum control problem [19],
[20]. Finally, the optimal control law in the LQG formu-
lation becomes

(15)

It can be shown from the previous list that , , , and are
“tuning parameters” to be adjusted until an acceptable design
arises, although choosing these parameters requires a great deal
of experience and also trial-and-error. An extensive discussion
on this matter can be found in [21], where a number of insights
into choosing the weighting matrices is investigated. A rather
practical approach on selecting weighting matrices is discussed
in [22]. The LQG scheme is depicted in Fig. 4.

A. Loop Transfer Recovery (LTR)

Unfortunately the LQG compensators do not exhibit the good
robustness properties of both the LQR and Kalman filter as

Fig. 4. LQG controller configuration.

demonstrated in [23] and [24]. However, there is a way of ei-
ther designing the Kalman filter such that the LQR robustness
properties are “recovered” at the plant input; or designing the
LQR such that the Kalman filter robustness properties are re-
covered at the plant output. The LTR procedure is extensively
discussed in [24]–[26].

The main points of the procedure are summarized as follows
(with respect to Fig. 4).

1) Recovery at plant input. Design the Kalman filter gain
such that the loop TF (point 1) ap-

proaches (point 3) [24]. The plant
must have at least as many outputs as inputs. In order
for LTR to be applied, fictitious inputs must be included
to make the system square and minimum phase (see
Section V). Recovery can be followed at plant input but
not plant output [18]. This is the approach undertaken
in this brief.

2) Recovery at plant output. Design the LQR gain such
that the loop TF (point 2) approaches

(point 4). In this case, artificial outputs must
be included to make the system square and minimum
phase. However, recovery can be applied only at plant
output and not plant input [18].

In both cases the plant is assumed to be minimum phase for
full recovery. In the case of nonminimum phase systems, the
same procedure can be used but only to partially recover the
required robustness properties for a specific range of frequencies
(only partial recovery is achieved even in the case of minimum
phase systems in a practical implementation). More details on
LTR for nonminimum phase systems can be found in [26] and
[27].

Note that LTR is a virtual design procedure (using fictitious
noise inputs), thus, extra care should be taken when recovering
the required robustness properties. Care should be taken for the
required level of robustness to be achieved, due to the fact that
full recovery would undoubtedly deteriorate the nominal perfor-
mance of the true noise problem [28].

V. MINIMUM-PHASE SQUARE PLANT AUGMENTATION

In this part, we give an outline of a procedure regarding
the minimum-phase augmentation required for appropriate
LTR procedure. This relates to making the plant square, min-
imum-phase and, in addition, prescribe a minimum damping
for the resultant transmission zeros of the square plant.

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on March 2, 2009 at 11:32 from IEEE Xplore.  Restrictions apply.



ZOLOTAS et al.: A STUDY ON LQG/LTR CONTROL FOR DAMPING INTER-AREA OSCILLATIONS IN POWER SYSTEMS 155

Given a transfer matrix

with , find , with , so that

(16)

is minimum-phase. We assume that the realization for is
minimum-phase since is minimum-phase only if is.
Since , we will assume that

. We also assume that has normal rank . The last two
assumptions imply that and are nondegenerate [29].
These assumptions can be relaxed, however, this will greatly
complicate the presentation.

We will make use of the following result which is a simple
adaptation of [30, corollary 7.7].

Lemma 5.1: Suppose that

(17)

with , is minimum-phase and assume that has full
column rank. Then, there exists and ,
where , such that

(18)

is minimum-phase.
We cannot directly use Lemma 5.1 since, in our case,

, and we require . Instead, we proceed as follows. Since
, there exists an orthogonal similarity transforma-

tion such that

(19)

where is nonsingular. It follows that there are at
most finite (system) zeros of which are the zeros of

(20)

(Refer to [29] for a detailed discussion of zeros for linear mul-
tivariable systems.) If has full column rank, we are done,

since we can use Lemma 5.1 to construct the minimum-phase
augmentation

(21)

and then . If does not have full column

rank, we redefine

(22)

and use the next result which is an adaptation of Algorithm RE-
DUCE and [31, Th. 1].

Lemma 5.2: Suppose that has a realization given by
(17) with and assume that has normal (column)
rank . Then there exists

(23)

of normal rank with , which has the same finite zeros
as such that has full rank.

Since is minimum-phase and has full column rank,
we can now use Lemma 5.1 to define a minimum-phase aug-
mentation for and reverse all transformations to obtain the
required minimum-phase augmentation for . The proce-
dure is straightforward but rather long and we, therefore, omit
the details.

VI. CENTRALIZED CONTROL METHOD

A. Solution of the LQR Problem

The design of the optimal control gain was based on
the 9th-order, reduced-order scaled model discussed in
Section III, with state variables . As
mentioned previously, the diagonal scaling matrices are merged
with the controller in the final stage of the design procedure [32].

Since the design is based on the reduced-order system there
is no direct systematic way for choosing the weighting matrices,
thus, an ad hoc procedure was followed in order to achieve the
design specifications. An initial guess for the state-weighting
matrix can be chosen via a participation factor analysis [33]
on , by overall investigating the state participation in each
of the three oscillatory modes (as shown in Table I). The states
participating most in each of the three oscillatory modes are
shown in boldface, with state no. 3 appearing in all three os-
cillatory modes and state no. 6 appearing in the first and second
oscillatory mode. The initial state weighting for states no. 6 and
3 was set to an arbitrary value of 10 (as their participation in-
fluences all three modes), while the state-weighting for the re-
maining states was set to an arbitrary value of 1. The aim was to
initially investigate the effect of pronouncing the state-weight of
states no. 6 and 3 for improving the damping in all three modes
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TABLE I
PARTICIPATION FACTOR ANALYSIS FOR THE REDUCED-ORDER PLANT

TABLE II
EIGENVALUES OF OPEN-LOOP AND “IDEAL” CLOSED-LOOP

FOR REDUCED PLANT INCL. V , V

and subsequently fine-tune all state-weights to get the desired
result.

The control-weighting matrix was fixed to a value of
of the control parameter [34]. The

final values, for and were chosen as

(24)

It is worth mentioning that the two states introduced from the
washout and delay , , and , respectively, do not par-
ticipate in the modes (they are not shown in Table I). This is
due to the way chosen to incorporate the blocks in the reduced
model for the design (there are alternative ways of blending
these blocks in the model, however, the simplest was used in
this brief). Note that for design purposes their state-weight is
set to an arbitrary nominal value of 1.

It can be shown from Table I that the highest participation
factors for mode 2 (at 0.505 Hz) are less pronounced compared
to their participations for the other two modes (mode 1 and mode
3). It was essential to increase the value of the weight of in

in order to improve the required amount of damping for the
second mode, while keeping the damping of the first and third
modes within normal limits by slightly adjusting the weighting
of the remaining states. State has the highest participation
factor for mode 2 and only a secondary (participation) effect
for modes 1 and 3. Thus, it was found that by mainly tuning
this state-weight an appropriate damping ratio can be set for all
modes, which makes the tuning procedure easier. Increasing the
weights for the other main states as shown in Table I provides
very high damping ratios for the first and third mode, while fails
to improve the damping for the second mode. Interestingly, there
is a tradeoff between increasing the damping of the second mode
compared to the damping of the first and third mode.

Table II presents the “ideal” eigenvalues for the closed-loop
based upon the reduced-order system using LQR state feedback,

i.e., . The corresponding LQR gain for the
weights in (24) is

(25)
The inter-area modes are shown in bold typeface in Table II.

B. Kalman Filter Design/Loop Transfer Recovery on the
Reduced-Order Plant

The next step is to design the Kalman estimator to recover the
LQR robust properties at the plant input (point “1” of Fig. 4).
Thus, the reduced plant is made square by adding two extra
“dummy” or “artificial” inputs such that LTR can be applied
as discussed in previous sections. Thus the “amended” plant for
the Kalman filter design is

(26)

(27)

where are the matrices corresponding to the extra fic-
titious inputs. Moreover, while can be chosen
such that is minimum phase and in ad-
dition has no lightly damped zeros (see section on “minimum-
phase square augmentation”). It must be noted that LQG con-
trollers follow the optimal root loci, i.e., controller poles start
from the open-loop poles of the system and approach the open-
loop system zeros as gains increase towards infinity [21], [24].
Thus, any lightly damped open-loop system zeros will impose
difficult constraints on LTR especially for the application of
power oscillations damping improvement. The procedure for
choosing the matrices for fictitious inputs or outputs is discussed
in Section V.

For design completeness, the LQR gain is amended by
adding two zero rows corresponding to the fictitious inputs,
i.e., . Thus, these extra inputs will have no
effect upon the final LQG controller. Following the LTR pro-
cedure suggested in [24], the process and measurement noise
covariances are treated as the following “free tuning”
parameters:

(28)

(29)

where and are noise covariances relative to the nominal
model and any positive definite symmetric matrix. Setting

involves no recovery and this corresponds to the nominal
Kalman filter gain, while for full recovery applies. The
second term on the right-hand side of (28) corresponds to addi-
tional process noise which enters directly to the control input.

C. Application of LTR

Fig. 5 shows the LTR procedure for 0, 1, 5, 10, 100. The
measurement noise covariance , is chosen
quite low in order to depict the characteristics of high quality
sensor equipment. The other values of the tuning parameters for
the Kalman filter LTR design in (28) were set to fixed values of

(30)

The controller used to produce the results in Fig. 5 is the full
9th-order for purposes of appropriate comparison. For the rest
of the design was set to a fixed value of 10, which involves
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Fig. 5. LTR method at plant input for various q parameter values.

TABLE III
KALMAN ESTIMATOR POLES FOR q = 10 (NINTH ORDER) VERSUS OL

TRANSMISSION ZEROS OF C (sI � A ) [B ~B ]

sufficient recovery within the frequency range of interest and a
faster roll-off at high frequencies compared to .

Table III illustrates the location of the transmission zeros
for the Kalman filter compared to the open-loop transmission
zeros of the squared/minimum-phase design system (minimum
damping ratio assigned is 0.45). The Kalman gain vector
is given by (31). Note that the poles in rows 1, 2, 3, and 5
approach the OL transmission zeros (defined to be minimum
phase and well-damped), while the remaining poles in rows 4,
6, and 7 ultimately will move towards as (from
optimal root loci as discussed earlier)

(31)

D. LQG Controller Reduction

The designed LQG controller, with its transfer function given
in (32), is of 9th order equal to the order of the design (reduced)
plant. It is desired to reduce the controller size further, while
satisfying the required damping ratios for the inter-area modes

Fig. 6. Singular value plot of controller approximation.

Fig. 7. Controller reduction error bound.

TABLE IV
CLOSED-LOOP SYSTEM WITH 138TH-ORDER PLANT

AND (I) FULL K(s), (II) REDUCED K(s)

for the full power network model. The reduction process uses
the Schur balanced reduction method as discussed in Section III

(32)
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TABLE V
DAMPING RATIOS FOR PREFAULT AND POST-FAULT CONDITIONS WITH 700 MW FLOW BETWEEN NETS AND NYPS AND CI LOAD MODEL

TABLE VI
DAMPING RATIOS AT DIFFERENT LEVELS OF POWER FLOWS WITH CI LOAD MODEL AND BETWEEN NETS AND NYPS UNDER PREFAULT CONDITION

TABLE VII
DAMPING RATIOS FOR DIFFERENT LOAD CHARACTERISTICS WITH 700 MW FLOW BETWEEN NETS AND NYPS UNDER PREFAULT CONDITION

TABLE VIII
DAMPING RATIOS FOR OUTAGE OF DIFFERENT TIE-LINES WITH 700 MW FLOW BETWEEN NETS AND NYPS AND CI LOAD MODEL

where and are the state space matrices of the re-
duced-order plant for the design . Fig. 6 presents
the singular value plot for a number of reduced size controller
choices compared to the initial 9th-order designed controller. In
addition, Fig. 7 presents the error bound (the infinity norm of the
difference between full and reduced controller) for a number of
reduced size controller choices.

It can be shown from Fig. 6 that the 7th-order controller is
nearly indistinguishable compared to the original 9th order,
while deterioration starts occurring as the order is further re-
duced. This is further justified in Fig. 7, where it can be clearly
shown that after the choice of the 7th-order controller, the error
bound is substantially increasing.

Table IV illustrates the damping of the inter-area modes of the
closed loop using the 9th- and 7th-order controller. Note that in
this case the plant model used is the full order equivalent with
the total washout and signal delay blocks ( states).

VII. PERFORMANCE ASSESSMENT OF DESIGNED SYSTEM

The performance of the designed system is mainly assessed
via eigen-analysis and time domain simulations, as shown in the
results of Tables V–VIII and Figs. 8 and 9, for a variety of oper-
ating conditions. It is evident from the results obtained that the
damping ratios of the inter-area modes in the presence of the

control action are improved substantially compared to the un-
controlled case. The system in this case is the full 138th order
while the controller is the 7th-order equivalent. Table V presents
the eigen-analysis results for open-loop and closed-loop under
both prefault and post-fault conditions. The controlled system
is characterized by satisfactory damping for modes #1, #2, and
#3 (bold-face) in all cases (although it was designed based upon
the post-fault model). Table VI shows the damping ratios and
related frequency of the inter-area modes when the NETS-to-
NYPS power flow varies in the range of 100–900 MW. It is
again verified that the controlled system provides substantial
damping under all conditions. Moreover, the performance of
the controller was further evaluated for different load condi-
tions Table VII, and different line outages scenaria Table VIII.
It is clearly shown that the controller maintains good robustness
properties under probable conditions.

A nonlinear Matlab simulation was executed over a time-
length of 25 s to further demonstrate robust performance of the
controller in the presence of nonlinearities inclusive of possible
saturation. Inter-area oscillations are initiated due to a three-
phase solid fault close to bus #53 on one of the tie-lines con-
necting buses #53–#54. Fig. 8 displays the system dynamic re-
sponse in terms of the relative angular separation of machine
G1 relative to G15 and machines G14, G15, and G16 relative to
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Fig. 8. Machine angles time domain simulation (dashed: uncontrolled, solid: controlled).

Fig. 9. Power flow and controller response time domain simulations (dashed: uncontrolled, solid: controlled).

G13. “Uncontrolled” system characterizes the absence of sup-
plementary damping, while the primary control loop for the
TCSC device continues to sustain the steady-state power-flow
specifications. It is demonstrated that the inter-area oscillations
are successfully damped-out soon after 10 s using control ac-
tion (10–15 s is the allowed range). Fig. 9 illustrates the re-
sponse of the TCSC relative to the power-flow in tie-line be-
tween buses #60–#61. Initially the control response is quite os-
cillatory (though within the allowable limits for a TCSC device)
owing to the nature of the line-outage, while succeeding to re-
cover soon after. The power flow oscillations are settled soon
after 10 s as expected.

VIII. CONCLUSION

This brief presented a robust LQG/LTR design formulation
for improving the damping of power system inter-area oscilla-
tions of an equivalent large power system (138th order) using a
practical controller structure (7th order) via a TCSC (FACTS)
device. The proposed technique of a targeted minimum-phase
square system augmentation provided a framework for LTR
where the designed system sustains good robustness properties
over the required frequency range and despite the variety of
uncertainty/operating conditions in the full nonlinear power
system model. All required oscillatory modes of interest where

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on March 2, 2009 at 11:32 from IEEE Xplore.  Restrictions apply.



160 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 15, NO. 1, JANUARY 2007

sufficiently damped over the range of operating conditions,
demonstrated via eigenvalue analysis and time domain simula-
tion results.
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