A study on automotive drivetrain transient response to ‘clutch abuse’ events

The optimal design of driveline components in passenger vehicles requires detailed knowledge of the effects that load case scenarios introduce into the system. In many cases the latter are difficult to obtain, since a large number of tested cases are required experimentally. Excessive torque loading often occurs during driveline ‘clutch abuse’ events, where the clutch is suddenly engaged and a transient power wave is transmitted across the driveline. This work details the development and validation of a numerical tool, which can be used to simulate such abuse scenarios. The scenario examined consists of a sudden clutch engagement in first gear in a stationary vehicle. The numerical model is validated against experimentally measured torque data, showing fairly good agreement. A set of parametric studies is also carried out using a numerical tool in order to determine the driveline parameters of interest, which affect the generated torque amplitudes.