

This item was submitted to Loughborough University as a PhD thesis by the
author and is made available in the Institutional Repository

(https://dspace.lboro.ac.uk/) under the following Creative Commons Licence
conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

A TEACHABLE SEMI-AUTOMATIC WEB
INFORMATION EXTRACTION SYSTEM BASED

ON EVOLVED REGULAR EXPRESSION
PATTERNS

by

Nor Zainah Siau

A Doctoral Thesis

Submitted in partial fulfilment
of the requirements for the award of

Doctor of Philosophy

of
Loughborough University

October 2013

© by Nor Zainah Siau 2013

i

Acknowledgement

In the name of Allah, the Most Gracious and the Most Merciful.

Alhamdulillah, all praises to Allah for the strengths and His blessing in completing

this thesis.

Firstly, I would like to express my gratitude to the Government of Brunei Darussalam

for funding my PhD studies and looking after my welfare while I was in the UK.

I was blessed to have been supervised by Professor Christopher Hinde and Dr.

Roger Stone for providing me an opportunity to undertake and trust me with this

research and for their continuous support and encouragement. Most importantly, for

steering me to a better direction even when I was not so sure where I was heading.

My sincere thanks to Professor Ray Dawson (my internal reviewer), who showed me

how I could improve my thesis.

I would like to thank my beloved husband, Sharul Tazrajiman Haji Tajuddin, who was

always there for me, not only during my happy times but also my worst times,

especially when he is also studying his own PhD. Also without whom, I never would

have started my PhD and I never could have finished, either. To my beautiful

princesses; Nurul Sa’adatul Nazirah, Nurul Farzana and Nurul Imanina for the love

and endless support whilst I have worked on this thesis, even though they didn’t

understand my struggles. They made me forget my stress and inspired me to keep

on moving.

My special thanks also go to my parents and my parents-in-law in Brunei

Darussalam for all the prayers, all the inspiring words and moral support. Not

forgetting my elder sister, Hjh Asimah for all the help and the rest of the family for

keeping in touch.

My heartfelt appreciation goes to all my friends, who were with me during this

journey, for the friendships and all the support. And finally, the Department of

Computer Science, Loughborough University, for supporting my conference

expenses and the resources.

ii

Abstract

This thesis explores Web Information Extraction (WIE) and how it has been

used in decision making and to support businesses in their daily operations.

The research focuses on a WIE system based on Genetic Programming (GP)

with an extensible model to enhance the automatic extractor. This uses a

human as a teacher to identify and extract relevant information from the semi-

structured HTML webpages. As web pages are dynamic and their structures

differ it is difficult, if not impossible, to design and implement a generic

automatic solution. This is especially true for reasoning and sifting through

large amounts of data. Therefore, to achieve this enhancement, a robust

information extraction system has to be taught rules and the relevant

knowledge to understand different presentations of information.

The combination of textual and structural patterns is one of the many

successful methods in WIE, especially with semi-structured data, without the

need to eliminate noisy data. The key feature of this study is the use of semi-

supervised learning to train the WIE system by providing training data.

Regular expressions, which have been chosen as the pattern matching tool,

are automatically generated based on the training data to provide an

improved grammar and lexicon. This particularly benefits the GP system

which may need to extend its lexicon in the presence of new tokens in the

web pages. These tokens allow the GP method to produce new extraction

patterns for new requirements.

The thesis describes experiments testing the GP method, introducing the

concept of ‘clean grammar’ to avoid unnecessary overheads for fixing the

evolved solution. It also assesses the semi-automatic approach using online

training provider webpages with the task of extracting course title, date,

location and price. To evaluate the effectiveness of this approach, a prototype

system called Teachable Semi-automatic Web Information Extraction (TS-

WIE) is produced. This system is used for pattern generation based on lexical

and structural analysis. There are four significant challenges encountered to

iii

improve the quality of the extracted information and to scale up the extraction.

These are dealing with human assistance, managing the different structures

of web pages, coping with the evolution of Web technologies, and developing

a more efficient GP method to build new extraction patterns.

All four challenges have been overcome and the results show that the TS-

WIE extractor achieved a precision above 95% for both extraction of the

course title and location and an F-Measure of 99% and 80% respectively. The

precision of the date and price is 100% and over 79% and 91% respectively

for the F-Measure. The incremented grammar as a result of TS-WIE system

shows that 75% of the websites tested have significant improvements ranging

from 63% to 100% hits for all the course attributes.

Keywords: TS-WIE, dynamic grammar definition, Genetic Programming,

regular expressions pattern and structural pattern (DOM).

iv

Publications

Conference Publications

Siau, N.Z., Hinde, C.J. and Stone, R.G., “An evolution of a complete
program using XML-based Grammar Definition”, Proceedings of the 4th
International Conference on Evolutionary Computation Theory and
Applications, Barcelona, Spain, Oct. 2012.

Siau, N.Z., Hinde, C.J. and Stone, R.G., “A Stepwise Evolution of
Functions”, Proceedings of the 7th WSEAS International Conference on
COMPUTER ENGINEERING and APPLICATIONS (CEA13), Milan, Italy,
January 9-11, 2013.

v

Table of Contents

Acknowledgement .. i
Abstract .. ii
Publications ... iv

Table of Contents ... v

Abbreviations .. viii
List of Tables .. x

List of Figures .. xii

Chapter 1

Introduction ... 1
1.1 Chapter Overview .. 1
1.2 Research Background and Motivation ... 2

1.3 Research Scope .. 5
1.4 Subject Domain – Case Study.. 6
1.5 Research Aim, Research Questions and Hypothesis ... 7

1.6 Significance of the study .. 10
1.7 Thesis Layout ... 11
1.8 Chapter Summary .. 14

Chapter 2

Review of the Literature .. 15
2.1 Chapter Overview .. 15
2.2 Web Information Extraction (WIE) and its building blocks 16

2.3 WIE to support organisations’ events .. 20
2.4 Semi-automatic WIE .. 22

2.4.1 Introduction ... 22
2.4.2 Wrapper... 25
2.4.3 Extraction Techniques .. 30

2.4.4 Evaluation of Information Extraction Systems ... 39
2.4.5 Challenges of WIE .. 41

2.5 Web Information Extraction Methods ... 42

2.5.1 Introduction ... 42
2.5.2 Extraction using Machine Learning .. 42

2.5.3 Extraction using NLP .. 44
2.5.4 Extraction using Ontology .. 45
2.5.5 Extraction using Genetic Programming .. 46

2.6 Evolving Computer Programs.. 47

2.6.1 Introduction ... 47

2.6.2 Genetic Programming Terminology ... 49
2.6.3 Basic Concepts of Genetic Programming ... 49

2.7 Variation of Genetic Programming .. 56
2.8 Critique .. 59
2.9 Chapter Summary .. 62

vi

Chapter 3

Use of Genetic Programming to Evolve Patterns .. 64
3.1 Chapter Overview .. 64
3.2 The Evolution of Complete Software Systems .. 64

3.2.1 Introduction ... 64
3.2.2 “Sorting program” evolution - The work of Withall 65
3.2.3 “Sorting program” evolution - The work of Xhemali 68
3.2.4 Discussion ... 69
3.2.5 Critique ... 70

3.3 Automatic WIR/WIE System - Xhemali ... 72
3.3.1 Introduction ... 72
3.3.2 Automatic WIR module .. 73
3.3.3 Automatic WIE module .. 73
3.3.4 Discussion ... 82

3.3.5 Critique ... 83
3.4 Chapter Summary .. 84

Chapter 4

Practical Application of GP – Domain 1 .. 86
4.1 Chapter Overview .. 86

4.2 Context ... 87
4.3 Evolutionary System Approach ... 88

4.3.1 Introduction ... 88

4.3.2 Grammar Validation Tool ... 89
4.3.3 Genotype to Phenotype Mapping Method .. 91

4.3.4 Programming Language .. 95
4.3.5 Test Environment .. 97

4.4 A Computer Program Evolution (CoPE) ... 100

4.4.1 Introduction ... 100
4.4.2 Sorting Lists of Integers .. 101

4.4.3 Sorting Lists of Integers (Seeded) ... 115
4.4.4 Reverse-Sort Lists of Integers (Seeded) ... 117

4.4.5 Distance from Mean .. 121
4.4.6 Results Summary .. 124

4.5 Chapter Summary .. 125

Chapter 5

Practical Application of GP – Domain 2 .. 126
5.1 Chapter Overview .. 126

5.2 A Regular Expression Evolution (REGEXEV) ... 127
5.2.1 Introduction ... 127

5.2.2 Web page structure of the Training courses website 127
5.2.3 Regular Expression to define web data pattern... 131
5.2.4 Regular Expression based on Extraction Rules .. 142

5.3 Related Work ... 153
5.4 Chapter Summary .. 155

vii

Chapter 6

Practical Application of Teachable Semi-Automatic WIE ... 157
6.1 Chapter Overview .. 157
6.2 Target Schema ... 158

6.3 Methodology Adopted ... 159
6.4 TS-WIE System Overview .. 163
6.5 TS-WIE System Design and Implementation .. 165

6.5.1 Introduction ... 165
6.5.2 Graphical User Interface ... 168

6.5.3 System Design .. 172
6.6 Experiments and Results Discussion ... 185
6.7 Challenges .. 194
6.8 REGEXEV experiment revisited ... 197
6.9 Chapter Summary .. 200

Chapter 7

Conclusions ... 202
7.1 Chapter Overview .. 202

7.2 Summary of the Key Contributions ... 202
7.3 Limitation ... 206

7.4 Further work... 208

References ... 210

Appendix 1 ... 232

Appendix 2 ... 239

Appendix 3 ... 242

Appendix 4 ... 247

Appendix 5 ... 250

Appendix 6 ... 253

Appendix 7 ... 258

viii

Abbreviations

AJAX - Asynchronous JavaScript and XML

API - Application Programming Interface

ATM - Apricot Training Management

BNF - Backus Normal Form or Backus–Naur Form

CoPE - Computer Programs Evolution

CRM - Customer Relationship Management

DARPA - Defense Advanced Research Projects Agency

DOM - Document Object Model

DNS - Domain Name System

DTD - Document Type Definition

EC - Evolutionary Computation

GP - Genetic Programming

GUI - Graphical User Interface

HTML - HyperText Mark-up Language

IDE - Integrated Development Environment

IE - Information Extraction

IS - Information System

IT - Information Technology

JSON - JavaScript Object Notation

ML - Machine Learning

MUC - Message Understanding Conference

NLP - Natural Language Processing

OBIE - Ontology-Based Information Extraction

PAT tree - Patricia tree or suffix tree

PDF - Adobe Portable Document Format file

PHP - PHP: Hypertext Pre-processor

REGEXEV - Regular Expressions Evolution

TS-WIE - Teachable Semi-automatic Web Information Extraction

system

ix

URL - Uniform Resource Locator

W3C - World Wide Web Consortium

WIE - Web Information Extraction

WIR - Web Information Retrieval

XLS - Microsoft Excel file format (spreadsheet file)

XML - eXtensible Mark-up Language

x

List of Tables

1 The objectives in relation to the methods and research questions …….… 9

2.1 Sample HTML structure to display the data……………………….….… 31

2.2 Basic regular expression notation……………………………….….…… 38

2.3 Confusion Matrix………………………………………………….……. 40

2.4 Meaning of Evolutionary Computation terms for this thesis...…..……… 49

2.5 Example of parents selected from parent population….…………………. 54

2.6 Application of a Uniform crossover operator to the offspring………….. 54

2.7 Application of a mutation operator after the crossover………………….. 54

3.1 GP methods - Withall versus Xhemali……………………………...…… 70

4.1 The characteristics of the experiments carried out in this research…...…. 99

4.2 Comparison of results with the previous works (10 runs) – E1: Withall

et. al. (2003), E2: Xhemali et. al.(2010b), E3: A replication of E1 with

clean grammar, E4: A replication of E3 with multi-objective fitness

function………………………………………………………………….. 112

4.3 Comparison of 100 seeds results between Withall’s works (E1), clean

grammar (E3), multi-objective fitness function (E4) based on generation

cycle and time to achieve fit solutions………………………. 114

4.4 Summary statistics of the generations required to find a solution (100

runs) for Random, Solution Seeded and Solution Mutated……………… 116

4.5 A comparison between the reverse-sort program and the optimised

reverse-sort program using evolved functions (measured in terms of the

number of required generation)……………….…………………………. 119

4.6 The results of the DistanceFromMean………...……………………….. 124

5.1 The number of web pages showing how the specific data is constructed.. 130

5.2 Price representation on web pages………..……………………………… 130

5.3 Title of Course representation on web pages…….…………….………… 130

5.4 Regular Expressions used to define the patterns of the specific piece of

data……………………………………………………………………….. 132

5.5 A Summary of fitness criterion applicable to the extraction attributes.…. 134

5.6 Sample websites to test the algorithm………………..…………………... 144

5.7 Successfully evolved regular expressions to match the data of a course.... 148

xi

5.8 (a-d). Result of matching regular expression to the course attributes

based on the % of hits, best generations, average generations and median

generation applied to each URL. Note that ‘-’ indicates that the attribute

is not available on the web page. The ‘managementtrainingcoursesuk.

co.uk’ attributes (excluding title) comes from a linked webpage; external

to the current webpage of interest. ‘ontargetlearning.co.uk’ and

‘medicalinterviewsuk.co.uk’ locations are labelled using some specific

names of particular places other than the city name e.g. hotel name and

room name, which failed to be recognised by the system……………..… 149

6.1 List of URLs relevant to test and evaluate the TS-WIE System to

improve the quality of the extracted information..……………………….. 158

6.2 The research methodology for the TS-WIE system…………………….... 159

6.3 Link_status value, which is used to indicate the status of the relevant

web pages been retrieved. (Source Xhemali 2010a)……………………...
172

6.4 Example of jQuery conversion to regular expression…………...……… 180

6.5 Example of text conversion to regular expression……….………………. 180

6.6 Results of experiment in % for Title extraction……...…………….….…. 187

6.7 Results of experiment in % for Date extraction………..………….….….. 188

6.8 Results of experiment in % for Location extraction…………..……..…... 190

6.9 Results of experiment in % for Price extraction…………………………. 191

6.10 Average performance in % of the TS-WIE system …………….………... 192

6.11 (a-d) A repeat of REGEX experiment to URLs in Table 4.16 that have

precision of less that 100%. The generation of regular expressions are

based on the incremented extraction rules by TS-WIE system …………. 197

xii

List of Figures

1 Thesis Structure ……………………………..…………………….…… 13

2.1 Performance trade-off relative to specificity and complexity…….…..... 19

2.2 General view of Wrapper Induction System illustrating the four

categories of system’s degree of automation; manual, unsupervised,

supervised and semi-supervised..………………………….…………… 26

2.3 DOM representation of HTML tags……………………………………. 32

2.4 HTML DOM node tree and relationship between nodes….…………... 33

2.5 Example of HTML structure ………………..………………………… 34

2.6 Example of jQuery path ………………………………………………. 35

2.7 (A) The basic GP flow diagram (B) The basic GP Algorithm ……….. 50

3.1
An extract of rules stored in a PERL file to assist the generation of

‘sorting’ program……………………….…………………….………… 66

3.2 An illustration of the formation of a phenome from a genome …...…… 67

3.3 Rules stored in a XML file to assist the generation of a ‘sorting’

program …………………………………………………………...…… 68

3.4 Xhemali’s Automatic WIR/WIE System overview ……………..……. 72

3.5 The XML-based Grammar rules (Xhemali et al. 2010b)……….……… 77

3.6 The database structure used by the automatic WIR/WIE system ……... 79

4.1 Experimental Route showing the progression of the tasks in this

research and the relationship between the components……….……….. 88

4.2 A DTD that defines the structure of XML-based rules with legal

building blocks (elements and attributes). The DTD is declared within

the XML document as an internal subset and it ensures compatibility

with the XML systems……………………………………………..…... 90

4.3 Index of elements in ‘if statement’ rule of type ‘sequence’……………. 93

4.4 Index of elements in ‘statement’ rule of type ‘selection’ ……………… 94

4.5 Time vs memory consumptions by the evolutionary system in PHP….. 96

4.6 Formal specification of sort (source Cooke, J. 2004)………………….. 103

4.7 Simplified fitness function for sort (source Withall 2003)…………….. 104

4.8 Grammar rules are expressed in BNF form. In the actual

implementation, these grammar rules are presented in XML format….. 106

4.9 An extract of XML-based grammar coded in PERL to guide the

transformation of genotype to phenotype………………………………. 107

4.10 Active genes versus padding…………………………………………… 109

xiii

4.11 Pseudo-code of the Genetic Programming to evolve a program……….. 110

4.12 Genome to Phenome Mapping with a new grammar rule (block

statements). This helps the mapper to decide if a particular statement

(if, for or doublefor) has a single true statement or multiple true

statements………………………………………………………………. 111

4.13 A sample of an evolved Sort program generated by the evolutionary

program…………...……………………………………………………. 113

4.14 The extended version of the program statements syntax expressed in

BNF…………………………………………………………………..... 119

4.15 PERL: An Example solution for a swap function embedded in a

Reverse-sort program generated by the evolutionary program……..…. 120

4.16 Specification for DistanceFromMean problem………………………... 121

4.17 Fitness Function for DistanceFromMean problem…………………….. 121

4.18 Program statements syntax expressed in BNF for the

DistanceFromMean problem…………………………………………… 122

4.19 An example of successfully evolved DistanceFromMean program

incorporating a sequence of two loops ………..……………………….. 123

5.1 (a-d) Sample information presentation styles………………………….. 128

5.2 General structure of regular expression pattern..………………………. 140

5.3 Regular Expression Grammar rules are expressed in BNF form. In the

actual implementation, these grammar rules are presented in XML

format………………………………………..…………………………. 141

5.4 An extract of Grammar definitions to evolve regular expressions …..… 143

6.1 System Developing Life Cycle with Prototyping (source Carey 1990)... 160

6.2 TS-WIE system supporting the automatic WIE system………………... 162

6.3 A screenshot of the user interface for selecting the URL to process.…... 167

6.4 Screenshot of http://www.capita-ld.co.uk/courses/Pages/absence-

management-training-courses.aspx web page..
168

6.5 A screenshot of the user interface for making selection and extraction

of the relevant course attributes……………………….……………….. 169

6.6 TS-WIE system in relation to flow of control between processes……... 171

6.7 Accept Training Examples & Extract process of the TS-WIE System ... 178

6.8 Data Model Components of TS-WIE System………………………….. 183

6.9 The system’s response by highlighting all attribute values in pink

that matches the provided examples (in a multi-instance attributes web

page environment)……………………………………………………… 185

6.10 The system’s output after the task is completed. The data is stored first

in the database before it is displayed back on the screen………….…… 185

http://www.capita-ld.co.uk/courses/Pages/absence-management-training-courses.aspx
http://www.capita-ld.co.uk/courses/Pages/absence-management-training-courses.aspx

Pg. 1

Chapter 1

Introduction

1.1 Chapter Overview

There is a growing concern over the quality of the extracted information from

web sources and the adaptability of the extraction systems to various domains

(Seidler & Schil 2011) including the resilience to cope with changes in the web

page (Laender et al. 2002). Several innovations have been put forward to

tackle these issues, ranging from semi-automatic with human intervention, to

fully automatic solutions (Chang et al. 2006).

The World Economic Forum’s Global Agenda Council on Emerging

Technologies (GAC 2012) listed ‘Informatics for adding value to information’

as the top in the list of 10 emerging technologies for 2012. This item

emphasised the issue of information overloading and the information

extraction process as one of the main methods to provide good quality

information. The full statement is stated as:

‘The quantity of information now available to individuals and

organizations is unprecedented in human history, and the rate of

information generation continues to grow exponentially. Yet, the sheer

volume of information is in danger of creating more noise than value,

and as a result limiting its effective use. Innovations in how information is

organized, mined and processed hold the key to filtering out the noise

and using the growing wealth of global information to address emerging

challenges.’

Numerous innovations for information extraction have been proposed and

developed (Eikvil 1999, Sarawagi 2008), such as STALKER (Muslea et al.

1999), IEPAD (Chang et al. 2003), KnowItAll (Etzioni et al. 2005),

TEXTRUNNER (Banko et al. 2007) and ReLIE (Li et al. 2008). Methods are

Pg. 2

proposed to address various challenges ranging from a simple noise filtration

(Meng et al. 2003) to improving the imprecision (Ipeirotis & Jain 2008) to

managing uncertainty (Michelakis et al. 2009). The use of a Regular

Expression Wrapper is one of the dominant techniques used in IE. Manually

crafting regular expressions for WIE, is an error prone and expert-dependent

task (Li et al. 2008). However, there have only been a few works done to

evolve the regular expressions used in this area, such as Cetinkaya (2007),

Barrero et al. (2009) and Xhemali (2010a).

This thesis addresses the topic of Web Information Extraction by manipulating

the extraction patterns with particular emphasis on the Genetic Programming

(GP) system used to generate the regular expressions used to extract the

information from the web. The GP may need to extend its lexicon in the

presence of new tokens in the web pages. No research of this nature has

been found in the literature. This chapter introduces the context of the

research with a brief overview of the research background, including the

background information and the issues related to the justification of this

research. The research aim, objectives and the research questions follow,

which leads to the research hypothesis and the significance of the study. The

structure of this thesis is outlined at the end of this chapter.

1.2 Research Background and Motivation

The World Wide Web (Web) has become the de-facto dynamic repository of

information and has emerged as an important source of information. A report

by Internet Systems Consortium (ISC 2012) shows that the number of hosts

on the Internet has reached slightly over 900 million. There are 131 billion

online searches per month worldwide (Comscore 2010) and 61% of the users

worldwide do product research (IPSOS 2013). The rate of information

generated on the Web continues to grow exponentially and is in danger of

containing ‘more noise than value’ (Martin 2005), and it may become a

serious issue for organisations worldwide to find it, make sense of it, organise

it, and filter it (Allen & Wilson, 2003). A survey by WorldOne Research (2008)

Pg. 3

reports that 62% of professionals in America have spent a large percentage of

time searching information on the web and moreover, according to Feldman

(2004), International Data Corporation estimates that knowledge workers

spend 15–35% of time searching for information, yet are only successful less

than 50% of the time. Substantial time is wasted due to the reliance upon

search tools that could not provide sufficient precision (Hammer et al. 1997b),

thus resulting in a huge waste of organisation’s resources (Feldman 2004).

This shows that information extraction is an essential tool, not only for

individuals but also organisations.

Generally, Information Extraction (IE) is a technology that allows for the

extraction of pieces of relevant information required by the user (NIST 2005).

Information is said to be relevant if it meets the guidelines as to what kind of

information the system should capture and this is normally domain specific

(Eikvil 1999). Originally, traditional IE is based on text analysis using Natural

Language Processing (Cowie & Lehnert 1996) to extract named entities such

as person names and addresses from various sources within millions of

potentially relevant documents. Modern IE technology now has shifted the

focus to a wide variety of multimedia content such as images, audio and video

and non-English language sources.

Web Information Extraction (WIE) is another form of IE but the extraction is

strictly from sources on the Web. Unlike traditional IE, WIE relies on HTML

mark-up tags and other delimiters (Grishman & Sundheim 1996), visual

appearance (Cohen et al. 2003b) and involves huge scale of web sources and

domains (Yates 2007). Given the complex and diverse nature of information

presentation, achieving high accuracy and domain independency is difficult.

Most WIE solutions are developed for specific domains (Banko et al. 2009),

with defined sets of rules or data templates; therefore, a small change to a

web page can cause imprecise results.

WIE, in recent years, has become a challenging field due to the fact that the

information to be extracted is presented in various formats for human view,

mostly in the form of HTML documents (Fiumara 2007; Yang & Zhang 2001),

Pg. 4

in contrast to a language that can be easily understandable by a computer

(Lam et al. 2008). Also the web pages are dynamically structured and, more

importantly, because Web technology is evolving using advanced

technologies such as AJAX, JavaScript embedded files, mobile applications

and other similar features (Flejter 2011).

The above is a typical example of how an information extraction is done

manually, which requires a substantial amount of effort and time (Lang et al.

2012). Using automation, these steps are no longer required. However, this

research is motivated by the fact that the automatic extractor has its own

limitations and is usually far less reliable for accurate tuple extraction (Ji 2010,

2006; Irmak & Suel 2005). Furthermore, there will always be errors and gaps

in the automatically extracted data that only a human can rectify. This is

especially true when it comes to lack of structural information (Cooley et al.

1997), scope and domain change (Dontcheva et al. 2007) and text parsing

from natural language (Martin & Sharef 2011). In order to improve the quality

and the adaptability of the automatic web information extraction towards

managing any changes of HTML webpage structure, it becomes necessary to

investigate the issues and limitations of the existing methods. Factors such as

level of logical structure, nature of the source, domain and language of the

input data determines the quality of the extracted tasks (Pikorski & Yangerber

2013).

The outcome of this analysis of the current state of WIE has led to this

research to investigate WIE in relation to the semi-automatic extraction. Semi-

Consider, for example, a user who wants to search for

information on a ‘JavaScript Training’ course such as the date,

location and the price of the course before he/she can enrol on

the Web. The user has to go to the website of each course

provider, post some queries, extract the relevant information

from the resultant web pages and compare the results manually.

Pg. 5

automatic WIE is a process of extracting information with human involvement

to identify the relevant information (Laender et al. 2002, Adelberg 1998). Well-

presented information is trivial for a human to understand and yet is difficult, if

not impossible for a machine, because a machine depends on pre-encoded

instructions or previously processed instructions and any ambiguity of text or

phrase would be a further difficulty (Lerman et al. 2003). Specifically, the aim

of this research has been to develop and evaluate a Teachable Semi-

automatic WIE (TS-WIE) system (see Chapter 5) for an industrial application.

The main focus is the ability to teach the system how to extract unknown data

patterns that have just been discovered by extending its pattern knowledge

base. To have a huge impact on the performance of this system, the trainer

(user) must have the domain knowledge and page layout understanding for

finding and selecting the relevant data. Trainable WIE has been shown to be

effective to support information extraction aiming to maximise reusability and

minimise maintenance cost (Chang et al. 2006). Trainable systems can be

extended more easily, which requires less domain knowledge. However, the

precision and recall performance normally suffers compared to a handcrafted

system (Feldman et. al. 2002).

1.3 Research Scope

It is important to note that this research concerns the extraction of information

from semi-structured Web sources (HTML documents) from the public

domain. The scope of the research is the extraction of information from

websites of training courses. In the context of this thesis, ‘websites of training

courses’ refers to websites that advertise training courses of some kind within

the UK and ‘web pages of training courses’ refers to the web pages containing

a course(s) offered by websites of training courses. The course information is

chosen here as it is presented in different layouts and various levels of

complexity. This is further discussed in Section 5.2.2.

Pg. 6

The research problem studied in this thesis is based on the daily operation of

a specific organisation which provides complete training solutions to its

clients. This establishes a good basis for the study and analysis of

requirements and specifications within this training courses domain, in the

real-world scenario. The information of interest from this domain is title, date,

location, and cost of the course.

Despite the above constraints, it is the aim of this research to discover the

diversity of the structure and textual features of web pages describing training

courses. The findings from this study contribute to the development of a

solution for an effective WIE. Although it is mainly focusing on the course

training domain, it is also aimed at producing a generic information extraction

solution that is reusable in other domains of similar context or with a different

kind of information of interest.

1.4 Subject Domain – Case Study

This research originally studies and proposes a prototype for an industrial

application, which requires data extraction from multiple public websites. In

this research, the issues and problems are based on the business experience

of Apricot Training Management (ATM). ATM is a non-profit organisation

located in Loughborough, United Kingdom (ATM 2010). ATM’s business is to

provide a complete training solution, which is tailored to the specific needs of

an organisation or an individual. ATM was chosen as the case study for four

reasons:

i. The nature of ATM’s business process falls in the WIE field, which is

gathering information from the Web, without any prior knowledge of the

website’s structure.

ii. A prototype WIR/WIE was proposed and developed by Xhemali (2010a)

for ATM. The system is an automatic system designed to automatically

extract and update the list of courses offered by different training

providers into a database. This is a good base for this research to

introduce semi automation. The WIR/WIE system is briefly discussed in

Pg. 7

Chapter 3. For a detailed discussion of this system, see Xhemali

(2010a).

iii. The extraction rules in the collection that are used to assist the

extraction process are fixed and manually built. This requires manual

and expert updates if new requirements or ‘never been seen’ structure is

involved. Thus this provides an opportunity to extend the extraction to a

much wider perspective.

iv. There is an explosive increase of training courses web pages with

different levels of presentation complexity, which are likely to be

frequently changed or updated.

Despite the promises that the automatic WIR/WIE system can bring to ATM,

maintaining the course information collection effectively requires human effort

because of the limitations posed by this system (problems of the existing

automatic system are detailed in chapter 3). Moreover, with limited lifespan of

some courses, the organisation is now facing the problem of keeping the

course information up-to-date. However, this thesis proposes an extensible

model to enhance the automatic extractor, specifically the quality of extracted

information and wider coverage of information extraction.

1.5 Research Aim, Research Questions and Hypothesis

The research aims to provide an efficient mechanism that learns data patterns

to extract the required information, which is dynamic, from the Web sources at

an acceptable time and human effort by:

1. Developing a solution for WIE of training course data that builds on and

improves solutions derived in earlier research, using Apricot Training

Management (ATM) as the case study.

2. Showing how GP methods can contribute towards enhanced methods

of WIE.

3. Identifying generic benefits from the methods developed that could be

used by a range of other organisations.

Pg. 8

The above aims are achieved with the following objectives:

1. Review the problem requirements of ATM’s training courses for the

purpose of understanding the characteristics of the problem so that

solutions to the problem can be proposed and developed.

2. Carry out a literature review to show that:

a. GP is an appropriate method to develop the required WIE

solution

b. a semi-automatic method requiring expert human input is an

appropriate approach to develop a better WIE solution.

3. To justify the research methodology, review the earlier research by:

a. Mark Withall (2003), to evaluate how his work could be used

as a foundation for developing a suitable WIE software tool.

b. Daniela Xhemali (2010a), to identify areas where her work

could be improved, but that her work would make a good

foundation for an improved WIE solution.

4. Develop and test the software required using a combination of the GP

method suggested by Withall and XML-based grammar suggested by

Xhemali. This is presented in Chapter 4 and Chapter 5.

5. Apply, develop and test a TS-WIE system using the method used in

(4). This also includes regular expression learning given an initial

regular expression and labelled example. The method is presented in

Chapter 6.

6. Evaluate the solution with experiments on web sources from the

chosen domain (based on ATM case study).

7. Review the solution and methods used in ATM case study to identify

generic benefits from the methods used that could potentially be used

by other organisations.

The research intends to answer the following research questions:

RQ1 - What are the common and distinctive design characteristics of

the training course web pages?

RQ2 - What area of the automatic extractor can be enhanced that

would improve the quality of the extracted information from

Pg. 9

“never seen before” web pages?

RQ3 - How does semi automation and improved GP method support

the automatic extractor system?

RQ4 - How much change needs to be made to the extractor to make it

adaptable to other domains with similar or different extraction

attributes?

The research hypothesis to be tested in this thesis is shown below:

“A Teachable Semi-automatic Web Information Extraction System (TS-WIE) with

human supervision helps to achieve high quality extraction and may increase

adaptability to a wider scope of domains compared to an automatic Web Information

Extraction System alone”.

Table 1 below shows the seven objectives that have been developed from the

research questions, together with the method by which each objective will be

attained and the research question that it will answer.

Table 1. The objectives in relation to the methods and the research questions.

OBJECTIVES METHOD RESEARCH QUESTION

#1 – understand the

characteristics of the

training course problem

Requirement Analysis to identify

current issues and problems with

extraction of information from web

documents (using ATM as a case

study for the solution)

What are the common and

distinctive design characteristics

of the training course web

pages?

#2 – review related work

and potential methods for

the solution

Literature review What area of the automatic

extractor can be enhanced that

would improve the quality of the

extracted information from

“never seen before” web pages?
#3 – justify the research

methodology

Literature Review of earlier

research

#4 – Develop and test GP

software

Computer Program Evolution

(CoPE) and Regular Expression

Evolution research (REGEXEV)

How does semi automation and

improved GP method support

the automatic extractor system??

#5 – Develop and test

proposed WIE system

Conduct semi-automatic WIE (TS-

WIE) research

#6 – Evaluate solution Experimentation using ATM data

#7 – Identify potential use

of solution/methods to other

domain/organisations.

Review solution to identify generic

benefits

How much change needs to be

made to the extractor to make it

adaptable to other domains with

similar or different extraction

attributes?

Pg. 10

1.6 Significance of the study

The first Message Understanding Conference (MUC) was initiated in 1987.

The establishment of MUC (MUC1 – MUC7) to stimulate research in this area

shows evidence that IE is an important technology with a promise of improved

quality of extracted information and adaptation to new environment.

An ideal situation for an effective WIE is when all the structures of the HTML

web pages comply with the W3C web page design standard but this is

impossible to realise (Crescenzi & Mecca 1998), especially when it involves

handcrafted pages or modification made by humans with minimal technical

training, compared to those created using scripts (Cohen & McCallum 2003a).

Moreover, (Gibson et al. 2005) estimate that 40%-50% of the web pages

contain irrelevant data and predict that this will increase.

Despite the numerous innovations in WIE, achieving sufficient quality or

accuracy and adaptability remains unfulfilled (McCallum & Jensen 2003).

Authors, such as, Sun et al. (2011), Eikvil (1999) and Chidlovskii et al. (1997)

highlight that some of the key difficulties in data extraction concern the

diversity of the content, sparsely related data and page layout. A recent study

by Flejter (2011) shows that although modern WIE systems in general are

capable of handling a diverse complexity of web document, new and rapid

development in Web technologies such as AJAX, CSS and JavaScript,

continues to bring new challenges that need to be handled. Flejter makes the

point that out of 336 challenges, only 195 have been addressed by over 40

information extraction systems. This shows that the area of information

extraction is still evolving.

This study is significant in two ways; academically and practically. From the

academic perspective, this study underlines the unique characteristics of

semi-structured web pages for the benefit of modelling the web information

extraction algorithm, the application of simple extraction techniques;

combining textual and structural learning method, and uncovering the benefit

of evolved extraction patterns in this area.

Pg. 11

From the practical perspective, this study provides a motivation for system

implementers to consider semi-automation as humans still outperform

machines in picking out relevant information from a mass of data. Moreover,

to sustain the quality of the extracted information and the diversity of the

domain, the information extraction system needs to be taught about new

discoveries or new knowledge.

Evidence from this study shows that not only does it provide a solution for the

organisations which provide customised complete training solutions, but it is

also applicable to other business nature, for example product listing and

books retail, with provision that information presentation, unlike newswire or

blogs, has some kind of structure. Furthermore, only minimal adjustment is

necessary to suit the requirements. Finally, the study aims to make

recommendations based on the experimental evidence for further research.

1.7 Thesis Layout

The thesis consists of 6 chapters including this introductory chapter. An

overview of the remaining five chapters is as follows:

Chapter 2 presents the literature review on the current development issues

and breakthroughs in the discipline of Web Information Extraction (WIE),

including artificial intelligence techniques to solve optimisation problems. The

domain of optimisation problems is discussed from a general perspective

before focusing on the design domain, particularly on the evolution of regular

expressions to capture the required information. Finally, the research gap is

presented leading to the formation of the objectives, research questions and

hypothesis.

Chapter 3 describes the earlier work relevant to the development of the TS-

WIE system. Before developing the TS-WIE system, it is essential to study

ATM’s automatic WIE system to identify its purpose, requirements and

Pg. 12

features. This study aims to justify this research by highlighting issues and

problems of this automatic system. Prior work of the evolution of complete

software systems, which inspired this research, is also presented.

Chapter 4 (Phase 1) discusses the work on the evolution of a complete

computer program with the majority of the works involving experiments to find

a suitable solution to the problems and issues discussed in chapter 2 and 3.

Based on this work, two papers have been published in Proceedings of the 4th

International Conference on Evolutionary Computation Theory and

Applications, Spain, October 2012 and in Proceedings of the 7th WSEAS

International Conference on Computer Engineering and Applications, Italy,

January 2013. This work is then followed by the evolution of regular

expressions.

Chapter 5 presents the application of similar method to Regular Expression

domain. The works in both Chapter 4 and this chapter are the initial works

which are necessary to assist the earlier development of the TS-WIE system,

specifically optimising the evolution of regular expression patterns used for

the extraction.

Chapter 6 (Phase 2) introduces the TS-WIE system’s framework and the

development. This system requires involvement of a human user to provide

assistance in identifying the relevant information presented on a web page.

The interaction provides the opportunity for the system to learn and acquire

new knowledge for better Information Extraction coverage. The design of the

user interface is also included. A method to evaluate the TS-WIE system’s

effectiveness (in terms of its recall, precision and F-measure rates) is also

outlined. Finally, the experiment on the regular expression evolution technique

is repeated and the results of before and after grammar changes are

compared to find out the impact of the incremental grammar by the TS-WIE

system to the performance.

Pg. 13

The final chapter, Chapter 7, draws the conclusion with the summary of the

research findings and highlights the significant contribution of the research to

the WIE field, the limitations of the research and the proposal of some areas

for further study.

Figure 1. Thesis Structure

Pg. 14

1.8 Chapter Summary

The growing complexity of the Web demands Information Extraction tools

which are able to handle the so-called information overload. The Web

Information Extraction (WIE) evolved a regular expression to automate the

extraction tasks and offers the potential of a significant improvement in the

quality of extraction. However, for this WIE to be successful on new discovery

of unseen data structure, its knowledge base containing extraction rules

needs to be continuously updated.

This chapter provides a brief introduction to the research including the

research background, research aims and questions, the research

contributions and the case study. The research provides a system to solve the

issues of WIE faced by the course training domain in general and specifically

by Apricot Training Management. In order to understand how improvement

can be made to the quality of information extracted, it is important to analyse

the design of the existing automatic WIE system including the design of its

database. The result of this research is a generic, pluggable system called the

TS-WIE system, where human intervention plays an important role in

providing the set of training examples. The next chapter reviews the

background literature of WIE and Genetic Programming in more detail.

Pg. 15

Chapter 2

Review of the Literature

2.1 Chapter Overview

This chapter provides an overview of the related literature for the scope of

work studied in this thesis. The objective of this chapter is to investigate the

theoretical potential of GP towards enhanced methods of WIE solution and

the usefulness of semi-automation to enhance the automatic approach. There

are two areas in focus; Web Information Extraction and the use of

Evolutionary Computation (EC) to evolve patterns for the extraction process.

The first part of this chapter generally discusses the origins of IE and how it

has evolved over the years and in particular the important area of Web

Information Extraction. Various extraction tools used for extracting information

from the Web were investigated including wrappers and data extraction rules.

The second part of this chapter discusses the relevant, current practices in

EC, specifically Genetic Programming (GP) with particular attention to some

new methods that extend the earlier standard GP. GP often provides a

combination of features and rules, which require a knowledgeable

programmer, and are sometimes even difficult for the programmer to think of

and write. Moreover, this combination appears to effectively produce better

results (Gordon et al. 2006). However, if this method is not handled carefully

with proper control of features and parameters, especially if the search space

is huge, it could become destructive and cause the algorithm to have an

exponential time complexity (Poli & Langdon 2007). This section emphasises

how GP can be used to evolve computer programs to solve problems and to

generate regular expressions for data extraction, justifying the second thesis

objective, i.e., why this research considers GP an appropriate method to

develop the required WIE solution.

This chapter is closed by the concluding remarks including the summary and

conclusion.

Pg. 16

2.2 Web Information Extraction (WIE) and its building blocks

There is a great deal of discussion in the literature to suggest that individuals

and organisations are increasingly relying on WIE to support the decision-

making activities and meet the organisation’s objectives respectively (e.g.

Ferrara et al. 2013; Sunny & Sundar 2013; GAC 2012; Kenjibriel & Akbar

2012; Krishnamurthy et al. 2008; Sarawagi 2008; Baumgartner et al. 2005;

Kuhlins & Tredwel 2002; Ciravegna, 2001; Andersen et al. 1992 and Porter &

Millar 1985). A WIE system is typically implemented to provide key

information to support the organisation’s processes and reduce the

employees’ time as a result of inefficient searches (Gao et al. 2013; Sarawagi

2008; Bhide et al. 2007; Zhu et al. 2007; Popowich 2005). Moreover, WIE

(HTML title extraction) also provides results that are useful to enhance

Information Retrieval (Xue et al. 2007; Zhang et al. 2002; Cutler et al. 1997).

The main task for WIE is always the question of how to identify and gather

information from a semi-structured or unstructured collection containing

potentially relevant information and transform it into a suitable form that can

be automatically queried by other applications in future. The four phases of

WIE described below are the consolidation of commonly established

processes described in the literature :

1. Collect web data including web content, page structure and application

data. In this thesis, as in several other works in the field of IE, crawlers

are used to retrieve the relevant documents from the intended domain.

More specifically, a customised crawler is used rather than Google

search engine and this will be presented in Chapter 3.

2. Pre-process web data to transform it to a format compatible with the

analysis technique, such as cleaning data abnormalities, filtering ‘noise’

and correcting missing links.

3. Analyse web data to define patterns and statistical correlations

between web pages and user groups using techniques such as data

mining and machine learning.

Pg. 17

4. Recommendations presented to the user based on the results of the

previous analysis.

Looking at the pioneering works of IE - the predecessor of WIE, IE was first

initiated by Schank in 1975 for Natural Language Processing (Schank 1975).

In the mid-1980s, the first commercialised IE system called JASPER was

produced (Andersen et al. 1992). JASPER was developed by the Carnegie

Group for Reuters Ltd. providing the earnings and dividends information

extracted from company press releases published by PR Newswire, in a form

of Reuter’s news story for use by financial traders.

To promote research interests and evaluate the state-of-the-art in IE, the first

Message Understanding Conference (MUC-1) was initiated in 1987 with

support from DARPA. MUC has become the major reference source in the IE

field (Appelt 1999) and up-to-this-date, the conference has produced

proceedings, using training in the domain of airline crashes and events

launches. Early extraction tasks were focused around named entities

identification from natural language text such as people and company names

and their relationship (Sarawagi 2008). Communities’ requirements are

manifold such as shopping comparison and financial applications, and now IE

techniques have evolved considerably to address these requirements and

adapt to different topic domains. The massive growth of these

information/documents on the Web and its impact on the search time and

effort, in the late 1990s, work on Web Information Extraction (WIE) has

attracted some interests from researchers.

This thesis is concerned with the task of WIE from the web pages that are

rendered for human view. Most of the web pages today are developed as

Hyper-Text Markup Language (HTML) documents. The categories of HTML

pages are discussed below.

Researchers have categorised the contents of these pages into three main

types, which are structured data, semi-structured data and unstructured data.

However, the definitions of this terminology are slightly inconsistent (Chang et

Pg. 18

al. 2006), therefore, in the context of this research, the following are

applicable:

• Structured data. Some researchers define structured data as data

which has some kind of structure/format, or schema, normally from

structured data sources e.g. databases (e.g. Lam et al. 2008; Fiumara

2007; Arasu & Garcia-Molina 2003). Examples of these data are on-line

stock quotes and weather reports.

• Unstructured data is defined as free texts, which have no data model

(Chang et al. 2006; Fiumara 2007). Sources include blogs, news articles

and memos.

• Semi-structured data. Researchers like Lam et al. (2008), Fiumara

(2007) and Chang et al. (2006) define semi-structured data as anything

in between structured and unstructured data where data are usually

expressed in tables, itemised or enumerated lists. A large number of

HTML-based web pages are categorised as semi-structured. This is

because the data expressed in those pages do not conform to any

formal structure. Data are rendered using implicit underlying HTML tags

because data are usually mixed with tags and layout formatting. This

thesis explores the semi-structured data presentation, which contributes

to the choice of methods for the WIE solution.

One of the most challenging and interesting tasks in WIE is identifying all the

important information out of all the irrelevant ones. Researchers like

Abolhassani et al. (2003) and Kaiser & Miksch (2005) made a point that the

design of WIE system will affect the quality of the extraction and the

information identification algorithm must be: (1) accurate – it should be able to

identify the same information accurately even though it is presented in

different forms; (2) reliable – it should produce the same result without being

highly dependent on specific hardware and software (e.g. browser or

platform); (3) adaptable – it should be able to tolerate changes in different

environments (e.g. changes of web page structure, changes of information

position).

Pg. 19

Figure 2.1. Performance trade-off relative to specificity and complexity (source

Cunningham, 2005).

Figure 2.1 shows the relation between specificity and complexity of an IE in

terms of achieving quality information. High accuracy can be achieved if the

data to be extracted are complex but the domain is specific. Or, if it involves

extraction from open domain and the data to be extracted are simple, then a

more general algorithm is needed. The simplest data to extract is the textual

strings from natural language in a domain specific environment, such as

names of persons or organisations (Normand et al. 2009; Alfonseca et al.

2006). More complex scenarios involve entities, entity relations and events

extraction with ambiguous records in free text (Pikorski & Yangarber 2013;

Hobbs & Riloff 2010) such as capturing who, what, where, when and why

from the terrorist acts article in the social websites.

It would be much easier to design an IE system with prior knowledge of the

web pages structures or have a special pre-arrangement of the kind of

information that will be provided, which could be accessed through protected

links such as API or web services, as in the case of GoCompare.com1 and

some other similar comparison websites (ShopBots). If the company that they

are dealing with decided to make some changes to the document layout or

content it would have less effect on these comparison websites than it would

1
 A financial services comparison website that quotes insurance features and prices from its registered

suppliers.

Pg. 20

on individuals.

In an ideal situation, an automatic extractor could solve this problem and work

effectively if the data are annotated with adequate labels. However, due to the

absence of standards in the structure of the web pages and limited

appropriate resources (tools and experts) that can be used in labelling

training data, it is unlikely that an automatic extractor could function properly

every time. Therefore, the focus of this thesis lies in the extraction from the

web, investigating how an automatic extractor can gain advantage from

human supervision while keeping this supervision to a minimum.

The scope of this thesis concerns a case study of WIE for a service-providing

(course training solution) organisation, where the extracted information is

essential to support the business events.

2.3 WIE to support organisations’ events

Growing competition forces organisations, especially those dealing with

customers such as financial institutions, insurance companies, and ATM in

particular, to acquire valuable information in a timely manner. This means

delivering on-target solutions that achieve satisfaction to the customers’

expectations. The value of information varies from one organisation to

another, ranging from information related to customer profiles to competitors’

activities. WIE is not only a necessary part of supporting business but is also

necessary to survive in the global industry; for example the ability of a

company selling products to acquire and monitor the products pricing of a rival

company will provide an opportunity to offer a competitive price or price

comparison for marketing purposes.

Knowledge workers are estimated to spend around 15–35% of time searching

for information, but more than 50% of the time they are unsuccessful

(Feldman 2004). Search engines like Yahoo!, Google and Bing are normally

used to facilitate information searches on the Internet. Based on data

Pg. 21

released by comScore, over 66% of searches conducted globally during

December 2009 were on Google, and in September 2010 in the UK alone,

43.1 million people conducted at least one search per day. According to the

2013 survey by the Office for National Statistics (2013) about 31% of adults

(aged 16+) in the UK searched the internet for information on education and

course training, which sees an increase of 6% from 2005. This shows that this

domain is still in demand. Based on this statistic, it is also noted that a higher

level use of the internet is finding information about goods and services after

the activity of sending or reading email. Faced with the problem of information

overload, using these search engines to find and access the desired training

courses is too time consuming. For example, searching ‘course training UK’ in

Google would yield about 551 million links, Bing returns more than 95 million

results at time of writing. Going through each web page, one after another and

extracting the relevant course information would put a heavy burden on the

user.

WIE is essential for organisations due to the following factors, which demand

the efficiency and effectiveness of the WIE systems:

1. Information value.

Data obesity or data explosion has appeared to be one of the problems

faced by individuals and organisations (Martin 2005). However, WIE

provides a strategy to shed the undesirable from the desired data. The

right information is useful (i) to support decision-making activities. This

may include product comparison/information/review and customer reviews

which can be used for comparison shopping (Etzioni et al. 1997) or

overview of trends; (ii) as a source of competitive advantage. The Web

has provided an opportunity for individuals or organisations to accumulate

data from many different sources and use it effectively to gain competitive

advantage such as customer reviews for market forecast.

2. Speedy access of information.

WIE provides communities/users with direct access to the required

Pg. 22

information in a structured manner without the need to scan/read

through/analyse the webpages to find the information, thus saving a lot of

time and effort. It is seriously important that data, especially from the web

pages that are frequently updated, for example stock activity and news,

are presented to the user in a timely manner.

3. Populate database.

WIE makes it possible to capture information from various web sources,

transform them into the desired format and integrate them in a single

database or XML etc., which can be queried or used for analytical or

statistical purposes in the future.

2.4 Semi-automatic WIE

2.4.1 Introduction

There are several excellent survey articles on the many approaches to WIE

systems like Ferrara (2013), Sarawagi (2008), Chang et al. (2006) and

Laender et al. (2002), which include the wrappers generation classification,

the different categories of extraction tasks, the degree of automation and the

types of extraction tools. Much of the recent activities on WIE have been

stimulated by web page segmentation, which separates boilerplate

(advertisements and navigations) to concentrate the extraction from the main

content called content extraction (e.g. Lang et al. 2012; Kohlschuetter et al.

2010), thus increasing computational efficiency, open-domain (e.g. Cimiano

& Volkar 2005) and web services (e.g. Seidler & Schil 2011; Metke-Jimenez

et al. 2011).

WIE systems generally use extraction rules or patterns (Stevenson &

Greenwood 2006), which can be hand crafted or automatically learned from

training examples annotated by a human expert. This section reviews the

semi-automation of WIE methods. The semi-automatic WIE explores the

structure, keywords or layout of the parsed HTML web pages, with provision

Pg. 23

of training data set. This type of WIE produces a set of extraction patterns or

rules that determine what information to extract and how to extract them from

the web page based on input from a user collected from a GUI. In this thesis,

the patterns are generated based on the grammar definition following the

syntax of a specific language (regular expression). The regular expressions

are widely used in many programming languages and applications. Explicit

research works on solving regular expressions matching problems include

Brazma and Cerans (1993) who have considered the efficient identification of

regular expression from good examples, and Belazzougui and Raffinot (2013)

who have studied the approximate regular expression matching with multi-

strings. Another successful application is by Svingen (1998) using GP to

evolve regular expressions to recognize several Tomita (1982) regular

languages.

Several methodological innovations have helped make semi-automatic WIE

possible and practical. The system built by Ashish and Knoblock (1997) uses

lexical information (font size), HTML tags, and indentation to guess the

structure of a web page. It allows user interactivity to identify for the correct

keywords. In 1998, a system called NoDoSE (Adelberg 1998) was developed

which attempts to infer the format of the user input for various attributes,

relying on the consistent ordering of these attributes in a record. The user is

required to decompose the files into a hierarchy of records or lists, identify the

regions of interest and specify their semantics.

SoftMealy (Hsu & Dung 1998) assumes that all training examples are

available. The wrappers are represented as finite-state transducers. Liu et al.

(2000) proposes an extraction system called XWrap. When the user is

presented with the system’s predictions of the correct data, he/she may

interactively teach the system by highlighting the missed tokens or delete the

incorrectly extracted tokens. One distinct feature of the user involvement from

the previous system is that the user can correct the errors in the system-

generated XML-template that describes the structure of the page.

A system which aims to extract data from nested tables requiring the user

Pg. 24

involvement to specify a small set of examples is called DEByE (Laender et

al. 2002). The key novelty of this approach is that it provides flexibility for the

user to specify the examples according to his/her interest. The extraction

algorithm of DEByE relies on heuristics based on the position of attributes in

HTML tags. Estievenart et al. (2006) introduces Retrozilla, a tool to extract

information from a popular on-line movie website (imdb.com). The user of this

system is required to select the intended value and provides its label. If

unwanted data are also selected by the system, the rule refinement can be

done repetitively with the user identifying these unwanted data. A new

attempt to automate wrapper generation in a dynamic way is by Jundt and

Keulen (2013). They use XPath ranking for finding the attributes of interest

based on a small set of examples provided by the user from a number of

detailed web pages in bookstores domain.

According to Crespo et al. (1994), a semi-automation approach typically

requires some sort of learning mechanism capable of handling both document

structural evolution and varying sets of documents. They further define the

three phases involved in this learning based approach; training, processing

and feedback.

Training Phase: In the training phase, the user provides some annotated

training examples (positive and/or negative examples). A positive example is

a piece of text known to be correct, and a negative example is the opposite.

Training examples determine the characteristics of the attributes to be

extracted and the system normally learns from these positive examples to

produce the extraction rules.

Processing Phase: the algorithm takes the examples and induces the

extraction rules (or patterns). These rules are then applied to new inputs. The

data that matches with the rules are presented to the user for necessary

filtration.

Feedback Phase: the user then trains the system by identifying any incorrect

results presented to him/her (called negative examples). This process guides

the system to learn the changes and performs a stepwise refinement of the

generated rules to improve the quality of the patterns it generated. The

Pg. 25

processing and feedback phases are repeated until a satisfactory

performance is achieved.

2.4.2 Wrapper

In a traditional approach, a human expert is needed to handcraft a wrapper

using specialised programming languages for each website to recognise the

information of interest among other uninteresting information, such as markup

tags and transfer it to some format such as database, spreadsheet, XML. A

wrapper, in its simplest definition, is a generated or coded program used for

extracting important information from a particular source.

In the context of WIE, a Web wrapper is defined by Ferrara et al. (2013) as a

procedure (one or different classes of algorithms) used to find data from the

Web as required by a human user, extract them and transform them into a

relational form for further processing. Because the ‘wrapper’ used in the

extraction task in this research is specifically represented in a form of regular

expression pattern, this ‘wrapper’ is referred to as ‘regular expression pattern’.

A wrapper normally relies on a set of extraction rules to perform a data pattern

matching and is normally created for each information resource. Wrapper

generation normally involves four processes; retrieving training pages,

generalising of the extracting rules, extracting data and transforming output

into structured data. Generalising rules is done by either replacing tokens with

general token feature (e.g. wildcard) or dropping the redundant tokens

(Sarawagi 2008). One of the drawbacks of using a wrapper approach is when

the layout of the web page changes, which it is not programmed to handle,

and inaccurate results may be produced.

In an attempt to overcome the shortfalls of manual crafting of a wrapper,

inducing a wrapper has been extensively studied and been put forward in the

literature e.g. prefix-suffix pair (Kushmerick et al. 1997), finite-state automaton

(Muslea et al. 1998), XPath (Anton 2005; Myllymaki & Jackson 2002), Elog

rules (Baumgartner et al. 2001) and XML (Liu et al. 2000). Chang et al. (2006)

Pg. 26

surveyed these works and categorised them into four classes according to the

degree of automation; manual, unsupervised, supervised and semi-

supervised as shown in Figure 2.2. Eikvil (1999) provided extensive

information on wrappers and wrapper generation.

Figure 2.2 General view of Wrapper Induction System illustrating the four categories

of system’s degree of automation; manual, unsupervised, supervised and semi-

supervised (source Chang et al. 2006).

Manual Wrapper – This type of wrapper generation merely supports the user

to handcraft the specific wrapper. TSIMMIS by Hammer et al (1997) is one of

the first systems to implement this method. This system takes input from a

programmer using a sequence of commands consisting of the data location

and how the data are to be put into objects and in return, the system outputs

the desired information. Unlike TSIMMIS, WEB-OQL by Arocena &

Mendelzon (1998) is used as a query language and it provides hypertree

(labelled ordered trees with three attributes; Tag, Source and Text) for semi-

structured data such as a relational table and a directory hierarchy. This

system requires a ‘select-from-where’ query format from the user (a

programmer) to extract the required information. In the same year Minerva

was proposed by Crescenzi & Mecca (1998). This system uses a declarative

grammar-based approach incorporating procedural programming features for

generating wrappers. The grammar is defined in EBNF containing a set of

productions to define the structure for each source document. A different

approach was introduced through W4F by Saiiuguet & Azavant (2001). W4F

is developed as a Java toolkit to build a wrapper and it consists of three

Pg. 27

layers; retrieval, extraction and mapping. Extraction rules are expressed

manually using a HTML parse tree path to locate a specific data.

Although these systems can achieve accurate extraction, writing the wrapper

requires the skill of the knowledge engineer, i.e., a person, with a substantial

programming background and a good understanding of extraction rules or is

linguistically competent to develop robust extraction rules by hand (Wong

2012). However, creating rules by hand is difficult and time-consuming (Eikvil

1999; Riloff 1996) and sometimes incomplete, inconsistent, or even partly

erroneous (Suwa et al. 1982). Riloff estimated that approximately 1500

person-hours of effort are required to write the dictionary used for the data

extraction (Riloff 1993). Crescenzi et al. (2001) added that this difficulty not

only concerns the wrappers generation, but also their maintenance.

Performance of this manual system depends highly on the competence of the

experts.

Unsupervised Wrapper - To reduce the burden of writing the wrappers an

unsupervised extractor is introduced. This is an automatic extractor to

discover the data of interest and similar data items in the same page or

multiple pages of a single website or multiple websites. An example of a

system implementing this approach is RoadRunner (Crescenzi et al. 2001).

RoadRunner uses the ACME matching technique to compare HTML pages

and, based on their similarities and differences, a wrapper is generated.

EXALG (Arasu & Garcia-Molina 2003), like RoadRunner, is a page-level

extractor based on template and schema deduction using multiple web pages

from the same website.

The unsupervised approach above uses a number of general assumptions

about the data of interest to increase the extraction rate. Although this type of

extractor does not require human involvement, it does not always extract

accurate information. This is because they are highly dependent on well-

formed documents and because it is lacking in precision, the extracted data

might need other applications such as data cleansing and data integration,

before it is usable by the intended application. Liu et al. (2003) demonstrated

Pg. 28

that these methods produce poor results in relation to this perspective.

Supervised Wrapper – This wrapper generator is also known as Wrapper

Induction (WI). Many WI approaches use Machine Learning to learn a

generalised pattern to build extraction rules. Systems based on wrapper

induction allow the provision of positive and/or negative examples through the

system’s GUI. This kind of supervised system is largely dependent on the

user, who should be the domain expert to identify and label examples that will

be representative of the actual setting. Chang et al. (2006) made a point that

supervised approaches extend well to non-template pages, provided that

users choose proper features for the extraction rules.

A system called WHISK was introduced by Soderland (1999). This system

can handle extractions from a wide variety of documents ranging from

structured to unstructured. It uses a syntactic analyser and a semantic tagger

to learn text extraction rules automatically. However, a user is required to

provide positive training instances to guide the creation of extraction rules and

test the performance of the proposed rules. Another system called STALKER

was developed by Muslea et al. (1999). This system performs extraction from

a wide range of semi-structured documents by describing the structure of the

page in a tree-like structure called embedded catalog tree (EC tree),

consisting of leaves (attributes) and nodes (tuples). The user is required to

provide a set of training examples, each containing a sequence of a token and

an index indicating the start or end of this token. An interesting approach to

automate the labelling process, thus reduced human involvement was

introduced by Kushmerick (2000). He developed a system called WIEN which

is successful on ordered attributes in a data record, especially nested data.

However, this automation restricts the capability of the system to handle

missing attributes, nested structures and variation of attributes, thus

adaptability to the real web environment is difficult to achieve.

Based on the literature, inductive learning poses several problems. The

training set may not fully represent the template of all pages, thus poor

performance can be seen on different template pages (Crescenzi et al. 2001).

Pg. 29

An attempt to solve this problem is by labelling more pages. However, manual

labelling of data are labour intensive and time consuming (Zhai & Liu 2005).

Zhai & Liu also pointed that another problem is that wrapper is data source

specific. This means any changes to the source may cause the wrapper to be

unusable. In this case, the same labelling process needs to be repeated for

data, which has a different pattern, thus maintenance is difficult.

Recent systems (hybrid systems) introduce learning-based wrapper

generation, such as IEPAD and OLERA, to try to reduce this extensive data

labelling. Unlike a supervised approach, which insists on exact data, this

approach only requires rough examples, and is elaborated next.

Semi-supervised Wrapper - In contrast, a semi-supervised extractor aims for

a lighter involvement of the user. It only requires the user to identify the

relevant data, which is referred to as the training data, in a record-level

extraction task context, either in multi-page or a single page website to help

the automatic generation of the extraction rule. These training/labelled

examples will be used as seeds. The involvement of the user to help the

system in the generation of extraction rules (including correcting) has resulted

in a more efficient extraction. However, most systems of this kind lack the

ability to generalise rules and to automatically and dynamically extend their

rules. Similarly, in this thesis, only minimum human engagement is required

during the training provision session and the generation of wrappers relies on

machine learning techniques (Chapter 6).

XWrap (Liu et al. 2000) is one of the popular semi-supervised systems. It

provides six pre-defined sets of data heuristics to be selected by the user to

locate data objects in a specific source. Another approach is the IEPAD

system, developed by Chang et al. (2003). To discover extraction rules to

extract data from the relevant web page, IEPAD defines and generalises

patterns from the HTML tags. It relies on a PAT tree or a suffix tree to find

repetitive patterns from the page or from web pages with similar structure.

The requirement of repetitive patterns is based on the assumption that on a

web page, the same template is often applied to multiple data records or at

Pg. 30

least two web pages from a website are similarly structured. This means this

technique only supports multiple records extraction. OLERA (Chang & Kuo

2004), which is designed with visualisation support, on the other hand, only

requires the user to specify a simple annotation of the block containing a

record as an example to produce the extraction rules. The system can

discover other similar records automatically and presents all the extracted

records for attribute labelling. Unlike IEPAD, OLERA can handle extraction

from pages containing single data records. Another system using semi-

supervision is Thresher (Hogue & Karger 2005). Thresher, like OLERA,

requires the user to specify examples and label them. Thresher uses tree edit

distance to create a wrapper.

2.4.3 Extraction Techniques

Although recent years have seen a rapid growth of multimedia content, in

most of the typical HTML documents the majority of the important area (the

main content) is still covered by text (Kohlschütter & Nedji 2010; Levering &

Cutler 2006). Early WIE approaches focused only on document text, while

more recent ones exploit the HTML structure and entities relations. According

to Baumgartner et al. (2009), there are four main approaches to define

wrappers to identify the relevant text content: Functional approach

(manipulating DOM tree), Logical approach (using predicates defined by

expressions or programs such as XPath), Automata Theoretic approach

(manipulating tree automata) and Textual or Lexicon approach (using string

pattern matching). Their performances and limitations reported in the literature

vary.

Generally, the design of extraction methods aims to respond to what kinds of

data can be found in specific sources and where to find them precisely. There

is a large body of related work in information extraction manipulating

Document Object Model (DOM) tree such as Breuel (2003), Cai et al. (2003),

Gupta et al. (2003), Reis et al. (2004), Sun et al. (2011) and Omer et al.

(2012), also known as tree-based (Ferrara et al. 2012). To be successful, the

Pg. 31

information extraction using this DOM tree approach typically relies on the rich

HTML structure.

DOM Tree Structure

DOM is an Application Programming Interface (API), consisting of a standard

set of objects, which defines the logical structure of documents (HTML/XML)

on the Web and it is usually used as a means to manage the documents (add,

edit, delete). DOM is manipulated and assessed through its nodes (an

ordered tree containing elements, text, attributes and comments). Only the

element nodes and tree nodes matter to the WIE implementation in this

thesis.

When a web page is rendered, its DOM structure will be automatically

produced and represented in a hierarchical manner. The structure is made up

of nodes; tag nodes and text nodes. A tag node may be simple such as

<table> and it may contains HTML attributes <table id = “courseTable” class =

“courseClass” width = “100%”>. Table 2.1 shows the different DOM tree

structure to display information in the HTML document.

Table 2.1. Sample HTML structure to display the data.

Item Example HTML Structure

Single

Table
<table><tr><td> 09 November 2011</td>

Nested

Tables
<table><tr><td><table ><tr><td>Basic Accounting</td><td>12 Nov 2011</td></table>

division <div>Accounting</div>

paragraph <p>Intermediate Accounting </p>

list Date : 12/12/12

In this study the DOM tree is one of the essential structures to define the

physical location of the course attributes within the web page. Figure 2.3

shows the DOM tree presenting the course name in a HTML web page. This

Pg. 32

is coded as <div class=“course_content”> Course Name : Java

Programming</div>. The HTML tag may contain an attribute and is

normally followed by the data content e.g. Java Programming.

Figure 2.3. DOM representation of HTML tags.

DOM structure is important to discover the location of the information on a

web page. Matching this structure poses two challenges; inconsistent pairing

of the tags and creating a generic path.

Inconsistent pairing of the tags. In principle, the data or text is presented in

between a pair of opening and closing tags such as <table></table>,

<div></div>, <p></p> and . However, this is not always the case as

some of the web pages are created using text editors as opposed to

integrated development environment (IDE) or ready-made templates to

reduce syntax inconsistencies, thus some of the tags are intentionally not

included as they do not have any impact on the live web page. This is

because in HTML documents, it is not mandatory to have the closing tag for

some tags to be processable by the computer, like <P> and <DIV> and also

the tags are not case sensitive.

To ensure the consistencies of structure, messy markups in the HTML

document needs to be fixed using HTML cleaner tools such as HTML Tidy

(Raggett 2012). This is because properly written HTML will render better and

faster than HTML with errors. Moreover, a valid and standard compliant HTML

<div class=“course_content”>Course Name : Java Programming</div>

Pg. 33

document generates consistent DOMs that can effectively be manipulated by

the scripting software.

Creating a generic path. The content of web pages from various websites

when viewed using the browser will look exactly the same although the

underlying tags used are different e.g. some websites uses <div> tags to

present the data in tabular manner and some use <table> tags to achieve the

same presentation. This implies that a pattern which is good for a particular

web page will not be useful on another which looks similar to the human eye.

Ideally, to reach an element on the page, an absolute path is required. For

example, if the element is in the second column of the second row in the first

table, the path represented in JQuery notation is html>body>table:eq(1)

>tr:eq(1)>td:eq(1). Absolute path is excellent to reach the data if its location

on the web page is known in advance. However, this technique is too rigid

and is structure dependent. Moreover, it will fail if this structure changes. Thus

a more generic path is more favourable and regular expression could be

used. jQuery and Regular expression are introduced in the next section.

Figure 2.4 illustrates node tree and relationship between the nodes. These

nodes are useful for the extraction method applied in this thesis; in particular,

it is used to capture a single attribute instance as well as the multiple attribute

instances (parent-children and siblings relationship), which are similarly

structured.

Figure 2.4 HTML DOM node tree and relationship between nodes (source w3schools,

2013).

Pg. 34

Introduction to jQuery

jQuery is a light weight variant of the JavaScript library, used to control HTML

events, animations and other interactions on a web page. It is a client side

scripting, which provides an easy and fast way of HTML DOM traversing and

manipulation. For instance, in Figure 2.5, the title can be assessed simply by

using jQuery path ‘html>body>table>tr:eq(1)>td:eq(1)’.

<HTML>
<BODY>
<TABLE>
<TR><TD> </TD>
 <TD>Course Title</TD>
 <TD>Price</TD>
</TR>
<TR><TD>1</TD>
 <TD>Introduction to jQuery</TD>
 <TD>450GBP</TD>
</TR></TABLE>
</BODY>
</HTML>

Figure 2.5 Basic HTML structure

The number in the brackets (predicate) is used to find a specific node or a

node that contains a specific value in the tree. Note that the index of the html

tag starts from zero and it is common that this lowest index is not specified.

The :eq(n) - where n is the index - after the HTML tag name, specifying the

exact location of the selected item. The ‘>’ symbol separating the node name

(html, body, div, table, tr and td in the example) indicates all direct elements

from the parent (or root in this case). Without the ‘>’ symbol, all elements that

are descendants of ‘html’ will be selected. Figure 2.6 shows an example of a

jQuery path.

Pg. 35

jQuery path : html>body>table>tr:eq(1)>td:eq(1)

Html The html is the root of the structure

body The main body of the document where all of the content is
placed

table Refers to the first table in the second div

tr:eq(1) Refers to the second table row of the first table

td:eq(1) Refers to the second column of the second row of the first table
in the second div. This is the detailed node which holds the text
that defines the lexical pattern.

Figure 2.6. Example of jQuery path and their representation.

XPath and jQuery

In WIE, XPath has been a method of accessing the portions of a DOM (DOM

nodes), for retrieving the relevant information, and its employment as an

extraction technique on the web page has been largely exploited in the

literature. It is a powerful query language for many HTML parsers to select a

particular element and it is also commonly used in XML documents

(Abolhassani et al. 2003).

Xu and Dyreson (2007) proposed an approximation path expression called

ApproXPath with an assumption that XPath is ineffective when there are

irregularities in data and schema. This approach differs from the exact XPath

expression that it can tolerate a web page containing structural errors, and

handle a number of user-specified content. Estievenart et al. (2006) prove that

their system called Retrozilla, which method depends exclusively on the

HTML structure, failed on part of sentence extraction (text node contains more

textual information than just the instance of the attribute). The same limitation

applies when there is more than one attribute or multiple instances of

attributes separated by commas. Another method that can perform a similar

task is jQuery path.

Although XPath and jQuery share the same fundamental purpose, jQuery has

a number of advantages over XPath, such as simplified code (smaller file and

Pg. 36

faster loading), cross-browser compatibility taking full advantage of

JavaScript, supports AJAX and it is separate from HTML mark-up, thus it

does not meddle with a page’s existing HTML and therefore, DOM handling is

easier. Because of these reasons, jQuery is chosen for this research.

One of the major drawbacks of using HTML structure is that the algorithm is

not flexible. It cannot be used on other dissimilar HTML structures.

Furthermore, the majority of wrappers are highly dependent on the tree

structure of a given web page, thus when the layout and code of web pages

change, they become obsolete (Baumgartner et al. 2009). A robust wrapper

should be able to ‘auto-heal’ to adapt to such changes.

Several researchers like Negm et al. (2013), Ferrara et al. (2012), Muslea et

al. (1998) and Kushmerick (1997) claimed that the manipulation of HTML

hierarchical structure (DOM) to learn perfect or nearly perfect extractors is

able to achieve high level of accuracy in certain domains. However, some

recent studies argued that DOM manipulation alone is insufficient to provide

definition for the discovery of the important data (Cohen & McCallum 2003a).

Therefore, suggestions of more viable approaches were proposed through

combining HTML hierarchical structure manipulation together with input

features, visual cue and/or visual 2D (e.g. Gatterbauer & Bohunsky 2006;

Krupl et al. 2005). Input features may include the string properties (e.g.

capitalisation, keywords), formatting (e.g. font size, colour and font style),

length of text and data type (e.g. number, string) and visual cues look at the

grid of the document.

Because DOM manipulation is one of the approaches implemented here for

the WIE system, it is not in the interest of this thesis to remove irrelevant

content which could destroy the structure of the web page, rather than

focussing strictly on fixing the imperfect structure and standardising the HTML

tags used, e.g. <italic> is replaced with <i> and – with a ‘-’. Due to the

different structures of HTML web pages, DOM approach is enhanced with

lexicon extraction.

Pg. 37

Most lexicon extraction concerns extraction of named entities such as person

names and location. According to Xue et al. (2007) relying on the title field to

extract the title is risky as 33.5% of the HTML documents that they studied

have bogus titles; empty title field, ‘untitled’ title field and duplicated title field.

Titles in the bodies of HTML documents are much more reliable as they are

presented to the human. Xue et al. (2007) give more details. Unlike named

entities, structured entities such as dates and times can often be identified

using simple regular expressions (Abolhassani et al. 2003).

Regular Expressions

The course attributes are made up of text (alphabets and special characters).

Text has its own pattern, which can be matched with pattern-matching tools

such as regular expression, Parsing Expression Grammar and finite state

automata. The goodness of the regular expression always depends on data

peculiarity, considering various structural representations and the form of data

representations.

Regular expression was first introduced by (Kleene 1956) and is an extremely

powerful tool to describe the sequence of text patterns. It is applied in many

diverse programming languages such as Java, PHP, C++ and C. Regular

expression is widely used, particularly in the Unix community as a

searching/replacing tool and has been successful in matching data patterns

(Muslea et al. 1999; Soderland 1999; Embley 2004; Li et al. 2008; Wu & Weld

2010; Xhemali 2010a; Liu et al. 2010) for various information extraction

methods.

Regular expression can be used to match phone numbers, email addresses,

HTML tags and other text strings. For example, [a-zA-Z]+ will match all whole

words such as “html” or “Html” but not “<html>” and “</?[a-z][a-z0-9]*[^<>]*>”

will match any opening or closing HTML tag such as “<table>” or “</table>”.

Generally, it is a pattern notation with various level of complexity that can

match against all kinds of text strings (Sun Microsystems 2010, Friedl 2006).

Pg. 38

Regular expression may be built from combinations of basic syntax and

special character classes (refer to Appendix 1 for the detail). Table 2.2 shows

some of the basic notations of regular expression.

Table 2.2. Basic regular expression notation

Character Description Usage Example

QUANTIFIER CHARACTER

.+ Matches at least one preceding character .+se will match use, course, the
course but not se

.* Matches zero or more preceding characters .*se will match se, use, course

.? Matches one or none character. Prices? will match price and
prices

.*? Matching the preceding character zero or
more times – non greedy.

c.*?e matches ce in the word
‘celebrate’ (without ? this
would match celebrate)

+? Repeat matching the preceding character one
or more times – non greedy.

c.+?e matches cele but not ce

{min}

{min,}

{min, max}

Matches exactly the minimum of occurrences

Matches at least minimum of occurrences.

Matches at least minimum and not more than
maximum of the preceding character.

Fe{3} will match feee but not fe,
fee
fe{2,} will match fee, feeee but
not fe

fe{1,3} will match fe, fee, feee
but not feeeee.

CHARACTER CLASSES

[…]

[^…]

Matches any one of the enclosed characters.

Negation – opposite of the above character. It
matches any character, which is not included
in the enclosed.

[abc] will match either a, b, or c.

opposite of the above.
NOTE: The negation used within
the HTML tags in this thesis e.g.
<div[^>]*> indicates that this is
the ungreedy expression. It
simply matches :
<div - a div tag
[^>] - don’t match an

 immediate end of div tag
*> - match any characters and

stops if it matches the end
of the tag.

^ Start of a line ^B will match ‘B’ in Boolean
Bool.

$ End of a line .$ will match s in occurs.

a|b Matches either ‘a’ or ‘b’. Organi[s|z]ation will match
‘Organisation’ or ‘Organization’

\s , \d and \w
(negated version
\S, \D and \W

Matches a white space character such as line
feed, a space and a tab, a digit character 0-9
and a word character.
\d is equivalent to [0-9] and \w is [A-Za-z0-9]+

\d will match 1 in abc1

Pg. 39

While manual construction of regular expression expressions is a widely

adopted practical solution, writing precise regular expression expressions to

match specified text strings requires experts. Especially when dealing with

complex patterns, blocks of simple regular expression need to be combined

together, thus generating them manually can be very complicated and

lengthy. To avoid these problems, several tools have been developed which

automate the generation of regular expression (Barrero et al. 2009; Xhemali

2010a).

Barrero et al. (2009) evolve regular expressions to match the phone number

and the URLs that have little variants in the format, which is much simpler to

determine compared to the course information; title of course, date, price and

location. Lam et al. (2008) suggested that regular expressions can be best

applied to static fields and the DOM tree architecture for non-static. According

to their definition, static fields are those fields which have fixed format such as

an email address where the first part consists of alphanumeric characters,

followed by @ symbol, a domain which is made up of characters, a dot and

ended with a two or three character word. This thesis is considering this

suggestion and several experiments were carried out to prove its

effectiveness as reported in Chapter 5.

2.4.4 Evaluation of Information Extraction Systems

To measure the efficiency of the Information Extraction System, MUC has set

the evaluation metrics standard; precision rate, recall rate and F-Measures.

These metrics determine how accurate the output or the result is to the

expected output or how relevant the result is to the problem. For example, if

an extraction system returns ten data on which eight are relevant, while it fails

to capture twenty of the data, the precision rate is 8/10 and the recall is 8/30.

The higher the precision and recall, the better the system performance is. A

high precision rate means that there are more relevant results than irrelevant

while a high recall rate means that the system managed to retrieve most of

the correct results.

Pg. 40

The following metrics are defined for this thesis:

precision rate - measures the percentage of retrieved instances that were extracted

correctly, as represented in equation (e1);

recall rate - measures the percentage of actual instances that were extracted correctly,

as represented in equation (e2);

F-Measures - measures the harmonic mean of precision and recall, as represented in

equation (e3).

The metrics (precision and recall) for evaluation for IE was first introduced in

1993 at the MUC-5 (Chinchor & Sundheim 1993) to measure the performance

of a system. If the precision is higher, it is likely that the recall is lower (Zheng

et al. 2007). This led to the introduction of F-Measures by (Makhoul et al.

1999). These metrics have not only been most widely applied in IE systems

but also in Information Retrieval systems.

Table 2.3 Confusion Matrix.

Output
Predicted

Positive Negative

Positive TP FN

Negative FP TN

The above has the following meanings in the context of this research:

TP – the extractor correctly extracts the relevant attribute,

TN – the extractor correctly does not extract the irrelevant attribute,

FP – the extractor extracts irrelevant attribute,

FN – the extractor does not extract the relevant attribute, when it should have.

Thus, from the confusion matrix (Table 2.3), the precision rate, recall rate and

F-Measure can be calculated using the equations below:

Precision P = TP / (TP + FP) (e1)

Recall R = TP / (TP +FN) (e2)

F-Measure FM = 2 * ((P * R) / (P + R)) (e3)

Pg. 41

2.4.5 Challenges of WIE

It is well known that all WIE systems attempt to extract all important data and

avoid the unwanted ones. In the previous sections, the methods and

techniques for WIE were described. This section reviews the general and

technical challenges of a WIE from the literature.

Generally, the first main concern for extracting the web content is focused on

the quality of the extraction. A robust system tries to avoid extraction of

incorrect data and handle imperfect information (missing key data or poorly

structured data). Imperfect information is unlikely to provide training data of

adequate quality given the more complex and variable language. Missing or

null values often caused the system to struggle to recognise the relevance of

the information, especially when the rules depend on the location (hierarchical

structure) of the value on the web page. This dependency also requires the

system to be adaptable to web sources structural change, referred to as

flexibility towards changes in Eikvil (1999). In addition, in the case of

supervised/semi-supervised method, a major challenge faced is the

insufficiency of the training data to achieve high accuracy.

Second is the issue of scaling up the extraction coverage. Early WIE systems

were designed to work in a dedicated domain. This posed a problem of

confining the extraction task to limited sources and not easily portable. Many

researches recently proposed WIE solution for open domain (e.g. Etzioni et al.

2005; Gatterbauer et al. 2007; Banko et al. 2007; Zhu et al. 2009; Wu & Weld

2010; Ji et al. 2013), thus increase scalability. This approach does not

emphasise where the information originated.

Approaches relying on supervised (or semi-supervised) learning often require

the user to provide numerous training sets to achieve high accuracy of

extraction. However, this is time consuming and demands huge human effort.

Therefore, when designing the WIE system, there is often a trade-off between

the highly accurate performance and highly automated method, i.e., highly

automated process (Ferrara et al. 2012).

Pg. 42

In many of the WIE studies such as Flejter (2011) and Sarawagi (2008), the

cost of processing is another challenge for building an efficient WIE system.

Getting relevant information quickly from large volume of data (on the

Internet) is especially critical in the field of Business and Competitive

Intelligence to enable managers to make informed decisions in relation to

critical market conditions. Competitive Intelligence refers to the ability of

business organisations to acquire and analyse information from its external

environment to support the decision-making process (Chen et al. 2002).

Considering problems of developing a wrapper manually, Machine Learning,

Natural Language Processing, Ontology and Genetic Programming are

among other methods that have been proposed to automate it. The next

section describes these methods in relation to Information Extraction.

2.5 Web Information Extraction Methods

2.5.1 Introduction

In Web Information Extraction, many techniques and algorithms often require

customisation especially to cope with different domains having different data

types, data patterns, style of presentation and special scripting languages

problems. The many methods undertaken by academics are discussed here

for an understanding of their application in WIE to overcome these problems

in general and the methods applied in this thesis in particular.

2.5.2 Extraction using Machine Learning

Machine Learning (ML) as defined by Mitchell (1997) is “a computer program is

said to learn from experience E with respect to some class of tasks T and performance

measure P, if its performance at tasks in T, as measured by P, improves with

experience E”. Alpaydin (2010) added that it is also a study of computer

algorithms to optimise a performance criterion automatically through

experience. It is concerned with approaches to make computer programs

Pg. 43

improve by experience, defined by a predefined model or examples rather

than by explicitly coded instructions (Guyon & Elisseeff 2003).

Recent studies in the field of WIE are focused on ML. What makes ML

popular is the fact that the machine is able to intelligently learn whenever

there is a change in the structure, program or data that will improve future

extraction. ML can only do the generalisation based on the data that have

been seen so far, regardless of the semantics or structure of the data. Given a

set of sample data and information about properties of the data, which are its

patterns, generalisation allows it to make predictions about other data that it

will find in the future and it can continue to learn as new information arrives.

It is important that the program (wrapper) in the ML is able to repair itself

whenever there are changes to the web pages such as structure and layout,

which will prevent it from extracting data correctly (Lerman et al. 2003).

According to IBM (Levesque 2002), the use of ML is motivated by the fact that

developing IE systems manually is time consuming and requires linguistics

and an artificial intelligence or computational linguistics expert.

ML offers supervised and unsupervised learning methods. Supervised

learning is based on known training input-output pairs to produce a good

approximation over these training examples to capture the data. However, this

supervised approach depends on a large amount of annotated training data

that is often unavailable and requires large effort to create them (Carlson

2010). In unsupervised learning a set of explicit target values is not specified

in advance. This aims to find key features from unlabelled examples, called

clustering. Another method of ML is the in-between, i.e., semi-supervised. A

set of training data from the web page is required to ‘train’ the system. The

training uses labelled examples, which may be only positive or a combination

with negative examples.

AutoSlog (Riloff 1993), CRYSTAL (Soderland et al. 1995) and Liep (Huffman

1996) were a few ML-based pioneer systems. Autoslog is a domain-specific

process and requires annotated training data to analyse the text in order to

Pg. 44

produce concept nodes for the extraction rules dictionary. It is able to extract

single data at one time. In contrast, CRYSTAL does multi-slot extractions. It

requires an expert to manually annotate the data to be extracted. Unlike

CRYSTAL, Liep learns dictionaries of extraction patterns from the examples

of sentences and events provided by the user. Since then, many other

researchers have contributed into this area such as Freitag (1998) and Etzioni

et al. (2005). Freitag developed SRV, which is a top-down relational algorithm.

It accepts sample texts from the user as tokens and identifies the text

fragments using some rules. It then labels these text fragments whether they

are for extraction or not. SRV does not require prior knowledge of the format

or structure of the text. The KNOWITALL system by Etzioni et al. is an

unsupervised system to extract information from the web, where it selects and

labels its own training examples using a small set of domain-independent

extraction patterns.

2.5.3 Extraction using NLP

Natural Language Processing (NLP) is a subfield of Computational Linguistics

and is used to extract information from natural language documents and is

suitable for web pages consisting of free text. NLP usually applies techniques

such as filtering, part-of-speech tagging, and lexical semantic tagging. These

techniques help to recognise the textual content to derive the extraction rules

for building relationship between phrases and sentence elements by

analysing the syntactic and semantic characteristics of the language. NLP

does not depend on any kind of mark-up, thus, it is suitable to be applied to

non-HTML documents such as DOC and PDF. However, the problem of

identifying the correct sense of a particular word in a particular context still

arises in NLP and the ability to emulate human understanding of natural text

is still a long way away.

There are various researchers working on NLP, for example, Andersen et al.

(1992) has introduced JASPER, which is a commercially used IE system and

Cunningham et al. (2002) and Morton (2000) proposed GATE architecture,

which can be used in IE applications. Some other researchers went on

Pg. 45

combining NLP with other techniques to improve the extraction rates and

applications to diverse domains, such as NLP with ML, commonly used in

Bioinformatics and medicine (Alphonse et al. 2004; Buyko et al. 2006;

Sokolova et al. 2006; Lussier et al. 2006), NLP with Ontology such as

ontology lexicons (Cimiano et al. 2007), a question answering system

(Vargas-Vera & Motta 2004) and digital information retrieval (Jeschke et al.

2007).

2.5.4 Extraction using Ontology

Ontologies are defined as “content theories about the sorts of objects,

properties of objects, and relations between objects that are possible in a

specified domain of knowledge” (Chandrasekaran et al. 1999). Ontologies

have been used to extract information from diverse domains such as literature

(Muller et al. 2004; Milward et al. 2005), tourism information (Maedche et al.

2003), soccer matches (Buitelaar et al. 2006) and multimedia content

(Paliouras et al. 2011). An ontology represents the vocabulary, which

describes the concepts of a particular object, rather than the object itself, that

is intended to be captured and it is often specific to some domains. For WIE,

this requires careful analysis of the specific information/entity and its relations

to other information that can exist within the domain. The ontology approach

aims to solve information extraction by defining the relationship, lexical

appearance and context keywords of the data of interest in a document. It

relies directly on the data as opposed to other methods, which rely on the

structure of data presented within the document for the generation of rules or

patterns for the extraction.

Ontology supports knowledge sharing and reusability but defining a common

ontology or a common standard for a particular entity, which can be applied

across various domains is still lacking. This means ontology requires a large

knowledge base in order to capture the various forms of presentation of a

specific piece of information.

Pg. 46

Although ontologies can be used to model data and define its semantics

before the extraction process, the quality of the ontologies is important, which

will determine the success of a WIE system based on ontology (Ontology-

Based Information Extraction - OBIE) (Wimalasuriya & Dou 2010; Buitelaar et

al. 2005). Maintaining the ontologies is time consuming (Labský et al. 2008),

especially if it is done manually because an information needs to be analysed

and the expressions need to be evaluated, such as to define the meaning of a

particular word or its context in a particular domain. For example, in a case

where new products are added or words with different semantics are used in

a web page, the ontology needs to be updated for the extraction to work

properly.

According to Brank et al. (2005) evaluation of the resulting ontology is an

extremely challenging task. This technique only provides meaningful results if

the data are of good quality (Juffinger et al. 2007) and if it fails to identify the

domain-specific concept of the data; it then goes back to the human to refine

this ontology constructor.

2.5.5 Extraction using Genetic Programming

Genetic Programming (GP) aspires to do the same as Machine Learning, but

GP is to induce a population of computer programs that can improve

automatically as they experience the data on which they are trained. Although

GP has been actively used in other areas such as games and bioinformatics,

it has seen little application in WIE. Only recently, the idea of using GP in WIE

has proved to be useful and attracts a considerable interest to evolve the

extraction rules to discover the information.

One approach to automate the extraction task is to evolve a regular

expression. For so many years, regular expression has been used as a

matching tool in practical WIEs. However, this is a very complex task and a

huge manual effort is needed when composing a high quality and a complex

regular expression for the WIE tasks. Latter innovation examines ways for

automating this composition, in particular, through application of evolution

Pg. 47

process. Few researchers (Bartoli et al. 2012; Xhemali 2010a; Barrero et al.

2009; Li et al. 2008) have successfully applied automation to evolve regular

expressions, which has resulted in better extraction success rates. However,

the grammatical rules to support the generation of the regular expressions are

manually created. Thus, maintaining these rules demands a significant

amount of expert effort. Inspired by this achievement, this thesis investigates

how to further improve the extraction task towards automating the rules

refinement/addition to keep up with new data representation, by being given

new examples for training.

Challenges in WIE using GP

Developing WIE incorporating GP principles poses the same general

challenges as stated in this chapter, with a few additional ones as below:

1. GPs can get stuck in local optima regions of the search space

2. Operating on dynamic data set is difficult as it is likely that the GP will

converge early on towards the earlier solutions which may not be valid

for the later data.

3. The extraction patterns created may not be able to extract information

properly and this would require a repairing mechanism to extract only

the valid ones.

The next section introduces an important method used in this thesis; the

principles of Genetic Programming, which is widely applied in evolving

computer programs.

2.6 Evolving Computer Programs

2.6.1 Introduction

The pioneering work of generating programs using a Genetic Algorithm was

by Cramer (1985). His work was to generate a system, which accepts two

inputs and produces a single output multiplication function. Today, in this

Pg. 48

area, similar work has been done, taking on the evolution of human biological

genetic processes such as Genetic Programming (Koza 1992) and

Grammatical Evolution (Kuroda et al. 2010; Hugosson et al. 2007; O’Neill &

Ryan 2003, 2001).

Genetic Programming is one of the most prominent computational techniques

for evolution, branching from Genetic Algorithms, which was popularised by

John Koza (1992) along with Genetic Algorithms (Holland 1975). In GP,

solutions to problems are represented as computer programs. As defined by

Koza, GP is “a domain-independent problem-solving approach in which computer

programs are evolved to solve, or approximately solve, problems.” His approach

started with a tree representation of a program in order to generate variations

of solutions. A more general definition by Banzhaf (1994) is “the direct

evolution of programs or algorithms for the purpose of inductive learning” and (Poli

et al. 2008) describe it as “At the most abstract level GP is a systematic, domain-

independent method for getting computers to automatically solve problems starting

from a high-level statement of what needs to be done.” GP has been proven

successful to solve weak problems and does not require explicit task

knowledge.

Pg. 49

2.6.2 Genetic Programming Terminology

The following terms in Table 2.4 are used in the rest of this thesis, when

referring to GP.

Table 2.4 Meaning of terms used in this thesis.

TERM DEFINITION

Genome an individual encoded set of parameters, which defines the proposed
solution.

Genotype a unique encoded set of parameters which may represent several
Genomes

Individual a member of the population consisting of a genome and its fitness
level.

Genetic Operators the transformation operators which act on a single genome or two
genomes. Primary transformation operators are crossover and
mutation.

Fitness Function a measurement of the quality of the individual, i.e., how close an
individual is to the actual solution

Phenome an individual representation of the solution and is the transformation
of the Genome

Phenotype a unique representation of the solution which may represent several
Phenomes

Search Space the set of all programs/elements determinant by the given
programming language that could be found by the GP algorithm

2.6.3 Basic Concepts of Genetic Programming

According to (Poli et al. 2008), Genetic Programming, abbreviated as GP,

comprises several general steps (Figure 2.7). First, individuals are presented

in the initial population. The initial population can be created by different

methods;

(1) random – this is the most unbiased method. Generation is using pseudo-

random number generator and it can provide great variation between

individuals,

 (2) seeded – this method biased the population with known solutions to the

problem to start with. Although this can make it harder for the GP to find better

solutions, seeding the random number generator helps to make the run

repeatable.

Pg. 50

 (A)

(B)

1: Randomly create an initial population of programs from the available primitives

2: Repeat

3: Execute each program and ascertain its fitness.

4: Select one or two program(s) from the population with a probability based on fitness to

participate in genetic operations

5: Create new individual program(s) by applying genetic operations with specified probabilities

6: until an acceptable solution is found or some other stopping condition is met (e.g., reaching a

maximum number of generations).

7: return the best-so-far individual.

Figure 2.7 (A) The basic GP flow diagram (B) The basic GP Algorithm (source: Poli

et al. 2008)

A genotype to phenotype mapping is performed to decide how good an

individual genome is compared to other individuals in the population; the

phenome is evaluated rather than the genome. A genotype (genetic codes for

a solution) refers to a specific unique sequence of genes. A gene is an integer

value, which represents a terminal or a function in the phenotype. A

phenotype refers to the solution, which corresponds to the genotype.

Basically, a genotype acts as a guideline for building a phenotype, which is

strictly dependent on the value of each gene. The genotypes are made up of

either a variable length or a fixed length of genes. The size of the population

Create random population

Rank individuals

Done

Duplicate best individuals

Mutate Breed

New population

Are any of them

 good enough?

Yes

No

Pg. 51

influences the result of GP and can vary from one problem to another. The

smaller the population, the less time it will take to calculate the fitness of each

generation. However, smaller populations reduce the chances of generating

genotypes with good characteristics in the initial generation. Koza (1992)

suggests that fitness evaluation is done by comparing the required output with

the actual output produced by the algorithm.

Secondly, the breeding process is repeated until one of the termination

conditions is met. There are three ways to terminate a GP; specify the

maximum number of generations or until the perfect solution is found (a

specific fitness score is reached) or the population has not improved for a

predefined number of generations.

In the third step, those genomes are transformed into phenomes and the

fitness of each individual is measured. The goal of a fitness function is to

guide the evolutionary process through the problem space to arrive at an

optimal solution (Wilkerson & Tauridtz 2010). The fitness score is calculated

on individuals based on how close the output is to the expected solution. This

measurement is used to determine the quality of individuals in the population

whether it has a higher probability for reproduction in the next generation or

being discarded. The fitness function falls into two categories; single fitness

and multi-objective fitness. Single fitness is a conventional method, which

concerns satisfying a single objective. Multi-objective concerns the decision-

making process involving two or more objective functions aiming at achieving

optimisation to solve a problem. This commonly involves trade-offs between

all objectives. Weights can be assigned to each objective to define their

importance or dominance. Other multi-objective systems, such as NSGA II,

use the concept of non-dominance to rank the phenomes (Deb 2002). A

phenome A dominates another phenome B if all objectives in A are preferable

to those in B. B is not dominated by A if at least one measure of B is better

than the corresponding one in A. This avoids commitment to a particular

ranking of objectives and delivers a Pareto Optimal front in the solution space.

Pg. 52

Fourthly, GP selects pairs of better individuals from the parent population,

which will be used to create the next generation of individuals, with a hope

that their offspring will have even higher fitness. There are several selection

techniques introduced by researchers in this field but the most popular ones

are the Tournament selection (Brindle 1981), Fitness-proportionate selection

(De Jong 1975) and Rank selection (Baker 1985).

Tournament selection: This method selects a group of individuals

randomly from the population and runs several ‘tournaments’ or

competitions to get the individual with the highest fitness among the

other members. The number of individuals in a group depends on the

size set for this tournament, called the tournament size, ranging from two

individuals to the number of individuals in the population. If the

tournament size is too small, it is possible to have some individuals not

selected at all. Barrero et al. (2009) in their experiments demonstrated

that the tournament size has a significant impact on obtaining a faster

convergence while avoiding local maxima.

Fitness-proportionate selection: This method is also known as roulette

wheel selection. For this method, individuals are also selected randomly

from the population and assigned a slice of the wheel with the size

proportional to individual’s fitness value. This means an individual’s

chance of being selected is proportional to its fitness value. Similar to the

roulette wheel in a casino, this method spins the wheel to get the

reproduction candidate.

Rank selection: This method ranks individuals in the population and

each is assigned a numerical fitness value according to their rank, i.e.,

rank 1 to worst individual and rank n to the best, where n is the number

of individuals in the population. Like Fitness-proportionate, each

individual’s probability of selection is proportional to their rank.

Despite giving a better chance to higher fitness individuals, tournament

also gives a chance to the less fit genomes to be included in the

Pg. 53

tournament for selection. By contrast, in both Fitness-proportionate

selection and Rank selection, individuals with higher fitness are more

likely to be selected for the reproduction. The Fitness-proportionate

selection could lead to a problem of premature convergence (causes the

search to narrow down too quickly) when the fittest individuals dominate,

whereas in Rank selection, there could be a problem of slow

convergence. Detailed information on these methods is given in the

literature, such as Blickle and Thiele (1996) and Ma (1995).

The fifth step is also known as the ‘reproduction’ process. Reproduction

creates the next generation of solutions (offspring), which ideally share many

of the useful characteristics from their parents (in the current population). The

survival of any individuals in the current population depends on their fitness. A

better fitness individual will be allowed to survive by copying it into the new

population; otherwise it will be replaced by the fitter offspring. The two main

genetic operators are crossover and mutation. There are several possible

methods for both crossover and mutation. The simplest crossover method is

single point crossover, followed by multi point crossover; however uniform

crossover has several advantages. It is efficient and simple to program.

Uniform Crossover involves the genes of two parent individuals being

combined to produce a new individual. This is done by selecting a gene

from a genome with a certain probability, usually 50% (Sywerda 1989;

Jones & Hinde 2007). This means, each gene of the parent individuals

has the potential to be included in the offspring, and so there is no

identifiable crossover point. For each gene, a random number (real

number) is created, which is referred to as the mask and only if this

random number is less than or equal to the probability, then the gene in

the first parent is used rather than the gene in second parent to produce

the first offspring. The second offspring is created from the opposite, that

is, the remaining gene.

Mutation of each offspring takes place following the crossover operation.

It is simply making a small random change in the genome (in practice,

Pg. 54

1/n is the common mutation rate where n is the number of genes in the

genome) to explore new possibilities in the search space. The number of

genes in a single individual being mutated depends on the mutation rate

specified. Table 2.5, 2.6 and 2.7 illustrates the GP operators applied to

the selected individuals, where the random number is picked from a

range of numbers between 1 and 225.

Table 2.5. Example of parents selected from parent population

Parent1 : 25 125 120 53 3 20

Parent2 : 24 158 36 21 124 5 7

Table 2.6. Application of a Uniform crossover operator to the offspring.

Random number : 0.2 0.6 0.3 0.65 0.55 0.25

Offspring1 : 25 158 120 21 124 20

Offspring2 : 24 125 36 53 3 5 7

Table 2.7. Application of a Mutation operator after the crossover.
Random number : 0.2 0.01 0.3 0.08 0.55 0.25

Offspring1 : 25 18 120 212 124 20

Random number : 0.06 0.11 0.14 0.25 0.5 0.92 0.66

Offspring2 : 111 125 8 153 3 144 7

GP has been used to solve problems in various fields, such as, medical (Guo

& Nandi 2006; Hong & Cho 2004), Railway platform allocation (Clarke et al.

2010), robotics (Konig & Schmeck 2009), programs (Koza 1992,1994; Withall

et al. 2009; Xhemali et al. 2010b), symbolic regression (Castillo et al. 2005;

Smits et al. 2006) and information extraction (Xhemali 2010a; Barrero et al.

2009). Before the GP system begins, Walker (2001) specified several control

parameters that need to be decided, which are:

1. Population size. The larger size of population helps to increase the

chance of evolving a solution as it allows for greater exploration of

the problem space at each generation.

2. Maximum number of generations. This parameter is to control the

run, which aims to provide the evolutionary program ample time to

evolve a solution or approximate solution to a problem. Although

Pg. 55

greater maximum number has a higher chance for this program to

produce a solution. However it is not guaranteed as in some cases

individuals fail to show any further improvements, which means this

evolutionary program needs to restart with a different initial

population.

3. Probability of crossover. This parameter determines the probability of

an individual to undergo crossover before the decision, whether to

move it to the next generation or eliminate it.

4. Probability of reproduction. This parameter is used to define the

proportion of individuals in the population to be reproduced.

However, there is no guarantee of success. The success of GP depends on

careful selection of the control parameters (Poli & McPhee 2009). According

to Poli and Langdon (2007), GP search space is extremely large and only a

tiny fraction of it can be examined by any search algorithm.

There has been a large amount of research on problem modularisation and its

effect on scalability. Four of the most popular extensions of genetic

programming are Automatically Defined Functions (Koza 1994), Cartesian GP

(Miller & Thomson 2000), Genetic Network Programming (Katagiri et al.

2000), and Dynamically Defined Function (Hemberg et al. 2009). In practice,

modularisation can be seen as separating partial solutions into independent

modules that each solves one aspect of the sub-problem. In evolutionary

algorithms, the same concept has been researched and successfully applied.

These modularisation methods are described in more detail in the next

section.

Pg. 56

2.7 Variation of Genetic Programming

In this section, the most relevant works on function evolution are briefly

reviewed, where researchers reported an increase in performance compared

to the standard GP. All these works are based on a top-down approach,

where functions are derived from the main program. In the context of this

thesis, a novel bottom-up approach is introduced where useful functions are

evolved separately from the main and this newly evolved function definition is

added to the core grammar for future use. A script was developed to

automatically add the newly evolved function that may be used to solve a

different computer problem.

The idea of function evolution was introduced by John Koza when he

expanded his earlier work to apply the modularisation concept to the

generated program (called Automatically Defined Functions); see (Koza 1994)

for more details. This allows for the automatic creation of parameterised

functions that can be invoked from the main program while the GP is

concurrently being evolved. GP with ADF (ADF-GP) automatically

decomposes a program into a set of modularised subprograms during

runtime, with each solving a sub problem with the capability for reuse and

then reassembling to solve the original overall problem. ADF-GP manipulates

the program tree and the functions are created from the sub-trees. In standard

GP, these sub-trees (partial solutions) are prone to modification by genetic

operators. As a result, it would become more difficult for the evolutionary

process to find a useful solution, leading to an increase of computational

effort. Thus, ADF-GP introduces compression and decompression techniques

to protect these sub-trees.

Pg. 57

This approach allows for generation of larger and more complex programs

and has a benefit of significant reduction in the computational effort compared

to GP without ADF. However, before evolution commences, the number of

functions and their parameters need to be defined initially, although during

runtime, these parameters are allowed to change with no human intervention.

The functions are evolved to strictly define movement (left, right, top and

bottom).

Since his seminal work, there has been a remarkable amount of work to

establish a theory of modularisation, to find effective and efficient methods for

optimising the evolution solution, and to apply those methods to practical

problems. A variation of ADF-GP can be seen in the work of Harper and Blair

(2006) through their paper entitled “Dynamically Defined Functions in

Grammatical Evolution”. In Harper’s Dynamically Defined Functions (DDF),

functions are dynamically created using a core grammar represented in BNF

notation as in Grammatical Evolution (GE). GE is an extension of GP to

evolve programming codes to solve a defined problem; its strength lies in the

utilisation of grammar for any chosen language, as long as it can be

expressed in BNF notation. This method uses a linear, variable length

genotype made up of a string of 8-bit binary numbers.

The functions created by DDF are then automatically appended into this

grammar. Contrasting ADF, Dynamically Defined Functions (DDF) does not

require the user to specify the number of functions and their parameters prior

to evolution. The functions, which may have any number of parameters, can

be invoked by the main program, independent of any special-purpose

operators or constraints. DDF has proven particularly successfully in the

MineSweeper problem (Harper & Blair 2006).

Because there is no specific size of individuals being set, this method is facing

a danger of insufficient integers to complete a code and a program “bloat”. A

program “bloat” is when the evolving program has a rapid increase in size

over some generations. This individual is either discarded or a specific

method is then put in place to overcome these issues. The functions in DDF

Pg. 58

are not evaluated and are not defined to do a specific task. One of the

weaknesses of this approach is that because it does not require user

involvement to pre-define an optimal architecture, it is likely to experience a

large search space to be able to get to the solution quickly compared to ADF.

The first work to introduce CGP was published by Miller in 1999 in a paper

“An empirical study of the efficiency of learning boolean functions using a

cartesian genetic programming approach”. CGP was originally concerned with

providing an effective method for evolving digital electronic circuits (Miller et

al. 1997). In the latter development, CGP is applied to computer

programming. Using this method, the computer programs are encoded in the

form of a linear string of integers representing an indexed graph. There is no

restriction as to how many inputs the program can take and how many

outputs it is allowed to produce. However, each node must have a function

and a set of inputs. An input is either the output from the previous node or an

initial program input.

Like standard GP, genotype-phenotype mapping is also very important in

CGP. The genome represents some functions and node connections,

producing an executable program (phenome). Although the genomes are

fixed length, the phenome length varies. This is because the nodes, which are

encoded by a number of integers (genes), are not required to be connected to

each other. Any unconnected nodes will not be processed and they do not

have any effect to the program’s behaviour. Unlike Banzhaf (1994), no repair

is necessary in CGP due to application of certain restrictions on the gene

associated with the input, output or function that control the validity of the

output.

CGP is reported to outperform GP with ADF over some kinds of problems of

sufficient difficulties (Miller 1999; Miller & Thomson 2000). However, node

outputs (Automatic Re-used Outputs – AROs) can only be re-used if they

have the same inputs. Other researchers, (Walker & Miller 2008) present an

extension to CGP called Embedded CGP (ECGP). In this new method, a

similar form of ADF was implemented to allow for construction of modules

Pg. 59

(composition of primitive rules), which can be automatically called and

evolved. One of the drawbacks of this approach is scalability. This is because

the module has size limitation, which restricts the maximum size of the

genome.

2.8 Critique

Dawson (2009) states the importance of identifying the research gaps through

the critical evaluation of the literature in the field to ensure work originality and

that unnecessary duplication is avoided. Based on the review of the literature

in this Chapter, with regards to the wrapper generation and the quality of the

extracted information, it therefore can be concluded that there are indeed a

number of research gaps that warrant experimental exploration. The research

gaps identified below form the fundamental foundation for the progression of

the work in this thesis, as well as outlining the specific area of knowledge that

this thesis seeks to contribute.

Wrappers to extract information required by the user from the web sources

are well researched. They work well with HTML web pages, which assume

that some information on their structure is available. However, it is well known

that wrapper generation and maintenance is difficult (Laender et al. 2002;

Ferrara et al. 2012), which requires human experts in this area. It appears that

there is a lack of empirical evidence attempted to explore the evolution of

wrappers (represented in regular expressions) using evolutionary algorithms

such as Genetic Programming, in Web Information Extraction systems, in

particular, the increment of extraction rules through semi-automation. The

intention is to allow for the generation of the extraction patterns that can be

applied to the ‘never seen before’ web pages. Regular expressions are a well-

established tool in a variety of application domains, particularly in text

processing (pattern matching), and continue to be the most extensive

practical applications because of their flexibility and expressiveness.

Pg. 60

To the best of researcher’s knowledge, there are only three researchers that

have attempted to automate the evolution of regular expressions for WIE task;

Barrero et al. (2009), Xhemali (2010a) and Bartoli et al. (2012). On one hand,

Barrero et al. research concerned the extraction of URLs and phone numbers

from web sources using a multiagent system (MAS). MAS has agents to

manage a population of fixed length chromosomes. Part of one population

may migrate from one agent to another during evolution process, which

eventually forms variable length genomes from which the basic regular

expressions are created. Another agent then integrates two or more regular

expressions using a subset of regular expression operators (e.g. |, (,), + and

?) forming rules like X|Y, X+Y?. The next stage is to filter these rules to select

the composition, which scores better on a validation set. The drawback of this

technique is that it favours the X|Y combination, making the last stage

useless. For a discussion of Xhemali’s work, refer to Chapter 3.

Bartoli et al. (2012), on the other hand, focus on the extraction of phone

numbers and HTML titles. This differs from the other two approaches above

as it is a semi-supervised method. The user does not need to possess any

technical knowledge, other than providing a set of labelled examples (a pair of

strings indicates a positive example and just one string indicates negativity).

This thesis follows a similar path, which is to optimise the evolution of regular

expressions for extraction of data from web sources. Unlike Bartoli, the

regular expression not only represents the format of the string but also

combines it with DOM tree representation. Section 5.3 discusses this

approach in relation to the approach proposed in this research.

Review of Methods for Application

The fundamental concept of standard GP was discussed in this chapter.

Some interesting work and relevant variants of GP extended version such as

ADF, DDF and CGP are also described. The breaking down of program into

reusable subprograms has been the main focus in these extended methods,

which allows for the generation of a complex and larger program. The idea of

using subprograms has influenced the technique presented in this thesis to

Pg. 61

improve the performance of a sufficiently complex problem as detailed in

Chapter 4.

Although GP has been in widespread use since 1972 to tackle many areas

including gaming, bioinformatics, robotics and timetabling, it has only recently

made its mark in Information Extraction and an example of work applying

such a method is introduced in Chapter 3. GP helps to find a solution through

a repetitive process by improving on the available or learned solution.

Although EC approach (GA or GP) has only been recognised to be useful for

WIE compared to other approaches, researchers, such as Gonzalez et. al.

(2010), Xhemali (2010a) and Barrero et. al. (2009) have produced successful

application to evolve regular expressions automatically through the use of

grammatical rules in producing matched data patterns.

In many cases, the development cost for matching new or unknown data

format to the WIE system remains substantial and results are not directly

reusable for other problems. WIE systems lack knowledge to be sufficiently

flexible to take advantage of repetitive patterns in that domain. To ease this

difficulty, human intervention is the main motivation applied in this thesis to

recognise the commonality. With the new approach presented in this thesis,

the emphasis now is shifted from a hard and expertise-specific task of building

and rebuilding the hand-crafted extraction rules to a lighter and a more

general task of providing new training data for the system to learn.

NLP is not considered for this research, as the research does not involve

analysing and extracting multiple sentences where the grammatical syntax

can be observed in the sentences constructed as in the case of extracting

email contents in (Tedmori & Jackson 2009). This research only aims to

extract specific pieces of information from the training courses web page,

which are the title, location, date and price. Furthermore, because the training

course web page presents information not only in a form of grammatical text

and paragraph which suits NLP, but also the majority are presented in tables

and lists which NLP cannot handle, therefore NLP approach is ineffective

(Lam et al. 2008). It can be concluded that this technique is not feasible to be

Pg. 62

investigated further.

Ontology approach is also not considered for this research. Because this

approach requires clear definition of the relationships between entities (data

value) and most ontologies are created to be domain specific, in the context of

this research, this would be notably difficult, especially for ATM as ATM has

no experts in this area and maintaining a huge knowledge base would be

expensive for them. Moreover, because this TS-WIE is an extension of the

automatic WIE, which was developed using GP, and does not incorporate

ontology, major reconstruction of the automatic WIE system would be needed.

This research concerns the semi-supervised learning for wrapper generation.

The wrapper is generated automatically based on the positive training

examples annotated by a human expert and the algorithm uses this wrapper

to guess the instances of course attributes2 from a given web page. In the

light of the studies cited here in this chapter, the question remains, can

structural analysis and lexical analysis, with learned rules from minimal

positive examples improve the accuracy and scalability of the WIE system?

2.9 Chapter Summary

Sarawagi (2008) highlighted that designing and implementing an effective IE

system poses some design challenges such as accuracy and efficiency. This

is because information is represented in a variety of transformation and

structural differences. This chapter has reviewed many advances in the WIE

methods, ranging from manual approach to automation.

Wrappers have been used to recognise the information of interest on the web

page. In the early days, wrapper was handcrafted but this is too human

expensive and it was domain dependent. To overcome this problem, later

approaches introduced automation and semi-automation. However, the

2
 In this thesis a "course attribute" will mean a title, location, cost or duration of a training course and where there

is no likelihood of confusion with other attributes (like HTML attributes) then "course attribute" may be

abbreviated to just "attribute".

Pg. 63

current IE researches have shown that automation is a complex task and

achieving high quality extracted information is still an on-going problem.

This chapter has attempted to provide a detailed overview of the existing

literature relating to the area of Web Information Extraction (in particular semi-

automatic approach) and Genetic Programming (GP). Semi-automation is

considered a main subject of wrapper generation, and wrappers are important

in the extraction process to be investigated in relation to human effort from

both a theoretical and practical point of view. Not only did this chapter provide

insights on the discovery of important research gaps within the study, it also

offered justifications of the potential of GP towards enhanced methods of WIE

solution. The following chapter discusses the detail of the two related works,

which provides a fundamental foundation for the progression of the work in

this thesis.

Pg. 64

Chapter 3

Use of Genetic Programming to Evolve Patterns

3.1 Chapter Overview

Chapter 2 discussed the literature of the Web Information Extraction in

general. This chapter introduces two strands of work by two other researchers

that formed the starting point for this work. For each of the two strands of work

there are two sections. The first section briefly describes the work and its

features. The second offers a critique and, in particular, identifies significant

weaknesses of the work, which will be addressed by the work in this thesis.

Specifically, this chapter discusses how these works can be used as a

foundation for developing a suitable WIE software tool and which area of the

automatic WIE is a good foundation for an improved WIE solution.

The chapter closes with a summary of the lessons learned from the previous

work and Chapter 4 and Chapter 5 report the features that will be

incorporated in the new work.

3.2 The Evolution of Complete Software Systems

3.2.1 Introduction

This section introduces two researches on software system evolution; Withall

(2003) and Xhemali (2010b). Withall started an evolution of software, which

examines finding a solution for the ‘sorting program’ using fixed-length

genotypes. Sorting is best performed using iteration or recursion and evolving

the algorithm is a significantly complex task (Kinnear 1993). Xhemali later

extended Withall’s work by introducing variable-length genotypes and XML-

based rules. Both works used Genetic Programming (GP) to evolve the

‘sorting’ program through manipulation of hand coded and rigid rules.

Pg. 65

3.2.2 “Sorting program” evolution - The work of Withall

Withall et al.(2009) evolved a sorting program using a reduced programming

language subset, which is coded in PERL. This program evolution uses linear

representation. They propose the fixed-length blocks genotype. The

phenotype is produced by individuals in a population (genomes) consisting of

40 genes each. The genomes are represented as a string of integers, where

each integer represents a different gene. Each genome is divided into blocks

of four integers and each block produces a single statement in the resulting

phenotype. This means the phenotype has ten statements.

The fixed-length blocks are padded with redundant genes called ‘padding

gene’ to avoid the problem of insufficient genes in the variable length

genotype. Withall argues that the padding is useful to maintain the same block

lengths and to preserve characteristics of parents that can be inherited by the

offspring to ensure efficiency during the crossover, mutation and mapping

processes. This aims to minimise the characteristic gap between parent and

the offspring caused by a single mutation. Therefore, in a case where a

particular program structure or statement requires fewer genes, the unused

genes in that block will be ignored. This should ensure that the next

statement/structure translation would start from the first gene in the block.

The generation of the ‘sorting’ program is assisted by the concise

programming language subset, which is coded in PERL, describing the rules

to form a particular statement or structure (see Figure 3.1 for an extract of the

rules). The Genotype-Phenotype mapping is applied to transform a string of

integers, which make up a genotype used for genetic manipulation, to a

sorting program in PERL for fitness evaluation. To avoid problems such as

infinite loops, a restrictive approach was introduced, i.e., allowing only limited

time for each execution.

Pg. 66

for

sub oyster_for {
 my ($prgm, $v1, $v2) = @_;

 # Decode genes
 $v1 = $counter[$v1%($#counter+1)];
 $v2 = $lsize[$v2%($#lsize+1)];

 # Generate Code
 if(1) {
 $prgm .= "for $v1 (0..$v2){\n \$runtime++;\n die if(\$runtime > \$timeout);\n";
 $ob++;
 }
 return $prgm;
}

double

sub oyster_double {
 my ($prgm, $v1, $v2, $v3) = @_;

 # Decode genes
 $v1 = $counter[$v1%($#counter+1)];
 $v2 = $lsize[$v2%($#lsize+1)];
 $v3 = $counter[$v3%($#counter+1)];

 # Generate Code
 if(1) {
 $prgm .= "for $v1 (0..$v2){\n for $v3 ($v1+1..$v2){\n \$runtime++;\n
 die if(\$runtime > \$timeout);\n";
 $ob+=2;
 }

 return $prgm;
}

Figure 3.1 An extract of rules stored in a PERL file to assist the generation of

‘sorting’ program

First the genome is separated into blocks of four genes. A gene is used to

determine the rule to follow by using modulo operator (written % in the code).

This manipulation of genes using modulo parses the statements and

arguments of every block. Because the first gene of each block specifies the

type of statement, for example, a “for statement”, “if statement”, “assignment

statement” etc., by having the gene value modulo the size of the statement

type, would map to one of the candidates. For example, if the gene value is

200 and there are five statement types, then 200 Mod 5 = 0 and so would pick

Pg. 67

the first statement type from the statement options. The remaining genes will

be processed in similar ways depending on the requirement of the rule (see

Figure 3.2 for an example of the mapping process). For this approach, a

rather higher mutation rate of 0.1 is used to get good results. Although this

method guarantees consistent mapping and a complete program is

generated, a ‘repair function’ was introduced to ensure that the ‘sorting’

program produced follows the correct syntax. The same correcting

mechanism concept was observed in the earlier work of Banzhaf (1994).

Figure 3.2 An illustration of the formation of a phenome from a genome (Source

Withall, 2003)

A similar work was later carried out by Xhemali (2010b) but with variable-

length genotypes instead of fixed-length. Here they introduced XML rules of

the programming subsets syntax, which guides the mapping of the genotype

into a valid phenotype. The main contribution from this was to remove the

translation process from a hard coded system to a table driven approach,

which could then be modified and extended by an external process.

Pg. 68

3.2.3 “Sorting program” evolution - The work of Xhemali

A new approach to efficiently evolve a sorting program and also an extension

to Withall’s work above was introduced by Xhemali (2010b) in a paper entitled

“Genetic evolution of sorting programs through a novel genotype-phenotype

mapping”. In their paper, they outlined three main differences distinguishing

both works. Firstly, instead of using fixed-length genotypes, this work is based

on variable-length genotypes. Secondly, XML rules (Figure 3.3 shows the

structural content of the XML file), which are stored in a file external to the GP

program, have been applied to achieve the mapping of genotype to

phenotype. Thirdly, the ‘sorting’ program was evolved in VB.NET 2008

whereas Withall’s target language was PERL. This demonstrates the

advantage of these works as being language independent.

<?xml version="1.0" encoding="utf-8" ?>
<root>
 <rules>
 <!-- IF -->
 <rule id=”0” start="IF" end=”END IF” nested="true">
 <component id=”0”>1</component>
 <component id=”1”>2</component>
 <component id=”2”>3</component>
 </rule>
 <!-- FOR -->
 <rule id=”1” start="FOR" end=”NEXT” nested="true">
 <component id=”0”>1</component>
 <component id=”1”>4</component>
 <component id=”2”>1</component>
 </rule>
..
</root>

Figure 3.3 Rules stored in a XML file to assist the generation of a ‘sorting’ program

(source Xhemali et al. 2010b)

The process of mapping the genotypes to phenotypes is assisted by the

modulo operator, which is the same method used by Withall. Xhemali also

introduces a ‘repair function’ that deals with fixing any syntactically incorrect

program structures produced by the evolutionary system, such as adding an

‘ENDIF’ statement at the end of an IF statement.

Pg. 69

Similar to the method introduced by Ryan, Collins and O’Neill (1998) in their

paper “Grammatical Evolution: Evolving Programs for an Arbitrary Language”,

this method poses a disadvantage of characteristics inheritance. This means

an earlier change in the gene value of a genome (through crossover or

mutation) can change the entire construct or type of statement following,

which results in the child having little similarity to its parents.

3.2.4 Discussion

Xhemali’s work was inspired by Withall’s to evolve a complete program

proposing different parameters and breeding techniques. Table 3.1 shows a

comparison between the parameter values and the GP operators applied in

both works.

In Withall’s work, the strength lies in preserving the characteristics inheritance

between the parents and the offspring by introducing a fixed-block genotype

to correspond to a single code line in the phenotype and also avoiding

insufficient genes required to produce a valid phenome. He states that the

offspring should inherit good characteristics from the parents and points out

that the effect caused by the GP operators to the offspring should be minimal.

Xhemali, on one hand, did not see this as the main obstacle to introduce a

variable length genotype to produce a valid phenome. On the other hand, she

introduces a fixing method to ensure that the phenome is syntactically correct.

Furthermore, if a particular genome encodes to an incomplete program, Ryan

et al. (1998) and Paterson and Livesey (1996) resort to gene reuse or

randomly extend the genome and similar approach is also implemented in

Xhemali’s work.

On the contrary, Xhemali focused on moving the programming language

subsets (rules) into an independent and hierarchically structured file (XML

file). This provides an advantage of presenting the rules in any programming

language and it is also easier to extend.

Pg. 70

Table 3.1 GP methods - Withall versus Xhemali.

Parameter Withall Xhemali

Genotype length Fixed-block Variable

Genotype representation String of Integers String of Integers

Selection Simple Fitness proportionate Tournament

Crossover Uniform Uniform

Mutation probability 10% of the 40 gene-length

genotype

One in each genotype

Language subset (grammar) Rigidly coded in PERL and

stored in the source code.

Rigidly coded in an XML file

Repairing function Yes Yes

Population size 7 genomes 10 genomes

Phenotype size Fixed Variable

3.2.5 Critique

Based on the analysis on the techniques used in the previous works, there

are four issues found, which are:

 In both works, the grammar was not properly constructed. Some

shortcuts were introduced which makes the rules very rigid and difficult

to expand. In Withall’s solution, the rules are coded using PERL, which

can only be maintained by PERL programmers. Whereas, Xhemali’s

XML file uses rules in terms of number reference which is quite difficult

to read and follow.

 The grammar rules built were dependent on the controlling function in

the evolutionary program, which makes it difficult to apply any changes

to the rules. This means if the rule component has to be altered, the

changes need to be reflected in the program and this requires the

expertise of a programmer. This means that the intention to develop a

GP system that could be extended by an external process without

modifying the main program code was not fulfilled.

 The fitness test function used (both works use the same test), which is

responsible for measuring the fitness of a particular genotype to be

either carried forward to the reproduction process for the next

Pg. 71

generation or be discarded from the population, produced invalid

measurements. Note that the fitness is measured based on the output

produced by the evolutionary program. The fitness function was

derived from the formal specification for the program with every

conjunctive requirement that was met led to an increment of 1.0 in the

fitness. Although this is a valid measure, it was found that the longer

the output, the higher the fitness score it would get. This is misleading

because if the output is longer than the expected result, it should be

given a much lower fitness score. Clearly deriving the fitness function

from the specification is a useful idea, but the implementation falls

short of an ideal measure.

 Although both works use a ‘Repairing’ function to ensure that the

generated ‘sorting program’ is syntactically correct, it would be difficult

if a new structure or a new statement rule is added to the grammar,

which requires a different fixing solution.

To solve the above issues, this thesis proposes a new GP approach. During

the initial stage, the effect of introducing modularisation and generic

programming language subsets to the performance of the GP was

investigated. The subsets were applied in the transformation process in the

GP method. The purpose is to evolve a complete software system ranging

from solving simple problems such as addition of integers, to increasingly

complex problems such as sorting integers in descending order. Following

this idea, several experiments were performed to study the effect of this new

approach on the evolutionary process; in terms of the time taken to find a

solution and the fitness evaluation requirement (Chapter 4 has the details of

this approach).

The next section describes Xhemali’s automatic Web Information

Retrieval/Web Information Extraction system, which provides a motivation for

an improved WIE solution.

Pg. 72

3.3 Automatic WIR/WIE System - Xhemali

3.3.1 Introduction

This section introduces a separate piece of work by Xhemali called an

"automatic WIR/WIE system". The automatic WIR/WIE system is short for

automatic Web Information Retrieval/Web Information Extraction system. For

clarity, this system is referred to as Xhemali’s automatic WIR/WIE system in

the rest of the thesis. The system has been developed using VB.NET 2008

and it was designed to be used by the advisors (the users) at Apricot Training

Management (ATM) who are responsible for providing the training course

information to their clients.

Xhemali’s automatic WIR/WIE has two components; Web Information

Retrieval (automatic WIR module) and Web Information Extraction (automatic

WIE module). These components are described in the following sections.

Figure 3.4 shows the high-level view of the system’s architecture.

Figure 3.4 Xhemali’s Automatic WIR/WIE System overview (source Xhemali

2010a).

Pg. 73

3.3.2 Automatic WIR module

Xhemali’s WIR module of the system serves as the mediator between the

Web and the ATM’s Customer Relationship Management (CRM). This module

is responsible to search the Web for training courses websites by analysing

and determining whether these websites are likely to be useful or not for ATM.

Xhemali’s WIR module consists of four stages; Crawler, Trainer, Indexer, and

Classifier. The first stage, which is the Crawler, will find and retrieve all

training courses web pages, and store the URLs of these web pages in the

database. The user needs to provide initial URLs to seed the crawler.

Next, the second stage, which is the Trainer, is responsible for analysing

whether these web pages contain relevant information or not. The indexer’s

function is to extract appropriate and most frequent text tokens, which are

initially stripped off from HTML codes including scripts, from each of the

relevant web pages. The Trainer and Classifier use these tokens for future

analysis. The Classifier function is to analyse and classify the previous web

pages into relevant and irrelevant web page categories using the classification

algorithms (Naïve Bayes approach). Based on the data collected from 24

websites consisting of 163,340 web pages, Xhemali claims that her method is

better than Web Link Validator and Link Checker Pro. This crawler also

outperformed Google in finding top ten leadership and management websites

relevant to ATM.

This crawler is not within the focus of this thesis, other than using the URLs it

collects from the UK training course domain that are relevant to this study.

3.3.3 Automatic WIE module

The web extractor (Xhemali’s automatic WIE), which is the other part of the

system, is an automatic wrapper. It is responsible for extracting four attributes

of interest from the online training course information i.e. the course title,

Pg. 74

location, price and date, from the course providers’ domains in the UK. These

web pages are crawled and retrieved earlier by Xhemali’s WIR module.

Genetic Programming (GP) is used by this system to automatically evolve the

regular expression. Regular expressions are generated using rules stored in

the XML file for extracting the relevant course information. There is no user

involvement at this point and the user does not need to be familiar with GP

nor regular expression syntax. In the following section, Xhemali’s automatic

WIE components are described, followed by the processes of extraction in

more detail.

Because web pages are human-oriented documents, which have various and

irregular formats, the automatic extractor may not be able to recognise the

information required. Xhemali reported that the results from her experiments

on 60,000 ‘never seen before’ web pages, shows that there is a need for the

automatic extractor to automatically increment its extraction rules. Based on

those experiments, the automatic web extractor has achieved an accuracy of

over 94% for the extraction of course titles and an accuracy of just below 67%

for the extraction of other course attributes which are dates, prices and

locations. This provides a motivation to design a better solution, which

provides additional relevant features (value added features) built onto the

existing system to enhance its functionality such as automatic increment of

the extraction rules. The addition of the human involvement to identify specific

pieces of course information is presumed to make the web extractor become

a more effective and comprehensive system.

Evolving Regular Expression

In Xhemali’s automatic WIE, the extractor uses a set of extraction rules

evolved by the GP system to define a set of extraction patterns (made up of

regular expressions), then applies the pattern to the web page that is retrieved

to find and capture each course attribute in focus. A set of domain-dependent

extraction rules is available in the XML file. In the GP system, the Genotype-

Phenotype mapping is used to build a regular expression with the aim of

Pg. 75

finding the optimum extraction pattern, which when applied to each web page

should extract the candidate extraction attributes. The regular expression

creation is fully automatic in contrast to other pattern creation methods.

The example of extraction pattern captured for price attributes consists of

three components; the tag information (pattern 1), the keyword and the data

format (pattern 2). The information must match these components to qualify

for the extraction. However, the fitness evaluation is only performed on

Pattern 2, after Pattern 1 is first removed.

Pattern 1 (tags format) : <tr[\s]?id=”row1”.*?>[\s]?<td.*?>.*?</td>

Pattern 2 (data format): (price|cost|fee).*?(£|£)\b\d.*?\b(\.\d{2})?

The XML-based rules are described in the following section. Similar to the

software evolution, the mapping uses the modulo operator to determine the

structure of the regular expression to be formed.

XML-based representation of rules

XML (eXtensible Mark-up Language) is one of the prominent technologies to

present data in a structured manner that can be manipulated by different

types of applications. The advantage of using XML is that it provides a

standard (Bray et al. 2008) for structured-document markup and is compatible

with the majority of the programming languages.

XML-based representation of rules has been a growing interest and has been

applied in the genotype to phenotype mapping (Barrero et al. 2010). This is

due to the growing number of XML documents being used to store data in a

defined manner that originated from different types of sources including the

Web. The XML can represent rules in a hierarchical structure where each

path provides a single rule, which can be made up of several related

components.

Pg. 76

Rules, which are used to aid the formation of a valid regular expression

pattern in Xhemali’s automatic WIE, are stored in an XML file (refer to Figure

3.5). Because they are built manually and her automatic WIE has no module

to accommodate for the addition of new rules, a regular expression expert is

needed to do the update. Rules in this file are separated into 4 categories:

i) the tags.

The tags collection consists of an itemised list of HTML tags, such

as ‘td’, ‘p’ and ‘div’.

ii) the regular expression rules.

The regular expression rules category defines some guidelines on

how to produce a valid regular expression. For example, the first

component is an open-tag (‘<’ symbol), followed by a tag name

(one of the elements in the ‘tags’ category) and a close_tag (‘>’

symbol), then a start_capture (‘(’ symbol) followed by regular

expression substructure (one of the elements in regular expression

substructure category) and the stop_capture (‘)’ symbol) and an

end-tag (</ tag name >). Thus the resultant regular expression

would be <td>(.*?)</td>.

iii) the regular expression substructures.

The regular expression substructure is a structure where some

quantifiers (‘*’, ‘+’, ‘?’) are added after a token such as “.*?” to

match zero or many characters and “[\s]?” to match any space if

any.

iv) the keywords.

The keywords component contains a list of keywords identifying the

attributes, i.e., price, title, date and location.

Pg. 77

Figure 3.5 XML-based grammar rules (source Xhemali et al. 2010b)

The following section describes in more detail how Xhemali’s automatic WIE

builds the extraction pattern for an attribute.

Pg. 78

WIE processes

Xhemali’s automatic WIE module aims to do the extraction process without

any human involvement or requirement for a human expert to build the regular

expressions and transfer the result as well as the extracted keywords to the

database for future queries. Figure 3.6 shows the database structure

developed for the system, which is not only used to store relevant training

information extracted but also intermediate data to support the system’s

functions such as links, word count, link status, genotype and phenotype

details. But before the extractor understands and captures the information, it

is important for it to “know” how to recognise the information.

Xhemali’s automatic WIE system relies heavily on a true match of the patterns

of the data with the regular expression that it generates before the extraction

task can be successful. It is built on GP principles to evolve the regular

expression based on the set of extraction rules. The regular expression

notations, which are stored as rules in an XML file, are manually created from

the careful analysis of the relevant web pages. The rules are chosen and

combined together based on Genotype-Phenotype transformation to form a

valid regular expression. The extractor matches the resulting regular

expression (evolved) to text in web pages and applies the fitness test.

A regular expression is successful when its fitness scores satisfy the set

maximum value. This regular expression is stored away and can be reused to

assist another extraction process. Regeneration of regular expressions

normally happens whenever the stored regular expressions in the database

fail to match data from the retrieved web page. This failure might be caused

by structural changes made to the system’s previously processed web pages

or the system is processing a new web page. In such a case, the extractor will

need to relearn those changes or the newly discovered patterns. However,

this is not possible as the rules available to the system are fixed.

Pg. 79

The following steps describe the processes of extraction:

1. Analyse web pages: Xhemali’s automatic WIE analyses the previously

retrieved web pages (of the relevant links) from the database

(CIE_Allowed_links table) and applies the regular expression pattern to

find the relevant information. If it fails to discover the new pattern, then

regular expression evolution will begin (step 2).

Figure 3.6 The database structure used by the automatic WIR/WIE system (source

Xhemali 2010a).

Pg. 80

2. Regular expression evolution using GP: This process is divided into

five main tasks:

a. Generation of initial population.

An initial population consisting of ten genomes is randomly

generated. Each genome is made up of variable length of genes

and is translated to a phenome using genotype-phenotype mapping

process. Each phenome is then executed and its output quality is

measured using a fitness test function. Fitness, in this case,

measures how well a generated solution has learned to predict the

output from the input during the evolution. The fittest genomes will

then be carried forward to the next generation for reproduction while

the less fit ones will be discarded from the population.

b. Parent Selection.

Individuals in the current population are put through a tournament

selection to choose the best individual for reproduction. For the

selection of the first parent, 40% of the population are randomly

chosen and their fitness scores are compared. Two individuals with

the highest fitness scores are selected and will be used to create

the next generation of individuals (offspring). This selection process

is repeated for the next parent until the total of parent matches the

size of the population, i.e., five parents.

c. Reproduction

During the reproduction process, the offspring are generated from

the parent genomes with the aid of two genetic operators: uniform

crossover and mutation. These offspring will become the new

individual where each individual is translated to a regular

expression using Genotype-Phenotype mapping process. Repairing

function is then applied to the generated regular expression to

ensure they are syntactically correct.

Pg. 81

d. A fitness test

The fitness measurement is used to determine the validity of the

regular expression to extract the course information from web

pages. There are two fitness tests introduced; fitness test for the

course title because it is always independent from the remaining

attributes (course date, location and fee) and fitness test for these

remaining course attributes because they are dependent on one

another, hence, needed to be managed as a group.

Xhemali uses several criteria to evaluate the regular expression,

which includes the formatting, geographical location, length of the

extracted attributes, single versus set of attributes, page position,

regular expression length and regular expression duplication. Each

criterion contributes to the overall fitness score of individuals.

Distinctively, a Naïve Bayes approach is applied to predict the

usefulness of the evolved regular expressions for capturing the

course title (Detail information can be found in a paper by Xhemali

et al. (2009)). According to Xhemali (2010a), however, this Naïve

Bayes method is not suitable for the rest of the attributes in focus

due to partial dependency issue, where sometimes one attribute is

dependent on the other, such as the price of the same course is

determined by the date and the location.

If any offspring are found to be fitter than individuals in the parent

population, it replaces the weakest individual for reproduction

selection process, otherwise this offspring is rejected.

e. Termination of evolution

This GP process is terminated when it encounters any of the three

conditions below:

i. it finds the perfect solution

ii. it has reached the specified maximum generation cycle

Pg. 82

iii. no improvement in the solution for a specified number of

generations, 100 in the case of Xhemali’s work.

3. Capture information: The data, which matches the evolved regular

expression pattern, will then be captured from the web page that has

been retrieved and transferred data to the database. The extractor may

capture a single instance or multiple instances from a single web page.

3.3.4 Discussion

From the analysis performed on Xhemali’s automatic WIE system, it becomes

apparent that this WIE system is less effective in the extraction of the three

attributes out of the four (price, date and location). This provides the

motivation to build a system that would be able to detect these attributes,

through their unique features and location on the web page.

One of the main contributions of Xhemali’s automatic WIE is the use of XML-

based extraction rules. However, the XML-based extraction rules, while

providing portability to adapt to new domain, are not very flexible in terms of

recognising and extracting the relevant information from the unseen web

pages. While manual addition of new rules could be an option, it is unlikely to

provide an adequate solution as this requires some XML expertise and

thorough understanding of the kind of rules to be added.

In summary, Xhemali’s WIE system achieved the following:

1. The system has the capability of evolving the data patterns, which is in

a form of regular expression. This means it can produce the unique

patterns automatically that will match and extract the specific pieces of

training course information. These generated patterns can be applied

successfully to other similarly structured web pages; otherwise new

patterns will be generated instead.

2. The extraction rules are stored in a separate XML file, which can be

called by the GP program. As it is external to the GP program, the file

Pg. 83

can be replaced to work on a different domain with minor modifications

without disrupting the operation of the rest of this GP program.

3. The novel use of the XML technology to store the extraction rules

provides a lot of benefits in terms of human readability, compatibility

with other programming languages, portable to many operating

systems and extensible to a deeper or wider hierarchy.

4. The system operates automatically with minimal user involvement. The

user involvement is only needed at the beginning to start the execution.

5. The system can be used by other organisations with similar

requirements to ATM. However, a few changes need to be done for

different requirements or domains.

3.3.5 Critique

The following describes four significant weaknesses of Xhemali’s automatic

WIE system:

1. One of the most significant weaknesses of Xhemali’s automatic WIE

system is that sometimes it is unable to extract the course information

because information moves location on the page or its format changes or it

is no longer available. This can be improved further through semi-

automation.

2. Although there was a thorough analysis of the structures of web pages

and their contents to formulate the extraction rules, web pages are

regularly updated and new technologies are introduced, which may

introduce a new representation or new structural representation. Because

these extraction rules are crafted manually by an expert it is unlikely to be

successful on every web page. In addition, the system was not designed

to accept new rules automatically and it highly depends on this expert to

update it.

Pg. 84

3. In order to produce a valid phenome by the Genotype-Phenotype mapping

process, the Repairing function plays an important role in the current

Xhemali’s automatic WIE system. It is designed to work on the training

courses websites and it would be very difficult to customise this function

for new domains as the main controls of the rules representations are

coded in the program, which requires a programmer.

4. Applying 40% selection technique for the tournament is a high proportion.

This means that the probability of getting a very fit individual is high and

the weaker individuals stand less of a chance of being selected.

3.4 Chapter Summary

This chapter present the study of THREE early works; TWO works on

software evolutions and a work on automatic Web Information Retrieval/Web

Information Extraction (WIR/WIE) system. It discussed the analysis

undertaken to meet the third objective specified in Chapter 1; how these

works can be used as a basis for developing a suitable WIE software tool for

an improved WIE solution?

The study focuses on two works on software evolution; Withall (2003) and

Xhemali (2010b). Four issues were found in these works, which includes

difficulty of expanding rigid rules, restricted access to controlling functions,

imperfect fitness measure and dependency on a repairing function. They are

elaborated in Section 3.2.4 to show the motivation for an improvement. An

important note is also included to justify the necessity to take up this area for

this thesis.

The second section discusses the components of Xhemali’s automatic

WIR/WIE system and how they are inter-connected to produce a solution for

Apricot Training Management (ATM). Several significant weaknesses of this

system are also highlighted in Section 3.3.3, justifying the needs for the

initiative to address them in this thesis. One of the most significant drawbacks

Pg. 85

is that Xhemali’s WIE system struggles to capture information from the

previously processed web pages if these web pages experienced structure or

content change. The extraction rules are hand coded and have limitations in

immediate adaptation to new data thus hindering the extension of the

extraction coverage. Another shortcoming is the embedded ‘repairing

function’, which makes the system less flexible for future expansion and finally

the high proportion selection used in the parent selection techniques is giving

slim chances to the weaker individuals to be selected, instead of giving a fair

chance to all individuals.

Details regarding the research development as well as the evaluation of the

improved solution on evolving complete software and evolving regular

expressions for the WIE system are presented in Chapter 4 and Chapter 5

respectively.

Pg. 86

Chapter 4

Practical Application of GP – Domain 1

4.1 Chapter Overview

Chapters 2 and 3 extensively reviewed the literature and works related to the

field of information extraction to provide a foundation for building a framework

for the semi-automatic system with evolved extraction patterns. This chapter

presents the approach and methods of evolving rules aiming to overcome the

issues identified in Chapter 3 and to fulfil objective #4 of this thesis.

Specifically, the intention is to demonstrate the enhancement to the Genetic

Programming (GP) method to produce a design in support of high system

efficacy (Section 4.3.3). When the generated regular expression is referred to

be ‘fully fit’, this means the maximum fitness score for that individual is

reached and satisfied all the criteria for the test source. However, this

individual is not necessarily completely correct for all possible web pages.

Section 4.2 introduces the context of the research; computer program

evolution and regular expression evolution. The next section details the

design and development of the evolutionary systems. Section 4.3.3 introduces

the enhanced GP mapping method and the grammar to support this mapping.

The efficiency of the evolved program is measured by the fitness function,

which ensures that the correct program solution is achieved. The evolved

program needs to be ‘fully fit’ to be useful.

Choosing a suitable programming language is important for developing an

evolutionary system and the reasons why PHP (the original choice) was

eventually not suitable for this project are also provided in Section 4.3.4. In

Section 4.3.5, the general experiment set up which is applicable to both

evolutionary systems is presented.

Pg. 87

4.2 Context

This section describes the context in which the Evolutionary System was

developed; a complete program evolution (this chapter) and a regular

expression evolution (Chapter 5). The aim is to produce a new method that

improves the performance of the system in both domains.

The first few sets of experiments aimed to find an optimal solution for

complete program problems. Optimisation is loosely defined as a process that

finds a better or a total optimal solution to a problem in a particular domain

according to the optimality criterion (Poole & Mackworth, 2010). It was

demonstrated that the technique presented here was as efficient as the earlier

techniques by Withall (2003) and Xhemali (2010a, 2010b), and outperformed

in certain parts. The next experiments concern the production of regular

expressions, which are successfully evolved to extract attributes, i.e., course

title, start date, location and price from the training course websites.

Apart from developing the GP system, a special script is also included. This

script allows for the automatic running of experiments with a fixed set of

random number seeds and automatically stores the results of the

experiments. This means execution of the new GPs can start immediately

after the previous one is completed, thus the stored results can be analysed

at a different time.

Like the regular expression evolution, the fundamental target schema of the

WIE system developed in this research (Chapter 5), is to extract from training

course web pages with explicit but not necessarily all the available attributes.

Figure 4.1 depicts the route of the experiments of the tasks involved in this

research and how they are related or connected.

Pg. 88

Figure 4.1. Experimental Route showing the progression of the tasks in this research

and the relationship between the components.

4.3 Evolutionary System Approach

4.3.1 Introduction

Two distinct evolutionary systems are described here; software and regular

expressions evolutionary systems, which are inspired by the work of Withall

(2003) and Xhemali (2010a, 2010b) respectively (see chapter 3). Both earlier

systems used Genetic Programming (GP) as the evolution strategy to solve

the problems. One of the key components of interest in their strategy is the

Genotype to Phenotype Mapping method. Separation of genotype and

phenotype has provided flexibility to apply genetic operators such as mutation

and crossover. This method of separation is the work of Banzhaf (1994), who

demonstrated efficient results. Some other researchers such as Paterson and

Livesey (1996), and O’Neill and Ryan (2003) also proved the same. However,

this separation also brings in some difficulties during the mapping process

such as shortage of genes, inheritance of characteristics and maintaining a

syntactically correct program, thus it is important to establish a direct and

consistent mapping (Withall et al. 2009).

Pg. 89

This section addresses these difficulties and introduces an efficient way to

avoid them. To prove the technique that enhanced the GP mapping method,

the experiments in this research began with an evolution of a software

program. The syntax rules of a programming language are rigid and

structured, thus the data used for the input can be controlled easily and the

output is predictable. A similar approach was then used to evolve regular

expressions, where the syntax is much more complex and less structured.

Before describing the separate experiments in detail some features of the

evolutionary system common to all experiments are given.

4.3.2 Grammar Validation Tool

Apart from its compatibility with major programming languages and platform

portability, XML is preferred in this research as the XML tags are not

predefined, thus the developer has more control over the process of

describing the rules of various levels of complexity. Successful use of XML to

support the transformation of phenotype from genotype has been recently

demonstrated in the work of researchers like Xhemali et al. (2010b) and

Barerro et al. (2010). The rules are written in an external file, thus it is globally

available and easily replaceable to work for different requirements or other

domain with only minor interruption to the main evolutionary system. This

flexibility is demonstrated in Section 4.4. and Section 4.5.

The rules used in the program evolution are designed as a “well formed” and

“valid” XML document, validated against a Document Type Definition (DTD).

A DTD dictates what elements should appear where in the XML document,

including what elements and attributes may be contained in each of these

declared elements. The DTD may also be used by an external system to

parse the XML document. In this thesis, DTD is applied to ensure the

correctness of the XML structure and it is an integral part placed at the top of

the XML document.

Pg. 90

A special DTD was created for this research to ensure that the XML document

conforms to the DTD rules and it is illustrated in Figure 4.2. It can be

interpreted as the root element is grammar and it has two elements; start and

rules. The start consists of a single non-terminal element and the rules contain

zero or many elements labelled as rule. Note that the ‘*’ symbol indicates that

an element happens zero or many times. Each rule contains either a non-

terminal or token, which occurs either zero or many times. A non-terminal

element has EMPTY, which specifies that this element must not have any

elements at all, i.e., text elements or children elements. The token is type

“#PCDATA”, which basically says that it contains text data. The following

ATTLIST means that a particular rule has attributes. In this case, each rule

has two compulsory attributes as indicated by #REQUIRED; a type, which

states that a particular attribute is a selection or a sequence, followed by a

name to identify the rule. Finally, the only attribute of a non-terminal is a

mandatory name.

<!DOCTYPE grammar [
 <!ELEMENT grammar (start,rules)>
 <!ELEMENT start (nonterminal)>
 <!ELEMENT rules (rule*)>
 <!ELEMENT rule (nonterminal|token)*>
 <!ELEMENT nonterminal EMPTY>
 <!ELEMENT token (#PCDATA)>
 <!ATTLIST rule
 type (selection|sequence) #REQUIRED
 name NMTOKEN #REQUIRED
 >
 <!ATTLIST nonterminal
 name NMTOKEN #REQUIRED
 >
] >

Figure 4.2 A DTD that defines the structure of XML-based rules with legal building

blocks (elements and attributes). The DTD is declared within the XML document as

an internal subset and it ensures compatibility with the XML systems.

The XML-based rules are derived based on the sequence of items either

terminals (tokens) or non-terminals according to the programming syntax and

following the DTD. For example, if the syntax of an IF statement described in

BNF is

 ifstatement ::= “if” “(” exp “)” statement

Pg. 91

then this would be coded in XML as

 <rule name=“ifstatement” type=“sequence”>
 <token>if</token>
 <token>(</token>
 <nonterminal name="exp" />
 <token>)</token>
 <nonterminal name=“statement” />
 </rule>

4.3.3 Genotype to Phenotype Mapping Method

In this research, an evolutionary system is developed with the application of

GP and XML-based grammar definition. One distinctive approach introduced

is to find the number of non-terminals in a particular rule that defines the block

size of a genotype and providing ordinal number reference to the non-

terminals for the mapping process. The first gene of a block is always

reserved for the decision of the type of rules to follow. Therefore the size of a

block is first gene plus maximum number non-terminals (1 + NT). The system

is then evaluated using an experimental method and the performance

measured using the time it takes to reach a fully fit (successful) solution. The

genotype (encoded program) to phenotype (program statement) mapping

used in this research is described as follows:

Finding the maximum number of non-terminals in a production:

The mapping is heavily dependent on a particular number, which is the

maximum number of non-terminals to be found in any production in the

grammar. The formal notation used to make this notion precise is described

ahead of the main mapping.

A genome is decoded into a phenome using a full syntax grammar definition.

A grammar G is represented as a 4-tuple:

 G = (N,T,NP,S)

where

 N is the set of Non-Terminals

 T is the set of Terminals

Pg. 92

 NP is a numbered set of productions - a set of pairs

 (PosInt × Production)

 S is the start symbol, S N

Unlike normal notation where NP is just a set of Productions, here it refers to

the productions from a particular non-terminal by ordinal number. The set of

all productions defining a particular non-terminal (n) can be discovered using

Productions(n)={ (?,p) : (?,p) NP p = (n ::= ??)}. Here, ? is an integer

representing the ordinal number given to the production and n ::=?? is a

production where ?? is any mixture of non-terminals and terminals.

All the productions from the same non-terminal are to be numbered

sequentially from 0, so Productions(n)= m (i,?) Productions(n) 0 <= i

< m. If (i,p) P then p has the form L ::= R and L N and R (NT)*

[alternatively, using powerset notation R (NT)].

Consider one production p written as L ::= R, where R is a string of values of

length r, written as r= R . Each element of R can be referenced by indexing,

Rj for j=0 to r-1. The set of indexes is then defined for which Rj is a non-

terminal NTIdx(R) = {j:Rj N} and the number of non-terminals in R is

counted NTCount(R) = NTIdx(R) .The set of all counts of non-terminals

mentioned on the right hand side of a production P is NTCounts(P) = {c : c =

NTCount(R) (?, ? ::= R) P}. Thus the maximum number of non-terminals

among all the productions of a grammar can be found using

max(NTCounts(P)), where [m=max(S) m S and e S, e <= m].

Take an if statement rule example from the previous section as an example.

Figure 4.3 shows the set of indices of elements in this rule (Rj). The rule R, in

this case, refers to the ‘ifstatement’. Therefore,

 NTIdx(ifstatement) = {2, 4}, and

 NTCount(R) = {2,4} is 2

which indicates that the size of the ‘ifstatement’ block is 2. The purpose is to

find the maximum size to determine the size of the blocks in the genome.

Pg. 93

IF statement – XML format
Index

(Rj)
 <rule name=“ifstatement” type=“sequence”>

 <token>if</token> 0

 <token>(</token> 1

 <nonterminal name="exp" /> 2

 <token>)</token> 3

 <nonterminal name=“statement” /> 4

 </rule>

Figure 4.3. Index of elements in ‘if statement’ rule of type ‘sequence’.

The above example showed the process of finding the size of a rule of type

“sequence” and this NTCount(R) has a different purpose to a “selection” rule.

Take a rule called “statement” which contains several options of statements

as represented in BNF as

 statement ::= ifstatement | for | assign | add | subtract

and its equivalent in XML form is

 <rule name=“statement” type=“selection”>
 <nonterminal name="ifstatement" />
 <nonterminal name=“for” />
 <nonterminal name=“assign” />
 <nonterminal name=“add” />
 <nonterminal name=“subtract” />
 </rule>

To calculate the number of genes (size of the block) required for this rule

(Figure 4.4 shows how the index is assigned to each non-terminal):

 NTIdx(statement) = {0, 1, 2, 3, 4}, and

 NTCount(R) = {0, 1, 2, 3, 4} is 5, therefore

the size of ‘statement’ rule is 5 and it is useful to find the numbers of available

choices for this production rule to decide which option to take and this is

defined by taking the modulo of a particular gene value. For example, if the

gene value was 10 then 10 mod 5 = 0, so the statement with index 0 (first

statement) would be chosen.

Pg. 94

statement – XML format
Index

(Rj)
 <rule name=“statement” type=“selection”>

 <nonterminal name="ifstatement" /> 0

 <nonterminal name=“for” /> 1

 <nonterminal name=“assign” /> 2

 <nonterminal name=“add” /> 3

 <nonterminal name=“subtract” /> 4

 </rule>

Figure 4.4. Index of elements in ‘statement’ rule of type ‘selection’.

Applying the result:

Now the maximum number of non-terminals concept is used in defining the

genotype to phenotype mapping. It defines the number of genes per block (b)

in the genotype as b = max(NTCounts(P)). Because the genes appear as

integer codes, if a non-terminal with name n is expected and an integer code i

is given, then production to be used is p = (k, n ::= ?) where k = i modulo

Productions(n) .

The genotype-phenotype translation algorithm is expressed as follows:

A genotype (GT) is a sequence of blocks (B0B1...Bn-1) for some n. Each block

(B) is a sequence of genes (g0g1...gb-1). Each block records the encoding of

one production (p). If p = (i, L::=R) then integer codes are given for each Rj in

turn for which Rj N. Note that no codes are given where Rj T because

there is no choice as the terminal must be included. The integer code for the

non-terminal case chooses which of the relevant productions is to be

expanded.

If the encoding process yields less than b = max(NTCounts(P)) integers, then

extra arbitrary genes are added by padding on the right in order to keep all

blocks the same length (Withall 2003). Genes added in this way are never

used in the decoding process but they serve a crucial purpose in the

generation/mutation process.

Pg. 95

4.3.4 Programming Language

Initially, PHP 4 was chosen as the programming language to build the

evolutionary system. The main reason was that the much of the other parts of

the system were written in this language. Other reasons are that PHP is free

and open source software, can be used with any Relational Database

Management System (RDBMS) and is suitable for web applications. In 2011,

PHP was ranked #4 in the TIOBE Community Programming Index (TIOBE,

2011). New releases and patches are issued on a regular basis thus fixes can

be done much faster. Another reason for choosing PHP was that it is a

scripting language with a built-in library that has a wide variety of functions,

and it can handle pattern matching well (this is particularly useful in the

extraction process) using its built in commands such as preg_match(),

preg_replace(). If the evolution program fails to work properly, such as trying

to perform an infinite loop, PHP can handle this kind of error by giving a

specific time to each program before it is terminated and this process does

not affect the rest of the GP process. Moreover, the resulting program, which

is internal to the GP process is also written in PHP, thus no other compiler is

required to be installed in this situation.

In practice, the computing resources requirement, especially memory

consumption, is one of the disadvantages of GP (Walker 2001). From the

researcher’s experiments of software evolution, which involved tens of

thousands of loops, it was found that the weakness of PHP 4 became

apparent when managing memory. This consumption could grow very quickly

and substantially in order to evolve the solution causing the speed to

gradually slow down and eventually the program crashed. Several attempts to

find out which part of the program consumes the most memory and then

optimise this memory usage, such as refreshing memory every one thousand

cycles, reassign a null value to a variable instead of unset and use functions

where appropriate, were ultimately unsuccessful.

In the latest version of PHP (PHP 5), the PHP developers claim that they have

addressed this problem of memory management by introducing the garbage

Pg. 96

collector to clean-up the unused variables when the root buffer for holding

these variables is full (PHP.NET 2010). This collector should prevent the

creation of memory leaks as the run progresses, so the experiments were re-

run in PHP 5. However, the slow performance issue was still unresolved. This

is because the garbage collector is only called in when the program requires

more memory, thus the release is not quick enough for the execution to

progress. The only advantage observed was that it avoids the program

crashing as a result of insufficient memory allocated. Figure 4.5 shows the

empirical evidence of the performance of the evolutionary system developed

in PHP from the start of execution to 7000 generations/cycles. So, a new

programming language was sought.

Figure 4.5 Time vs memory consumptions by the evolutionary system in PHP.

The scripting language PERL is one of the most powerful tools in text

processing and excellent at handling regular expressions (Pham &

WilamowskI 2009). Like PHP, PERL is an interpreted language, which has the

benefit of smaller executable program size and is normally platform

independent. Although the codes are parsed and executed at runtime, which

makes it slower in terms of processing speed, interpreted language is better

for artificially evolving programs as the execution time is faster. The following

are the main reasons for choosing PERL:

1. It has some aspects of functional programming, which the

developer is most comfortable with, thus debugging is easier.

0

5

10

15

20

25

1

2
8
0

5
6
0

8
4
0

1
1
2
0

1
4
0
0

1
6
8
0

1
9
6
0

2
2
4
0

2
5
2
0

2
8
0
0

3
0
8
0

3
3
6
0

3
6
4
0

3
9
2
0

4
2
0
0

4
4
8
0

4
7
6
0

5
0
4
0

5
3
2
0

5
6
0
0

5
8
8
0

6
1
6
0

6
4
4
0

6
7
2
0

7
0
0
0

Generation

S
e
c
o
n
d
s

Time

Memory(MB)

(min)

Pg. 97

2. It has a huge collection of libraries, which are frequently maintained

and they are downloadable from CPAN.

3. Availability of good features for Artificial Intelligence programming

such as garbage collection, extensibility and interactive

environment.

4. It has equivalent or even superior pattern matching than PHP.

5. It has debugging tools and programming support, which allows the

developer to draw resources from the community.

6. It has a good interaction feature with the Internet using modules

such as LWP::Simple and Web::Query to handle HTML web pages,

which is made simple by the CGI.pm module, thus useful for this

research.

Because of these reasons, the GP program was re-coded in PERL. For

execution up to 7,000 cycles, the computational effort was halved, knocking

down the execution time from more than 8 minutes to just above 4 minutes

and a great improvement on the overall memory usage from 19MB to just

1.4MB.

As mentioned above, this thesis is exploring evolutionary programming

subsets in solving computer problems and evolution of regular expression in

Information Extraction. The following outlines the experimental set up

including some general parameters applied to both areas; computer program

and regular expression evolution.

4.3.5 Test Environment

All experiments are carried out using the following general parameters and

Table 4.1 shows the settings for each of the experiment tasks:

Execution Condition: The system executes ten runs; each evolves the

population for a maximum of 50,000 generations with ten different

random seeds based on the first ten prime numbers (1, 2, 3, 5, 7, 11,

13, 17, 19 and 23). A random seed means the identical sequences of

Pg. 98

integers are generated every time so that the run can be made

repeatable. Withall and Xhemali (see Chapter 3) only need this

maximum setting to produce good results. Therefore, to make a fair

comparison, the same parameter settings were used.

Population settings: In the initial experiments, small tests using various

initial population sizes were tested to determine the best setting for a

specific problem to solve. Then the most promising population size

was selected based on the size, which has the smallest average

generation and the lowest average speed requirement. In the first few

experiments, the most common method is applied where the

individuals were randomly generated to fill the initial population and in

the remaining experiments, populations were seeded with known

solutions.

Representation: Each genome is made up of a string of integers called

genes. The gene is not restricted to the integer data type. It can be of

any data type such as real numbers and binary strings, but to be

consistent with the previous works, integers were chosen here. The

genome length was using fixed-block lengths and the size of block

was determined by the rule, which requires the largest number of non-

terminals.

Parents Selection: The selection method was using Roulette Wheel

Selection. From experiments, the best result was achieved using this

approach.

Genetic Operators: Uniform crossover is applied with a probability set to

50%. The mutation rate was set to 10%. This was the best rate from

experiment and this low mutation rate aimed to make small random

changes to explore new possibilities in the search space and to

sustain the convergence of GP.

Fitness Test: In order to consider whether an individual is fit or not, the

fitness score must be 100% of the predefined target fit value. The

fitness score is calculated based on the weight set for the evaluation

elements (sometimes called fitness cases) that specify the desired

goal of the search for a fit solution process. The higher the value of

the score achieved by a solution, the fitter the individual. A specific

Pg. 99

fitness evaluation weight set is needed for other computer program

problems or other domains.

Termination Condition: The experiment terminates if it has reached the

specified maximum generations (50,000 generations) or it has found a

fully fit solution.

Machine Specification: All experiments use Intel 3.00GHz PC with 4GB of

RAM, running Windows7, therefore, the speed recorded is based on

this specification to ensure consistency.

Table 4.1 The characteristics of the experiments carried out in this research.

 Common Characteristics

 - Random number set for initial population

- 50% crossover rate

- 10% mutation rate

- max 50,000 generation cycle

CoPE Special Characteristics

1 Sorting lists of integers 7 genomes

2 (Seeded) Sorting lists of integers
7 genomes seeded with previously successful

evolved genome

3 Reverse-sort lists of integers 7 genomes with modular approach

4 Distance-from-mean 7 genomes

REGEXEV Special Characteristics

5 REGEXEV with Extraction rules 10 genomes

TS-WIE (Chapter 5) Special Characteristics

6

Regular expression with automatically

incremented grammar using target web

pages

10 genomes

7

(Seeded) Regular expression with

automatically incremented grammar using

target web pages

10 genomes seeded with previously successful

evolved genome

Pg. 100

4.4 A Computer Program Evolution (CoPE)

4.4.1 Introduction

Applying a fixed-length block genome technique helps to maintain the

characteristics of the parents in the children, with very small effect on the

following blocks if an earlier block experiences any change due to mutation.

The size of blocks (BS) corresponds to the grammar rule, which requires the

most information, i.e. the highest number of non-terminals (NT) plus an extra

gene that is placed as the first integer in each block to decide the type of rule

to follow, BS = NT + 1. Each block translates to a syntactically correct code in

the phenome, therefore the completeness of the generated program can be

maintained to allow for a proper execution of the program without interruption.

In addition, a ‘clean’ grammar is introduced to support the mapping method,

guaranteeing that a valid program is produced. A ‘clean’ grammar is defined

here as a grammar that follows the correct syntax of a particular programming

language to produce an error-free program. A detailed description can be

found in the following sections.

Aim of Experiment

The CoPE (Computer Program Evolution) experiment was conducted to

establish an effective method for handling the problem of gene insufficiency,

maintaining characteristics inheritance and maintaining a syntactically correct

program without using a ‘repair function’. A ‘repair function’ refers to a

mechanism to tackle syntactical errors in the program and force it to be a valid

and runnable program (Banzhaf 1994; Ryan et al. 1998).

Subject

The GP system is designed to evolve a complete and error-free program. The

specific programs chosen to demonstrate the system are a sort program, a

reverse-sort program and a distance from mean program. The system

accepts some lists of integers of various lengths as an input. The sort

program sorts each list into ascending order, while the reverse-sort program is

the opposite, arranging the integers in each list in descending order. The

Pg. 101

distance from mean program is to calculate how far each integer in the list is

from the mean of the list. The sort program was used by both Withall (2003)

and Xhemali (2010a) as part of their work so it is appropriate to use those

targets for a reference performance. The distance from mean program would

require two blocks of code, which individually need terminating brackets and

so is likely to favour the clean grammar approach.

Specific Setting for all CoPE problems

i. The population size: 7 genomes.

ii. Genome size : 10 blocks with 5 genes in each block

iii. Input : Lists of Integers stored in an array = { {30,40,60}, {60,85,75},

{90,93,95,98}, {90,89,85,57}, {40,45,48,39}, {20,30}, {40,30,35,39},

{50,6}, {30,28,29}, {50} }.

iv. Programming Language : PERL v 5.14.2

4.4.2 Sorting Lists of Integers

This section presents a viable approach to automatically evolve a ‘sorting

program’ and how the system can be optimised. It also reports a novel

approach that improves the structure of the grammar, which guides the

mapping process. One of the key distinctions is that this experiment uses a

more comprehensive grammar rather than the simply defined language

subset used by Withall (2003) and Xhemali (2010b). The problem with their

grammar is that it was capable of generating a syntactically incorrect program.

Therefore to avoid this situation, they introduced a fixing tool to ensure that

the generated program follows the correct syntax. Furthermore, because their

system was not designed to accept new rules and the grammar is built

focusing on the requirement of the specified problem, the variation of

solutions that can be produced is limited and this also limits the kind of

problem that may be able to be solved.

In contrast to Withall who wrote the grammar (programming) rules as part of

the source code, the approach by Xhemali, i.e., using an XML file external to

Pg. 102

the program is more favourable. The grammar in this XML format can be

arranged in the hierarchy of rules and elements, thus grammar maintenance

is easier, which this research is intended to achieve. However, Xhemali’s XML

grammar needs to be improved by redesigning the XML representation. The

reasons for this improvement will be discussed further in the ‘clean grammar’

section below. Therefore, the focus of this section is to investigate how GP

methods can contribute towards enhanced methods of WIE and the

evaluation shows the improved GP performance against the GP methods

proposed by these two researchers. This provides a fundamental foundation

towards developing a solution for WIE of training course data.

A sorting program or its opposite reverse-sort program was chosen for the

experiment because it is one of many challenging computer applications, and

is normally practiced by students in a computer studies programme. ‘Sorting’

either in ascending or descending order requires the use of selection, iteration

and sequence statements, which comprise the basic concepts of

programming. There are various sorting techniques available, for example,

bubble sort, heap sort, and insertion sort, but for this experiment, the aim is to

generate any working sorting program using a predetermined and modular

programming syntax and a fitness function that recognises a properly sorted

list.

Fitness Function

Fitness is calculated to determine how close the actual output produced by a

particular phenome is to the expected one. This also determines how good an

individual in a population is at solving a particular problem. It is also used to

aid the selection of parents for the reproduction stage. The criteria used in the

fitness calculation should be carefully chosen to accurately measure the

ability of the individual at solving the given problem. A fitter phenome normally

has a higher score and in most cases, a perfect individual is found if it

reaches the set score, thus terminating the evolution process.

The GP system here is designed in such a way that it can be used for other

Pg. 103

computer problems. However, a fitness evaluation function must be supplied

for each problem. For the sorting and reverse-sort experiments, a fitness

function is calculated based on two criteria; input/output pairs and the order of

integers to determine the quality of the output list. A penalty is imposed if the

output is empty or the execution took longer than the maximum time allowed,

in which case, a minimum fitness score is given. The total score is then

calculated. Therefore, the higher the fitness score, the more likely this

genome will be carried forward to the next reproduction cycle.

A list is assumed to be sorted if its elements are in order, small to large.

Figure 4.6 is a formal specification of a sort. In words, it describes that L is the

starting list and N is the result. N is sorted if all elements in N are exactly the

same as L, including duplicates, and N elements are in ascending order. It is

written out as an all possible pairs test. A detailed explanation of this formal

specification can be found in Cooke (2004). Because the formal specification

of a sort is time consuming as the cost of calculation is O(i2) where i the

length of the list due to its tests on all possible pairs of integers, the fitness

function applied here is calculated using a simpler version of the formal

specification by Withall (2003). This simplified evaluation, which is O(i) is

based on comparison of adjacent elements in the list, and every conjunctive

goal will contribute to the fitness score. Unlike the traditional fitness function,

which uses simple input/out pairs, this simpler version, shown in Figure 4.7, is

shown to have better performance in Withall’s (2003).

Figure 4.6. Formal specification of sort (source Cooke, J. 2004)

Pg. 104

$fitness++ if(bageq(\@L, \@N));
if ($#N > 0) {
 for my $x (0..$#N-1) {
 $fitness++ if($N[$x] <= $N[($x+1)]);
 }
}

Figure 4.7. Simplified fitness function for sort (source Withall 2003)

Programming Languages like PERL and Java provide an enormous language

library. As a good programming practice, only selective language subsets

should be included in the program to solve a particular problem. The following

subsection describes a novel technique introduced in this thesis, i.e., the

‘clean grammar’ which represent the relevant programming language subsets.

But first, to help make the point clearer, the following discusses the grammar

subsets.

The Grammar Subsets

It is commonplace in research on generating programs to work with a subset

of a general purpose grammar. The reason is to restrict the search space of

the genetic evolution to obtain answers more quickly. Researchers like Withall

(2003) and Xhemali (2010a), also make the same point. However, the

programming language subsets introduced in their work were not properly

constructed. The main body of the conditional statements and their end

statements, i.e. ‘}’ in PERL syntax, are defined separately. This improper

syntax could easily cause three syntax error situations; the end statement is

the first line of code in the program, the conditional statements have it missing

or there are too many. Therefore, to prevent from having this error, both

researchers dealt with it via a repair function before the program is tested for

fitness.

It is easy to subset a grammar where this just means deleting whole rules

from the official full grammar, e.g., removing declaration and call of functions

or removing one kind of iteration. It is more tricky to subset a grammar to

restrict a number of constants and/or variables because new rules need to be

written, e.g., var ::= “var1” | “var2” | “var3”. Specifically for this research a new

Pg. 105

variation on syntax has been invented. This is to request a repeat of an earlier

identifier (further explanation is in the next section).

A ‘Clean Grammar’ approach

It is possible that the phenotype produced from the raw mapping of the

genotype contains errors or incomplete elements to make up a valid program

statement. This happens because individuals run out of genes required by a

particular rule definition. To tackle this issue, researchers such as Banzhaf

(1994) and Ryan et al. (1998) introduced a correcting mechanism, which is

referred to as a ‘repair function’ throughout this thesis.

The same approach has been applied in both Withall’s (2003) and Xhemali’s

(2010a) systems - the reason being that the generated programs are prone to

have syntactically incorrect code segments. This repair function is executed

after all the genes have been decoded. One of the purposes of this function is

to insert the missing close brackets automatically to match the open brackets

(Withall, or the ‘endif’ and ‘endfor’ in the case of Xhemali) in the generated

program to allow for smooth program execution without interruption. However,

this is strongly dependent on the specific evolution program, thus it needs to

be duplicated for other programs.

This research proposes a ‘clean grammar’ to avoid such dependency on a

‘repair function’, which is specifically hand coded to handle specific problems

while achieving an error-free program. A clean grammar is defined here as a

concise representation of grammar which is hierarchically structured that

 follows the correct programming syntax construct,

 properly terminates a block structure,

 defines the rule’s type : selection/sequence,

 defines distinction between each element of the rules; a non-

terminal or a token (terminal),

 does not depend on a repair function to produce an error-free

evolved program.

Pg. 106

Figure 4.8 shows the ‘clean grammar’ represented in BNF form and its

implementation in XML in Figure 4.9. The full grammar in XML is available in

Appendix 3. The NULL statement is included in the grammar to provide an

empty code that does not have any effect on the program produced as the

number of code lines required by an optimum solution may vary.

statementseq ::= statement | statements
statements ::= statement statementseq
statement ::= nullstatement | assignstatement | ifstatement |

forstatement | nestedforstatement
nullstatement ::= “;”
assignstatement ::= wvar “=” rvar
ifstatement ::= “If” “(“ wvar opr wvar “{“ statementseq “}”
forstatement ::= “for” “(“ cntr “=” 0 “;” “N1” “<” length “;” “N1” “++” “)” “{“

 statementseq “}”
nestedforstatement ::= “for” “(“ cntr “=” 0 “;” “N1” “<” length “;” “N1” “++” “)”

“{“
“for” “(“ cntr “=” “N2” “+” 1 “;” “N2” “<” length “;” “N2” “++”
“)” “{“ statementseq “}” “}”

wvar ::= “a[tmp1]” | “a[tmp2]” | “tmp3” | “tmp4”
rvar ::= “a[tmp1]” | “a[tmp2]” | “tmp1” | “tmp2” | “tmp3” | “tmp4”
op ::= “==” | “!=” | ”>” | “<” | “>=” | “<=”
length ::= “length”
cntr ::= “tmp1” | “tmp2”

Figure 4.8. Grammar rules are expressed in BNF form. In the actual implementation,

these grammar rules are presented in XML format.

For this CoPE research, basic grammar rules (primitive rules) following the correct

programming syntax are manually coded in XML files. These rules represent the

standard structure of loop statements (for and double for), an if statement and an

assignment statement. Some of the rules are precisely constructed, such as, a for

statement is represented as for (var1 = 0; var1 < length; var1++). The decision to

implement a restricted construct is to reduce the search space and to ensure the

validity of a statement constructed, thus speeding up the processing time without

interruption. This means that some knowledge of the construction of a particular

program to solve a particular problem provides an advantage to achieve an improved

efficiency of the algorithm. For example, a ‘double for’ is a common structure used in

the sort algorithms for comparing elements in a list. However, it was observed that

not all solutions took advantage of the ‘double for’ statement.

Pg. 107

<grammar>
 <start>
 <nonterminal name="statement" />
 </start>
 <rules>
 <rule name="statement" type="selection">
 <nonterminal name="nullstatement" />
 <nonterminal name="assignstatement" />
 <nonterminal name="ifstatement" />
 <nonterminal name="forstatement" />
 <nonterminal name="nestedforstatement" />
 </rule>
 <rule name="nullstatement" type="sequence">
 <token>;</token>
 </rule>
 <rule name="forstatement" type="sequence">
 <token>for</token>
 <nonterminal name="counter" />
 <token>(</token>
 <token>0</token>
 <token>..</token>
 <token>$#inlist</token>
 <token>)</token>
 <token>{</token>
 <token>$runtime++; die if($runtime > $timeout);</token>
 <nonterminal name="statementseq" />
 <token>}</token>
 </rule>
 …….
 </rules>
</grammar>

Figure 4.9. An extract of XML-based grammar to guide the transformation of

genotype to phenotype for generating a PERL program.

A few additional rules are also added to the grammar such as statementseq to

define a block statement, to allow for syntactically correct statements

generated and some rules in Withall’s and Xhemali’s solution are removed

such as the end statement because they have no part in the clean grammar.

A special feature has been introduced in the grammar, which indicates a back

reference to the previous non-terminals. They are labelled as ‘N1’ and ‘N2’.

This can be viewed at as a stack programming, operating a Last-in-First-out

method. This feature simply tells the system that the non-terminal name for its

replacement refers to the most recent non-terminal name being used. This

approach is useful to simplify a loop statement construction, for example a

valid for loop code, for (var1 = 0; var1 < length; var1++), the non-terminal (in

this case refers to a variable) ‘var1’ appears 3 times; to initiate var1, to set the

Pg. 108

condition for looping and increment the value of var1. In order to get the

correct repeat of var1, it is replaced by N1. Therefore, this ‘for’ statement is

represented as for (var1 = 0; N1 < length; N1++).

One of the benefits of this improved grammar definition is that a block of

statements can be explicitly defined, automatically enclosed within the open

and close brackets. The grammar not only allows for the creation of single

statements, multi-block statements or nested statements in the program but

also a mixture of these as a human programmer would do. Another benefit is

that because the rules strictly follow the correct syntax, the generated

program is guaranteed valid. This means no repairing is required. The third

benefit is that the special DTD ensures that the valid structure of the XML file

can be maintained. This will make sure that no error is encountered during the

genotype to phenotype translation.

Program evolution with primitive grammar

This work appears in a paper entitled “An Evolution of a Complete Program

Using XML-based Grammar Definition” (Siau et al. 2012). The initial work

focused on adjusting the parameters experimenting with different crossover

rates, mutation rates and population size. Further work to improve the

technique is also included here, which proposes the use of a multi-objective

fitness function. For consistency, every test was run many times and the

results were recorded. The comparison of results for the best parameters

setting are in agreement with Withall (2003); 7 genomes population with 10%

mutation rate and 50% crossover appears to produce high fitness individuals

quickly.

The initial population is generated with a random number sequence seeded

by one of the first 10 prime numbers. A genome contains active genes and

may also contain padding genes. An active gene will affect the phenome

(solution) if it is changed (through the process of crossover or mutation). In

contrast, a padding gene does not. A padding gene is an unused gene to fill

up the block so that the same size of each block can be maintained in each

Pg. 109

genome. Therefore, in a case where a particular program structure or

statement requires fewer genes, these unused genes will be ignored. This

should ensure that the next statement/structure translation would start from

the first gene of the next block, thus its interpretation would also be

unchanged.

A sample genome showing these two types of genes is depicted in Figure

4.10. The purpose of having these genes is to ensure the consistency of the

Genotype-Phenotype translation as each block is independent of each other.

A block of genes in a genome is translated to a line of code in the phenome,

therefore, a ten-block genotype would produce ten lines of code phenotype.

Genome :
(a 5-gene
block)

7 0 2 1 8

 assignstatement

(active gene)
$a[$tmp1]
(active gene)

$tmp1
(active gene)

padding padding

Phenome : $a[$tmp1] = $tmp1

Figure 4.10 Active genes and padding genes in a block

Experiment and Results Discussion

The sorting list of integers experiment is designed to answer two questions.

Firstly, how well the first algorithm, which avoids the ‘repair function’,

performed in comparison to the previous two works. Secondly, to determine

how the multi-objective fitness function affects the performance of the first

algorithm.

The lines of code produced (program statements) are the result of the

mapping of the genotype to its equivalent phenotype. The basic process of

genotype to phenotype translation is by finding the remainder using a

modulus operator. The same concept is applied here and the algorithm which

describes the steps in Genetic Programming method is in Figure 4.11. Figure

4.12 depicts the Genome to Phenome translation process. Note that the first

Pg. 110

integer of the first block always represents a statement and the assignment

statement requires fewer genes, thus the unused genes are ignored.

Algorithm 1 Genetic Programming

Input: Set number of iterations, iteration, population size, popSize, the size of a chromosome,
chromosize, the size of a block, blockSize, Rate of mutation, MutationRate , crossover
probability, Probability, upper range of integers that a gene can take, MaxRange

Seeder: seeder
ListsOfIntegers: lists of integers to be sorted
Create initial population pop of popsize,
Apply Genotype-Phenotype-Mapping to pop
fit= fitness(pop)

for
 for

 end for

loop1 = 1:iteration
loop2 = 1:popSize/2
 Selects 2 individuals from pop based on fitness,
 Two offspring = crossover with Probability and mutate with MutationRate
 newpop += Two offspring
 Apply Genotype-Phenotype-Mapping to newpop
 newfit += fitness(newpop);

allpop = pop + newpop
allfit = fit + newfit
sort allpop in descending order based on their allfit value
pop = top popsize allpop
fit = top popsize allfit

end for
Output: A program

Figure 4.11 Pseudo-code of the Genetic Programming to evolve a program.

The produced program is considered useful if it achieved 100% fitness value

and the survival of the genome depends on how fit it is in comparison to other

genomes in the population. This means the seven fittest genomes will survive

to the next process of reproduction out of the fourteen genomes in the

population at each cycle. The less fit genomes will be discarded from the

‘potential’ population as they are assumed not viable to be processed further.

Pg. 111

Figure 4.12 Genome to Phenome Mapping with a new grammar rule (block

statements). This helps the mapper to decide if a particular statement (if, for or

doublefor) has a single true statement or multiple true statements.

The results in Table 4.2 show the comparison of the four different approaches

based on ten independent different seeding runs. The statistics generated

from ten repeated runs is to ensure that one solution for the sort problem does

not result in a ‘lucky’ fitness score based upon the starting population. ‘E1’

refers to Withall’s approach, ‘E2’ refers to Xhemali’s approach, ‘E3’ refers to a

new approach introduced by this research (a replication of ‘E1’ approach with

the clean grammar) and ‘E4’ is another approach introduced in this research

(a replication of ‘E3’ with a slight change in the fitness function). The ‘E4’

fitness is measured using multiple objectives (a set of three weights is

assigned to (a) the set of input integers in the lists, (b) the order of the

integers and (c) the length of the lists). Unlike the other three approaches, the

Pg. 112

maximum fit score in ‘E4’ is independent of how many integers in the test set,

i.e. regardless of the length of the test set. It is important to note that seeding

does not apply in ‘E2’ (Xhemali et al. 2010b).

Table 4.2. Comparison of results with the previous works (10 runs) – E1: Withall et.

al. (2003), E2: Xhemali et. al.(2010b), E3: A replication of E1 with clean grammar,

E4: A replication of E3 with a multi-objective fitness function.

Genotype
Length

Selection Crossover
Mutation
Rate

Generations

Std. Dev. Mean Median Worse
case

Best
case

E1
Fixed
length

Roulette
Wheel

Uniform 10% 47975 1840 14837.19 21001.3 17442.5

E2
Variable
length

Tournament Uniform

One
gene in
each
genome

35467 93 11796.03 10049.2 5320

E3
Fixed
length

Roulette
Wheel

Uniform 10% 36028 4407 11372.19 23982.6 27992

E4
Fixed
length

Roulette
Wheel

Uniform 10% 38068 543 11126.46 13004 9381

Given a whole set of different seed values, the number of generations and the

time required by each run to find the solution are recorded and analysed.

Furthermore, in order to ensure that the solution is valid and correct, the

product (code) is dry-run manually and the output is analysed and compared

(actual result and expected result). Figure 4.13 shows one of the complete

and successful sort programs generated by the GP system (note the %

indicates a modulus operator in PERL). Other evolved sort programs can be

found in Appendix 4.

The standard deviation shows that ‘E4’ approach is the most consistent

approach in finding a good solution. It can be seen that on average, ‘E3’ is the

slowest. Note that ‘E3’ is a repeat of ‘E1’ with the improvement in terms of

producing a syntactically correct program, independent of the repair function.

The trade-off to this approach is the slow performance to achieve a fit

solution. The mean is the highest among the four and the median is about 1.6

Pg. 113

times greater than ‘E1’ and five times greater than ‘E2’. It was presumed that

moving the grammar to an external file and an addition of a gene in the

genotype required by the clean grammar contributed to this adverse

performance.

for $tmp1(0..$#inlist){
 for $tmp2($tmp1+1..$#inlist){
 if ($tmp4>=$inlist[$tmp2%($#inlist+1)]){ #redundant
 $inlist[$tmp1%($#inlist+1)]=$tmp2;
 }
 $tmp3=$inlist[$tmp1%($#inlist+1)];
 if ($inlist[$tmp2%($#inlist+1)]<$tmp3){
 $inlist[$tmp1%($#inlist+1)]=$inlist[$tmp2%($#inlist+1)];
 if ($tmp2!=$tmp1){
 $inlist[$tmp2%($#inlist+1)]=$tmp3;
 }
 }
 }
}

Figure 4.13. A sample of an evolved Sort program generated by the evolutionary

program.

Although Xhemali’s approach (‘E2’) is the fastest, the result is not consistent,

as the initial population is created with random integers. This means that the

experiments are not repeatable due to non-seeding of the random number

stream. Because the result changes every time the system is run, this

approach is highly dependent on ‘luck’ to get to the solution quickly (Xhemali

2010b). Furthermore, the GP used a single list as test data compared to 10

lists in Withall’s and this research.

Even though it difficult to replicate the results, the ‘E4’ approach is still within

an acceptable distance from ‘E2’ with a median difference of 1.7 times.

However, ‘E2’ has the same problem with Withall’s (E1), i.e., the use of repair

function to produce the syntactically correct and complete program (refer to

Section 3.2.4 for the issues of these two previous works). The fact that ‘E4’

consistently scores lower than ‘E1’ and ‘E3’ suggests that the performance

improvement is attributable to the normalisation of the fitness function (length,

size and set of the list).

Pg. 114

Another attempt to look at the performance comparison between ‘E1’, ‘E3’,

and ‘E4’ is by increasing the number of seeds to one hundred. Table 4.3

shows the performance of Withall’s system and the new approach with

respect to the generation and time taken to evolve the sorting program using

one hundred random seeds. It was disappointing to discover that the new

approach ‘E3’ is not as fast as Withall’s. This is caused by the increase of the

genome size and the search space for the ‘clean grammar’. Based on all

tests, ‘E3’ was only able to reach 91% fit-rate.

Generally, it will take longer to achieve a solution if the search space allowed

by the representation is larger (Koza 1992). In this approach, the clean

grammar requires an additional decision for determining the content of a block

statement, i.e., whether it contains single statement or multiple statements,

thus there is a doubling of the search space for a 1.6 increase in time. Also,

this ‘clean grammar’ has introduced a properly structured set of rules

validated using a DTD that produces error-free evolved program with no

dependence to the ‘repair function’ and is external to the main program, which

provides an easy access to other programs to read and append new rules.

Table 4.3. Comparison of 100 seeds results between Withall’s works (E1), clean

grammar (E3), a multi-objective fitness function (E4) based on generation cycle and

time to achieve fit solutions.

Generation Time

E1 E3 E4 E1 E3 E4

N 100 100 100 100 100 100

Mean 15514.56 22906.53 11607.75 10.50 16.55 10.19

Std. Error-
Mean

1081.17 1546.99 885.41 0.75 1.13 0.82

Median 12491 20527.50 10107 9.00 15.50 9.00

Std.
Deviation

10811.69 15469.87 8854.10 7.52 11.31 10.19

Also, the results above suggest that an introduction of a ‘multi-objective’

fitness function has reduced the generations to half that of the ‘E3’ approach.

This shows that normalising the fitness score for this problem has improved

Pg. 115

the performance. ‘E4’ also exceeded the performance of ‘E1’, showing a

decrease of 25% in the number of generations required to find the solution.

However, the standard deviation for ‘E4’ is about 0.27 times higher than ‘E1’.

This is due to more of the unsuccessful evolved programs reaching the

allowed time of execution.

One interesting fact experienced from this evolution is the built-in function

provided by the chosen programming language library, specifically the use of

rand() to generate a random number. In the case of this experiment, the

integer for the genes in the genomes is generated randomly using the rand()

function. It was found that the generated random numbers in Windows

environment of different Operating System (32-bit and 64-bit) are not identical,

as well as those generated by MAC OSX. This means the results produced by

the same program in these different environments are dissimilar and hence

care must be taken to ensure their integrity and consistency, especially

important when doing comparisons.

4.4.3 Sorting Lists of Integers (Seeded)

In Genetic Programming, the success of an encoded solution to solve a

problem is reliant upon the set of parameters or operators relative to the initial

population, type and probability of crossover, type and probability of mutation,

termination criteria, the parent selection methods and fitness evaluation

function. This experiment finds the effect of manipulating the initial population

on the above result by biasing the gene values for it to start with.

Initial populations can be created in three ways, the most common method is

where individuals are generated randomly using a pseudo-random number

generator. This provides great variation amongst individuals and keeps the

population mostly unbiased. Seeding the Initial population with known

solutions to the problem domain with an attempt to improve them is another

method. One drawback is that this way is likely to confine the search to one

area, making it harder for the GP to find better solutions. In the third method,

Pg. 116

the population is randomly created using predefined blocks of genes, which

provides some initial knowledge of the problem domain.

Experiment and Results Discussion

The experiment in this section concerns the second method, i.e. seeding with

a known solution. Two approaches are introduced and compared. The effect

that these techniques would have on the performance of a GP is assessed.

The GP is configured the same way as before to carry forward seven

individuals to the next generation using 50% crossover probability and 10%

mutation rate. The first technique is to have the first chromosome in the

population seeded from existing solutions and the rest of the population are

created at random. In this thesis, this technique is referred to as ‘Solution

Seeded’. It provides a chromosome of a good solution to start with without

putting much restriction on the solution area it can search.

The other technique involves taking an existing solution and applying ‘one

gene per chromosome’ mutation, referred to as ‘Solution Mutated’. This

technique assumes that the solution to the problem is not far from the existing

one. This could be just a change of a single statement type or a variable

name.

Table 4.4 shows the statistical result of the first technique – ‘Solution Seeded’

(first chromosome seeded from existing solution) in comparison to the second

technique – ‘Solution Mutated’ (one chromosome randomly mutated). The

complete set of results can be found in Appendix 5. Each experiment is run

100 times with a different random seeds based on 100 prime numbers.

Table 4.4. Summary statistics of the generations required to find a solution (100 runs)

for Solution Seeded and Solution Mutated.
Method Median Max Mean Std. Dev.

Solution Seeded 156 1206 256.67 304.262

Solution Mutated 312 3346 454.43 471.188

Pg. 117

The results were calculated using IBM SPSS 20.0 and evaluated using Paired

T-Test. The data provided sufficient evidence that Solution Seeded produces

fit solutions in fewer generations than Solution Mutated with a confidence

level of 95% for this kind of problem. The standard deviation indicates that

Sort Seeded is also the most consistent approach in finding a good solution.

Furthermore, the small standard deviation for both Solution Seeded and

Solution Mutated indicates that they can sometimes become trapped in local

optima.

4.4.4 Reverse-Sort Lists of Integers (Seeded)

In human programming, a large program can be broken down into a main

program and a set of parameterised functions, in which these functions can

be invoked repeatedly. The breaking down of big program into smaller and

manageable subprograms is called modularisation. In practice, modularisation

can be seen as separating partial solutions into independent modules that

each solves one aspect of the sub-problem.

The same concept has been successfully adopted in Evolutionary

Computation, such as Genetic Programming (Koza 1994) and Grammatical

Evolution (Harper & Blair 2006); with a goal to increase the scalability and

complexity of the problem it can solve. If only core and rigid grammar rules

are being used, this means that only a limited set of problems with simple

specifications can be solved (Koza 1990; Withall 2003). However, one of the

well-known issues of evolutionary computation is the search space; if it is

larger, it can cause a negative impact on the evolutionary performance.

The next experiment is using the same GP method as above to evolve a

reverse-sort program that sorts the lists of integers in descending order with

the grammar rules slightly altered. Not only does the grammar contain

primitive rules, but it also contains subprograms. Subprograms are the

previously evolved programs, which are appended to the original grammar as

a function. They are offered as a component of one of the statements in the

Pg. 118

grammar called ‘functioncall’ and each has a specific task that it solves.

Similar to the ‘functions’ in modularised programming, these evolved functions

may be used to solve partial problems of a larger problem in the future. For

example, a swap function, which exchanges the value between two variables,

is useful for a sort program (main program) to switch the positions of data if

they are in the wrong order. This method allows extensions to the grammar to

solve more complicated problems.

In addition to the above GP method, additional scripts are added to

automatically add the successfully evolved program back into the original

grammar as a function and update the ‘functioncall’ rule component. The

name of the function will be taken from the name of the file being evolved. It is

important to note that the function is only considered valid if its fitness score is

100% and no duplication is allowed within the grammar file. Moreover, these

functions may be inserted zero or more times within a generated program.

However, similar to the issue which arose above, additional overhead is

required to read and write functions to the XML file. Nevertheless, this is

minimal.

Experiment and Results Discussion

An experiment using the extended version of the grammar in Figure 4.14 has

been carried out to discover the feasibility of this extension and examining its

impact to the evolutionary program. The number of the various functions in

this grammar is done in an incremental way and the grammar used in the final

test has all the three functions (i.e. swap, swapMin and swapMax), each

accepts two integer parameters. The program uses the same ten lists of

integers to ensure repeatable results.

A function can be viewed as highly useful, less useful or least useful to the

problem to solve. In this reverse-sort problem, ‘swapMax’ function is

considered very useful as it produces a descending order of two integers,

‘swap’ function is less useful as it only swaps two integers without the need to

know if one is bigger than the other or otherwise, ‘swapMin’ is the least useful

Pg. 119

as it arranges two given integers in ascending order.

statementseq ::= statement | statements
statements ::= statement statementseq
statement ::= nullstatement | assignstatement | ifstatement | forstatement

| nestedforstatement | functioncall
nullstatement ::= “;”
assignstatement ::= wvar “=” rvar
ifstatement ::= “If” “(“ wvar opr wvar “{“ statementseq “}”
forstatement ::= “for” “(“ cntr “=” 0 “;” “N1” “<” length “;” “N1” “++” “)” “{“

 statementseq “}”
nestedforstatement ::= “for” “(“ cntr “=” 0 “;” “N1” “<” length “;” “N1” “++” “)” “{“

“for” “(“ cntr “=” “N2 + 1” “;” “N2” “<” length “;” “N2” “++” “)”
“{“ statementseq “}” “}”

wvar ::= “a[tmp1]” | “a[tmp2]” | “tmp3” | “tmp4”
rvar ::= “a[tmp1]” | “a[tmp2]” | “tmp1” | “tmp2” | “tmp3” | “tmp4”
op ::= “==” | “!=” | ”>” | “<” | “>=” | “<=”
Length ::= “length”
cntr ::= “tmp1” | “tmp2”
functioncall ::= swap | swapMax | swapMin
swap ::= swapNum “(“ rvar “,” rvar “)”
swapMax ::= swapMax “(“ rvar “,” rvar “)”
swapMin ::= swapMin “(“ rvar “,” rvar “)”

Figure 4.14. The extended version of the program statements syntax expressed in

BNF.

Table 4.5. A comparison between the reverse-sort program and the optimised reverse-

sort program using evolved functions (measured in terms of the number of required

generation).

Seed

No
function

1 function 2 functions
3 functions
(swap,
swapmax,
swapmin)

swap swapMin swapMax
swap,
swapMin

swap,
swapMax

swapMin,
swapMax

1 9114 52 0 21 67 0 40 0

2 4407 875 11 11 38 11 27 48

3 27830 473 96 16 60 27 66 75

5 36028 668 5 2 42 4 6 34

7 24400 135 17 17 6 11 98 74

11 31384 1334 40 2 83 97 66 56

13 31190 313 20 35 41 30 20 57

17 11928 222 5 13 54 19 2 7

19 35391 542 14 51 179 14 9 75

23 28154 749 31 9 127 90 40 40

Mean 23982.6 536.3 24 17.7 69.7 30.3 37.4 46.6

SD 11372.19 389 28.13 15.12 49.9 34.6

31.23 26.88

Median 27992 507.5 15.5 14.5 57 16.5 33.5 52

Pg. 120

The aim of the evolved program was to arrange the lists of integers in

descending order (reverse-sort). There are eight different grammar contents

being tested; one test with no function, three tests are made with one function

each, three tests are made with pairs of functions (one is highly useful and the

other is less useful) and finally, one test is made with all three functions.

These variations are to compare how they influenced the performance of the

GP system. The result in Table 4.5 shows comparison between the

performances of the GP system. It was observed that if useful functions are

defined, it was helpful to achieve an optimised behaviour; in particular, it has

reduced the fitness evaluation. The worst case is evolving reverse-sort with

primitive rules alone (indicated by ‘no function’).

These experiments using a ‘clean’ grammar show that adopting the concept

of modularisation to solve a computer problem improves the effectiveness of

the GP. The optimum solution can be reached within a few generations. It is

important to note that the required generation time increases if the number of

functions increases – the search space is larger. Figure 4.15 shows a sample

of the evolved reverse-sort program using the grammar with a swap function.

The general work from this software evolution is then applied to the evolution

of regular expressions, which are used to match the required information from

the relevant web pages.

for $tmp2(0..$#inlist){ # loop until the size of inlist is reached
 ($inlist[$tmp2%($#inlist+1)],$inlist[$tmp2%($#inlist+1)])=
 &swap($inlist[$tmp2%($#inlist+1)],$inlist[$tmp2%($#inlist+1)]); #function call
}

for $tmp2(0..$#inlist){
 for $tmp1(0..$#inlist){
 if ($inlist[$tmp2%($#inlist+1)]>$inlist[$tmp1%($#inlist+1)]){
 ($inlist[$tmp1%($#inlist+1)],$inlist[$tmp2%($#inlist+1)])=
 &swap($inlist[$tmp1%($#inlist+1)],$inlist[$tmp2%($#inlist+1)]);
 }
 }
}

Figure 4.15. PERL: An Example solution for a swap function embedded in a Reverse-

sort program generated by the evolutionary program. Note that the first loop is

redundant and the second nested loops form a simple bubble sort.

Pg. 121

4.4.5 Distance from Mean

The ‘DistanceFromMean’ experiment is designed to answer two questions.

First, how well the ‘clean’ grammar helps to construct a program, which

requires a sequence of block statements to solve a particular problem.

Second, how well the GP system finds a good solution.

Given a list of integers, the ‘DistanceFromMean’ finds the distance of each of

these integers from their mean. To achieve the correct result, two loops are

needed. The first loop is to calculate the sum of the numbers in the list in

order to find the mean, while the second loop is to calculate the distance from

the mean. The specification is in Figure 4.16. It simply says that the input is a

list of integers and the output is a list of real numbers. The length of the input

should be equal to the length of output and ith element of the output list is the

difference between the ith element of the input list and the mean of the input

list. The mean is calculated by dividing the sum of the input integers by the

length of the input.

DistanceFromMean : ℤ∗ → ℝ∗
pre-DistanceFromMean(Lin)≜ True

post-DistanceFromMean(Lin,Lout) ≜ #Lout = #Lin ∧

 ∀ i, 0 ≤ i < #Lin ⇒ Lout[i] = Lin[i]-Average(Lin)

where post-Average(Lin,A) ≜ A = Sum(Lin)/#Lin

Figure 4.16. Specification for DistanceFromMean problem.

The fitness function is in Figure 4.17. The fitness was calculated based on the

closeness to the correct distance, i.e., using absolute difference between the

expected and the actual results. This approach meant that fit solution has

zero fitness score and the larger the score, the worse the individual. Thus this

was achieved with normalisation by subtracting the score from a maximum

value of 5000. This technique is different from the previous method of

incrementing the fitness value if the values are equal. Unlike the previous

fitness technique where the individuals only improved to a certain point before

finally stuck to a certain point, the later test, i.e., using absolute difference,

Pg. 122

showed that the DistanceFromMean evolved much more easily. This is

assumed to be caused by this particular specification having a small test.

$sum = 0;

foreach my $x (@L) {

 $sum += $x;

}

$ave =$sum/$#L;

for my $d(0..$#L) {

 $dist[$d]= abs($L[$d]-$ave);

}

 if($#results > 0) {

 for my $n (0..$#results) {

 $fitness += abs($results[$n]-$dist [$n]);

 }

 }

Figure 4.17. Fitness Function for DistanceFromMean problem.

The grammar to guide the generation of the DistanceFromMean program is in

Figure 4.18. The same set of statements are applied except for some

additional statements (add, divide and subtract), which are essential to

calculate the sum, average and the difference from the mean. The ‘double for’

statement was removed as it does not provide any benefit to the evolutionary

process, other than increasing the time required to reach the fit solution. An

unnecessary statement (‘Multiply’) to solve the problem is also added to see if

any interesting use was made of it by the evolution. However, the fit programs

statementseq ::= statement | statements
statements ::= statement statementseq
statement ::= nullstatement | assignstatement | ifstatement | forstatement |

add | subtract | multiply | divide
nullstatement ::= “;”
assignstatement ::= wvar “=” rvar
ifstatement ::= “If” “(“ wvar opr wvar “{“ statementseq “}”
forstatement ::= “for” “(“ cntr “=” 0 “;” “N1” “<” length “;” “N1” “++” “)” “{“

 statementseq “}”
add ::= wvar “=” rvar “+” rvar
subtract ::= wvar “=” rvar “ –“ rvar
multiply ::= wvar “=” rvar “*” rvar
divide ::= wvar “=” rvar “/” rvar “if” “(“ “N2” “!=” 0 “)”
wvar ::= “dist[tmp]” | “ave”
rvar ::= “$inlist[$tmp%($#inlist+1)]” | “inlist[tmp]” | “ave” | “ length”
op ::= “==” | “!=” | “>” | “<” | “>=” | “<=”
length ::= “length”
cntr ::= “tmp”

Figure 4.18. Program statements syntax expressed in BNF for the DistanceFromMean

problem.

Pg. 123

showed that this statement was made redundant. The ‘divide’ has a special

control if statement embedded. Note that the <N2> in the grammar

corresponds to the second non-terminal in the statement. The control is

essential to ensure division by zero is avoided that could interrupt the

execution of the program.

Experiment and Results Discussion

Unlike the previous experiments, the approach was tested using only a single

list of integers $inlist = {90,30,50,60,80}. Because the ‘clean’ grammar was

designed to avoid forcing the evolutionary program to add the required close

brackets at the end of the program, a sequence of structured statements (for

statement or if statement blocks) is achievable.

Figure 4.19 shows an example of a fully fit solution. It is noted that a tidying-

up script could be put in place to remove all the null statements (‘;’). The null

statement is commonly used as a placeholder in loop statements or if

statement and it requires no action. It is included in the grammar as the

solution program may require shorter ‘performing’ codes. This tidying is

beyond the concern of this thesis as having the null statement does not affect

the execution or the result of the evolved program.

$dist[$tmp]=$ave/$test[$tmp] if ($test[$tmp]!= 0);
;
$dist[$tmp]=$test[$tmp];
for $tmp(0..$#test){
 $ave=$ave+$test[$tmp%($#test+1)];
 ;
 ;
}
$ave=$ave/$size if ($size!= 0);
for $tmp(0..$#test){
 $dist[$tmp]= abs($test[$tmp%($#test+1)] - $ave);
}
return @dist;

Figure 4.19. An example of successfully evolved DistanceFromMean program

incorporating a sequence of two loops.

Pg. 124

Table 4.6. The results of the DistanceFromMean.

Generation

1 47141

2 21319

3 16220

4 38023

5 18174

6 10181

7 2192

8 35182

9 13094

10 3329

The result of ten runs of the experiment is in Table 4.6. This shows that the

approach proposed in this research has successfully demonstrated that it is

possible to solve a problem, which requires the use of a sequence of loops

using any standard language, by applying the clean grammar proposed in this

thesis. This experiment provides evidence that a ‘repair function’ can be

avoided, without the need to include any specific construct in the grammar,

like ‘double for’ in the previous experiments. Using a similar grammar

definition, Withall’s method (Withall 2003) failed to achieve this sequence of

conditional statements structure due to separation of an end statement (‘}’)

from the main conditional statement. This means his method could just as

easily generate all the end statement at the end of the evolved program.

4.4.6 Results Summary

In conclusion, two methods have been highlighted and tested to deal with

issues of evolving solution (program). Applying a fixed block genome ensures

that the generated program is complete without reusing or creating new

genes, while applying a ‘clean grammar’ (proper subsets of programming

language) ensure that the evolved program follows the correct programming

language syntax, which can cause problems during the fitness evaluation if

not handled properly. The experiments, which were based on the five

approaches (i.e. ‘random’ population, ‘Solution Seeded’ population, ‘Solution

Pg. 125

Mutated’ population, multi-objective and modularisation) to evolve the

computer programs, have shown that GP with modularisation demonstrated a

great improvement on the system performance.

4.5 Chapter Summary

This chapter outlines the development and evaluation of software evolution

system. The software evolution aims to generate a solution to the ‘sorting’

program, ‘reverse-sort’ program and ‘DistanceFromMean’ program. The

experiments demonstrated the kind of programs which involve only a single

program and a program calling previously evolved functions to solve a variety

of problem specification.

Results show that the CoPE technique introduced here is not as fast as the

previous work and evidence of a doubling of the search space for a 1.6

increase in time. However, this technique has provided better grammar

structure that can be used to support the generation of an error-free program

without depending on a ‘repair function’. Further experiments were conducted

and it can be seen that huge improvements on the performance to find the

required solution have been achieved by adding seeded initial population,

modularisation concept and a multi-objective fitness function. Furthermore it

was shown that the new technique was able to evolve programs that could not

be evolved by the older techniques that relied on the repair function, an

example of this is the ‘DistanceFromMean’ program.

The next chapter concerns the evolution of the regular expression, referred to

as REGEXEV. Some general features relevant to this evolution system are

provided before the REGEXEV experiments are discussed in detail.

Pg. 126

Chapter 5

Practical Application of GP – Domain 2

5.1 Chapter Overview

Chapter 4 described an evolution of a complete program to find useful

programs to solve ‘sorting’, ‘reverse-sort’ and ‘DistanceFromMean’ problems.

The method which incorporates modularisation demonstrated the best result.

This chapter provides the various experiments aiming to apply similar

approach to another domain, in particular, the regular expressions.

The next section introduces the experiment set up, the result of analysis

based on 45 websites containing 80,950 web pages to find how the course

attributes are represented on the relevant web pages, discussion on the

regular expressions which significantly identifies the relevant course attributes

and the experiments using live web pages. The fitness of the evolved regular

expressions is important to determine these regular expressions usefulness to

extract the required data. Therefore, a similar approach as the ‘COPE’

(Section 4.4.2) is applied which require the maximum fitness score to be

reached before the evolved regular expressions are ‘fully fit’ to be used by the

system.

A comparison study is also conducted to contrast the work in this research

with Bartoli et al. (2008), which sees the use of GP and grammar to evolve

regular expression to identify and capture the required data. Bartoli et al.

reported the result of their approach to extract the title and the phone number

from Wikipedia and W3C websites. However, the comparison reported here in

Section 5.3 only applies to the title extraction as this matches the course

attribute (title of courses), which is the focus of this research.

Pg. 127

5.2 A Regular Expression Evolution (REGEXEV)

5.2.1 Introduction

 Aims of Experiment

The REGular EXpression EVolution (REGEXEV) experiments are to explore

how GP methods applied in CoPE (in Section 4.3.2) can be extended to

different domains, specifically regular expressions. This initial stage looked

into the feasibility of using Genetic Programming guided by structured

extraction rules to evolve regular expressions for data extraction from web

sources. Another aim was to be able to provide a set of criteria for the fitness

function to improve the quality of extraction.

Subject

The evolution method concerned the generation of a regular expression from

a regular expression grammar similar to generating a program from a program

grammar (CoPE). The new evolved regular expression pattern should be

useful for the information extraction to capture the data on a particular ‘never

seen before’ HTML web page. The experiment was limited to single page

extraction activity, where a single record or multiple records are listed on a

single web page.

Specific Setting

i. The population size was 10.

ii. REGEXEV was designed to extract ‘single record’ or ‘multiple

records’ from a single web page.

iii. The web pages were relevant to the training course domain in the

UK.

5.2.2 Web page structure of the Training courses website

Pg. 128

In the investigation, it was found that the websites of training courses usually

render course information in a semi-structured manner. Details of courses

offered are commonly presented in tables, lists or free text or a mixture of

these. Thus, this closely meets the criteria described by the semi-structured

data in Section 2.1. Frequently, different formats are used to denote the same

concept. Consider the following samples of training information:

a. Course name: Introduction to JavaScript Programming
 Date commencing: 12/10/2010
 Duration: 5 days
 Fee: £697 + VAT
 Location: Nottingham University

b.

Title Introduction to JavaScript Programming

Start Date 12 Oct 2010

End Date 17 Oct 2010

Location Nottingham University

Price £697

c.

Course Title Location Date Duration Price

Introduction to JavaScript
Programming

Nottingham
University

12-10-2010 5 697

Effective Presentation Style Leicester 13-12-2010 3 700

d. Price: £697 + VAT

Location: Nottingham University, Beeston, Nottinghamshire NG7 2RD

Title Duration (Days) Oct Nov Dec

Introduction to JavaScript Programming 5 12

Stress Management 3 23

Figure 5.1 (a-d) Sample information presentation styles.

The above examples (Figure 5.1) show the different styles commonly used to

present information on the web page. We can interpret them as each sample

containing information about a course; (i) title of course (ii) location (iii) start

date and (iv) price of the course. However, the same interpretation is

complicated for a computer program to emulate. A similar outcome to human

capability can only be competently achieved with the aid of data patterns or

rules with a provision that these patterns or rules are extensible. This could

Pg. 129

possibly mean that some human assistance needed to be sought in order for

the computer system to learn and discover new data presentation styles.

A pattern is defined by NIST (2005) as an expression of a specific form that is

used for matching text during the extraction process. Patterns are normally

created for content and context of data. Because web pages are designed

and presented for human view, the underlying structures for presenting the

information vary from one web page to another. For example, the term “title of

course” can be written about 20 different ways. The pattern analysis aims to

find the similarity and the differences of data patterns/structure from the web

pages of training courses. Some of the web pages have a different layout

although they belong to the same website.

Although these information presentation styles are not uniformly formatted,

there are still some similarities in the information presented. For example,

most price values start with symbol £, some digits and sometimes with a dot

and two more digits for the pence denomination and they are explicitly

labelled with keywords such as ‘price’, ‘fee’ or ‘cost’. It is through the

discovery of these conjoint presentations of information that data pattern/rules

can be framed and used for extraction.

As stated earlier in Chapter 1, the REGEXEV approach is aimed to extract

course title, location, date of the course and the cost. Note that in some

cases, some of this information is not presented on web pages. Some of the

reasons are:

1. Although the course is listed on the web page, the course is not yet offered

in the near future; therefore the date is not available.

2. The trainer normally uses the requesting organisation’s site to conduct the

course, so the location is not specified.

3. The cost is not presented, as the trainer offers tailored courses according

to the organisation’s needs.

Table 5.1 shows the proportion of the data of interest presented in 45

websites containing 80,950 web pages. Although, there are various ways that

Pg. 130

can be used to display the information, exploration has shown that the

majority of web pages in this domain use a table. The cost of the courses is

commonly presented with the pound (£) symbol with or without the pence

(Table 5.2) whereas the two popular ways the title is presented are using font

size formatting, that is, <Hi > where i represents a number from 1 to 3 (with

total of 40,214 web pages) and ‘no format’ (Table 5.3).

Table 5.1. The number of web pages showing how the specific data is displayed.

 table Division Paragraph List Not Available

Date 52,823 24,086 253 3339 449

Cost 53,169 551 26,810 317 103

Location 53,361 453 26,869 177 90

Title 41,614 39,237 1 25 73

Table 5.2. Price representation on web pages.
 £ GBP £ and GBP Not available

No. of web pages 74,698 (92%) 6,070 79 103

Table 5.3. Title of Course representation on web pages.
 No format <H1> <H2> <H3> IMG none

No of web pages 40,306 15,797 24,148 269 303 54 73

Dates and prices are structured word objects, which are strongly structured

(Baumann et al. 1995). This means that a price, for example, contains

numbers headed or followed by some classifying unit (currency symbol).

Therefore, they can be treated with predefined constraints. In contrast, the

titles as a segment of text are quite difficult to recognise (Hu et al. 2005).

Nevertheless, title page or header of a document is a strongly structured

document part (Baumann et al. 1995). Hu et al. (2005) stated that although

<title> tag explicitly specifies the title field of the web page, this is not

practically included in all web pages and about 33% of the title fields are

bogus. This is because titles in the HTML body are more obvious to readers

compared to title fields embedded in the meta-title. Recognising locations also

has the same difficulty.

The input from the analysis of the patterns in web pages was used to

Pg. 131

construct the knowledge model (keywords) and to design the valid

combination of the DOM tree components and the correct patterns in regular

expression notations. This provides knowledge on how the algorithm should

be designed for the extraction task. The next section describes the data

pattern (regular expressions) method.

5.2.3 Regular Expression to define web data pattern

One of the merits of regular expression is that it is a powerful tool to discover

diverse patterns of textual strings. Because regular expression has high

complexity in both syntax and grammatical rules compared to computer

program, building a good regular expression to match a data pattern can be

extremely challenging for a human, although some data such as price

(containing a £ symbol, digits and the pence) might only require simple

expression, for example, £[0-9]{1,4}(.[0-9]{2})?, which means that a price has

a pound symbol followed by 1 to 4 digits, each ranging from 0 to 9, followed

by an optional dot and 2 digits ranging from 0 to 9.

In this research, regular expressions are evolved to discover and extract the

attributes of course/courses (appearing in single record or multiple records),

which are the title, date, price and location. This extraction is only applied on a

single training course, a web page at a time. However, a regular expression

may be useful on one web page but useless on another. Thus, automatically

evolving the regular expressions would save a considerable amount of human

time and effort compared with handcrafting the variety of regular expressions

to meet different requirements.

Using a similar method to the CoPE system above, a common template for

the GP is constructed for all the course attributes. For each, the addition of

the main body of the fitness evaluation function is required. This is because

each attribute of interest would require a specific fitness function and specific

data format pertaining to this attribute. Nevertheless, they use the same

grammar rules to locate the relevant attribute on the web page. Similar to

Pg. 132

CoPE, an additional script was also coded that allows the recording of the

experiments’ results in a text file, based on random number seeds for future

analysis.

Table 5.4 shows some examples of the regular expressions that could be

used to match the course attributes format, which the GP aims to achieve. It

can be observed that Text matcher will match any text that fits the pattern

while DOM matcher will capture anything in between the specified tags. The

Text Matcher or DOM Matcher may match irrelevant data, if individually

applied. Using a joint approach of Text Matcher and DOM Matcher makes it

possible to optimise the extraction performance. However, it is important to

have a good fitness function to decide between these two techniques which

matcher is superior to the other. This issue is further discussed in the

following sub-section (Fitness Test).

Table 5.4. Regular Expressions to define the patterns of the specific piece of data.

Elements Regular Expression Pattern Example Matches

(1) Text Matcher

price £\d+(\.\d{2})? £210.00
date \d{1,2}[\/.-]\d{1,2}[\/.-]\d{1,4} 20/10/2011 or 20-10-2011

or 20.10.2011
Location (\w\s?)+ Birmingham City or

Course Fee
Title (\w\s?)+ Javascript Programming or

Course Fee

(2) DOM Matcher

A table cell
(td)

<td[^>]*>(.*?)</td> <td>Course Name</td> or
<td id=“row2”>£210.00</td>

A division/section of
a web page
(div)

<div[^>]*>(.*?)</div> <div class= “myClass”
id=”myid”>Price : £210</div>
or
<div>Cost</div>

A paragraph
(p)

<p[^>]*>(.*?)(</p>)? <p>Location: Birmingham
</p>

(3) Text and DOM Matcher

price <td[^>]*> (£\d+(\.\d{2})?) </td> <td>£210.00</td>
date <div[^>]*>(\d{1,2}[\/.-]\d{1,2}[\/.-

]\d{1,4}) </div>
<div class=”myClass”
id=”myid”> 20/10/2011
</div>

location <p[^>]*> ((\w\s?)+) </p> <p>Location:
Birmingham</p>

Pg. 133

In this research, a clean grammar is used to guide the system to build a valid

regular expression pattern automatically to capture the relevant information on

the web. The clean grammar concept containing the extraction rules is

described in the ‘Clean Grammar’ sub-section below but first, the fitness

function for this domain evolution is presented.

Fitness Function

This section describes the fitness function to validate the efficiency of the

evolved regular expressions to match the title, date, price and location of a

course on a web page. Unlike the programming domain which calculates the

fitness test based on formal specification, evaluating the ‘unknown’ output

from regular expression is not easy. This is because the regular expression

may extract false information. Some test criteria should be tested against the

extracted information and the weighted sum of all the individual criteria values

is then used to calculate the total score for each regular expression. The test

criteria chosen should be general so as to be capable of working with the

training course web pages.

In this research, a unique set of criteria is proposed for each of the course

attributes. The criteria reflect the various kind of features based on words

(token) in a text and structural information of each attribute. The criteria were

carefully chosen based on the analysis of the 80,950 web pages from 45

websites. The fitness function is constructed by testing the output of the GP

system with this set of criteria. The fitness of each test could be weighted to

give one test more impact on the overall fitness. However, all the fitness

increments are identical in this thesis. This is because that these criteria are

equally important to determine the correctness of the extracted data. Each

criterion contributes a point towards the fitness score if it is satisfied. A score

of one represent true match and a zero otherwise. The overall fitness value

for each attribute is the sum of all the fulfilled criteria.

Each course attribute is given its own fitness function. Although some of the

criteria are common for all course attributes, it is assumed that each attribute

Pg. 134

would have some distinguishable criteria such as the data pattern and

‘Relevance’ and ‘low-relevance’ corpuses, thus the reason for encoding

individual fitness functions. ‘Relevance’ corpus consists of the desired words

that are related to the course attribute to be matched e.g. VAT is relevant to a

price, while ‘low-relevance’ contains undesirable (negative) words in the web

page that are not related to the course attribute e.g. postage is not relevant to

the course price. The list of relevance and low-relevance corpuses is in

Appendix 2. These lists in the current prototype (including the keywords list)

are collective words manually created after a thorough analysis of the relevant

webpages mentioned above and they are not exhaustive lists. Choosing the

correct words involves the domain expert to manually analyse the extracted

information and update these lists if new words exist. In future, these lists can

be automatically updated through the provision of positive and negative

example and the extracted information stored in the TS-WIE database

(described in Chapter 6). Table 5.5 below summarised the fitness criteria for

each course attribute and the following subsections describe the criteria

relevant to each course attribute.

Table 5.5. A Summary of fitness criteria applicable to the course attributes.

Criteria Title Location Date Price

Regular Expression validation

Title field & similarity check

Text pattern e.g. [A-Za-z0-9]+

Tags validation

length validation

Word’s length validation

Digit validation

Validate against stored location in the

database

Relevance and low-relevance corpuses

validation

Expressed after keyword

Course title

Existing work on title extraction concentrates mainly on online research

papers, such as Hu et al. (2005) and Zhang et al. (2005). Fortunately, these

kinds of paper are well-formed documents; therefore some constraints can be

Pg. 135

set to isolate the relevant section, thus increasing extraction accuracy. For

example, titles are normally placed on the top part of the document, followed

by the author names, affiliation and abstract. There is also a distinction

between its features than the rest of the document, for example, generally the

font size is bigger and bolded. On the contrary, titles of courses on web pages

are rarely at the top, especially when the page contains multiple courses on

offer.

The two methods employed by Xue et al. (2007); DOM tree feature and

Lexical feature are also applied here. An evolved regular expression pattern is

given the maximum fitness score if HTML tag of the extracted data matches a

large header (<H1> or <H2>) and if the extracted data matches at least 80%

of the words in this title field. If this is not the situation, then the fitness score

is the sum of all the criteria; 1 if a criterion is met and 0 otherwise.

The regular expression fitness algorithm is expressed as follows:

When the evolved regular expression pattern is applied to the page the string

that it matches is called the extracted data. The pattern is given a score as

follows:

If the HTML tag of the extracted data is a large header and the extracted data

matches at least 80% of the words in the title field of the page

Then

fitnessScore = maximum fitness score

Else

fitnessScore is equal to the number of successful criteria from the

following

i) valid regular expression pattern, ii) text pattern, iii) tags

iv) number of words, v) word length, vi) not a location, vii) word lists.

The criteria in more detail:

 Valid regular expression pattern: The regular expression is evaluated

and a fitness score of 1 is given if it is a valid expression.

Pg. 136

 Text pattern: The output is compared with some pre-specified text

pattern from the database such as ([A-Z][a-z]+\s*)+ and

([A-Z][a-z]+\s*)+([A-Za-z0-9]+\s*)+. Criterion is met if the output

matches the pattern.

 Tags validation: The criterion is fulfilled if the tag of the extracted data

is a header.

 Number of words: The length of the extracted attribute is used to check

if it is a valid title. Based on the analysis of the titles from the 45

websites, the maximum number of words for a title is 20 words or less.

If this is satisfied then the fitness is incremented otherwise its value

remains the same.

 Word length: This criterion is satisfied if every word is 20 characters or

less in length. This maximum length is determined by the longest word

in the title from the sample web pages (randomly taken from the 45

websites).

 Validate against stored location: Title and Location share the same

textual cue, thus checking against stored locations (town, cities or

countries in the UK) avoids capturing a location. The fitness remains

the same if the stored location equates the extracted data or if it

appears as a substring of the extracted data.

 Relevance and low-relevance words lists: At this moment, the

relevance and low relevance corpuses are already stored in the table,

which are manually created after a thorough analysis of the relevant

web pages. This could be made updatable through provision of training

examples in a semi-automatic approach. The method compares the

extracted data against the common and negative terms used specific to

the course title. If the data matched the ‘relevance’ items, then the

criterion is said to be satisfied, thus the fitness is incremented. Unlike

the ‘low-relevance’, if the data does not match the list of words in this

corpus, the fitness increases.

Pg. 137

Course Location

Designing the algorithm to distinguish the location from the title is difficult as

both have the same lexical features and valid length. However, the last three

criteria help to make this location distinctive.

The regular expression fitness algorithm is expressed as follows:

If the tag of the extracted data not equals to <title>

Then

fitnessScore is equal to the number of successful criteria from

i) valid regular expression pattern, ii) text pattern, iii) tags, iv) number of

words, v) word length, vi) matches stored location, vii) word lists, viii)

after keyword.

The details of the criteria are below:

 Valid regular expression pattern: The regular expression is evaluated

and a fitness score of 1 is given if it is a valid expression.

 Text pattern: the example of valid data patterns are ([A-Z][a-z]+\s*)+

and ([A-Z][a-z]+\s*)+[A-Za-z0-9]+\.?\s*

 Tag validation: It is uncommon that the location appears in the large

heading. This criterion is satisfied if the tag of the extracted data does

not match <H1> or <H2>.

 Number of words: The fitness is incremented if the extracted string

contains 10 words or less, or if it is part of a long sentence/paragraph,

the keyword should be found in front of it.

 Word length: This criterion is satisfied if the length of each extracted

word is 20 or less characters.

 Validate against stored location: A list of locations in the UK is stored in

the database. The extracted data is valid if it matches any one of the

locations either wholly or partly. It is worthwhile keeping this list as it

does not require frequent update (addition of new location is quite rare

as it usually exists).

 Relevance and low-relevance words lists: These are lists of positive

Pg. 138

and negative words respectively to eliminate extracting normal text.

 Expressed after keyword: This criteria is useful to identify a location,

which is not available in the database. Common keywords used are

location, venue and place.

Course Date

Date and Price are structured word objects (Baumann et al. 1995). They are

strongly structured objects, which can be described by a formal method, such

as grammar and regular language.

The regular expression fitness algorithm is expressed as follows:

fitnessScore is equal to the number of successful criteria from the following

i) valid regular expression pattern, ii) text pattern, iii) tags, iv) number of

words, v) digit validation, vi) word lists, vii) after keyword

The criteria applicable to determine its fitness are described below:

 Valid regular expression pattern: a fitness score of 1 is given if the

generated regular expression is a valid expression.

 Text pattern: This criterion ensures that the extracted text is a valid

date by comparing it to some pre-specified date pattern. Two examples

of the pattern are

((\d{2})|(\d))[/.-]((\d{2})|(\d))[/.-]((\d{4})|(\d{2}))\s*\-?\s* to match

12-08-2013 and

((\d{1,2})([/.-]?)(\d{1,2})?)?\s*(st|nd|rd|th)?\s*(Jan(uary)?|Feb(ruary)?|

Mar(ch)?|Apr(il)?|May|Jun(e)?|Jul(y)?|Aug(ust)?|Sep(tember)?|Oct(ober)?|

Nov(ember)?|Dec(ember)?) to match 12th Aug.

 Tag validation: Criterion fails if a date is found in a header tag, i.e. Hn

where n is an integer. A date commonly presented as normal text.

 Number of words: Criterion is met if the extracted string is not more

than 20. If it is a free text (more than 20 words), the keyword must be

part of the paragraph/division.

 Digit validation: This criterion ensures that the extracted data has at

Pg. 139

least a digit (e.g. 2 June) and if it is more than 2 digits, then to verify

the day, the month or the year is/are valid. If this criterion is met, fitness

score is incremented by 1.

 Relevance and low-relevance words lists: Similar to the previous

definition, these two lists contain positive (e.g. the name of the month)

and negative words (e.g. 12hrs) relating to the valid date.

 Expressed after keyword: Keyword such as Date, Commence and Start

normally precedes the actual date.

Course Price

Price can be defined as real numbers (with or without 2 decimal digits), which

may be preceded or ended with a currency symbol or abbreviation. Another

criterion is the valid length of the price. This should be able to isolate the price

from other irrelevant numbers such as telephone number and course number.

The regular expression fitness algorithm is expressed as follows:

fitnessScore is equal to the number of successful criteria from the following

i) valid regular expression pattern, ii) text pattern, iii) tags, iv) number of

words, v) digit validation, vi) word lists, vii) after keyword.

If the following criteria are satisfied, each contributes a point towards the total

fitness score. Below is the detail of the criteria:

 Valid regular expression pattern: The regular expression is evaluated

and if it is a valid expression, a score of 1 is added to the fitness score.

 Text pattern: The fitness is incremented on a condition that the

extracted data must matched the valid text pattern such as £\d+ and

s*((£)|£)\s*()?\d+(,\d{3})*(.\d{2})?\s*

 Tag validation: The valid course price can be presented anywhere

within the <body> tag except in a header tag.

 Number of words: Fitness score is incremented by 1 if the length is not

more than 3 words or if it not more than 50 but having valid pattern.

 Digit validation: the extracted data contains between 2 to 4 digits

Pg. 140

 Relevance and low-relevance words lists: Some of the relevant words

are vat, £ or GBP and the examples of low-relevance are postage,

brochure and materials.

 Expressed after keyword: valid keywords are price, fee or cost.

A ‘Clean Grammar’ approach

Automatically building regular expression patterns to extract title, location,

date and price from training course web page aims to solve the scaling

problem faced by hand coding regular expressions. Figure 5.2 shows a

section from the ‘clean grammar’ in BNF and Figure 5.3 is its equivalent in

XML format (see Appendix 3 for the full representation in this format). The

same DTD definition used in the CoPE is also applied here to ensure the XML

rules follow the specified syntax. In this grammar, the non-terminals refer to

the HTML tags while terminals are the text string.

The basic grammar of regular expression is a sequence of patterns to be

matched, where the patterns are expressed using literals (to be matched

exactly) and pattern operators like ‘.’ , ‘*’ , ‘[‘ , ‘]’ , ‘(‘ , ‘)’ etc. However, in this

work, rather than force the GP to build all the patterns from first principles,

common idioms are used such as “.*?” as units.

The regular expression patterns have the general structure of:

 Prefix (Content) Postfix.

Figure 5.2. General structure of regular expression pattern.

Pg. 141

Start ::= REpattern
REpattern ::= opentag innercontent closetag
opentag ::= “<” tagname “[^>]*>”
closetag ::= “</” “N1” “>”
tagname ::= “div” | “table” | “tr” | “td”
innercontent ::= datacontent | REpattern
datacontent ::= capturedata | tag_and_value
tag_and_value ::= opentag innertags datacontent innertags closetag
innertags ::= empty | singletag | singletagseq
singletag ::= opentag closetag
singletagseq ::= singletag innertags
capturedata ::= ”\s*? ” “(“ expression “)”
expression ::= “.*?”

Figure 5.3. Regular Expression Grammar rules expressed in BNF form. In the actual

implementation, these grammar rules are presented in XML format.

This means the pattern is trying to find the content in the context of prefix and

postfix. For example, Figure 2.24 shows the structure for the pattern

generated by GP; <div[^>]*>(.*?)</div>. Therefore, if this pattern is applied to

the HTML page below, “This text is extracted” found in between the first pair

of “div” will be extracted.

<html>
<body>
<div> This text is extracted </div>
<div> This is another text </div>
</body>
</html>.

Evaluation Performance Strategy

Evaluation is based on how good the GP system is in relation to the number

of required generations to produce a regular expression for successful

extraction.

In the context of this part of the research (this chapter), only precision rate is

calculated as the extraction is calculated based on the number of generations

required to find the successful regular expression.

Pg. 142

5.2.4 Regular Expression based on Extraction Rules

In normal circumstances, the key representative features of particular

information can be expressed in a standard construct of regular expression.

Some basic regular expression notations representing the DOM tree such as

TABLE, TR, TD, DIV etc. as in figure 5.4 below are hand coded in the XML

file as an initial pattern to guide the GP method. This should provide a

baseline for the GP to start with. A new set of notation may be added later

once it is found in the training set provided by the user.

For the purpose of this thesis, the regular expression grammar (Section 3.2)

for the GP used in Xhemali’s automatic WIE has to be reconstructed as it is

hard to read or add new rules. This is because building regular expressions

should start from the pre-defined component rather that the first that appears

in the file and the elements of the rules should be referred by a unique name

rather than numbers. By specifying the starting point, flexibility to read the file

by another program can be achieved. Also the previous file structure does not

provide the structure validation tool such as DTD to ensure that the rules

conform to the correct syntax. The purpose of this XML file for this research is

repeated here, i.e., to guide the generation of regular expression pattern to

match the pattern of the relevant information for extraction.

Pg. 143

<grammar>
 <start>
 <nonterminal name=”REpattern” />
 </start>
 <rules>
 <rule name=’Repattern’ type=’sequence’>
 <nonterminal name=’opentag’ />
 <nonterminal name=’innercontent’ />
 <nonterminal name=’closetag’ />
 </rule>
 <rule name='tagname' type='selection'>
 <token>h1</token>
 <token>h2</token>
 <token>div</token>
 <token>table</token>
 <token>tr</token>
 <token>td</token>
 ….
 </rule>
 ….
 <rule name='capturedata' type='sequence'>
 <token>\s*?</token>
 <token>(</token>
 <nonterminal name=”expression” />
 <token>)</token>
 </rule>
 ….
</grammar>

Figure 5.4. An extract of Grammar definitions to evolve regular expressions.

The size of a regular expression varies. It can be as simple as a line long or it

can be a full size of A4 paper if it needs to perform a complex matching.

Xhemali (2010a) argues that the chromosome size of the regular expression

should vary as it is far from structured. However, in this research, using a

fixed-block size genome still applies. The block size for each rule is

determined by the rule which requires the most non-terminals. Unlike CoPE,

the resulting extraction pattern could vary in length. This is because when a

particular block in the genome mapped the ‘capturedata’ rule (Figure 5.5), the

mapping process terminates and the remaining unused blocks are ignored.

The shortest pattern that can be produced from the mapping is a single tag,

for example, <div[^>]*>(.*)</div>.

Following the success in the CoPE experiment, the repairing function to

ensure the syntactic correctness of the evolved regular expression is also not

required here. This is because the grammar is built in such a way that the

Pg. 144

pairing of tags is properly defined in the grammar.

Experiment and Results Discussion

In order to test the Regular Expression Evolution (REGEXEV) system, a

suitable set of web pages must be selected. The web pages chosen should

be able to concisely represent key aspects of very diverse structured web

pages containing diverse data format. To evaluate the idea, REGEXEV

system was tested on a number of web pages from training course websites,

listed in Table 5.6. Only the first nine URLs are taken from Xhemali (2010a),

while the remaining URLs are randomly selected. This is because some of the

URLs are no longer available or accessible and in some web pages the

required data types (attributes) are less than three.

Table 5.6. Sample websites to test the algorithm.

URL # URL

1 www.underoak.co.uk 9 www.chesterfield.ac.uk

2 www.ptp.co.uk 10 www.itleaders.co.uk

3 www.managementtrainingcoursesuk.co.uk 11 www.adepttraining.org

4 www.trainanddevelop.co.uk 12 www.findcourses.co.uk

5 www.dncc.co.uk 13 www.qa.co.uk

6 www.reedtraining.co.uk 14 www.campdenbri.co.uk

7 www.ontargetlearning.co.uk 15 www.beauty-school.co.uk

8 www.challengeconsulting.co.uk 16 www.medicalinterviewsuk.co.uk

There are a total of 48 sample web pages tested from all URLs to ensure the

consistency of extraction result. For each URL, ten random seeds are applied

to calculate the average generations required to reach a successful solution.

The sixteen training course websites are chosen for the test varying

significantly with respect to (i) the record size on the page, (ii) HTML tags

used to hold the attribute content, (iii) data format and (iv) the content

complexity, i.e. multiple instances attributes (such as a web page containing

prices showing a standard course price and a discounted price).

Pg. 145

In the experiment, REGEXEV operates as follows:

1. Execute the system at the command prompt specifying the seed value

and the URL of the website.

2. An initial population is created and the genotype-phenotype mapping

process is applied and the successfully evolved regular expression is

applied to the web page to determine its fitness.

3. The fitness evaluation is examined using the specific set of criteria.

4. Ten individuals of higher fitness score are carried forward to the next

generation for the reproduction process.

5. The system terminates if the solution is found or the maximum number of

generations is reached.

Initially, the fitness of the generated regular expression was based on two

criteria:

a. An algorithm to ensure that only valid regular expression is

generated.

b. The output matches the pre-set format of particular information.

This simple analysis was chosen for processing efficiency that avoids a

comprehensive knowledge intensive analysis. Unfortunately, the first

observation indicates that the system also picks up inaccurate information.

Because the useful course details have dissimilar format, generalising the

data pattern is not possible. So five more criteria (c to g below) are added

that would allow the system to recognise the attributes more effectively, thus

improving the result:

c. Valid location: Location is made up of a number of strings.

Generally a location is much harder to identify compared to other

fields if match is dependent on the format. However, in this

research, a location is considered valid if it is located in the UK,

which names are stored in a file. At the moment this list of places in

the UK is manually coded. For the future, this should be validated

using a gazetteer.

Pg. 146

d. Match title field: Because a title is made up of text, thus test on the

general format is not helpful. A title match is considered true if it

equals to the title field, i.e., text enclosed between <title></title>

tags. Although, it is not always possible to take title field as the title

due to issues mentioned in Xue et al. (2007), however, in this

thesis, if a text within the HTML body is found 80% similar to the

title field content, then it will be accepted as true. MinHash

algorithm using Jaccard’s similarity coefficient (Jaccard 1902,

1912), defined as J(A,B) =

 , is used to estimate the degree

of similarity. Here, the number of matched strings in both sets

divided by the total number of elements in both sets makes an

index. The index equates 0 when both sets are dissimilar and 1 for

exact match. In all other cases, the index is scored strictly between

0 and 1. This means the two strings are more similar if the index is

closer to 1. True match normally is sensitive to the case of the

letters, thus both strings are converted to lowercase before the

comparison takes place. Because the title involves a longer string,

Jaccard similarity coefficient is more appropriate as it is a token-

based measure as opposed to character-based such as Jaro-

Winkler distance (Winkler 1990) and Levenshtein distance

(Levenshtein 1966).

e. Valid length: it is assumed that a title or a location of a course is

valid if it contains not more than twenty words and if there are more

(in case the course attribute resides in a paragraph), the attribute

must be preceded with the keyword associated with that attribute.

f. Character length: Based on the analysis of the web pages from the

45 websites, it is concluded that this criterion is satisfied if the

number of characters in each extracted word is no longer than 20.

g. Relevance and low-relevance corpuses: A set of relevant and low

relevant words are devised to provide an indicator to the system for

true positive or false positive data. The relevant words contains the

set of keywords created from the context string and low-relevant

Pg. 147

words are irrelevant words, such as, our, delivery and contact. The

inclusion of these two categories appears to be very useful to reject

the extraction of the incorrect attribute.

A regular expression pattern is evolved by applying the Genetic Programming

method described in Section 4.3.1 using the standard genetic operators

(selection, crossover and mutation) for a fixed number of generations until it

converges or reaches an optimal solution. At this stage, the extraction rules

the experiment uses are fixed and require manual updating. This is not an

ideal solution, as updating new rules specifically requires a regular

expressions expert.

Although the existing rules might be successful on a large number of web

pages in the domain, they would not be able to cope with all other possible

regular expression combinations (presumably containing other notation than

those in the file) that can be successfully applied to other newly

discovered/changed web pages. However, later through the TS-WIE system,

this will be incremented automatically, with the HTML tag names and data

format are more likely to be affected by the update. Incrementing rules with

newly discovered patterns improve the chances of producing new extraction

patterns thus increasing the success of the extraction: recall and precision

rate. Table 5.7 shows some examples of the evolved regular expressions that

matched the relevant data of a course. These regular expressions were

applied to the web pages from the training course website listed in Table 5.6.

Pg. 148

Table 5.7. Successfully evolved regular expressions to match the data of a course.

attributes Evolved Regular expression

1 title <title[^>]*>\s*(\b([A-Z]\s)?([A-Z][a-z0-9]+))</title>

2 title <h1[^>]*>\s*([A-Za-z0-9]+\s+[A-Za-z0-9]*)</h1>

3 price <div[^>]*>\s*((£)|£)\s*()?\d+(,\d{3})*(.\d{2})?\s*(GBP)?)</div>

4 price <td[^>]*>\s*

((((£)|£)\s*)?()?\d+(,\d{3})*(.\d{2})?\s*(GBP)?(\+\s*VAT)?)</td>

5 location <li[^>]*>\s*(\b([A-Z]\s)?([A-Z][a-z0-9]+))< /li>

6 date <td[^>]*>\s((\d{1,2})([\/.-]?)(\d{1,2})?)?\s*(st|nd|rd|th)?\s*

(Jan(uary)?|Feb(ruary)?|Mar(ch)?|Apr(il)?|May|Jun(e)?|Jul(y)?|Aug(ust)?|

Sep(tember)?|Oct(ober)?|Nov(ember)?|Dec(ember)?\s+(\d{2,4})?)</td>

7 date <td[^>]*> \s*(\d{1,2})[/.-](\d{1,2})[/.-]((\d{4})|(\d{2}))</td>

Unlike Xhemali (2010a), the technique used here is using a pre-set data

format, which acts as the initial pattern to match the relevant data, for

example, a regular expression to match the price is

“((£)|£)\s*()?\d+(,\d{3})*(.\d{2})?\s*(GBP)?”. The idea is to

reduce the unnecessary evolution time evolving a regular expression for a

strongly structured object.

Here, the evaluation is done by comparing manual extraction result by human

against the output of the REGEXEV system. It is assumed that extraction by a

domain expert is 100% accurate. The effect of the translation from genome to

phenome in relation to the extraction rules and the fitness test is studied. For

each URL, the GP was seeded with ten random numbers. The result of this

initial work is reported in Table 5.8. Column 3 shows the percentage of

precision for the 10 seeds. For example, in (b) for url #2, on average, only

50% of the seeds managed to extract the correct instance of the date. Column

4, 5 and 6 show the best, average and median precision of the successful

seeds in the form of the generations the system requires to reach the first hit

achieved from the 10 random seeds to find the optimum solution.

Pg. 149

Table 5.8 (a-d). Result of matching regular expression to the course attributes based

on the % of hits, best generations, average generations and median generation applied

to each URL. Note that ‘-’ indicates that the attribute is not available on the web page.

The ‘managementtrainingcoursesuk.co.uk’ attributes (excluding title) comes from a

linked webpage; external to the current webpage of interest. ‘ontargetlearning.co.uk’

and ‘medicalinterviewsuk.co.uk’ locations are labelled using some specific names of

particular places other than the city name e.g. hotel name and room name, which

failed to be recognised by the system.

(a) Title extraction

URL
% Hits
(seeds)

Generations (Title evolution)

Best Avg Med

1 www.underoak.co.uk 100 0 32 28

2 www.ptp.co.uk 100 1 63.1 17

3 www.managementtrainingcoursesuk.co.uk 100 0 13.2 13.5

4 www.trainanddevelop.co.uk 100 0 8.6 1

5 www.dncc.co.uk 100 0 0.2 0

6 www.reedtraining.co.uk 100 0 4.6 2

7 www.ontargetlearning.co.uk 100 0 8.8 0

8 www.challengeconsulting.co.uk 100 0 4.7 0.5

9 www.chesterfield.ac.uk 100 0 0 0

10 www.itleaders.co.uk 87 0 18.7 1

11 www.adepttraining.org 100 0 8 0

12 www.findcourses.co.uk 100 0 1 0

13 www.qa.co.uk 70 0 0.4 0

14 www.campdenbri.co.uk 80 0 0.8 0

15 www.beauty-school.co.uk 100 0 0 0

16 www.medicalinterviewsuk.co.uk 100 0 0 0

(b) Date extraction

URL
% Hits
(seeds)

Generations (Date evolution)

Best Avg Med

1 www.underoak.co.uk 100 0 25 21

2 www.ptp.co.uk 50 0 2 3

3 www.managementtrainingcoursesuk.co.uk 0

4 www.trainanddevelop.co.uk 100 0 6.1 3

5 www.dncc.co.uk 100 0 1.3 0

6 www.reedtraining.co.uk 100 0 4.4 5

7 www.ontargetlearning.co.uk - - - -

8 www.challengeconsulting.co.uk 70 0 2.8 1

9 www.chesterfield.ac.uk 100 0 7.4 6

10 www.itleaders.co.uk - - - -

11 www.adepttraining.org 100 0 8 1

12 www.findcourses.co.uk - - - -

13 www.qa.co.uk 53 0 5.3 1

14 www.campdenbri.co.uk 73 0 38.6 7

15 www.beauty-school.co.uk 100 0 12.3 3

16 www.medicalinterviewsuk.co.uk 100 0 6.1 6

Pg. 150

(c) Location extraction

URL
% Hits
(seeds)

Generations (Location evolution)

Best Avg Med

1 www.underoak.co.uk 100 0 14 8

2 www.ptp.co.uk 100 0 3.5 0

3 www.managementtrainingcoursesuk.co.uk 0

4 www.trainanddevelop.co.uk 100 0 8 8

5 www.dncc.co.uk 100 0 7.6 4

6 www.reedtraining.co.uk - - - -

7 www.ontargetlearning.co.uk 7 110 110 110

8 www.challengeconsulting.co.uk 20 0 0.33 0

9 www.chesterfield.ac.uk 100 0 23.9 7.5

10 www.itleaders.co.uk - - - -

11 www.adepttraining.org 100 0 5.6 4

12 www.findcourses.co.uk 93 0 30 13

13 www.qa.co.uk 97 0 8.31 3

14 www.campdenbri.co.uk 100 0 14.9 3

15 www.beauty-school.co.uk - - - -

16 www.medicalinterviewsuk.co.uk 0

(d) Price extraction

URL
% Hits
(seeds)

Generations (Price evolution)

Best Avg Med

1 www.underoak.co.uk 100 1 16 13

2 www.ptp.co.uk 63 0 3.8 0

3 www.managementtrainingcoursesuk.co.uk 0

4 www.trainanddevelop.co.uk 100 0 13.9 2

5 www.dncc.co.uk 100 0 2.7 0

6 www.reedtraining.co.uk 100 0 3.9 0

7 www.ontargetlearning.co.uk 100 0 5.9 0

8 www.challengeconsulting.co.uk 100 0 0.7 0

9 www.chesterfield.ac.uk 100 0 24.2 8

10 www.itleaders.co.uk 73 0 8.9 6

11 www.adepttraining.org 100 0 4.3 0

12 www.findcourses.co.uk 77 0 5.4 0

13 www.qa.co.uk 100 0 3 0

14 www.campdenbri.co.uk 100 0 18 10

15 www.beauty-school.co.uk 100 0 12.7 4

16 www.medicalinterviewsuk.co.uk 100 0 2.1 0

Out of the sixteen websites, 81%, 61%, 54% and 75% achieved 100%

precision for the title, date, location and price respectively. The algorithm

performed better on the title field compared to other fields. This means that

the algorithm is more precise on the title. It has been observed that most of

the titles are presented in header <hn> tag. As can be seen, the experiments

hit the correct attributes immediately, with some needing the rerunning of the

Pg. 151

GP to achieve this best precision. Despite its success on identifying single

occurrences of the attribute, the extraction algorithm performance on a web

page containing a multi-value field illustrates its limitation. Also, it has been

observed that the algorithm is poor when handling nesting structures and

duplication of values. The following explains further on the limitations based

on the results collected from the experiment (Table 5.8):

url#2 – Extracting many occurrences of the same entity in a web page is

typically difficult. In a course offered, the price, which is unique for a

given course, is listed several times depending on the location.

Also, the course provider displayed a promotion of their different

courses, which includes prices. This is confusing for the system to

decide the correct price to extract.

url#3 – The precision is 0 for the date, location and price of the course

offered. This is because these details are external to the HTML

document and imported using an ‘iframe’. If the web page is

originating from a different domain, access to manipulate its iframe

content is not permitted to a browser-side programming language

(such as JavaScript) because of security reasons (W3C, 2010).

url#7 – Out of the 10 seeds, only seed 2 produced a successful solution for

the location. The analysis of the web page shows that the data are

located within a large text. Although this text contains the relevant

attribute, it is counted by the system as an error because it exceeds

the allowed text length.

url#8 – The system captured incorrect information as there is more than 1

date (date includes the information about course flyers). The

system only achieved 20% precision for the location as the web

page not only displays the venue of the course, but it also displays

the organisation’s office address, which is also a ‘valid’ location.

url#13 – The algorithm performs poorly when there is a duplicate of attribute

instances e.g. the web page ‘last updated’ field, which normally

appears in the footer section, is misinterpreted by the system as the

date of the course because the format is valid for a date. This could

Pg. 152

be avoided if the extraction is confined to the main content only as

proposed by researchers of content extraction.

url#16 – The system did not successfully recognise the correct location on

this web page. There are a few cities mentioned on the page but

the correct location is the name of a hotel or a specific name of the

training room, thus, difficult for the system to decide on its

relevance to the extraction.

It has been observed that firstly, the GP system does not need to use all the

blocks to reach a fit solution. For example, the title is found only using one

block of the 10 blocks genome since most of the titles are presented in header

tags (e.g. h1).

Secondly, irrelevant contents such as navigation and advertisements were

identified within some of the web pages within the same website. The same

performance was observed from the successfully generated regular

expressions for these web pages. This implies that these irrelevant contents

do not have any effect on the accuracy of the web page extraction.

Thirdly, the proposed technique is able to correctly extract key content from

the majority of the web pages within the same website and the accuracy of

the result is consistent. It is common for a website, which is designed by a

developer or a team of developers, to use similar structure and data format to

present the same data content, in this case the course training data. For

example, all web pages in www.underoak.co.uk present the list of interrelated

courses in a table.

Fourthly, the proposed technique also captures incorrect results. This is a

result of a number of unknown words, which do not appear in the relevance

corpus.

Fifthly, it is almost unfeasible for the algorithm to identify the relevant

attributes from some long sentences, which are indicated by some kind of

keywords e.g. ‘Date: ’. And finally, in some cases, the proposed technique

Pg. 153

failed to capture any relevance data within the allowed set time. It has been

observed that these data are not known due to the fact that they do not

appear in either the relevance or the less-relevance corpus. Also, this data

comes from a linked page presented in ‘iframe’ within the HTML document

and the absence of HTML tags in the grammar.

The algorithm works well on properly structured and properly formatted web

pages such as URL #1 and #11. An enhancement to the extraction method

has improved the results and this is discussed in Chapter 6.

5.3 Related Work

The aim of this section is not to provide an in depth survey of the state of the

art approaches. For such a survey, refer to Muslea (1999) and Ferrara et al.

(2013). Since the problem of regular expression evolution in WIE is quite

distinctive from the issues mentioned in the field of IE, the related work is

discussed more detail here instead of in Chapter 2 which is dedicated to

various IE approaches in general.

An approach that uses regular expression to extract information is proposed

in (Li et al. 2008). Although this approach may be applied to a wide range of

entity extraction tasks, the generation of the regular expression is not based

on an evolutionary approach. It emphasises some sets of examples and some

knowledge of regular expression, therefore demands a skilled user. Another

approach to generate regular expressions to extract text information from the

Web is described in Bartoli et al. (2012).

This section discusses the REGEXEV performance against a system

proposed by Bartoli et al. (2012). Similar to REGEXEV, the research focuses

on evolution of regular expression using GP for WIE. They aimed to extract

HTML headings (Text appears in HTML tags <h1> to <h6>) and phone

numbers. However, the extraction of phone numbers is beyond the purpose of

Pg. 154

this research. The individual is only tested based on the extraction of the web

page’s header, referred to as title in this research.

This research differs from Bartoli’s work in several ways. First, one major

difference is that their research requires user intervention to provide a few

tens of examples at the beginning of the extraction process. This allows their

system to learn from these examples to automatically generate the regular

expression. The regular expressions are encoded directly as program trees.

Of course, the method requires a large amount of labelled examples to

improve precision and recall. In contrast, this research uses the ‘clean

grammar’, instead of asking the user to label the information by hand for the

same purpose. Second, the training example set is composed of positive and

negative examples. Each example set is made up of two strings; one text line

and one substring from the line that must be matched by the regular

expression. An empty substring indicates a negative example. The approach

used in this research, on the other hand, does not require any training

example. It is purely based on combination of individual HTML tags and

textual pattern matching. This is because the tags are normally used to

express the different elements in the web page, such as <title> indicates the

title of the web page. Third, the fitness score is calculated based on the sum

of the Levenshtein’s (1966) edit distance between each detected string and

the corresponding examples, and the length of the regular expression. This

edit distance is used to find similarity between relations. On the contrary, this

research uses Jaccard’s Similarity Coefficient to find the similarity as it uses

less calculation to produce the required result. Finally, the grammar uses

character by character evolution. This would increase the search space and

demands for high evolution time. The ‘clean grammar’ used in this research

reduced this unnecessary consumption by handling the dataset as a token

rather than a character set, where any word contained within the opening and

closing tags is translated to .*? in regular expression.

Bartoli et al. evaluate their system using the datasets obtained from the

publicly available web pages; extraction of information from Wikipedia and

W3C websites. Their experiment used 49513 lines of HTML source from

Pg. 155

these websites and these lines were split into i) 505 positive and 48608

negative testing sets, ii) 151 positive and 149 negative lines as training

examples, and iii) 50 positive and 50 negative examples as validation sets.

The regular expression successfully evolved was <h\d[^Z]++ , resulting in

96.1% precision.

Using the same websites, the result of the experimental study in this research

to extract the web page title indicates that, for typical corpora like W3C and

Wikipedia, a strictly hierarchical approach would indeed work. This is because

of the similar template applied to all their respective web pages. In addition,

the extracted text is further verified using the similarity test with the content of

the HTML <title> tag. The regular expression successfully evolved in this

experiment has a pattern of <hn[^>]*>(.*)</hn> where n is a digit. This

demonstrates that a proper regular expression is produced that strictly

extracts the text between the opening and the closing header tags. However,

this is not the case for Bartoli’s regular expression <h\d[^Z]++ which reads as

opening header tag followed by any number of characters that is not Z. Such

an expression will capture anything after the opening header tag until the end

of the line and this data might be incorrect data (if another attribute follows the

header tag on the same line) or incomplete data (if longer title is involved or

the title contains uppercase Z).

5.4 Chapter Summary

This chapter has outlined the development and evaluation of regular

expression evolution system. The regular expression evolution aims to build a

data pattern to match the relevant data in a HTML web page.

It is interesting to see that the ‘clean grammar’ concept (Chapter 4) can be

applied to other domains than programming subsets avoiding the repair

function to ensure that the syntax is followed. The experiment evolving regular

expressions showed mixed results. The perfect precision rate was achieved if

the web pages are structured and the attributes (title, date, location and price)

Pg. 156

of the courses are appropriately formatted. The system fails if the attributes

are in linked files and it also struggles to make a correct decision if there are

more than one identical data available on the page. However, the involvement

of a human to teach the system to identify the correct attributes indicates an

improved result (see Chapter 6).

Pg. 157

Chapter 6

Practical Application of Teachable Semi-Automatic
WIE

6.1 Chapter Overview

The previous chapter described an extended GP method based on a ‘clean’

XML-based grammar definition for regular expression evolution to discover

information on web pages. It has become apparent that the (automatic) GP

technique using the combination of the DOM tree and the data format to

identify instances on the web pages has its limitations especially when multi-

instance attributes are involved. The limitations suggest that there will always

be a need to involve a human domain expert to teach the Web Information

Extraction (WIE) system.

This chapter is rather technical; however, it includes the important

contributions for the data extraction. It serves to fulfil objectives 5, 6 and 7

stated in Chapter 1. The novel approach introduced is the implementation of

DOM tree in jQuery rather than the common XPath. Particularly, in this

chapter, the model and the methods for a teachable WIE (TS-WIE) are

presented. It aims to solve the issues specified in Chapter 3 and improve the

results in Section 5.2.4.

It is also to be noted that unlike other fully-fledged semi-automatic extraction

solutions, the TS-WIE system is concerned with a single web page extraction

rather than multiple web pages in a website. This decision is due to the fact

that the purpose of this thesis is to provide a solution to improve the quality of

the data extraction by an automatic WIE system employing GP principle that

evolves regular expressions – as demonstrated in Xhemali’s automatic WIE

(automatic WIE for now). Furthermore, the relevant URLs in the database as

a result of the Xhemali’s crawler system (crawler for now) are the addresses

of the individual relevant web pages that need further processing.

Pg. 158

The next section introduces the target schema and Section 6.3 describes the

methodology and tools used in the development of this TS-WIE system.

Section 6.4 and Section 6.5 introduce the basic components of the TS-WIE

model and the elaboration of the architecture and the interface of the system

respectively. In addition to the basic processes inherited from Xhemali’s

automatic WIE architecture, the TS-WIE system provides a refined extraction

rules structure and an option to add newly discovered data patterns into the

XML file that extends the extraction rules. Section 6.6 describes the

evaluation of the system and the challenges faced by the system are outlined

in Section 6.7. Before concluding the chapter, the REGEXEV was revisited to

assess the effect on its performance after the changes made to the grammar

collection by the TS-WIE system.

6.2 Target Schema

The purpose of the Crawler (Xhemali 2010a; and also described briefly in

Section 3.3.1 of this thesis) is to provide a facility, which selects only the

relevant web pages from the training course domain that the TS-WIE system

is to handle and hence reduces manual effort of searching and determining

their significance. In the world of TS-WIE system, these selected web pages

are presented to a user and the user acting as the expert defines the relevant

information for the system to process. Table 6.1 shows the URLs, which have

been used to test and evaluate the technique proposed for TS-WIE in this

research. The first nine websites are taken from the list in Section 5.2.4. The

remaining websites are chosen from the websites of training courses

operating in the UK. The aim of the TS-WIE system is to discover and

generate a set of new extraction rules based on the set of training examples

provided by the user. These rules are useful to compare the new performance

of the extractor described in Section 5.2.4 after this new discovery.

Pg. 159

Table 6.1. List of URLs relevant to test and evaluate the TS-WIE System to improve

the quality of the extracted information.

URL

of
relevant
web
pages

URL

of
relevant
web
pages

1 www.ptp.co.uk 372 15 www.capita-ld.co.uk 152

2 www.managementtrainingcourses
uk.co.uk

5 16 www.cim.co.uk 129

3 www.trainanddevelop.co.uk 46 17 courses.independent.co.

uk

5506

4 www.ontargetlearning.co.uk 37 18 www.coursesplus.co.uk 1929

5 www.challengeconsulting.co.uk 30 19 eca.co.uk 23

6 www.itleaders.co.uk 3 20 register.rit.edu 220

7 www.findcourses.co.uk 4680 21 www.cipd.co.uk 190

8 www.campdenbri.co.uk 127 22 pgplus.bisgroup.com 174

9 www.medicalinterviewsuk.co.uk 127 23 www.hemsleyfraser.co.uk 250

10 www.beauty-school.co.uk 82 24 www.ldl.co.uk 31

11 academyclass.com 61 25 www.locksmiths-training.
co.uk

1

12 www.loucoll.ac.uk 278 26 www.theiet.org 102

13 www.skillsolve.co.uk 135 27 www.chesterfield.ac.uk 1369

14 www.spearhead-training.co.uk 237

In case of the TS-WIE system, the system is expected to learn what it needs

to know about the training data. It is only meant to handle the extraction of

explicit information, without the need to understand the semantic of the

extracted information. Furthermore, the training data does not need to be

explicitly typed, which therefore reduces human input error.

6.3 Methodology Adopted

Generally, research methodology refers to the principles and procedures of

logical thought processes which are applied to a scientific investigation (Klein

& Myers 1999; Fellows & Liu 2003). In system development (where this study

is concerned), a methodology refers to a collection of procedures, techniques,

tools and documentation aids, which provide appropriate guidelines for the

implementation of a new information system (Avison & Fitzgerald 2006).

Pg. 160

The TS-WIE system is built following the methodology for Information System

(IS) Research proposed by Burnstein (2000), which divides the IS

development activities into three stages (Table 6.2); Concept Development,

System Development and System Evaluation.

Table 6.2 The research methodology for the TS-WIE system.

PHASE ACTIVITIES

Concept Development Background Investigation

 Explore research area

 Investigate business processes

 Investigate existing WIE system’s functionality

 Define user requirements

Analysis

 Analyse the user & business requirements

 Analyse the domain area

 Analyse existing WIE system’s architecture, functions &

data storage

Design

 Application design based on requirements

 GUI design – web based application

System Development Investigate suitable programming language

 Prototype TS-WIE development

 Prototype GUI development

 Test System – Unit & Integration

System Evaluation Evaluation of result; precision, recall and F-measure

 Impact of the TS-WIE system to

o Training Course domain

o Automatic WIE system

 Evaluate aim and objectives

 Define contributions

The system development always relates to costs, performance, functions and

reliability and the development models aimed to help reduce the problems

associated with growing complexity of the software project such as escalating

cost and late delivery (Van Vliet 2008; Granlien et al. 2009).

Pg. 161

The TS-WIE system uses Software Development Life Cycle incorporating

Prototyping (Figure 6.1) to ensure the system is developed within acceptable

standards (Carey 1990) and help control the risk of incomplete requirements

(Floyd 1984). It is considered suitable for this research for the following

reasons:

i) The prototyping allows for an iterative process, which evolves to

meet user requirements and at the same time increases the

likelihood of user acceptance of the final system.

ii) It only concerns small application software involving low risk.

Figure 6.1. System Development Life Cycle with Prototyping (source Carey 1990).

Prototyping, as noted by researchers, enables the Information System

development process to be broken down into small and manageable steps

(Kraushaar & Shirland 1985). It also improves communication between the

developers and the users (Alavi 1984) to cope with uncertainty (Granlien et al.

2009), cost effective (Boehm 1988; Palvia & Nosek 1990; Gordon & Bieman

1995) and encourages greater user involvement and participation in the

development process (Naumann & Jenkins 1982). Carey (1990) states that

the user interface is one of the three main areas that is often prototyped. This

is also the case for this research to build an interactive web application

because the user can clearly express the needs at the beginning and offer

immediate feedback, which results in better interface design.

Requirement
def inition

Maintain
Final sy stem

Implement
Final sy stem

Code & test
Final sy stem

Design, code, test
prototy pe

Analy sis Acceptable?

Acceptable?

True

False

True

False

Pg. 162

Requirements of the system

The following describes the important requirements of the TS-WIE system:

1. Extraction requirement.

The domain is the UK course provider and the information which needs

to be extracted are the course title, location, date and price. A

comprehensive extractor needs to deal with web page issues such as

missing and conflicting data, client-side JavaScript and other similar

features.

2. Graphical User Interface (GUI).

The system should provide a facility for a non-expert user to build a

wrapper for the extraction through a user interface. The interface

should be able to get some set of input data from the user. The input

will be in the form of labelled data, which is used later to train the

extractor system. The user should be allowed to provide input

consisting of some or all of the required information, i.e., course title,

location, date and fee (see Section 6.5.2 for detailed discussion on the

design of user interface).

3. URLs from the database.

The TS-WIE system should be able to validate the relevant URLs,

which are stored in the database. After extraction process for a URL is

successfully completed, its status in the database should be updated

appropriately to avoid unnecessary repeat processing.

4. Uploaded web page.

When a valid website is uploaded in the GUI for the user to make a

selection, the web page must be as it would normally appear on the

web browser. This should include elements such as buttons, images,

formatted fonts and line breaks.

5. Integration with the existing automatic WIE.

The TS-WIE system should integrate well with the existing automatic

WIE system.

Pg. 163

6. Update database records.

Upon successful extraction of the specific information, several tables in

the database should be updated, which are the CIE_Allowed_links,

GP_Genome_Phenome, GP_Phenomes and GP_Genomes (refer to

Figure 3.5, Section 3.3.1.2 for automatic WIE database design).

6.4 TS-WIE System Overview

This section introduces the TS-WIE model to support the extraction from

unfamiliar web pages. Figure 6.2 shows the system view of the TS-WIE

extending the existing automatic WIE. The TS-WIE (represented inside a grey

box) is a semi-automatic system aimed at providing an interactive wrapper

learning feature from unsuccessfully processed web pages, when the

previously generated extraction rules fail to extract the relevant attributes.

Figure 6.2. TS-WIE system supporting the automatic WIE system.

This TS-WIE system also supports the need to maintain the wrappers. This

normally happens due to the previously processed web page evolving over

Pg. 164

time, which cause the wrapper built for it to produce an inaccurate result.

Other systems applying a similar approach have been discussed in Chapter 2.

In the view of functionality feature, TS-WIE contains three tasks; pre-

processing task (web page downloader and HTML cleaner), Attribute

Extraction task (HTML encoder and extraction task) and post-processing task

(Instance Filter, Pattern Filter and Rules Analyser). The tasks are elaborated

in detail in Section 6.5.3.

Pre-processing task: The Web page Downloader downloads the user’s

selected URL and if it is a valid URL, it is stored locally. A well-known

cleaner tool called HTML tidy (Raggett 2012) is applied to deal with any

structural errors. The next process is the HTML encoder to standardise

the HTML attributes, such as dash (–, —) to their

equivalent symbols and disables any hyperlinks to be able to work on

that web page.

Attribute Extraction Task: After the user made the selection of example

data, the extraction process begins. The extractor then grabs the

selected example(s), i.e., the training data and the tag’s traversal path(s)

provided by the user. The user provides a single example to indicate

single record extraction and two examples to indicate multi-record

extractions.

Post-processing task: This task has three features; Instance Filter, Pattern

Filter and Rules Analyser. The Instance Filter validates the instances for

duplicates. Unlike the Instance Filter, the Pattern Filter is concerned with

conversion of the instances and the paths into their equivalent patterns

in the form of regular expressions and then validates these patterns. A

special script was written to do this conversion. Rules Analyser takes the

path, converts it into tokens and puts the new tokens into the XML file.

For practical reasons, PHP and JavaScript, using the jQuery library and JSON

(for transmitting structured data – objects to the server application) were

Pg. 165

chosen for developing the Graphical User Interface (GUI). The reasons are

that these tools are suitable to handle client-based GUI application, and the

researcher is familiar with them. A standard web server application (APACHE)

was used in combination with PHP scripting as the server-side web

programming, for communicating with the client and the data storage.

The data storage used to store the relevant course information is MS SQL

Server 2000 and the extraction rules are in a XML file. Although, in general,

MS SQL Server 2000 is not the best data storage available in comparison to

PostgreSQL or Oracle, one of the requirements is to integrate with the

automatic WIE at ATM, which uses this database, and the same database is

also used by the Customer Relationship Management (CRM) software.

Because an XML file was used to store the extraction rules in the automatic

WIE and the core process of WIE (generation of regular expression) depends

on these rules, this research does not attempt to evaluate the feasibility and

efficiency of other storage systems as it will disrupt the running of the

automatic WIE. Moreover, Xhemali (2010a) provided evidence that XML file

has offered significant support to the extraction task.

The following sections discuss the TS-WIE system design and

implementation, including the experiments and discussion of the results.

6.5 TS-WIE System Design and Implementation

6.5.1 Introduction

Researchers such as Cohen & McCallum (2003a) and Fernandez-Villamor et

al. (2012) argue that using DOM tree alone in automatic extraction is

insufficient to identify particular data on the web page. Cohen & McCallum

states that combining DOM with the data pattern can only slightly improve the

quality of extraction, thus he proposed the addition of a visualisation approach

for further improvement. However, DOM manipulation is useful in the content

extraction method, where the web page segmentation is used to identify the

Pg. 166

main area for extraction (Cai et al. 2003; Kohlschütter & Nejdl 2008; Raavi &

Somayajula 2012; Omer et al. 2012; Choochaiwattana 2012), which limits the

search area and avoids the undesirable content.

The experiments in this thesis were conducted based on semi-automation to

provide empirical evidence that DOM and data pattern performs as well as the

combination of the above three techniques. Unlike Raeymaekers and

Bruynooghe (2007), only two positive examples are needed to train the

system. Negative labels and corrective mechanisms are not implemented as it

is assumed that an example and the counterexample are sufficient for the

system to produce an effective extraction pattern. Brin (1998) is the first to

come up with an approach that reduces the training cost by just starting with a

few ‘seed’ tuples to discover the extraction pattern, which could become new

seeds for the next process iteration (called bootstrapping).

The dynamic generation of the wrappers (extraction patterns) based on DOM

tree and data pattern using regular grammar combined with Artificial

Intelligence has not been empirically proven in Web Information Extraction

research. To the best of the researcher’s knowledge, the common DOM tree

solution implementations are using XPath and none applies jQuery notation.

Here, jQuery is chosen due its simplicity and because it works well with

javaScript; a popular scripting language for client-based web application.

Other advantages of jQuery over XPath were discussed in Chapter 2.

The fundamental design is based on the following observations:

- Supervised methods are more accurate than unsupervised (Barbosa et

al. 2013) and improve the quality of IE applications (Doan et al. 2008;

Ferrara 2013). Therefore, the TS-WIE system is built to be interactive,

thus a user interface to accept training example(s) from the user is

provided.

- There is a trade-off between the number of training examples and the

number of characteristics that the system can learn from the selected

data. This means that requiring too many examples would burden the

Pg. 167

user and requiring too few would give the system less matching quality

power. Thus, this research attempts to balance this issue by only

requiring two examples from the user to define the relevant data from

the web page.

- It is assumed that the training examples provided by the user are

accurate so that the system can generate the correct wrapper to

extract other similar instances of a particular attribute from the same

web page or from other similarly structured web pages within the same

website or other websites.

- An extensible and flexible data model for representing the extraction

rules is required to improve the quality of the extraction.

The design of the system is divided into two dimensions; a domain expert and

a pattern expert. The domain expert is the human user who has knowledge of

the domain and the extraction task. This user will teach the TS-WIE system

where to locate some specific piece of information on the web page, whereas

the pattern expert is algorithm, which is responsible for filtering the

information, generating a useful extraction pattern based on the selected set

of training data and adding any new extraction rules to the system’s existing

knowledge-base for future use. This section aims to answer the question of

‘how effective is the extraction method to capture quality information and can

it performed better than the automatic extractor system with the rigid

grammar?’

In order to facilitate the input from a human (domain expert), the section

below describes the user interface design. This is then followed by the

discussion on the pattern expert design and challenges within the

development of the TS-WIE system.

Pg. 168

6.5.2 Graphical User Interface

The TS-WIE is a client-based system that provides a visual viewer in the form

of a web browser-based user interface. The purpose of this editor is to allow a

human to locate and identify a single example or two examples easily from

the target web page. Two examples suggest that there are two or more

occurrences of a particular attribute on the web page. The usage of this

system does not require the user to be familiar with either the GP or the

regular expressions.

According to Howcroft and Carroll (2000), many of the new methodologies

were aimed at the look and feel of the user interface, which failed to address

the wider aspect of web based information systems. The user interface can be

designed in an optimal way using GUI elements such as command buttons,

input boxes, drag-and-drop and highlighter. However, this thesis is not

focused on creating the best interface for the semi-automatic system, rather it

concentrates on providing the functionality required in an interface to accept

input provided by the user and validates the response from the system that

act on the input. Furthermore, the prototype model of the GUI (Figure 6.3 &

6.4) does not require a specific browser.

Figure 6.3. A screenshot of the user interface for selecting the URL to process.

Pg. 169

The first page that the user will see is depicted by Figure 6.3. It contains a list

of URLs that need attention. The user is given a choice of clicking the URL or

typing the full URL in the box provided in order to work on that particular web

page.

The list of URLs is dependent on the number of records in the database,

which have been identified by the automatic WIE as unsuccessfully

processed, thus need to be dealt with. The user is required to choose the URL

from the list, for example, http://www.capita-ld.co.uk/courses/Pages/absence-

management-training-courses.aspx and when the user clicks the submit button,

the screen as in Figure 6.5 will appear. The actual web page is in Figure 6.4.

Figure 6.4. A screenshot of http://www.capita-ld.co.uk/courses/Pages/absence-

management-training-courses.aspx web page rendered by Google Chrome.

http://www.capita-ld.co.uk/courses/Pages/absence-management-training-courses.aspx
http://www.capita-ld.co.uk/courses/Pages/absence-management-training-courses.aspx

Pg. 170

Figure 6.5. TS-WIE interface to accept example(s) from the user.

The user interface (Figure 6.5) with the function to accept examples from the

user is divided into two main sections. The largest section (right side) is an

area for rendering the relevant web page, which is scrollable. It allows

interactivity, where the user can point and highlight the relevant information.

The left section is the processing area, where the selected data are received

and displayed. There are several process buttons in this area, which are

described below:

 The Get Data button captures the single or multiple instances of the

selected attribute and the corresponding attribute’s path.

 The Extract More.. button refreshes the left hand section to allow for

the selection of the next attribute to be extracted.

 The Reset All button clears the input boxes.

 The Save Data button saves all the extracted data in JSON format to

be processed further before permanently saving it in the database and

XML file.

 The Load NEW Source allows for selecting another source listed in

the previous web page (Figure 6.3) for a new extraction task.

Pg. 171

The approach is first to parse the loaded HTML page into a Document Object

Model (DOM) tree representation and assess this page based on this tree

information. DOM provides the ability of manipulating the DOM nodes on the

web page. As the user moves the mouse around the web page, the current

element hovered over is highlighted. When the user clicks on the element, the

capture process is started. JavaScript, using the jQuery library, retrieves the

specific nodes and elements of the DOM tree forming the path from the root to

the selected element to provide a set of extracted key content to the next

process.

The characteristics of the sample element should provide enough evidence

for the TS-WIE system to understand where the information is on the web

page, the keywords associated with it and the pattern that it is made of. The

choice of examples depends on human judgment to decide which information

should be extracted. To ensure the correctness of the selection, the selected

data are displayed on the left of the window. Intentionally, the path is hidden

from the user view as this does not provide any useful information to the user.

Finally, the selected data is assessed for validity before it is extracted and

exported to the database for future query.

Pg. 172

6.5.3 System Design

Figure 6.6. TS-WIE system in relation to flow of control between processes.

Pg. 173

The TS-WIE consists of three main stages as depicted by the system flow in

Figure 6.6:

1. Pre-Processing Stage.

The URL, which has been previously retrieved by the crawler system and

processed but unsuccessfully by the automatic WIE system, is retrieved

from the database. The relevant data has not been extracted because the

automatic WIE failed to recognise it. Each URL’s status is indicated by its

Link_status field, marked earlier by the automatic WIE (refer to Table 6.3

for the definition of each status integer). The URL is useful to the TS-WIE

system if its Link_status is 5.

The URL is first validated to ensure that it is still alive (if it is not, user will

be notified) and then copied locally to avoid the ‘permission denied’

security issue (same origin policy3) due to different domain processing.

This issue restricts the interfering with web pages belonging to other

websites. The copied HTML document is set to be by default UTF8

encoded Unicode to avoid unnecessary warning with regards to I/O (like

print).

Table 6.3 Link_status value, which is used to indicate the status of the relevant

web pages retrieved. (Source Xhemali 2010a)

Link_status Definition

0 The website is not used for training evaluation or classification

1 The website will be used for training

2 The website is used for training

3 The website has been evaluated and classified

5 The website is not successful

The next step is to check and clean errors in the HTML document using

HTML Tidy. The result of HTML tidy is an XHTML version of the web page.

It is well known that one of the drawbacks of regular expression is that it

cannot check for balanced tags and it will fail to match if there is

inconsistency in the document. Therefore, in order to solve this, the

3
 See https://code.google.com/p/browsersec/wiki/Part2#Same-origin_policy

Pg. 174

selected web pages need to be cleaned (structure fixing) first before

further processing otherwise it may result in imperfect data extraction.

The HTML encoding is a special task which has 3 functions; specify a

base URL, standardise the HTML attributes and disable hyperlinks.

Specify a base URL: The <base href> tag is embedded inside the

<head> element to resolve several technical problems, such as handling

different types of HTTP and HTTPS requests (especially those hyperlinked

using relative URLs), such as images, content caching and AJAX

execution. The XHTML web page is then uploaded into a frame (‘iframe’)

in the system interface, which is necessary to preserve its presentation

style formatting separate from the TS-WIE interface formatting.

Standardise the HTML attributes: It is possible that web designers use

different HTML attributes to produce the same effect. For example

(£) and £ will display UK currency symbol on most browsers.

Therefore, to avoid creating various patterns to refer to the same thing,

normalise representation is used. Other examples of HTML attributes are

the non-breaking space () and dash (– and —).

Disable hyperlinks: hyperlinks are links used to connect the current web

page to another web page. If a hyperlink is clicked, normally it replaces the

displayed web page with the target web page on the same window, unless

the user instructs it to open in a new window. In training course domain,

hyperlinks are commonly applied to the title of the course and the location,

which navigate user to the detailed page of the course and to the specific

location on the map. This movement of web pages make it impossible to

grab the hypertext. Therefore, disabling all the hyperlink attributes ensures

no interruption on getting detail of the selected information.

Pg. 175

2. Attribute Extraction Stage.

The course attributes (title, date, price and location) to be extracted may

only appear once (single instance) on the web page or there may be

similar data (multi-instance). In a single record webpage environment, only

one training data is required. However, where there are multiple records,

two types of input are required; training data and validation data. The

training data aims to provide a data pattern to the extractor system and the

validation data is to confirm the pattern.

If two attributes are selected, the system assumes that other similar data

items exist in the webpage and it expects that both selected data items

must have a common DOM node (parent) and their patterns are the same

if not similar, otherwise, the user is requested to reselect the second data

item. The path collected is in the form of jQuery notation, which precisely

identifies the position of the selected data item e.g.

“html>body>div:eq(1)>table>tr:eq(1)>td:eq(1)”. Further detail is provided in

the ‘jQuery Path Patterns’ section below and some basic information is in

Chapter 2.

Multiple inputs will only be considered valid by the system if the training

data formats are > 90% literally similar and the paths (parents) are literally

identical. Jaccard’s (1902, 1912) similarity coefficient is used to estimate

the degree of similarity between the two sets – first and second tokenised

data pattern, and first and second parsed paths.

The data selected might be part of a long sentence. An algorithm was

written to do a ‘Data Filter’ to refine this selection before the regular

expression is generated. The long sentence is passed through a process

called tokenisation. Tokenisation decomposes a sentence into tokens

along a predefined set of delimiters (like spaces, commas, and dots). Then

the relevant data pattern or relevant keyword is matched against the

tokens to identify the important data. Note that this kind of presentation

normally relates to the web page with single instance of attribute.

Pg. 176

However, the same algorithm is also made available to the multi-instance

processes.

Each course attribute is independent from the others and from the rest of

the system. This means that the selection of attribute values can be

modified, leaving the rest of the captured details of attributes unchanged.

Once the selections for a particular course attribute have been made, the

next process is to validate this selected information in the Post-Processing

Stage.

3. Post-Processing Stage.

First the data and the path are validated against the existing records in the

database. If duplicates are found, then this example data will not be

processed further. The valid data and the path will be passed to the

‘Regular expression Generator’ to generate their regular expressions. The

Regular expression Generator is a tailored script written to translate the

received value to a regular expression notation (see ‘Automatic Regular

Expression Generator’ subsection below for further detail) with proper

handling of whitespace characters. Both regular expressions are validated

against the existing records in the database to avoid duplication and once

this is clear, all the relevant details are saved temporarily. This is the last

process for an attribute and the user is not allowed to do the same

attribute process again.

The same processes (Stage 2 and 3) are repeated for all available course

attributes from this web page. Once this is completed, the extracted data

should be ready for insertion into the target database.

All the jQuery paths are then tokenised and compared with the stored

rules in the XML file and any new tokens will be kept. Next, the value (5) in

the Link_status of the current web page is changed to 3, indicating that

this web page has been successfully processed. The whole process will

be repeated for the next URLs.

Pg. 177

jQuery Path Patterns

In this research jQuery is essential to define the position of the selected

information on the web page, which will then be used to define one part of the

extraction patterns (structural). As mentioned earlier, extraction pattern is

comprised of the combination of structural and lexical patterns.

The HTML document is first made clickable. When a user clicks on

information, the jQuery path elements are collected and joined together. This

allows the parents, siblings and children, if available, to be trackable. To join

the path elements from the selection up to the parent, a script needs to be

written. For example, if the information is in a second column of the second

row in a table of the second division, then the jQuery to define the absolute

path of this information is html>body>div:eq(1)>table>tr:eq(1)>td:eq(1).

The absolute path performs well on a single instance of a course attribute.

This means the definitive path is achievable through jQuery using the most

detailed node, i.e. td:eq(1) in the above example. However, this absolute path

is not applicable to multiple records extraction. Multiple records are commonly

presented in tables or lists. For example, the titles of the course could be

listed in the second column of row 2 to row 5 in a table. Therefore specifying

the detailed node, i.e. tr:eq(1)>td:eq(1) will only locate the second column of

the second row. The extraction of single and multiple records from a web

page is described in the ‘Capturing and analysing Patterns’ section below.

Extraction Rules

The TS-WIE system, which adds an interactive functionality to the automatic

WIE is responsible for extending the system’s extraction rules, learning from a

set of training data provided by the user. The generation of a successful

regular expression (wrapper) for new data depends heavily on the availability

of the rule component. Thus updating the rules through new discovery from

the training set in an incremental manner is necessary to accommodate a new

data pattern. However, writing useful extraction rules is a difficult and tedious

Pg. 178

task, especially as it requires:

 Regular examination of web pages for any

technological/structural/content updates.

 Extensive understanding of the proper structural construction of the

extraction rules, which can cope with future addition of new rules.

 Writing exhaustive rules to retrieve the important data.

Because of those reasons, this research uses predefined XML grammar

structure defining the rules classification defined in Section 5.2.4. Since one of

the goals is to allow addition of the rules for the new extraction task, which

purpose is to reduce the (manual) pattern/wrapper generation effort, it makes

sense to build an algorithm to automatically verify and extend the rules

collection. While the incremental rule is mostly concerned with the data

pattern (in regular expression notation) and HTML tags, other rules such as

keywords (which rarely change) and open tags (e.g.‘<DIV>’) remain fixed.

The following section describes the process of capturing and analysing

patterns for both data and path, before they are accepted into the database

for future query.

Capturing and analysing Patterns

Initially, the TS-WIE system will receive data, about which it has no

knowledge of the pattern, selected on the web page by the user. One of the

findings in this research is that the automatic extractor fails to recognise the

required data from all web pages which it has insufficient extraction rules to

produce the correct patterns.

Figure 6.7 depicts the process of capturing and analysing the captured data.

Once the user has made the first selection, the DOM tree (jQuery path) and

the selected information are extracted. If the second information is selected,

this indicates that the web page has multiple records. There are two

assessors involved; Instance Filter and Rule Analyser.

Pg. 179

Instance Filter has to ensure that the data selected for the first and the second

examples are not the same value but having the same data format. As in case

of Rule Analyser for multiple records extraction, both paths must have at least

a common parent. A bottom-up approach is applied where the analysis begins

with the most specific paths before they are formed as one computed general

path. This means to infer a minimal regular grammar from a finite set of

examples. The paths are tokenised and compared. These path expressions

are then generalised to form a single path by replacing some of the tokens

with wildcards (.*?), for example “<div><” the “irrelevant data” is replaced with

‘.*?’ to become <div>*.?</div><div> or dropping redundant tokens (e.g.

html>body>div>table>tr>td to simply just a table>tr>td).

Figure 6.7 Accept Training Examples & Extraction process of the TS-WIE system.

Pg. 180

The algorithm to produce the generalised path pattern has to ensure a

balance between flexibility and specificity. The generalised path would match

several similar data items and it is useful to the next process - the regular

expression generator (this is explained in the next section). The path should

not be too specific that it only works for one specific page such as

“div:eq(1)>table.>tr:eq(1)>td:eq(1)” or too general e.g. “div table tr td” that it

allows extraction of all data that it can match including the incorrect one.

The Rule Analyser is also responsible for providing markers for the first

occurrences of the attribute that will be used for extraction process. It will also

make a small assumption about the number of attributes available and define

the marker for the last data. The use of these markers is to define the block,

which the attribute values are likely to be found. Finally, the generalised path

is used to find all occurrences of the attribute by adding the sibling paths

starting from the first marker.

It is now that a jQuery pattern needs to be converted into a regular

expression.

Automatic Regular expression Generator

Manual crafting of regular expressions may cause inconsistency or be

partially correct, although there are several debugging tools for checking its

validity, which are freely available such as RegexBuddy4 and Regextutor5. To

avoid this situation, it was decided that a specialised algorithm was needed to

generate regular expressions from the given example and its jQuery path.

There are two distinct implementations of regular expressions generators.

One translates the path and the other works with the instance of the course

attribute. The algorithm for transforming the regular expression for a path

concerns the correct number of open tags and the closing tags presented by

the jQuery. Table 6.4 shows the equivalent regular expression to represent

4
 http//www.regexbuddy.com/. This website provides a downloadable tool for building and testing

regular expressions.
5
 www.perlfect.com/articles/regextutor.shtml. This online tool offers regular expression checker, which is

for PERL.

Pg. 181

the actual extraction pattern based on a jQuery path:

div:eq(1)>table>tr:eq(1)>td:eq(2)

The algorithm for matching the course attributes replicates Conrad’s (2007)

automatic regular expressions, who uses it for detecting spam in the email

consisting of digits, hexadecimal, Top-level Domain (e.g. com, net and org),

characters, day of the week and month. The algorithm used in this thesis has

the addition of pre-defined regular expression for the structured words objects

in the logic such as the format for the date and price, a word containing meta-

character(s) and single character. This addition is necessary to avoid

unnecessary overhead cost to try to build the regular expressions for a

particular attribute value. The following Table 6.5 provides an example of

translating the date pattern (20-08-2013) if it not already available in the

database.

Table 6.4 – Example of jQuery path translation to regular expression

jQuery path
Example

Translation to Extraction

pattern
 Regular Expression equivalent

div:eq(1) <DIV></DIV><DIV>

<DIV[^>]*>\s*</DIV>\s*
<DIV[^>]*>\s*

table <TABLE> <TABLE[^>]*>\s*

tr:eq(1) <TR></TR><TR> <TR[^>]*>\s*</TR>\s*
<TR[^>]*>\s*

td:eq(2) <TD></TD><TD></TD> <TD> <TD[^>]*>\s*</TD>\s*
<TD[^>]*>\s*

 (data_patten) See Table 6.5

++ </TD></TR></TABLE></DIV> </TD>\s*</TR>\s*
</TABLE>\s*</DIV>

++ The closing of the tags is required to ensure a valid pattern.

Table 6.5 Example of text conversion to regular expression

Extraction Pattern
Example

Regular Expression

equivalent
Description

20 \d+ digit

- - metacharacter

08 \d+ digit

- - metacharacter

2013 \d+ digit

Pg. 182

In the translation of data value to regular expression, the notion of a token is

used. Token is different from word as special characters are considered as

tokens. The process of tokenising is applied which separates tokens by white

space and takes into account punctuation. The algorithm to automatically

generate the regular expression according to a set of logics and the proof-of-

concept Perl source code of this logic can be found in Appendix 6.

A Pattern Filter is used in the case when two examples are provided. It is only

used for analysing the DOM tree structures (jQuery paths). The output is a

generalised path pattern in regular expression notation. The first

implementation accepts jQuery path(s). A single path indicates a direct

translation to regular expression. Two paths means further processing is

needed (multi-instance extractions). Often the learned paths can be reduced

to avoid redundant tags. Also often after reduction, this pattern may be the

same with the previously learned and stored pattern. However, having too

generalised pattern is risky as it provides opportunity for irrelevant data to be

selected. This is tackled by incorporating the data pattern validation before the

data are submitted to the database. The stored regular expression is

important as it will be used again by the automatic WIE in an attempt to

extract relevant data from ‘never seen before’ web pages.

The translated regular expression will be stored in the Path_Phenotype table,

the field (pathRE) which can only hold 400 characters or less. However, any

length is acceptable but needs to be set in the database prior to using the

system. With this restriction, the generated regular expression must be within

the set length, otherwise it is considered invalid. This step is necessary to

avoid a long regular expression being truncated, which would cause an

incorrect regular expression to be stored and thus disrupt the execution of the

REGEXEV especially during the fitness test used in the Genotype to

Phenotype mapping process.

Pg. 183

Data Model

The data model (Figure 3.6 in Section 3.3.1) for the automatic WIE remains

the same except for some minor amendments. Out of the seventeen tables in

the database of the automatic WIE, only seven tables are relevant to the TS-

WIE system. These are the CIE_Allowed_links, CIE_Course, GP_Context,

GP_Locations, GP_Genomes, GP_Phenomes and GP_Genome_Phenome.

The CIE_Allowed_links provides an indicator to the system if URL needs

further processing. The CIE_Course stores the extracted attributes from a

particular URL and CIE_Context stores the name of course attributes to

extract, i.e., title, price, location and date. The GP_Locations is updated if new

location is found in the given example and this table is useful for the Location

extraction (see Section 5.2.4). The GP_Genome_Phenome is a cross

reference table for GP_Genomes and GP_Phenomes due to many-to-many

relationship situation.

The GP_Genome and GP_Phenome tables, however, have to be redesigned

to fit the requirement of this TS-WIE system. The GP_Phenome is split into

two tables; and are renamed as Path_Phenotype and Data_Phenotype. This

separation is essential to store two different types of phenotype; data and

DOM tree path. The Path_Phenotype may not have any related record in the

Genotype table as some of the phenomes are created by the TS-WIE system.

However, the Genotype records must have a corresponding record in the

Path_Phenotype table. The GP_Genome table now known as Genotype

consists of all successfully evolved genomes. The GP_Genome_Phenome

does not apply here as a genome translates to a phenome and a phenome

can be the translation from different genomes (one-to-many relationship).

For clarification, in this thesis, the names of the tables are labelled as

Genotype instead of Genome, and Phenotype instead of Phenome. This is

because a Genome is an instance of Genotype and a Phenome is an instance

of Phenotype. This means a record of the Genotype or the Phenotype in

those tables is unique and not duplicated. Figure 6.8 depicts the database

Pg. 184

components and their relationships, which are relevant to TS-WIE System.

Figure 6.8 Data Model Components of TS-WIE System.

Update Database and XML

Another important function is the Rule Incremental. Rule Incremental

automates the addition of new rules that the extractor learns, just as they are

discovered on the web pages. After the Pattern Filter examines the data

pattern, which is made up of path pattern and data pattern, the patterns (path

or value) will be compared with the existing rule in the XML file and any

unmatched pattern will be added in the file. Before this addition takes place,

Pg. 185

the Rule Incremental will assess the newly generated pattern to determine to

which rule component it should be placed. These successful patterns and

rules can be reused and extended for new situations.

6.6 Experiments and Results Discussion

To investigate the effectiveness of the semi-automatic method presented in

this chapter, experiments are conducted to assess the performance.

According to (Sarawagi 2008), designing a model that can achieve high

accuracy extraction is one of the challenging tasks facing researchers in this

field.

The experiment is set to accept ‘positive example(s)’. Twenty seven websites

have been selected for the experiment as listed in Table 6.1. For each web

page, three different standard metrics are applied; the precision, recall and F-

Measure to evaluate the results of the experiments with reference to the

confusion matrix (Table 2.3 in Chapter 2), which is typical for an IE system.

The TS-WIE system is tested against the web page having either a single or

multi-instance attributes.

Finally, this section reports the significant impact of human intervention on the

yield of the TS-WIE system, which the users can “train quickly” to meet their

specific needs within an acceptable level of performance. More importantly,

the impact from the acquisition of the new rules in the REGEXEV experiment

is reported in the following section. Figure 6.9 shows an example of extraction

task from http://www.spearhead-training.co.uk/management/business-

management.php and Figure 6.10 shows the extracted data.

http://www.spearhead-training.co.uk/management/business-management.php
http://www.spearhead-training.co.uk/management/business-management.php

Pg. 186

Figure 6.9. The system’s response by highlighting all attribute values in pink

that matches the provided examples (in multi-instance attributes web page

environment).

Figure 6.10. The system’s output after the task is completed. The data is stored first in

the database before it is displayed back on the screen.

The following discusses the results of the experiments. It is important to note

that the results are analysed and calculated as on 1st September 2013. Some

Pg. 187

of the web pages tested in Section 5.2.4 such as underoak.co.uk and

qa.co.uk were no longer alive, thus excluded from this experiment. The type

of task tested for each web page varies, with some containing a single

instance of an attribute while the others contain multiple instances. There are

19 out of 27 websites contain a single course title. Only 4 websites have a

single date and 2 have no date at all. For the location, there are 5 websites

having single venue and 6 others have none specified. Finally, the majority of

the websites offer multiple course prices (depending on the location and title

of course), while 5 websites offer single price and one has none specified.

There are 12 websites containing multiple price instances, which offer various

categories of pricing, such as members, non-members, discounted price,

number of delegates, material price, international/local student and age-group

price.

From the experiment result in Table 6.6, only in one of the websites

(URL#25), the extractor extract all the titles. However, it also made a false

extraction of one data which is not the title of the course. This is because the

TS-WIE system is unable to reason the semantic of the data as a human

would and the fact that these data have similar paths (generalised paths) and

the same lexical pattern as the training set. In future, this could be avoided by

allowing correction by the user and then add any new negative data into the

irrelevant corpus and reuse this corpus to filter the extraction. However,

provision of a correcting mechanism could pose further human involvement,

which leads to huge effort if not handled properly.

Pg. 188

Table 6.6 Results of experiment in % for Title extraction; S - Single instance;

M – Multiple instances

URL
Type of

task
Precision Recall F-Measure

1 www.ptp.co.uk S 100 100 100

2 www.managementtrainingcoursesuk.co.uk S 100 100 100

3 www.trainanddevelop.co.uk S 100 100 100

4 www.ontargetlearning.co.uk S 100 100 100

5 www.challengeconsulting.co.uk S 100 100 100

6 www.itleaders.co.uk M 100 100 100

7 www.findcourses.co.uk M 100 100 100

8 www.campdenbri.co.uk S 100 100 100

9 www.medicalinterviewsuk.co.uk S 100 100 100

10 www.beauty-school.co.uk S 100 100 100

11 academyclass.com M 100 100 100

12 www.loucoll.ac.uk S 100 100 100

13 www.skillsolve.co.uk S 100 100 100

14 www.spearhead-training.co.uk S 100 100 100

15 www.capita-ld.co.uk S 100 100 100

16 www.cim.co.uk S 100 100 100

17 courses.independent.co.uk M 100 100 100

18 www.coursesplus.co.uk M 100 100 100

19 eca.co.uk S 100 100 100

20 register.rit.edu M 100 100 100

21 www.cipd.co.uk M 100 100 100

22 pgplus.bisgroup.com S 100 100 100

23 www.hemsleyfraser.co.uk S 100 100 100

24 www.ldl.co.uk S 100 100 100

25 www.locksmiths-training.co.uk M 80 100 89

26 www.theiet.org S 100 100 100

27 www.chesterfield.ac.uk S 100 100 100

Pg. 189

Table 6.7 Results of experiment in % for Date extraction; S - Single instance;

M – Multiple instances. A blank cell indicates that the web page is protected and

security issue applies. A ‘-’ cell indicates that the course attribute is not available on

the web page.

URL
Type of

task
Precision Recall F-Measure

1 www.ptp.co.uk M 100 100 100

2 www.managementtrainingcoursesuk.co.uk M 100 100 100

3 www.trainanddevelop.co.uk M 100 100 100

4 www.ontargetlearning.co.uk S 100 100 100

5 www.challengeconsulting.co.uk M 100 100 100

6 www.itleaders.co.uk M 100 100 100

7 www.findcourses.co.uk M 100 100 100

8 www.campdenbri.co.uk S 100 100 100

9 www.medicalinterviewsuk.co.uk S 100 100 100

10 www.beauty-school.co.uk M

11 academyclass.com M 100 10 18

12 www.loucoll.ac.uk M 100 100 100

13 www.skillsolve.co.uk M 100 100 100

14 www.spearhead-training.co.uk M 100 100 100

15 www.capita-ld.co.uk M 100 100 100

16 www.cim.co.uk M 100 100 100

17 courses.independent.co.uk M 100 100 100

18 www.coursesplus.co.uk M 100 100 100

19 eca.co.uk M 100 100 100

20 register.rit.edu M 100 100 100

21 www.cipd.co.uk M 100 100 100

22 pgplus.bisgroup.com M 100 100 100

23 www.hemsleyfraser.co.uk M 100 100 100

24 www.ldl.co.uk M 100 100 100

25 www.locksmiths-training.co.uk - - - -

26 www.theiet.org M 100 100 100

27 www.chesterfield.ac.uk S 100 100 100

Pg. 190

Due to the “different domain” security issue (https protocol), the date for

URL#10 web pages in Table 6.7, which was presented in a frame, was

blocked from the user, thus the content is inaccessible. In case of URL#11,

each course is presented in an individual table and the tables are irregularly

formatted. Multiple dates and locations are offered for each course and they

are arranged in such a way that the rows represent the location and the

columns represent the range of course dates (i.e. day range in the form of dd-

dd e.g. 12-15) for that particular location. The months are placed as the table

header. If a course is available, the date range is placed in the cell

corresponding to the month and the location. If a course is not offered in a

particular month for a particular location, the cell is left blank. This

presentation is very complex for the algorithm to compute the relevance of the

data; the task of information extraction would become almost infeasible.

Reflecting on other websites from Table 6.7, the system performs well on

several web pages of similar structure such as URL#1, URL#2 and URL#7,

where course records are grouped according to their course locations in

separate tables. This is because the structures of these tables are regular,

where the attributes are consistently arranged in specific columns, thus easier

to identify.

Pg. 191

Table 6.8 Results of experiment in % for Location extraction; S - Single instance;

M – Multiple instances. A ‘-’ indicates the course attribute is not available on the

page.

URL
Type of

task
Precision Recall F-Measure

1 www.ptp.co.uk M 100 100 100

2 www.managementtrainingcoursesuk.co.uk M 100 100 100

3 www.trainanddevelop.co.uk M 100 100 100

4 www.ontargetlearning.co.uk S 100 100 100

5 www.challengeconsulting.co.uk - - - -

6 www.itleaders.co.uk - - - -

7 www.findcourses.co.uk M 100 100 100

8 www.campdenbri.co.uk S 100 100 100

9 www.medicalinterviewsuk.co.uk S 100 100 100

10 www.beauty-school.co.uk - - - -

11 academyclass.com M 66 11 19

12 www.loucoll.ac.uk - - - -

13 www.skillsolve.co.uk S 100 100 100

14 www.spearhead-training.co.uk M 100 100 100

15 www.capita-ld.co.uk M 100 100 100

16 www.cim.co.uk M 100 100 100

17 courses.independent.co.uk M 100 100 100

18 www.coursesplus.co.uk M 100 100 100

19 eca.co.uk M 100 100 100

20 register.rit.edu M 100 100 100

21 www.cipd.co.uk M 100 100 100

22 pgplus.bisgroup.com M 100 100 100

23 www.hemsleyfraser.co.uk M 100 100 100

24 www.ldl.co.uk M 100 100 100

25 www.locksmiths-training.co.uk - - - -

26 www.theiet.org M 100 100 100

27 www.chesterfield.ac.uk S 100 100 100

The same security issue as the date extraction is observed in the price

extraction from URL#10 web pages on Table 6.9.

Pg. 192

Table 6.9 Results of experiment in % for Price extraction; S - Single instance;

M – Multiple instances. A ‘-’ indicates that the specific course attribute is not

available on the web page.

URL
Type of

task
Precision Recall F-Measure

1 www.ptp.co.uk M 100 100 100

2 www.managementtrainingcoursesuk.co.uk M 100 100 100

3 www.trainanddevelop.co.uk M 100 100 100

4 www.ontargetlearning.co.uk S 100 100 100

5 www.challengeconsulting.co.uk M 100 100 100

6 www.itleaders.co.uk M 100 100 100

7 www.findcourses.co.uk M 100 100 100

8 www.campdenbri.co.uk M 100 100 100

9 www.medicalinterviewsuk.co.uk S 100 100 100

10 www.beauty-school.co.uk M

11 academyclass.com M 100 100 100

12 www.loucoll.ac.uk M 100 50 66.7

13 www.skillsolve.co.uk S 100 100 100

14 www.spearhead-training.co.uk M 100 100 100

15 www.capita-ld.co.uk S 100 100 100

16 www.cim.co.uk S 100 100 100

17 courses.independent.co.uk M 100 100 100

18 www.coursesplus.co.uk M 100 100 100

19 eca.co.uk M 100 100 100

20 register.rit.edu - - - -

21 www.cipd.co.uk M 100 100 100

22 pgplus.bisgroup.com M 100 100 100

23 www.hemsleyfraser.co.uk M 100 100 100

24 www.ldl.co.uk M 100 100 100

25 www.locksmiths-training.co.uk M 100 100 100

26 www.theiet.org M 100 100 100

27 www.chesterfield.ac.uk M 100 100 100

Pg. 193

In summary, based on the results of the experiments, in which the web pages

allow access, the TS-WIE system achieved the following result in Table 6.10:

Table 6.10 An average performance in % of the TS-WIE system.

Attribute Precision Recall F-Measure

Title 95.6 100 99.3

Date 100 77.5 79.5

Location 95.1 77.8 80

Price 100 88 91.6

The experiments show that this system works perfectly well on single

instances of each course attributes and properly structured multiple records

for all web pages. Observing all the results presented above, the system

performs poorly only on the following three complex cases:

1. Irregularly structured data, especially <table> presentation, where

nesting and cell span are involved. In this case, two examples are

insufficient to inform the system that the attributes are distributed in two

or more tables and each table has various cells structures to present all

instances of an attribute.

2. Dissimilar underlying format of data provided by the user.

3. Data are in the drop down list, thus the selection points to the same

path. This information is insufficient to suggest the existence of multi-

instance tasks.

A crude solution to handle all the three cases above would be to extract

course attributes intended by providing enough samples (Carlson et al. 2010)

to generate reliable patterns. However, determining how many is enough is

not a straightforward task and a very large number of samples expected from

the user is computationally expensive. This could be reduced by designing an

algorithm to discover a number of clusters in the data that it calculates correct

rather than having them as input (Vlachos et al. 2009) and the user is required

to verify them for further correction, rejection or confirmation. This is not

possible at this time and would be one of the future works.

Pg. 194

6.7 Challenges

In this section, five challenges have been identified during the development of

the TS_WIE system.

Challenge 1 - Human assistance.

Researchers have identified the importance of ‘good’ examples and the

amount of labelled examples to achieve high quality of extraction.

However, these two criteria are difficult to achieve without affecting the

performance of the system and human effort. There must be a trade-off

between them to get the best result possible. The accuracy of the results

depend on the input from the user, thus it is important to get the correct

representative examples. The more accurate the data that are selected, the

higher the success rate of the extraction. On one hand, some researchers

agree that semi-supervision yields better results than fully automated,

although it is necessary that the user interaction be kept at a minimum. On

the other hand, human assistance helps to increase the knowledge of the

automatic WIE to hit the correct data, which it currently fails to identify thus

providing an opportunity for a wider span of extraction coverage.

The TS-WIE addressed this challenge by making the web page clickable

and the user hovers over the required information and clicks on it to select

it. This helps to reduce any typing error which normally happens through

typing in the information.

Challenge 2 - Data structure/presentation.

Websites normally spread their information on multiple web pages,

hyperlinked from the main web page. These web pages may present

information in a similar structure but it is not guaranteed. A small change in

the pattern may cause the regular expression to fail. Some of the known

issues include irregular information or missing data in tables, information

that spans across multiple pages, use of images, bad structure and

restricted access pages. Thus, due to these discrepancies, it would be a

challenge to generalise the different layout structures and come up with a

Pg. 195

more generalised extractor solution. However, the motivation of this

research is that these web pages have some kind of structure, and some

share common characteristics.

A generalisation technique (to define the location of multiple instances of a

course attribute) presented in this chapter helps to relax the issue. The

availability of the jQuery library to find the common parents shared by

these multiple instances provides the means to identify all the target

siblings and/or their children.

Challenge 3 - Evolution of the Web technology.

Web pages have evolved from static to dynamic and interactive due to

introduction of new technology such as JavaScript and AJAX. Adar et al.

(2009) have observed that there are two types of web page changes;

structural change and content change. These changes are made for

various reasons ranging from updating information to reshaping. They also

pointed out that the changes made on the content of the web page (amount

of textual change) are much more frequent than the structure changes

(DOM-level changes). From the 55,000 web pages that they observed, the

content change is done as often as every 60 minutes, i.e., in the case of

the plot for the New York Times homepage. This requires a robust

extraction system, which can cope and evolve with such changes.

The TS-WIE system is limited to work with websites that employ JavaScript

to present the course information such as www.rit.edu for public courses.

This is because each detail web page URLs are only accessible through

the hyperlink (URL is hidden) as well as the contents not being visible

within the HTML documents. However, due to this invisibility, this URL

would not be picked up by the crawler in the first place. Furthermore, the

layout structure, such as tables and lists, which is most common today, will

change quickly as the new styling presentation - Cascading Styling Sheet

(CSS) is increasingly accepted. Therefore, a fixed knowledgebase will soon

suffer and proposing a system using a dynamic knowledgebase has the

advantage of eliminating a technical expert to meet this new situation.

http://www.rit.edu/

Pg. 196

Challenge 4 – developing a more efficient GP method

The main technical challenge is to figure out how to create a new rule

based on the training set provided by the user and generalise this rule so

that it has high overall coverage. The rule should not be too general that it

likely captures more irrelevant information than the required attributes, nor

too definite that it is only useable in a specific web page. This then led to a

new challenge of how the GP method can manage these new rules and

efficiently generate new regular expression patterns.

The generated extraction pattern points not only the required information

but also the irrelevant content if this relevant information is part of a

paragraph or a section. To decrease the severity, the data format was

applied to make this separation so only the relevant information is sent to

the database. Although the result may be incomplete if the data format

generated from the example is insufficient to identify the complete

information, however this problem cannot be completely avoided.

Challenge 5 - Adaptation to the existing system.

The Xhemali’s proposed WIE system for ATM is fully automatic and uses

GP to evolve its extraction rules. Ideally, once the relevant items from the

crawled page are discovered and extracted, the data are transferred to the

ATM’s database, which could be accessed by the user through the ATM’s

Customer Relationship Management (CRM) software. The automatic WIE

depends on its collection of extraction rules in the XML file to generate

regular expressions to match the data, and these regular expressions can

be reused on other web pages with similar presentation.

It is very important that the TS-WIE system can cope with this environment

without disrupting the database. Direct comparison with Xhemali’s

Automatic WIR/WIE system is not possible for an unavoidable reason.

During the duration of this research, this automatic system is not installed

at Apricot Training Management server and the codes are not available

due to a very serious computer crash. This is unfortunate as finding the

Pg. 197

effect of the TS-WIE system on the automatic WIR/WIE and the evaluation

on the integration of the two systems was not possible. However, it is

strongly believed that the evaluation directly tests the usefulness of the TS-

WIE system against the automatic WIR/WIE, thus achieving the same

output if the actual evaluation would have been possible. This is because

the model of the REGEXEV in this research was designed to simulate the

automatic generation of regular expression in the automatic WIE.

This thesis attempted to develop a dynamic extraction pattern based on

updatable extraction rules that extracts the correct and complete instances of

course attributes. Having listed all the challenges encountered while

developing the TS-WIE system, only Challenge 5, which is a special and

unavoidable case, remains unsolved. However, Challenges 1 to 4 have been

successfully addressed. The next section attempts to demonstrate the impact

of improved extraction rules provided by the TS-WIE system on the

performance of REGEXEV, using the same metrics and rules structure as

described in Section 5.2.4.

6.8 REGEXEV experiment revisited

The existing extraction rules used by the automatic extractor are manually

built and this has put a limitation to the kind of information it can extract.

However, it is postulated that teaching the extractor to add new rules, which

are identified from the newly discovered patterns, into its rule collection

provides a wider scope of information it can extract. In this section, this

hypothesis was tested and the following results were achieved. It is important

to highlight that only URLs which didn’t achieve 100% precision rate (7 out of

16 websites) are included to demonstrate the effect of incremented extraction

rules.

Pg. 198

Table 6.11 A repeat of REGEXEV experiment to URLs in Table 5.8 that have

precision of less than 100%. The generation of regular expressions are based on the

incremented extraction rules by TS-WIE system.

(a) Title extraction

URL
% Hits
(seeds)

Performance
improvement
compared with
previous %

Generations

Best Avg Med

1 www.itleaders.co.uk 93.3 6.3 0 2.8 0

2 www.campdenbri.co.uk 100 20 0 0.4 0

(b) Date extraction

URL
% Hits
(seeds)

Performance
improvement
compared with
previous %

Generations

Best Avg Med

1 www.ptp.co.uk 100 50 0 11 9

2 www.challengeconsulting.co.uk 60 -10 0 1.1 0

3 www.campdenbri.co.uk 100 20 0 16.3 9.5

(c) Location extraction

URL
% Hits
(seeds)

Performance
improvement
compared with
previous %

Generations

Best Avg Med

1 www.ontargetlearning.co.uk 93.3 86.3 0 6.2 0

2 www.challengeconsulting.co.uk 96.7 76.7 0 9.8 2

3 www.findcourses.co.uk 80 -13 0 30 13

4 www.medicalinterviewsuk.co.uk 100 100 0 0.3 0

(d) Price extraction

URL
% Hits
(seeds)

Performance
improvement
compared with
previous %

Generations

Best Avg Med

1 www.ptp.co.uk 100 37 0 8 5

2 www.itleaders.co.uk 90 17 0 13 2

3 www.findcourses.co.uk 56.7 -20.3 0 1 0

It is important to note that the result above is valid as at 3rd October 2013 and

because the courses offered are very sensitive to the date, i.e. courses are

dated beyond the current date, therefore, some of the content of the web

pages changed since the last experiment reported in Section 5.2.4.

Pg. 199

Based on the above repeat experiments, the following has been noted:

website attribute Discussions :

(i) Itleaders.co.uk title The web page repeats the title in the
main body as a sub title, which is
presented in a smaller heading tag.
Although, in a sense it is correct, this is
however treated as false negative.
However, this happens less often, so
rather than trying to feed the system
with more complicated fitness criteria,
it is more feasible to use the TS-WIE
system to extract it.

(ii) Challengeconsulting.co.uk date False negatives were extracted which
presents valid date. This date is mainly
the date for the other course titles on
offer. The successful achievement of
rerunning the program to hit the target
dropped from 70% to 60%. An
improvement to this could be to focus
the search in the main content,
avoiding all the noise.

(iii) Findcourses.co.uk Location Duplicate instances of valid attribute
have affected the performance of the
system especially if the web page has
some promotional information of the
other courses within the same website.
It has been observed that adding new
elements such as HTML tags to the
rules collection has a drawback. Not
only does it provide new opportunity to
discover new information presentation
within the web pages/websites, it also
provides an opportunity of new search
area, which may suggests irrelevant
information. The main content search
could solve this issue.

(iv) Findcourses.co.uk Price Same observations as (iii)

Overall, the result shows that there is a significant improvement in the

precision. By providing more HTML tags, it was observed that the result is

more accurate, extracting the most detail rather than the whole sentence or

paragraph (within the filtration criteria specified). For example, “table tr td” is

more accurate than “table tr”.

Pg. 200

As expected, these experiments have experienced a similar impact of

increased search space. There is a significant increase of performance

overhead required to reach a fit solution, however, surprisingly, this is not the

case for some. For example, the average generation required for evolving the

extraction pattern for the date in www.campdenbri.co.uk falls from 38.6 to

16.3, although the median increases from 7 to 9.5. This shows that by adding

a new grammar definition, with the correct formation of extraction pattern, the

system hit the right target directly, thus resulted in better performance.

Another finding is that the improvement in the performance is the result of

having the unique data pattern comparisons for each attribute, which patterns

were defined from the training examples provided by the TS-WIE system. As

for the location, difficulty can be seen when irrelevant information mentioning

valid locations on the web page existed such as statements announcing all

the available locations where the courses are operating. However, having

more locations (not restricted to just the name of the city) in the database

yields a much more accurate result compared to just depending on the

keywords (such as location, venue and held). This was demonstrated by the

experiment on www.medicalinterviewsuk.co.uk.

6.9 Chapter Summary

This chapter presents the semi-automatic technique for web information

extraction through the development and implementation of the TS-WIE

system, which takes advantage of human supervision combined with a set of

training data. It describes the main components of the TS-WIE system, which

consists of three main processes; Pre-processing, attribute extraction and

Post-processing. Based on the experiments, the system performed perfectly

well on extracting single instance and multiple instances that appeared in

regular nested structure. On the contrary, the system demonstrated poor

performance on multiple instances of attribute(s) in badly structured data.

The proposed technique assesses the data selected by a human user,

Pg. 201

defining its DOM tree structure in jQuery notation and data format. These new

patterns are then analysed by breaking them down into smaller pieces to

identify if new patterns exist and the XML rules are incremented accordingly.

One of the key discussions is the novel systematic method of building a

‘precise’ regular expression pattern based on the given example. This new

regular expression is useful to the automatic WIE system to discover similar

pattern in newly discovered web pages, relevant to the course training

domain. Also, the addition of new pieces of rules into the regular expression

grammar helps to generate new patterns which could be used to extract the

data that have “never seen before” structure or format.

Finally, the chapter concluded with empirical evidence demonstrating a

significant precision improvement by REGEXEV using the same XML rule

structure as described in Chapter 5 with incremented rule elements.

Pg. 202

Chapter 7

Conclusions

7.1 Chapter Overview

Chapters 4, 5 and 6 extensively discussed the major work in this research.

This chapter briefly draws the conclusions in relation to the aims and

objectives of the study outlined in Chapter 1.

In this research a combination of approaches (fixed-block length genotype

and XML rules as an external file) were applied to evolve both areas;

computer programs and regular extraction patterns. Although the field of Web

Information Extraction (WIE) has been extensively studied since 1990, the

application of Genetic Programming (GP) with dynamic extraction grammar or

rules has remained unexplored. In this thesis, the semi-automatic WIE that

supports dynamic grammar for the evolution of the extraction patterns has

been presented and discussed in detail. The first section of this chapter

summarises the main contributions of the research, with the limitations of the

study presented in the following section. Finally, the last section identifies the

opportunities for further research.

7.2 Summary of the Key Contributions

The research aimed to provide a robust WIE solution that is teachable by

humans at an acceptable time and human effort. The human provides a set of

training examples for the system to learn the newly discovered extraction

rules or tokens to provide an improved grammar and lexicon. A well-designed

Web Extraction System must consider the degree of automation in relation to

the quality of extraction. It is essential to ensure there is a balance between

human involvement and the accuracy of the extraction. In the literature, this

human involvement ranges from creating the specific wrappers (expert user)

Pg. 203

to providing a set of training examples for the system to learn the extraction

patterns (end user). Furthermore, making the patterns extensible is a novel

approach, which will help to extend the capability of the extractor to cope with

future changes in the relevant Web sources. In general, the generation of the

extraction patterns in a semi-automatic approach is influenced by a number of

correct positive examples, which may be further supplemented with negative

examples.

In order to test the research hypothesis “A Teachable Semi-automatic Web

Information Extraction System (TS-WIE) with human supervision helps to achieve

high quality extraction and may increase adaptability to a wider scope of domains

compared to an automatic Web Information Extraction System alone”, a prototype

system for Web Information Extraction was developed. The analysis, design

and implementation of the TS-WIE (prototype) system were completed before

an evaluation took place to measure the efficiency of this system. The system

was to generate the relevant regular extraction patterns and increment the

extraction rules for future use. The evaluation was made based on the

experiments of the training course domain and it shows that the approach of

using extensible extraction patterns has significantly improved the precision.

The key feature of this approach is the involvement of a human for

augmenting a WIE system by teaching the system the new extraction rules by

example. These new rules allow the WIE system to generate some new

extraction patterns to promote a new discovery.

The thesis began with the review of a complete software evolution technique

proposed in Withall (2003) and Xhemali (2010b). Evolution principles, such as

Genetic Programming and Genetic Algorithms, can help to automate the

generation of the successful extraction patterns, without requiring direct

human involvement in crafting the patterns. The effectiveness of the

extraction method to generate a good extraction pattern, however, depends

on the knowledgebase (rules) available to it. There are some restrictions in

the work of both Withall and Xhemali, which include restrictive rules and a

‘repair function’ to produce a complete and syntactically correct program. This

would require much effort and expertise in programming to maintain them,

Pg. 204

thus making this approach impracticable for deployment in a general business

setting and they cannot be easily scaled up.

The research presented in this thesis has focused on relaxing this method by

introducing a ‘clean grammar’ concept and optimal design. This new approach

is further improved by ‘bias’ing the initial population with a successfully

evolved solution and implementing a modularisation concept. Manipulating

initial population helps to produce better offspring than random ones,

however, incorporating modularisation proved to be better. The results of this

program evolution, which used structured rules, are very important to

determine if it is suitable to be extended to the evolution of extraction patterns,

where the rules are much more complex and less structured. Using GP to

evolve the extraction patterns has not been wholly addressed by the previous

work, especially when the previously processed web page changed or never

seen before web pages are involved, which demand new extraction rules. The

following are the key contributions of the research:

1. A successfully evolved, syntactically correct and complete program to

solve a particular computer problem can be achieved by applying a

‘clean grammar’ and fixed block genotype without depending on a

‘repairing function’ (Section 4.4 demonstrated this achievement). In the

previous works such as Xhemali (2010a), Withall (2003), Ryan et al.

(1998) and Banzhaf (1994), this ‘repairing function’ has been used to

ensure the validity of the generated computer program. The ‘clean

grammar’ introduced by this research contains rules in hierarchical

structure and follows the correct programming syntax construct. This

eases the rule extension allowing implementation of systematic

increment or modification.

2. The experiment in Section 4.4 saw the performance of GP with multi-

objective fitness function reduced the generations required to half that

of single-objective fitness function for the ‘sorting’ of lists of integers

problem.

3. Another finding presented in Section 4.4 suggests that evolving

programs should have less restrictive language subsets. Rigid rules

means that the search space is limited and so are the solutions

Pg. 205

produced. A new innovative method needs to be devised to improve

the efficiency and performance of this evolutionary system. For the

experiments shown, applying modularisation has made a dramatic

impact on the performance of the evolution system compared to the

manipulation of initial population using successfully evolved solution.

4. While the literature does not discuss or justify the choice of

programming language to build the evolutionary program, this research

shows empirically that it is an important issue. The graph in Figure 4.5

shows that the higher the memory consumption, the slower it is to

complete each generation cycle if PHP is used as the base language.

Therefore, a good programming language should have the following

properties:

a. Good memory management. Evolutionary programs consume a

considerable amount of space as it involves much iteration. It is

important that the unused memory be released to minimise the

total memory usage. This also means the lower the memory

used, the more likely that the program will not crash.

b. Maintain good speed. The program should be able to complete

the execution in a reasonable time and with acceptable

computational effort. Because the evolution program in this

research requires the solution (phenotype) to be executed and

the result is used to determine the fitness of this solution, it is

important that minimal time is used to compile this generated

program. PHP is worse from a memory usage perspective

compared to PERL, thus it should not be used for implementing

such an evolutionary system. Both languages are interpreted

and so compilation of the evolved program is unnecessary.

5. Several researchers such as Ferrara et al. (2012) and Laender et al.

(2002) postulate that wrapper generation and maintenance is difficult,

unless a human expert is available. There was lack of evidence to

suggest that automatic incrementing of extraction rules in the presence

of new tokens in the web pages can handle the evolution of the

extraction patterns. Therefore, towards achieving the incremental rules,

Pg. 206

the TS-WIE system allows humans to teach it using some training data

and expect it, in a reasonable time, to be able to generalise well on

new data and extract information from newly seen web pages. Based

on real world data, the results show that TS-WIE perfectly handles

extraction of single instances and multiple instances, which are

regularly structured. However, it performs poorly on irregular

structures, which presentation is very complex for the algorithm to

compute the relevance of the data and the task of information

extraction would become almost unfeasible.

6. Re-visiting REGEXEV experiments in Section 6.8 attempted to

demonstrate the effect on performance of incremental extraction rules

on the WIE with the GP system. The result shows that there was a

significant improvement in the precision, recall and F-Measure. One

difficulty can be seen when irrelevant information of the attributes e.g.

promotion of other courses specifying the title, date and price, are

presented together with the relevant ones on the same web page. In all

other cases, however, adding new HTML tags component, allows the

system to reach the information from the most detailed nodes, thus

more specific information is extracted and in some cases, the

successfully evolved patterns are achieved quickly.

7. No other work is known to have concentrated on providing human

assistance (that would eliminate the need for an expert’s involvement)

to support the automatic WIE for the training courses domain. In

particular, evolving the extraction patterns (in the form of regular

expression notation) based on new rules presented in the set of

training examples.

7.3 Limitation

Empirical evaluation in this thesis has shown the structural and lexical

analyses to define and create the extraction rules dynamically provide a

positive improvement in genetically evolving the extraction patterns.

Moreover, this technique offers the ability to find a novel solution to extend

Pg. 207

the extraction coverage. However, there are a number of limitations.

Firstly, the main structure of the extraction rule categories in the XML file was

fixed. XML supports extensibility and it does not restrict the span of the

vertical or horizontal structural formation and the set of keywords that can be

created. The fixed rule structure applied in this thesis is built based on careful

examination of the web pages and the regular expression principles. It would

be difficult to implement a function that can automatically determine and

create a new category, unless an expert is involved. However, this decision

was made with the assumption that the requirement to revise or edit this

structure is rare.

Secondly, the TS-WIE system was tested and the results were presented for

the course training domain. The system is intended to demonstrate its generic

use on other domains with distinct attributes of interest, such as an online

book store and to examine the impact of this system in terms of the

adaptability requirement and its extraction performance. Although, the system

can be easily “tuned” by adding new learning components, however, a further

analysis is required to define the structural and lexical form presented in the

other domains before a method can be devised that has the ability to

generalise the extraction patterns applicable to all these domains.

Thirdly, the proposed algorithms in this thesis have no support for the file type

other than HTML document (e.g. PDF and word document are used to

present the upcoming course information, like a leaflet) or protected web

pages. Further research is required to do the necessary pre-processing task

such as transforming these documents into XHTML or XML documents or

providing an interface for the user to enter the authorisation key before the

extraction process can be applied.

Finally, due to the limited number of training examples that can be accepted,

the TS-WIE system cannot handle data in irregular tables. This suggests that

two examples are insufficient to clearly describe this type of structure of the

target.

Pg. 208

7.4 Further work

Based on the findings of this research, the following provides insights for

further investigation especially in problems involving dynamic web sources:

 Possible further work on improving the performance of the TS-WIE

system is to define the important section in the web page, where the

relevant attributes are expected to reside. This will confine the

searching of relevant information within the valid space (normally the

main content) and this technique has been applied and proven

beneficial in content extraction WIE initiatives. Larger workspace

means that the time taken to search is longer and irrelevant data such

as advertisements could be recognised as valid by the system.

 The extractor based on the structural and lexical analysis developed in

this thesis had extracted a small number of false positive data due to

its similarity to the DOM tree pattern (path) and the data format of the

training set. This could be further corrected by the user through a user

interface and communicate this correction to the system as feedback.

The system will store this new negative data in the ‘low-relevant

corpus’, which can be reused to filter unwanted data in other web

pages.

On the contrary, provision of a correcting mechanism could pose

further human involvement, which leads to a huge effort if not handled

properly. A solution to simplify the learning process is by having

enough samples in order to generate reliable patterns (Carlson et al.

2010). This, however, raises one challenge, i.e., to determine how

many samples are sufficient having in mind that processing a huge

number of samples is expected to be computationally expensive.

However, the challenge is reduced by designing an algorithm that

discovers a number of clusters in the data that it thought correct rather

than having them as input (Vlachos et al. 2009) and the user role is to

verify these clusters whether to correct, reject or accept them.

 The genotype plays an important role in the selection of individuals for

Pg. 209

the initial population. Much fitter genomes will be carried forward to the

next generation for reproduction. The new rule addition will disrupt the

validity of the existing genomes because the translated phenomes are

strictly dependent on the genes in the genome that mapped onto the

extraction rules. Because the mapping uses modulus calculation, a

change in the number of candidates to choose from would result in

reaching a different solution from the time the genome was first

processed. For example, if there are 5 options in a rule, the gene value

of 10 will be mapped to the first option. An addition of 1 option will

cause the gene to map to 4th option. However, re-evaluating and

updating the value of each gene, so that it maps to the same phenome

as before resolves this. Although it is not possible to implement it at

this time, the algorithm to handle this genome alteration is available in

Appendix 7.

In a long run, the effectiveness of an automatic WIE will be reduced due to the

evolution of the Web sources and improper prediction of ‘unknown’ data. Now,

the new approach to semi-automatic WIE in support for the evolution of

extraction patterns using Genetic Programming not only eliminates a human

technical expert to maintain the extraction rules but also improves the

extraction quality in real time.

Pg. 210

References

ABOLHASSANI, M., FUHR, N. and GOVERT, N., 2003. Information Extraction

and Automatic Markup for XML Documents. In Blanken et al., pp 159–174.

ADAR, E., TEEVAN, J., DUMAIS, S.T. and ELSAS, J.L., 2009. The web changes

everything: understanding the dynamics of web content, Proceedings of the Second

ACM International Conference on Web Search and Data Mining 2009, pp. 282-291.

ADELBERG, B., 1998. NoDoSE: A tool for semi-automatically extracting structured

and semi-structured data from text documents. SIG- MOD Record 27(2), pp. 283-294.

ALAVI, M., 1984. An assessment of the prototyping approach to information systems

development. Communications of the ACM, 27(6), pp. 556-563.

ALFONSECA, E., RUIZ-CASADO, M., OKUMURA, M. and CASTELLS, P., 2006.

Towards large-scale non-taxonomic relation extraction: Estimating the precision of

rote extractors. In Proceedings of the 2nd Workshop on Ontology Learning and

Population:Bridging the Gap between Text and Knowledge. Association for

Computational Linguistics.

ALLEN, D., WILSON, T.D., 2003. Information overload: context and causes. The

New Review of Information Behaviour Research, 4, pp. 31-44.

ALPAYDIN, E., 2010. Introduction To Machine Learning. 2 edn. Mit Press (MA).

ALPHONSE, E., AUBIN, S., BESSIERES, P., BISSON, G., HAMON, T.,

LAGARRIGUE, S., NAZARENKO, A., MANINE, A.P., NÉDELLEC, C. and

VETAH, M.O.A., 2004. Event-based Information Extraction for the biomedical

domain: the Caderige project, Proceedings of the International Joint Workshop on

Natural Language Processing in Biomedicine and its Applications 2004, Association

for Computational Linguistics, pp. 43-49.

ANDERSEN, P.M., HAYES, P.J., HUETTNER, A.K., SCHMANDT, L.M.,

NIRENBURG, I.B. and WEINSTEIN, S.P., 1992. Automatic extraction of facts from

press releases to generate news stories, Proceedings of the third conference on

Applied natural language processing 1992, Association for Computational

Linguistics, pp. 170-177.

ANTON, T., 2005. Xpath-wrapper Induction by Generating Tree Traversal Patterns.

In LWA, pp. 126–133.

APPELT, D., 1999. Introduction to Information Extraction, AI Communications,

12(3), pp.161-172.

Pg. 211

ARASU, A. and GARCIA-MOLINA, H., 2003. Extracting structured data from web

pages, Proceedings of the 2003 ACM SIGMOD International Conference on

Management of Data 2003, pp. 348.

AROCENA, G.O. and MENDELZON, A.O., 1998. WebOQL: Restructuring

documents, databases, and Webs. Proceedings of the 14th IEEE International

Conference on Data Engineering (ICDE),Orlando, Florida, pp. 24-33.

ASHISH, N. and KNOBLOCK, C., 1997. Semi-automatic Wrapper Generation for

Internet Information Sources. SIGMOD Record, 26(4), pp.8-15.

ATKINSON-ABUTRIDY, J., MELLISH, C. and AITKEN, S., 2004. Combining

information extraction with genetic algorithms for text mining. IEEE Intelligent

Systems, 19(3), pp. 22-30.

ATM, 2010. Apricot Training Management Website. Available from: http://apricot-

ltd.co.uk/ [20 October 2010].

AVISON, D.E. and FITZGERALD, G., 2006. Information Systems Development:

Methodologies, Techniques And Tools. 4th edn. London: McGraw-Hill Higher

Education.

BAKER, J.E., 1985. Adaptive selection methods for genetic algorithms, Proceedings

of the 1st International Conference on Genetic Algorithms 1985, L. Erlbaum

Associates Inc., pp. 101-111.

BANKO, M., CAFARELLA, M.J., SODERLAND, S., BROADHEAD, M. and

ETZIONI, O., 2007. Open Information Extraction from the Web. In Proceedings of

the 20
th

 International Joint Conference on Artificial Intelligence, pp. 2670-2676,

Hyderabad India.

BANKO, M., CAFARELLA, M.J., SODERLAND, S., BROADHEAD, M. and

ETZIONI, O., 2009. Open information extraction for the web, University of

Washington.

BANZHAF, W., 1994. Genotype-Phenotype-Mapping and Neutral Variation: A case

study in Genetic Programming. Proceedings of the International Conference on

Evolutionary Computation. The Third Conference on Parallel Problem Solving from

Nature: Parallel Problem Solving from Nature, pp. 322-332.

BARBOSA, D., WANG, H. and YU, C., 2013. Shallow Information Extraction for

the Knowledge Web. In Proceedings of IEEE 29
th

 International Conference on Data

Engineering, Brisbane, pp.1264-1267.

BARRERO, D., GONZÁLEZ, A., R-MORENO, M. and CAMACHO, D., 2010.

Variable Length-Based Genetic Representation to Automatically Evolve Wrappers.

Trends in Practical Applications of Agents and Multiagent Systems, pp. 371-378.

Pg. 212

BARRERO, D.F., CAMACHO, D. and R-MORENO, M.D., 2009. Automatic Web

Data Extraction based on Genetic Algorithms and Regular Expressions. Data Mining

and Multi-agent Integration, , pp. 143-154.

BARTOLI, A., DAVANZO, G., DE LORENZO, A., MAURI, M., MEDVET, E. and

SORIO, E., 2012. Automatic generation of regular expressions from examples with

genetic programming. In Proceedings of the fourteenth International Conference on

Genetic and Evolutionary Computation Conference Companion, pp. 1477-1478.

BAUMANN, S., MALBURG, M. H., HEIN, H. G., HOCH, R., KIENINGER, T. and

KUHN, N., 1995. Document analysis at DFKI.-Part 2: Information extraction.

Deutsches Forschungszentrum fur Kunstliche Intelligenz, RR-95-03.

BAUMGARTNER, R., CERESENA, M. and LEDERMULLER. G., 2005. Deepweb

Navigation in Web Data Extraction. In Proc. International Conference on

Computational Intelligence for Modelling, Control and Automation, Washington, DC,

USA, pp. 698-703.

BAUMGARTNER, R., GATTERBAUER, W. and GOTTLOB, G., 2009. Web Data

Extraction Systems. Encyclopedia of Database Systems, Springer, pp. 3465-3471.

BELAZZOUGUI, D. and RAFFINOT, M., 2013. Approximate regular expression

matching with multi-strings. Journal of Discrete Algorithms, 18, pp 14-21.

BHIDE, M., GUPTA, A., GUPTA, R., ROY, P., MOHANIA, MK. and

ICHHAPORIA, Z., 2007. Liptus: Associating structured and unstructured information

in a banking environment, SIGMOD Conference, pp. 915–924.

BLICKLE, T. and THIELE, L., 1996. A comparison of selection schemes used in

evolutionary algorithms. Evolutionary computation, 4(4), pp. 361-394.

BOEHM, B.W., 1988. A spiral model of software development and enhancement.

Computer, 21(5), pp. 61-72.

BOOCH, G., 1982. Object-Oriented Design. ACM SIGAda Ada Letters, 1(3), pp. 64-

76.

BRANK, J., GROBELNIK, M. and MLADENIC, D., 2005. A survey of ontology

evaluation techniques, Proceedings of the Conference on Data Mining and Data

Warehouses (SiKDD 2005) 2005, pp. 166-170.

BRAY, T., PAOLI, J., SPERBERG-MCQUEEN, C.M., MALER, E. and YERGEAU

EDS, F., 2008. eXtensible Markup Language (XML) [Homepage of W3C]. Available

from: http://www.w3.org/XML/Core/#Publications [7 October 2011].

BRAZMA, A. and CERANS, K., 1994. Efficient Learning of Regular Expressions

From Good Examples. In Proeedings of fourth International Workshop on Analogical

and Inductive Inference, Lecture Notes in Artificial Intelligence, 872, Springer,

Berlin, pp. 76-90.

Pg. 213

BREUEL, T. M., 2003. High performance document layout analysis. In Proceedings

Symp. Document Image Understanding Technology.

BRIN, S., 1998. Extracting Patterns and Relations from the World Wide Web. In

Proceedings of the International Workshop on the Web and Databases.

BRINDLE, A., 1981. Genetic algorithms for function optimization. Doctoral

dissertation, University of Alberta .

BUITELAAR, B.P., CIMIANO, P., MAGNINI, B. and SABOU, M., 2005. Learning

web service ontologies: an automatic extraction method and its evaluation. Ontology

learning from text: methods, evaluation and applications, 123, pp. 125.

BUITELAAR, P., CIMIANO, P., RACIOPPA, S. and SIEGEL, M., 2006. Ontology-

based information extraction with soba, Proceedings of the International Conference

on Language Resources and Evaluation, pp. 2321–2324.

BURSTEIN, F.V., 2000. Chapter 7 of Research Methods for Students and

Professionals Information Management and Systems. System Development in

Information Systems Research. Centre for Information Studies Charles Sturt Uni

Wagga Wagga NSW., pp. 147-158.

BUYKO, E., WERMTER, J., POPRAT, M. and HAHN, U., 2006. Automatically

adapting an NLP core engine to the biology domain, Proceedings of the Joint

BioLINK-Bio-Ontologies Meeting. A Joint Meeting of the ISMB Special Interest

Group on Bio-Ontologies and the BioLINK Special Interest Group on Text Data

Mining in Association with ISMB, pp. 65-68.

CAI, D., YU, S., WEN, JR and MA, WY., 2003. Extracting content structure for web

pages based on visual representation. In X. Zhou, Y. Zhang, and M. E. Orlowska,

editors, APWeb, volume 2642 of LNCS, pages 406-417. Springer.

CAREY, J., 1990. Prototyping: alternative systems development methodology.

Information and Software Technology, 32(2), pp. 119-126.

CARLSON, A. 2010. Coupled Semi-Supervised Learning. PhD Thesis, Carnegie

Mellon University, Pittsburgh.

CARLSON, A., BETTERIDGE, J., WANG, R.C., HRUSCHKA, E. and MITCHELL,

T.M., 2010. Coupled Semi-Supervised Learning For Information Extraction. In

Proceedings of ACM International Conference on Web Search and Data Mining, New

York City, NY USA.

CASTILLO, F., KORDON, A., SWEENEY, J. and ZIRK, W., 2005. Using genetic

programming in industrial statistical model building. Genetic programming theory

and practice II, , pp. 31-48.

CAVANA, R.Y., DELAHAYE, B.L. & SEKARAN, U., 2001. Applied Business

Research: Qualitative and Quantitative Methods. Sydney John Wiley and Son.

Pg. 214

CETINKAYA, A., 2007. Regular Expression Generation Through Grammatical

Evolution, Proceedings of the 2007 GECCO Conference Companion on Genetic and

Evolutionary Computation, pp. 2643-2646.

CHANDRASEKARAN, B., JOSEPHSON, J.R. and BENJAMINS, V.R., 1999. What

Are Ontologies, and Why Do We Need Them? IEEE Intelligent Systems, 14(1), pp.

20-26.

CHANG, C.H. and KUO, S.C., 2004. OLERA: A semi-supervised approach for Web

data extraction with visual support. EEE Intelligent Systems, 19(6), pp. 56-64.

CHANG, C.H., HSU, C.N. and LUI, S.C., 2003. Automatic information extraction

from semi-structured web pages by pattern discovery. Decision Support Systems,

35(1), pp. 129-147.

CHANG, C.H., KAYED, M., GIRGIS, M.R. and SHAALAN, K.F., 2006. A survey

of web information extraction systems. IEEE Transactions on Knowledge and Data

Engineering, 18(10), pp. 1411-1428.

CHEN, H., CHAU, M. and Zeng, D., 2002. Ci Spider: A Tool For Competitive

Intelligence on the Web. Decision Support Systems, 34, pp. 1-17.

CHIDLOVSKII, B., BORGHOFF, U. and CHEVALIER, P., 1997. Towards

sophisticated wrapping of web-based information repositories, In Proceedings of 5th

International RIAO Conference, pp. 123.

CHINCHOR, N. and SUNDHEIM, B., 1993. MUC-5 evaluation metrics, Proceedings

of the 5th conference on Message understanding, Association for Computational

Linguistics, pp. 69-78.

CHOOCHAIWATTANA, W., 2012. An Algorithm of Product Information Extraction

from Web Pages: a Document Object Model Analysis Approach. In Proceedings of

2
nd

 International Conference on Information Communication and Management, pp.

103-107.

CIMIANO, P., and VOLKER, J., 2005. Towards Large-scale, Open-domain and

Ontology-based Named Entity Classification. In Proc. Conference on Recent

Advances in Natural Language Processing.

CIMIANO, P., HAASE, P., HEROLD, M., MANTEL, M. and BUITELAAR, P.,

2007. LexOnto: A model for ontology lexicons for ontology-based NLP, Proceedings

of the OntoLex07 Workshop held in conjunction with ISWC 2007.

CIRAVEGNA, D. 2001. Adaptive Information Extraction From Text by Rule

Induction and Generalisation. In Proceedings 17th International Joint Conference on

Artificial Intelligence. Seattle.

CLARKE, M., HINDE, C.J., WITHALL, M.S., JACKSON, T., PHILLIPS, I.W.,

BROWN, S. and WATSON, R., 2010. Allocating railway platforms using a genetic

algorithm. Research and Development in Intelligent Systems XXVI, pp. 421-434.

Pg. 215

CMMS, 2008. Selecting a Development Approach [Homepage of Centers for

Medicare and Medicaid Services]. Available from:

http://www.cms.gov/SystemLifecycleFramework/

Downloads/SelectingDevelopmentApproach.pdf [7 October 2011].

COHEN, L., MANION, L. & MORRISON, K., 2007. Research Methods in

Education. 6th edition. Routledge, Taylor and Francis Group, London, New York.

COHEN, W. & McCALLUM, A. 2003a. Information extraction from the world wide

web, KDD-03.

COHEN, W.W., HURST, M. and JENSEN, L.S., 2003b. Web Document Analysis:

Challenges and Opportunities, Chapter. A Flexible Learning System for Wrapping

Tables and Lists in HTML Documents, World Scientific.

COHEN, W.W., RAVIKUMAR, P. and Fienberg, S.E., 2003c. A comparison of

string distance metrics for name-matching tasks. In KDD Workshop on Data Cleaning

and Object Consolidation, 3, pp. 73-78).

COMSCORE INC., 2010. comScore Reports Global Search Market Growth of 46

Percent in 2009. Available from:

http://ww.comscore.com/Insights/Press_Releases/2010/1/

Global_Search_Market_Grows_46_Percent_in_2009 [4, 2013]

CONRAD, E., 2007. Detecting Spam with Genetic Regular Expressions. SANS

Institute InfoSec Reading Room.

COOKE, J., 1998. Constructing Correct Software: The Basics. Springer-Verlag.

COOLEY, R., MOBASHER, B. and SRIVASTAVA, J., 1997. Web Mining:

Information and Pattern Discovery on the World Wide Web, In Proceedings of

International Conference on Tools with Artificial Intelligence, pp. 558-567.

COWIE, J. and LEHNERT, W., 1996. Information extraction. Communications of the

ACM, 39(1), pp. 80-91.

CRAMER, N.L., 1985. A representation for the adaptive generation of simple

sequential programs, J. GREFENSTETTE, ed. In: Proceedings of the First

International Conference on Genetic Algorithms 1985, Lawrence Erlbaum Associates

Inc., Mahwah, NJ, USA, pp. 183-187.

CRESCENZI, V. and MECCA, G., 1998. Grammars have exceptions. Information

Systems, 23(8), pp. 539-565.

CRESCENZI, V., MECCA, G. and MERIALDO, P., 2001. Roadrunner: Towards

automatic data extraction from large web sites, Proceedings of the International

Conference on Very Large Data Bases, pp. 109-118.

CRESPO, A., JANNINK, J., NEUHOLD, E., RYS, M. and STUDER, R., 1994. A

survey of semi-automatic extraction and transformation.

Pg. 216

CROSSAN, F. 2003. Research philosophy: towards an understanding. Nurse

Researcher, 11 (1), pp. 46-55.

CUNNINGHAM, D.H., MAYNARD, D.D., BONTCHEVA, D.K. and TABLAN,

M.V., 2002. GATE: A framework and graphical development environment for robust

NLP tools and applications, In Proceedings of the 40th Anniversary Meeting of the

Association for Computational Linguistics (ACL'02) .

CUNNINGHAM, H. (2005). Information Extraction, Automatic. Encyclopedia of

Language and Linguistics, pp. 665-677.

CUTLER, M., ShHIH, T. and MENG, Y., 1997. Using the Structure of HTML

Documents to Improve Retrieval. In Proceedings of the USENIX Symposium on

Internet Technologies and Systems, pp. 241-251.

DAWSON, C.W., 2009. Projects in computing and information systems a student's

guide. 2 edn. Harlow: Addison-Wesley.

DE JONG, K.A., 1975. Analysis of the behavior of a class of genetic adaptive

systems. Doctoral dissertation, University of Michigan.

DOAN, A.H., NAUGHTON, J.F., RAMAKRISHNAN, R., BAID, A., CHAI, X.,

CHEN, F., CHEN, T., CHU, E., DEROSE, P., and GAO B., 2008. Information

extraction challenges in managing unstructured data. ACM SIGMOD Record, 37(4),

pp. 14-20.

DONTCHEVA, M., DRUCKER, S., SSALESIN D. and COHEN M. F., 2007.

Changes in Webpage Structure over Time, Technical Report TR2007-04-02, UW,

CSE

DORSEY, P., 2000. Top 10 reasons why systems projects fail. Available from:

http://www.dulcian.com/papers [12 December 2011].

EIKVIL, L., 1999. Information extraction from World Wide Web - A survey.

Technical Report, pp. 945.

EMBLEY, D.W., 2004. Toward semantic understanding: an approach based on

information extraction ontologies, Proceedings of the 15th Australasian Database

Conference-Volume 27, Australian Computer Society, Inc., pp. 3-12.

ESTIEVENART, F., MEURISSE, JR., HAINAUT, JL. and THIRAN, P., 2006. Semi-

automated extraction of targeted data from web pages. In 22nd International

Conference on Data Engineering Workshop, pp.5.

ETZIONI, O., DOORENBOS, B. and WELD, D., 1997. A scalable comparison

shopping agent for the world-wide web, In Proceedings of the International

Conference on Autonomous Agents.

Pg. 217

ETZIONI, O., CAFARELLA, M., DOWNEY, D., POPESCU, A.M., SHAKED, T.,

SODERLAND, S., WELD, D.S. and YATES, A., 2005. Unsupervised named-entity

extraction from the web: An experimental study. Artificial Intelligence, 165(1), pp.

91-134.

FERRARA, E., De MEO, P., FIUMARA, G. and BAUMGARTNER, R., 2012. Web

Data Extraction, Applications and Techniques: a Survey. arXiv preprint

arXiv:1207.0246.

FELDMAN, R., AUMANN, Y., FINLELSTEIN-LANDAU, M., HURVITZ, E.,

REGEV, Y., and YAROSHEVICH, A., 2002. A Comparative Study of Information

Extraction Strategies, Computational Linguistics and Intelligent Text Processing,

Springer, pp. 349-359.

FELDMAN, S., 2004. The high cost of not finding information. KM World, 13

FELLOWS, R. and LIU, A., 2003. Research Methods for Construction. Oxford:

Blackwell Publishing.

FERNANDEZ-VILLAMOR, J. I., IGLESIAS, C. A. and GARIJO, M., 2012. First-

Order Logic Rule Induction For Information Extraction in Web

Resources. International Journal on Artificial Intelligence Tools, 21(06).

FIUMARA, G., 2007. Automatic Information Extraction from Web Sources: A

Survey. In Proceedings of the Workshop between Ontologies and Folksonomies

(BOF), Michigan USA.

FLEJTER, D. 2011, Semi-Automatic Web Information Extraction, PhD Thesis,

Poznan University of Economics.

FLOYD, C., 1984. A systematic look at prototyping. Approaches to prototyping, 1,

pp. 1-18.

FREITAG, D., 1998. Information extraction from HTML: Application of a general

machine learning approach, Proceedings of the National Conference on Artificial

Intelligence, JOHN WILEY & SONS LTD, pp. 517-523.

FRIEDL, J., 2006. Mastering regular expressions. 3 edn. O'Reilly Media, Inc.

(GAC) GLOBAL AGENDA COUNCIL ON EMERGING TECHNOLOGIES, 2012.

World Economic Forum: The top 10 emerging technologies for 2012. Available

from:http://forumblog.org/2012/02/the-2012-top-10-emerging-technologies/ [10 May

2013].

GALLIERS R., 1992. Information Systems Research: Issues, Methods and Practical

Guidelines. Alfred Waller Ltd., Oxford, Blackwell Scientific.

Pg. 218

GAO, X., and SINGH, M., 2013. Mining Contracts for Business Events and Temporal

Constraints in Service Engagements. IEEE Transactions on Services Computing, 1.

GATTERBAUER, W. and BOHUNSKY, P., 2006. Table Extraction Using Spatial

Reasoning on the CSS2 Visual Box Model. In Proc. 21
st
 National Conference on

Artificial Intelligence, pp. 1313-1318.

GATTERBAUER, W., BOHUNSKY, P., HERZOG, M., KRUPL, B. and POLLAK,

B., 2007. Towards Domain-Independent Information Extraction from Web Tables

GHANI R., PROBST, K., LIU, Y., KREMA, M. and FANO, A., 2006. Text mining

for product attribute extraction, SIGKDD Explorations Newsletter, 8, pp. 41–48.

GIBSON, D., PUNERA, K. & TOMKINS, A., 2005. The volume and evolution of

web page templates, In Proceedings of the 14th International Conference on World

Wide Web, pp. 830.

GONZÁLEZ, A., BARRERO, D., CAMACHO, D. and R-MORENO, M., 2010. A

Case Study on Grammatical-Based Representation for Regular Expression Evolution.

Trends in Practical Applications of Agents and Multiagent Systems, pp. 379-386.

GORDON, M., FAN, W. and PATHAK, P., 2006. Adaptive web search: Evolving a

program that finds information. Intelligent Systems, IEEE, 21(5), pp. 72-77.

GORDON, V.S. and BIEMAN, J.M., 1995. Rapid prototyping: lessons learned.

Software, IEEE, 12(1), pp. 85-95.

GRANLIEN, M.S., PRIES-HEJE, J. and BASKERVILLE, R., 2009. Project

management strategies for prototyping breakdowns, 42nd Hawaii International

Conference on System Sciences, HICSS'09, IEEE, pp. 1-10.

GRISHMAN, R. and SUNDHEIM, B., 1996. Message understanding conference – 6:

A brief history. In Proceedings of the 16th International Conference on

Computational Linguistics, Copenhagen.

GUO, H. and NANDI, A.K., 2006. Breast cancer diagnosis using genetic

programming generated feature. Pattern Recognition, 39(5), pp. 980-987.

GUPTA, S., KAISER, G., NEISTADT, D. and GRIMM, P., 2003. DOM-based

Content Extraction of HTML Documents, in Proceedings of the 12th World Wide

Web conference, Budapest, Hungary.

GUYON, I., and ELISSEEFF, A., 2003. An introduction to variable and feature

selection. The Journal of Machine Learning Research, 3, pp. 1157-1182.

HAMMER, J., MCHUGH, J. and GARCIA-MOLINA, H., 1997a. Semistructured

Data: The TSIMMIS Experience. In: First East-European Workshop on Advances in

Databases and Information Systems-ADBIS '97.

Pg. 219

HAMMER, J., GARCIA-MOLINA, H., CHO, J., ARANHA, R. and CRESPO, A.,

1997b. Extracting Semistructured Information from the Web. In Proceedings of the

Workshop on Management of Semistructured Data, pp. 18–25.

HARPER, R. and BLAIR, A., 2006. Dynamically Defined Functions In Grammatical

Evolution, IEEE Congress on Evolutionary Computation, CEC 2006, pp. 2638-2645.

HEMBERG, E., O’NEILL, M. and BRABAZON, A., 2009. An investigation into

automatically defined function representations in grammatical evolution, 15th

International Conference on Soft Computing.

HOBBS, J.R. and Riloff, E., 2010. Information Extraction in Nitin Indurkhya and

Fred J. Damerau Eds: Handbook of Natural Language Processing, 2nd Edition,

Chapman & Hall/CRC Press, Taylor & Francis Group.

HOGUE, A. and KARGER, D., 2005. Thresher: Automating the Unwrapping of

Semantic Content from the World Wide Web. Proceedings of the 14th International

Conference on World Wide Web (WWW), Japan, pp. 86-95.

HOLLAND, J.H., 1975. Adaptation in natural and artificial systems. Ann Arbor MI:

University of Michigan Press.

HONG, J.H. and CHO, S.B., 2004. Lymphoma cancer classification using genetic

programming with SNR features. Genetic Programming, pp. 78-88.

HOWCROFT, D. and CARROLL, J., 2000. A proposed methodology for Web

development, Proceedings of the European Conference on Information Systems, pp.

290-297.

HSU, CN. and DUNG, MT., 1998. Generating finite-state transducers for semi-

structured data extraction from the web. Information Systems, 23(9), pp.521-538.

HU, Y., XIN, G., SONG, R., HU, G., SHI, S., CAO, Y. and LI, H., 2005. Title

Extraction from Bodies of HTML Documents and its Application to Web Page

Retrieval. In Proceedings of the Twenty-eighth Annual International ACM SIGIR

Conference, pp. 250-257.

HUFFMAN, S., 1996. Learning information extraction patterns from examples.

Connectionist, Statistical and Symbolic Approaches to Learning for Natural

Language Processing, pp. 246-260.

HUGOSSON, J., HEMBERG, E., BRABAZON, A. and O’NEILL, M., 2007. An

investigation of the mutation operator using different representations in grammatical

evolution, 2nd International Symposium Advances in Artificial Intelligence and

Applications, Wisla, Poland, pp. 409–419.

IPEIROTIS, P. and Jain, A., 2008. A Quality-Aware Optimizer for Information

Extraction. Technical Report CeDER-08-02, New York University, 2007 & ACM

Transactions on Database Systems (TODS), 34(1), pp. 5-40

Pg. 220

IPSOS, 2013. Interconnected World: Shopping and Personal Finance. Available

from: http://www.ipsos-na.com/download/pr.aspx?id=11513 [20 May 2013]

IRMAK, U, and SUEL, T., 2005. Interactive wrapper generation with minimal user

effort. Technical Report TR-CIS-2005-02, Polytechnic University, CIS Department.

IRMAK, U, and SUEL, T., 2006. Interactive wrapper generation with minimal user

effort. In Proceedings of the 15th international conference on World Wide Web, pp.

553-563.

ISC, 2012. Internet Domain Survey. Available from:

http://ftp.isc.org/www/survey/reports/current/ [1 June 2013].

JACCARD, P., 1902. Lois de distribution florale. Bulletin de la Socíeté Vaudoise des

Sciences Naturelles, 38, pp.67-130.

JACCARD, P., 1912. The distribution of the flora in the alpine zone. New

Phytologist. 11(2), pp. 37-50.

JESCHKE, S., NATHO, N., RITTAU, S. and WILKE, M., 2007. mArachna -

Applying Natural Language Processing Techniques to Ontology Engineering. Seventh

IEEE International Conference on Advanced Learning Technologies, pp. 571-575.

JI, H., 2010. Challenges From Information Extraction to Information Fusion, In

Proceedings of the 23rd International Conference on Computational Linguistics:

Posters, Association for Computational Linguistics, pp. 507-515.

JI, H., FAVRE, B., LIN, W.P., GILLICK, D., HAKKANI-TUR, D., & GRISHMAN,

R., 2013. Open-Domain multi-document summarization via information extraction:

Challenges and prospects. In Multi-source, Multilingual Information Extraction and

Summarization , Springer Berlin Heidelberg, pp. 177-201.

JONES, Q., RADIV, G. and RAFEALI, S., 2004. Information overload and the

message dynamics of online interaction spaces: A theoretical model and empirical

exploration. Information Systems Research, 15(2), pp. 194-210.

JONES, S. and HINDE, C., 2007. Uniform Random Crossover. In Proceedings of the

2007 workshop on Computational Intelligence.

JUFFINGER, A., NEIDHART, T., WEICHSELBRAUN, A., WOHLGENANNT, G.,

GRANITZER, M., KERN, R. and SCHARL, A., 2007. Distributed Web2.0 crawling

for ontology evolution, 2nd International Conference on Digital Information

Management, ICDIM '07, pp. 615-620.

JUNDT, O. and KEULEN, M. V., 2013. Sample-based XPath Ranking for Web

Information Extraction. In Proceedings of the 8th conference of the European Society

for Fuzzy Logic and Technology.

Pg. 221

KAISER, K. and MIKSCH, S., 2005. Information extraction - A Survey. Technical

report, Vienna University of Technology, Institute of Software Technology and

Interactive Systems, Asgaard-TR-2005-6.

KATAGIRI, H., HIRASAMA, K. and HU, J., 2000. Genetic Network Programming -

Application to Intelligent Agents. IEEE International Conference on Systems, Man

and Cybernetics, 5, pp. 3829 - 3834.

KENJIBRIEL, IM. and AKBAR, S., 2012. Analisis Pemanfaatan Metode Rule-based

dan Machine Learning Untuk Ekstraksi Metadata Pada Artikel Ilmiah. Jurnal Sarjana

Institut Teknologi Bandung Bidang Teknik Elektro dan Informatika, 1(2), pp. 280-

284.

KINNEAR, K.E., 1993. Generality and difficulty in genetic programming: Evolving a

sort. In Proceedings of the 5th International Conference on Genetic Algorithms,

ICGA-93, pp. 287-294.

KLEENE, S. C. 1956. Representation of events in nerve nets and finite automata. In

Automata Studies, Princeton University Press, Princeton N.J., pp. 3-42.

KLEIN, H. K. and MYERS, M. D., 1999. A Set of Principles for Conducting and

Evaluating Interpretive Field Studies in Information Systems. MIS quarterly, pp. 67-

93.

KOHLSCHUETTER, C. and NEJDL, W., 2010. A Densitometric Approach to Web

Page Segmentation

KOHLSCHUETTER, C., FANKHAUSER, P. and NEJDL, W., 2010. Boilerplate

Detection using Shallow Text Features, Third ACM International Conference on Web

Search and Data Mining, New York City, NY USA.

KONIG, L. and SCHMECK, H., 2009. A Completely Evolvable Genotype-Phenotype

Mapping for Evolutionary Robotics, Third IEEE International Conference on Self-

Adaptive and Self-Organizing Systems, SASO '09, pp. 175-185.

KOZA, J. R., 1990. Genetic Programming: A Paradigm for Genetically Breeding

Populations of Computer Programs to Solve Problems. Stanford University Computer

Science Department

KOZA, J.R., 1992. Genetic Programming. Cambridge: MA: MIT Press.

KOZA, J.R., 1994. Genetic programming II: automatic discovery of reusable

programs. Cambridge: MIT Press, MA.

KRISHNAMURTHY, B., Gill, P. and Arlitt, M., 2008. A few chirps about twitter. In

Proceedings of the first workshop on Online social networks, New York, NY, USA,

pp. 19-24.

Pg. 222

KRAUSHAAR, J.M. and SHIRLAND, L.E., 1985. A prototyping method for

applications development by end users and information systems specialists. MIS

Quarterly, pp. 189-197.

KRUPL, B., HERZOG, M. and GATTERBAUER, W., 2005. Using Visual Cues for

Extraction of Tabular Data from Arbitrary HTML Documents. In Proc. 14th

International Conference on World Wide Web, New York, NY, USA, pp. 1000-1001.

KUHLINS, S., and TREDWELL, R. 2003. Toolkits for generating wrappers.

In Objects, Components, Architectures, Services, and Applications for a Networked

World. Springer Berlin Heidelberg. pp. 184-198.

KUSHMERICK, N., WELD, D.S. and DOORENBOS, R.B. 1997. Wrapper

induction for information extraction. In IJCAI, pp. 729-737.

KURODA, T., IWASAWA, H. and KITA, E., 2010. Application of advanced

Grammatical Evolution to function prediction problem. Advances in Engineering

Software, 41(12), pp. 1287-1294.

LABSKÝ, M., SVÁTEK, V. and NEKVASIL, M., 2008. Information Extraction

Based on Extraction Ontologies: Design, Deployment and Evaluation. Ontology-

Based Information Extraction Systems, pp. 9.

LAENDER, A.H.F., RIBEIRO-NET0, B.A., DA SILVA, A.S. and TEIXEIRA, J.S.

2002. A brief survey of web data extraction tools, ACM Sigmod Record, 31(2), pp.

84-93.

LANG, H., WOHLGENANNT, G. and WEICHSELBRAUN, A., 2012.

TextSweeper-A System for Content Extraction and Overview Page Detection,

International Conference on Information Resources Management.

LAM, M., GONG, Z. and MUYEBA, M., 2008. A Method for web information

extraction. Progress in WWW Research and Development, pp. 383-394.

LERMAN, K., MINTON, S. and KNOBLOCK, C., 2003. Wrapper maintenance: A

machine learning approach. Journal of Artificial Intelligence Research, 18, pp. 149-

181.

LEVENSHTEIN, V.I., 1966. Binary codes capable of correcting deletions, insertions

and reversals. In Soviet physics doklady ,10, pp. 707.

LEVERING, R. and CUTLER, M., 2006. The portrait of a common HTML web page.

In ACM symposium on Document engineering, pp. 198-204.

LEVESQUE, S., 2002. IBM Research - Trainable Information Extraction System

[Homepage of IBM Corporation]. Available from: http://www.research.ibm.com/IE/

[6 February, 2012].

Pg. 223

LI, Y., KRISHNAMURTHY, R., RAGHAVAN, S., VAITHYANATHAN, S. and

JAGADISH, H.V., 2008. Regular expression learning for information extraction,

Proceedings of the Conference on Empirical Methods in Natural Language

Processing, Association for Computational Linguistics, pp. 21-30.

LIHUI, C and LIAN, C., 2005. Using web structure and summarisation.techniques for

web content mining. Information Processing & Management, 41(5), pp. 1225‐1242.

LIU, B., CHITICARIU, L., CHU, V., JAGADISH, H.V. and REISS, F.R., 2010.

Automatic rule refinement for information extraction. Proceedings of the VLDB

Endowment, 3(1-2), pp. 588-597.

LIU, B., GROSSMAN, R. and ZHAI, Y., 2003. Mining data records in Web pages,

Proceedings of the ninth ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining 2003, pp. 601-606.

LIU, L., PU, C. and HAN, W., 2000. XWRAP: an XML-enabled wrapper

construction system for Webinformation sources, Proceeding 16th International

Conference on Data Engineering, pp. 611-621.

LUSSIER, Y., BORLAWSKY, T., RAPPAPORT, D., LIU, Y. and FRIEDMAN, C.,

2006. PhenoGO: assigning phenotypic context to gene ontology annotations with

natural language processing, Pacific Symposium on Biocomputing, pp. 64.

MA, Q., 1995. The Application of Genetic Algorithms to the Adaption of IIR Filters.

PhD Thesis, Loughborough University.

MAEDCHE, A., NEUMANN, G. and STAAB, S., 2003. Bootstrapping an ontology-

based information extraction system. Studies In Fuzziness And Soft Computing, 111,

pp. 345-362.

MAKHOUL, J., KUBALA, F., SCHWARTZ, R. and WEISCHEDEL, R., 1999.

Performance Measures for Information Extraction, Proceedings of DARPA Broadcast

News Workshop, pp. 249-252.

MARTIN, J., 1991. Rapid application development. Macmillan Publishing Co., Inc.

MARTIN, T.P., 2005. Fuzzy sets in the fight against digital obesity, Fuzzy Sets and

Systems, 156 (3), pp. 411-417.

MARTIN, T., AND SHAREF, N. M., 2011. Case studies with evolving fuzzy

grammars. In IEEE Workshop on Evolving and Adaptive Intelligent Systems (EAIS),

pp. 39-45.

MATSUYA, Y., HIRASAWA, K., HU, J. and MURATA, J., 2002. Automatic

Generation of Programs Using Genetic Network Programming. In Proceedings of the

41
st
 SICE Annual Conference, 2, pp. 1269 - 1274.

Pg. 224

McCALLUM, A. and JENSEN, D., 2003. A note on the unification of information

extraction and data mining using conditional-probability, relational models, In

Proceedings of the IJCAI-2003 Workshop on Learning Statistical Models from

Relational Data.

MENG, X., HU, D. and LI, C., 2003. Schema-guided wrapper maintenance for web-

data extraction, Proceedings of the 5th ACM international workshop on Web

information and data management, pp. 8.

METKE-JIMENEZ, A., RAYMOND, K., and MACCOLL, I., 2011. Information

extraction from web services : a comparison of Tokenisation algorithms. In SKY2011

Workshop : Discovery and Representation of Runnable Knowledge, Paris.

MICHELAKIS, E., KRISHNAMURTHY, R., HAAS, P.J. and VAITHYANATHAN,

S., 2009. Uncertainty management in rule-based information extraction systems,

Proceedings of the 35th SIGMOD international conference on Management of data

2009, pp. 101-114.

MILLER, J.F., THOMSON, P. and FOGARTY, T., 1997. Designing electronic

circuits using evolutionary algorithms. arithmetic circuits: A case study. Genetic

Algorithms and Evolution Strategies in Engineering and Computer Science, 8.

MILLER, J.F., 1999. An empirical study of the efficiency of learning boolean

functions using a cartesian genetic programming approach, Proceedings of the

Genetic and Evolutionary Computation Conference, pp. 1135-1142.

MILLER, J.F. and THOMSON, P., 2000. Cartesian genetic programming. In:

Proceedings of the Third European Conference on Genetic Programming

(EuroGP2000). Lecture Notes in Computer Science, 1802, pp. 121-132.

MILWARD, D., BJÄRELAND, M., HAYES, W., MAXWELL, M., ÖBERG, L.,

TILFORD, N., THOMAS, J., HALE, R., KNIGHT, S. and BARNES, J., 2005.

Ontology‐based interactive information extraction from scientific abstracts.

Comparative and Functional Genomics, 6(1‐2), pp. 67-71.

MITCHELL, T.M., 1997. Machine learning. Burr Ridge, IL: McGraw Hill.

MONGE, A.E. and ELKAN, C.P., 1996. The Field Matching Problem: Algorithms

and Applications. In Proceedings of the Second International Conference on

Knowledge Discovery and Data Mining, pp. 267-270.

MORTON, T.S., 2000. Coreference for NLP applications, Proceedings of the 38th

Annual Meeting on Association for Computational Linguistics, Association for

Computational Linguistics, pp. 173-180.

MULLER, H., KENNY, E.E. and STERNBERG, P.W., 2004. Textpresso: An

Ontology-Based Information Retrieval and Extraction System for Biological

Literature. PLoS Biol, 2(11), pp. 309.

Pg. 225

MUSLEA, I., MINTON, S. and KNOBLOCK, C., 1999. A hierarchical approach to

wrapper induction. Proceedings of the Third International Conference on

Autonomous Agents.

MYLLYMAKI, J. and JACKSON, J., 2002. Robust Web Data Extraction with XML

Path Expressions. Technical report. In IBM Research Report RJ 10245.

NATIONAL ACADEMY OF SCIENCES, 1994. Academic Careers for Experimental

Computer Scientists and Engineers, National Research Council Washington, D.C.

Available from: http://books.nap.edu/html/acesc/ [20 August 2013].

NAUMANN, J.D. and JENKINS, A.M., 1982. Prototyping: the new paradigm for

systems development. MIS Quarterly, pp. 29-44.

NEGM, N., ELKAFRAWY, P. and SALEM, A. B., 2012. A Survey of Web

Information Extraction Tools. International Journal of Computer Applications(0975-

8887), 43(7), pp. 19-27.

NIST, 2005. Information Extraction Definition. Available from: http://www-

nlpir.nist.gov/related_projects/muc/ [15 May 2010].

NORMAND, E., GRANT, K., IOUP, E. and SAMPLE, J., 2009. Improving Relation

Extraction by Exploiting Properties of the Target Relation. In Proceedings of the 21st

International Conference on Scientific and Statistical Database Management, pp.

553–561.

NUNAMAKER JR, J.F. and CHEN, M., 1990. Systems development in information

systems research, Proceedings of the Twenty-Third Annual Hawaii International

Conference on System Sciences, 3, pp. 631-640.

OFFICE FOR NATIONAL STATISTICS, 2013. Internet Access - Households and

Individuals, 2013. Available from http://www.ons.gov.uk/ons/dcp171778_322713.pdf

[9 September 2013]

OMER, B., RUTH, B., and SHAHAR, G., 2012. A New Frequent Similar Tree

Algorithm Motivated by DOM Mining Using RTDM and its new variant

SiSTeR. KDIR, SciTePress, pp. 238-243.

O’NEILL, M. and RYAN, C., 2003. Grammatical Evolution: Evolutionary Automatic

Programming in an Arbitrary Language. Springer-Verlag.

O'NEILL, M. and RYAN, C., 2001. Grammatical evolution. IEEE Transactions on

Evolutionary Computation, 5(4), pp. 349-358.

ORLIKOWSKI, W.J. and BAROUDI, J.J. (1991). Studying information technology

in organizations: Research approaches and assumptions. Information System

Research, 2(1), pp. 1-28

Pg. 226

PALIOURAS, G., SPYROPOULOS, C. and TSATSARONIS, G., 2011.

Bootstrapping ontology evolution with multimedia information extraction.

Knowledge-driven multimedia information extraction and ontology evolution, pp. 1-

17.

PALVIA, P. and NOSEK, J.T., 1990. An empirical evaluation of system development

methodologies, Proceedings of Information Resources Management Association

international conference, pp. 72.

PHP.NET, 2010. Garbage Collection. Available from:

http://php.net/manual/en/features.gc.performance-considerations.php [5 August

2010].

PHAM, N., WILAMOWSKI, M., 2009. IEEE Article Data Extraction From Internet.

Proceedings of International Conference on Intelligent Engineering Systems, pp. 251-

256.

PIKORSKI, J. and YANGARBER, R., 2013. Information Extraction: Past Present

and Future. Multi-source, Multilingual Information Extraction and Summarization,

Springer, pp. 23-49.

POLI, R., LANGDON, W.B. and MCPHEE, N.F., 2008. A field guide to genetic

programming. Lulu Enterprises Uk Ltd.

POLI, R. and MCPHEE, N.F., 2009. Introduction to genetic programming,

Proceedings of the 11th Annual Conference Companion on Genetic and Evolutionary

Computation Conference: Late Breaking Papers, pp. 2775-2810.

POLI, R. and LANGDON, W.B., 2007. Genetic programming theory, Proceedings of

GECCO Conference Companion on Genetic and Evolutionary Computation, pp.

3563-3584.

POOLE, D. and MACKWORTH, A., 2010. Artificial Intelligence - Optimization.

Available from: http://artint.info/html/ArtInt_93.html [15 January 2013).

POPOWICH, F., 2005. Using text mining and natural language processing for health

care claims processing, SIGKDD Explorartion Newsletter, 7, pp. 59–66.

PORTER, M. and MILLAR, V., 1985. How Information gives you competitive

advantage. Havard Business Review, 63(4), pp. 149-150.

RAAVI, V. K. and SOMAYAJULA, S. P. K., 2012. Extraction Of Structured

Information from Unstructured or Semi-structured Machine Readable Web

Pages. Journal of Global Research in Computer Science,3(10), pp. 32-38.

RAEYMAEKERS, S. and BRUYNOOGHE, M., 2007. A hybrid approach towards

wrapper induction. In Proceedings of the Workshops Prior Conceptual Knowledge in

Machine Learning and Data Mining, and Web Mining 2.0 (Berendt, B. and Mladenic,

D. and Semeraro, G. and Spiliopoulou, M. and Stumme, G., eds.), pp. 161-172.

Pg. 227

RAGGETT, D., 2012. Clean up Your Web Pages with HTML TIDY - HTMLtidy

[computer software]. Available from: http://www.w3.org/People/Raggett/tidy/ [21

January 2013].

REISS, F., RAGHAVAN, S., KRISHNAMURTHY, R., ZHU, H. and

VAITHYANATHAN, S., 2008. An algebraic approach to rule-based information

extraction, IEEE 24th International Conference on Data Engineering, pp. 933-942.

RILOFF, E., 1993. Automatically constructing a dictionary for information extraction

tasks, Proceedings of the National Conference on Artificial Intelligence, pp. 811-811.

RILOFF, E., 1996. Automatically generating extraction patterns from untagged text,

Proceedings of the National Conference on Artificial Intelligence, pp. 1044-1049.

ROYCE, W., 1970. Managing the development of large software systems. Proceeding

of IEEE WESCON, pp. 1-9.

RYAN, C., COLLINS, J. and NEILL, M., 1998. Grammatical evolution: Evolving

programs for an arbitrary language. Genetic Programming, pp. 83-96.

SAIIUGUET, A. and AZAVANT, F., 2001. Building intelligent Web applications

using lightweight wrappers. Data and Knowledge Engineering, 36(3), pp. 283-316.

SARAWAGI, S., 2008. Information extraction. Foundations and Trends in

Databases, 1(3), pp. 261-377.

SCHANK, R.C., 1975. Conceptual information processing. New York, North

Holland: Elsevier Science Inc.

SEIDLER, K. and SCHIL, A., 2011. Service-oriented information extraction,

Proceedings of the 2011 Joint EDBT/ICDT Ph. D. Workshop, pp. 25-31.

SIAU, N.Z., HINDE, C.J. and STONE, R.G., 2012. An evolution of a complete

program using XML-based grammar definition. Proceedings of the 4th International

Joint Conference on Computational Intelligence, Barcelona, Spain, pp. 214-219.

SMITS, G., KORDON, A., VLADISLAVLEVA, K., JORDAAN, E. and

KOTANCHEK, M., 2006. Variable selection in industrial datasets using pareto

genetic programming. Genetic programming theory and practice III, pp. 79-92.

ŠNAJDER, J., BAŠIC, B.D., PETROVIC, S. and SIKIRIC, I., 2008. Evolving new

lexical association measures using genetic programming. Proceedings of the

Association for Computational Linguistics. Ohio, U.S.A, pp. 181-184.

SODERLAND, S., 1999. Learning information extraction rules for semi-structured

and free text. Journal of Machine Learning, 34(1- 3), pp. 233-272.

SODERLAND, S., FISHER, D., ASELTINE, J. and LEHNERT, W., 1995.

CRYSTAL: Inducing a conceptual dictionary. In Proceedings of the Fourteenth

International Joint Conference on Artificial Intelligence, pp. 1314-1319.

Pg. 228

SOKOLOVA, M., SHAH, M. and SZPAKOWICZ, S., 2006. Comparative analysis of

text data in successful face-to-face and electronic negotiations. Group Decision and

Negotiation, 15(2), pp. 127-140.

STEVENSON, M. and GREENWOOD, M., 2006. Comparing Information Extraction

Pattern Models. In Proceedings of the Workshop on Information Extraction Beyond

the Document.

STOFFEL, K., and SPECTOR, L., 1996. High-Performance, Parallel, Stack-Based

Genetic Programming. In Koza, J.R., Goldberg, D.E., Fogel, D.B., and Riolo, R.L.

(editors) Genetic Programming 1996: Proceedings of the First Annual Conference,

224-229. Cambridge, MA: The MIT Press.

SUN, F., SONG, D. & LIAO, L., 2011. Dom based content extraction via text

density, In Proceedings of the 34th International ACM SIGIR Conference on

Research and Development in Information Retrieval, pp. 245.

SUN MICROSYSTEMS, 2010. Lesson: Regular Expressions. Available from:

http://java.sun.com/docs/books/tutorial/essential/regex/index.html [12 April 2010].

SUNNY, T. A. and SUNDAR, G. N., 2013. An Efficient Information Extraction

Model for personal named entity. International Journal of Computer Trends and

Technology, 4(3), pp. 446-449.

SUWA, M., SCOTT, A.C. and SHORTLIFFE, E.H., 1982. An approach to verifying

completeness and consistency in a rule-based expert system. AI Magazine, 3(4), pp.

16.

SVINGEN, B., 1998. Learning regular languages using genetic programming. In

Proceedings of Genetic Programming, Edited by J.R. Koza et al., Los Altos, CA, pp.

374-376.

SYWERDA, G., 1989. Uniform Crossover in Genetic Algorithms, Proceedings of the

third international conference on Genetic algorithms, pp. 2-9.

TASHAKKORI, A. & TEDDLIE, C. (1998). Mixed Methodology: Combining

Qualitative and Quantitative Approaches. Applied Social Research Methods Series,

Vol. 46. Sage Publications, Thousand Oaks, London, New Delhi.

TEDMORI, S. and JACKSON, T.W., 2009. Assessing the value of an E-mail

knowledge extraction system. Knowledge and Process Management, 16 (2), pp. 65-

73.

TETHYS SOLUTIONS, 2010. Automation Anywhere. Available from:

http://www.automationanywhere.com/index.htm [21 May 2010].

TIOBE, 2011. TIOBE Community Programming Index for 2011. Available from:

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html [12 June 2011].

Pg. 229

TOMITA, M., 1982. Dynamic Construction of Finite-state Automata From Examples

Using Hill Climbing. In Proceedings of the Fourth Annual Cognitive Science

Conference, Ann Arbor, MI, pp. 105 - 108.

TURNER, R. and EDEN, A., 2011. The Philosophy of Computer Science, The

Stanford Encyclopedia of Philosophy (Winter 2011 Edition), Edward N. Zalta (ed.).

Available from: http://plato.stanford.edu/archives/win2011/entries/computer-science.

VAN VLIET, H., 2008. Software Engineering: Principles and Practice. Wiley

Publishing.

VARGAS-VERA, M. and MOTTA, E., 2004. AQUA–ontology-based question

answering system. MICAI 2004: Advances in Artificial Intelligence, Springer Berlin

Heidelberg, 2972, pp. 468-477.

VEENENDAAL, E.V., 1st April, 2010. Standard glossary of terms used in Software

Testing Version 2.1 [Homepage of International Software Testing Qualifications

Board]. Available from: http://istqb.org/display/ISTQB/Home [7 October 2011].

VELOCITYSCAPE LTD., 2006. Webscrapper Plus. Available from:

http://www.velocityscape.com/Products/WebScraperPlus.aspx [9 September 2010].

VLACHOS, A., BUTTERY, P., SEAGHDHA, D. O. and BRISCOE, T., 2009.

Biomedical event extraction without training data. In Proceedings of the Workshop on

Current Trends in Biomedical Natural Language Processing: Shared Task, pp. 37-40.

w3school, 2013. HTML DOM Nodes. Available from:

http://www.w3schools.com/htmldom/dom_nodes.asp [13 September 2013].

WALKER, J.A. and MILLER, J.F., 2008. The automatic acquisition, evolution and

reuse of modules in cartesian genetic programming. IEEE Transactions on

Evolutionary Computation, 12(4), pp. 397-417.

WALKER, M., 2001. Introduction to Genetic Programming. Available from:

http://web1.cs.montana.edu/~bwall/cs580/introduction_to_gp.pdf [15 December

2011].

WILKERSON, J. and TAURITZ, D., 2010. Outlining a Practitioner’s Guide to

Fitness Function Design, Proceedings of the 4th Annual ISC Research Symposium

ISCRS

WIMALASURIYA, D.C. and DOU, D., 2010. Components for information

extraction: ontology-based information extractors and generic platforms, Proceedings

of the 19th ACM International Conference on Information and Knowledge

Management, pp. 9-18.

WINKLER, W. E., 1990. String Comparator Metrics and Enhanced Decision Rules in

the Fellegi-Sunter Model of Record Linkage. In Proceedings of the Section on Survey

Research Methods, pp. 354–359.

Pg. 230

WITHALL, M.S., HINDE, C.J. and STONE, R.G., 2009. An improved representation

for evolving programs. Genetic Programming and Evolvable Machines, 10(1), pp. 37-

70.

WITHALL, M., 2003. The Evolution of Complete Software Systems, PhD Thesis,

Loughborough University, UK.

WONG T-L., 2012. Learning to Adapt Cross Language Information Extraction

Wrapper. International Journal of Appl Intell, 36(4), pp.918–931

WORLDONE RESEARCH, 2008. LexisNexis Workplace Productivity Survey.

Available from:

http://www.lexisnexis.com/literature/pdfs/LexisNexis_Workplace_Productivity_

Survey_ 2_20_08.pdf [1 June 2013]

WU, F. and WELD, D.S., 2010. Open information extraction using wikipedia, The

Annual Meeting of the Association for Computational Linguistics (ACL-2010), pp.

118 - 127.

XHEMALI, D., 2010a. Automated Retrieval and Extraction of Training Course

Information from Unstructured Web Pages, Eng.D. thesis, Loughborough University,

United Kingdom.

XHEMALI, D., HINDE, C.J. and STONE, R.G., 2010b. Genetic evolution of sorting

programs through a novel genotype-phenotype mapping. Proceedings of the

International Conference on Evolutionary Computation, Valencia, Spain.

XHEMALI, D., HINDE, C.J. and STONE, R.G., 2009. Naïve Bayes vs. Decision

Trees vs. Neural Networks in the Classification of Training Web Pages. International

Journal of Computer Science Issues, 4(1), pp. 16-23.

XU, L. and DYRESON, C., 2007. Approximate retrieval of XML data with

ApproXPath. In Proceedings of the nineteenth conference on Australasian

database,75, pp 85–96, Gold Coast, Australia.

XUE, Y., HU, Y., XIN, G., SONG, R., SHI, S., CAO, Y., LIN, CY. and LI, H., 2007.

Web Page Title Extraction and Its Application. Information Processing and

Management, 43, pp. 1332-1347.

YANG, Y. and ZHANG, H.J. 2001. HTML page analysis based on visual cues,

Proceedings of Sixth International Conference on Document Analysis and

Recognition, pp. 859.

YATES, A., 2007. Information Extraction from the Web: Techniques and

Applications. PhD

thesis, University of Washington.

ZHAI, Y. and LIU, B., 2005. Web data extraction based on partial tree alignment,

Proceedings of the 14th International Conference on World Wide Web, pp. 76-85.

Pg. 231

ZHANG, M., SONG, R., LIN, C., MA, L., JIANG, Z., JIN, Y., LIU, Y., ZHAO, L.

and MA, S., 2002. THU at TREC 2002: Novelty, Web, and Filtering. In Proceedings

of the Eleventh Text REtrieval Conference.

ZHU, G., BETHEA, T.J. and KRISHNA, V., 2007. Extracting relevant named entities

for automated expense reimbursement, KDD, pp. 1004–1012.

ZHU, J., NIE, Z., LIU, X., ZHANG, B. and WEN, J., 2009. StatSnowball: a

Statistical Approach to Extracting Entity Relationships. In Proceedings of the 18th

International Conference on World Wide Web, pp. 101-110.

Pg. 232

Appendix 1

The purpose of this appendix is to provide a basic introduction to regular expression discussed in

Chapter 2. It is important for the reader to have this knowledge to understand how regular

expressions can be evolved and used as an extraction pattern to extract the information of interest

from the Web sources.

Regular Expression Tutorial

The notes below describes regular expression and some of the basic syntax used to create

regular expression and it is taken from ‘Regular Expression Tutorial - Learn How to Use and

Get The Most out of Regular Expressions’, available at http://www.regular-

expressions.info/tutorial.html [accessed 25 December 2011].

Basically, a regular expression is a pattern describing a certain amount of text. Their name

comes from the mathematical theory on which they are based. But we will not dig into that.

Since most people including myself are lazy to type, you will usually find the name

abbreviated to regex or regexp. I prefer regex, because it is easy to pronounce the plural

"regexes". On this website, regular expressions are printed as regex. If your browser has

proper support for cascading style sheets, the regex should be highlighted in red.

This first example is actually a perfectly valid regex. It is the most basic pattern, simply

matching the literal text regex. A "match" is the piece of text, or sequence of bytes or

characters that pattern was found to correspond to by the regex processing software.

Matches are highlighted in blue on this site.

\b[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}\b is a more complex pattern. It describes a series

of letters, digits, dots, underscores, percentage signs and hyphens, followed by an at sign,

followed by another series of letters, digits and hyphens, finally followed by a single dot and

between two and four letters. In other words: this pattern describes an email address.

With the above regular expression pattern, you can search through a text file to find email

addresses, or verify if a given string looks like an email address. In this tutorial, I will use the

term "string" to indicate the text that I am applying the regular expression to. I will highlight

them in green. The term "string" or "character string" is used by programmers to indicate a

Pg. 233

sequence of characters. In practice, you can use regular expressions with whatever data you

can access using the application or programming language you are working with Regular

expressions are text patterns, which are made up of regular notations consisting of

alphanumeric characters and special characters.

Character Usage Example

QUANTIFIER CHARACTER

. Matches any one character .ce will match ice, ace

+ Matches at least one character +ce will match ice, ace,

mice

* Matches zero or more preceding

character

.*ce will match ce, 2ce,

price, dice, police

? Matches one or none character.

It will become a non-greedy quantifier;

matches minimum number of times, if

it immediately follows a ? , *, + or {}.

Prices? Will match price,

prices

?? Preceding character is optional prices?? Matches price,

prices

*? Matching the preceding character zero

or more times.

“.*?” matches “price” in

“price” £200 “nett”

+? Repeat matching the preceding

character one or more times.

“.+?” matches “price” and

“nett” in “price” £200 “nett”

{min}

{min,}

{min, max}

Matches exactly the minimum of

occurrences

Matches at least minimum of

occurrences.

Matches at least minimum and not

more than maximum of the preceding

character.

Fe{3} will match feee but

not fe, fee

fe{2,} will match fee, feeee

but not fe

fe{1,3} will match fe, fee,

feee but not feeeee.

Some examples of the Quantifier Character of Regular Expressions (substantially based on
Goyvaerts, J. 6).

6
 http://www.regular-expressions.info/reference.html

Pg. 234

CHARACTER CLASSES

[…]

[^…]

Matches any one of the enclosed

characters.

Negation – opposite of the above

character. It matches any character,

which is not included in the enclosed.

[abc] will match either a, b,

or c.

opposite of the above.

\ Escapes following special character

and will be interpreted as normal

character.

 * will match a star

character instead of

matching zero or more

occurrence of the

preceding character.

^ Start of a line ^B will match ‘B’ in

Boolean Bool.

$ End of a line .$ will match s in occurs.

A|b Matches either ‘a’ or ‘b’. Organi[s|z]ation will match

‘Organisation’ or

‘Organization’

 - Matches a character in the range

specified

[a-z0-9] matches any letter

or digit – a,1, s, 8

\s , \d and \w Matches a white space character such

as line feed, a space and a tab, a digit

character 0-9 and word character

\d will match 1 in abc1

Some examples of the Character Classes of Regular Expressions (substantially based on

Goyvaerts, J.4).

The following describes how to create and use regular expressions and is taken from

https://developer.mozilla.org/en/Core_JavaScript_1.5_Guide/Regular_Expressions

[accessed 17 February 2012].

The examples are written in JavaScript.

Creating a Regular Expression

You construct a regular expression in one of two ways:

 Using a regular expression literal, as follows:

re = /ab+c/;

Pg. 235

Regular expression literals provide compilation of the regular expression when the script is

evaluated. When the regular expression will remain constant, use this for better

performance.

 Calling the constructor function of the RegExp object, as follows:

var re = new RegExp("ab+c");

Using the constructor function provides runtime compilation of the regular expression. Use

the constructor function when you know the regular expression pattern will be changing, or

you don't know the pattern and are getting it from another source, such as user input.

Writing a Regular Expression Pattern

A regular expression pattern is composed of simple characters, such as /abc/, or a

combination of simple and special characters, such as /ab*c/ or /Chapter (\d+)\.\d*/.

Using Simple Patterns

Simple patterns are constructed of characters for which you want to find a direct match. For

example, the pattern /abc/ matches character combinations in strings only when exactly the

characters 'abc' occur together and in that order. Such a match would succeed in the strings

"Hi, do you know your abc's?" and "The latest airplane designs evolved from slabcraft." In

both cases the match is with the substring 'abc'. There is no match in the string "Grab crab"

because it does not contain the substring 'abc'.

Using Special Characters

When the search for a match requires something more than a direct match, such as finding

one or more b's, or finding white space, the pattern includes special characters. For

example, the pattern /ab*c/ matches any character combination in which a single 'a' is

followed by zero or more 'b's (* means 0 or more occurrences of the preceding item) and

then immediately followed by 'c'. In the string "cbbabbbbcdebc," the pattern matches the

substring 'abbbbc'.

Using Parentheses

Parentheses around any part of the regular expression pattern cause that part of the

matched substring to be remembered. Once remembered, the substring can be recalled for

other use.

Pg. 236

For example, the pattern /Chapter (\d+)\.\d*/ illustrates additional escaped and special

characters and indicates that part of the pattern should be remembered. It matches precisely

the characters 'Chapter ' followed by one or more numeric characters (\d means any numeric

character and + means 1 or more times), followed by a decimal point (which in itself is a

special character; preceding the decimal point with \ means the pattern must look for the

literal character '.'), followed by any numeric character 0 or more times (\d means numeric

character, * means 0 or more times). In addition, parentheses are used to remember the first

matched numeric characters.

This pattern is found in "Open Chapter 4.3, paragraph 6" and '4' is remembered. The pattern

is not found in "Chapter 3 and 4", because that string does not have a period after the '3'.

To match a substring without causing the matched part to be remembered, within the

parentheses preface the pattern with ?:. For example, (?:\d+) matches one or more numeric

characters but does not remember the matched characters.

Working with Regular Expressions

Regular expressions are used with the RegExp methods test and exec and with the String

methods match, replace, search, and split. These methods are explained in detail in the

JavaScript Reference.

Table 4.2 Methods that use regular expressions

When you want to know whether a pattern is found in a string, use the test or search

method; for more information (but slower execution) use the exec or match methods. If you

use exec or match and if the match succeeds, these methods return an array and update

properties of the associated regular expression object and also of the predefined regular

expression object, RegExp. If the match fails, the exec method returns null (which converts

to false).

Pg. 237

In the following example, the script uses the exec method to find a match in a string.

Using Parenthesized Substring Matches

Including parentheses in a regular expression pattern causes the corresponding submatch to

be remembered. For example, /a(b)c/ matches the characters 'abc' and remembers 'b'. To

recall these parenthesized substring matches, use the Array elements [1], ..., [n].

The number of possible parenthesized substrings is unlimited. The returned array holds all

that were found. The following examples illustrate how to use parenthesized substring

matches.

Example 1.

The following script uses the replace method to switch the words in the string. For the

replacement text, the script uses the $1 and $2 in the replacement to denote the first and

second parenthesized substring matches.

This prints "Smith, John".

Pg. 238

Example 2.

Note: in the getInfo function, the exec method is called using the () shortcut notation that

works in Firefox but not in most other browsers.

Pg. 239

Appendix 2

This appendix contains the ‘Relevance’ and ‘Low-Relevance’ words for each course attributes. These

lists in the current prototype are collective words manually created after a thorough analysis of the

relevant webpages and they are not exhaustive lists. In future, these lists can be automatically

updated through the provision of positive and negative example and the extracted information

stored in the TS-WIE database. Related words are stemmed (reduced) to their root form to avoid the

analysis of the related words as independent ones. For example the word commence, commencing

are stemmed to commenc.

Relevance List

Course Title : title course course name

Date : Jan Feb Mar

 Apr May Jun

 Jul Aug Sept

 Oct Nov Dec

 Date commenc start

Location : location venue held

Price : price fee cost

 £ vat member

 gbp

Low – Relevance List

Course Title : accommodate
assess

aim
availabl

associate
basket

 book
but

brochure
benefit

bury
calendar

 call
center

cart
choose

certificat
class

 click
cost
deliver
drag

college
date
description
detail

contact
delegate
discount
duration

 entry
enrol

exam
fee

equal
form

 guarantee
hour

Home
improve

house
key

 late link locat

Pg. 240

material
news
offer

my
open
overview

now
outcome
outline

 price
plc
programme

postage
pre-requisite
question

pay
requisite
register

 relate
site
structure
test

repeat
schedule
search
touch

relevant
skip
take
tutor

 this
uk
view

these
useful
visit

type
venue
what

 Jan Feb Mar
 Apr May Jun
 Jul Aug Sept
 Oct Nov Dec
 ? = :

Date : accommodate
basket

aim
brochure

bury
calendar

 center class college
 contact cost design
 enroll

find
exam
fare

enter
fee

 flyer form guarante
 hour

main
our
plc

house
material
offer
print

locat
master
pay
pric

 postage require register
 Review

site
vat
while

search
type
visit
yet

skip
uk
what
you

 ? =

Location : Jan Feb Mar
 Apr May Jun
 Jul Aug Sept
 Oct Nov Dec
 accomodat about aim
 associate basket book
 benefit calendar certificat
 call center choose
 class click contact
 cost date description
 duration detail exam
 entr enrol fee
 form

home
guarantee
hour

house
link

 main material now
 offer open outcome

Pg. 241

 pay pric pre-requisite
 postage programme register
 return

site
require
search

schedule
skip

 visit what uk
 ? =

Price : Jan Feb Mar
 Apr May Jun
 Jul Aug Sept
 Oct Nov Dec
 accomodat about aim
 associate basket book
 benefit calendar certificat
 call center choose
 class click contact
 copyright date description
 duration detail exam
 entr enrol find
 form

home
guarantee
hour

house
link

 main material multiple
 offer iso outcome
 pay provider pre-requisite
 postage programme require
 return

site
search
skip

schedule
type

 visit what uk
 ? = /

Pg. 242

Appendix 3

This section contains two grammar definitions to guide the Genome to Phenome mapping in two

domains discussed in detail in Chapter 4. These grammar definitions are written in XML format,

validated by a specially written DTD. The first definition is useful for the evolution of a complete

program and the second definition is for the evolution of regular expression pattern.

(1) A complete program grammar

<?xml version="1.0" encoding="utf-8" ?>

<!DOCTYPE grammar [

<!ELEMENT grammar (start,rules)>

<!ELEMENT start (nonterminal)>

<!ELEMENT rules (rule*)>

<!ELEMENT rule (nonterminal|token)*>

<!ELEMENT nonterminal EMPTY>

<!ELEMENT token (#PCDATA)>

<!ATTLIST rule

 type (selection|sequence) #REQUIRED

 name NMTOKEN #REQUIRED

>

<!ATTLIST nonterminal

 name NMTOKEN #REQUIRED

>

]>

<grammar>

 <start>

 <nonterminal name="statement" />

 </start>

 <rules>

 <rule name="statement" type="selection">

 <nonterminal name="nullstatement" />

 <nonterminal name="assignstatement" />

 <nonterminal name="ifstatement" />

 <nonterminal name="forstatement" />

 <nonterminal name="nestedforstatement" />

 </rule>

 <rule name="nullstatement" type="sequence">

 <token>;</token>

 </rule>

 <rule name="assignstatement" type="sequence">

 <nonterminal name="wvariable" />

 <token>=</token>

 <nonterminal name="rvariable" />

 <token>;</token>

 </rule>

 <rule name="ifstatement" type="sequence">

 <token>if</token>

Pg. 243

 <token>(</token>

 <nonterminal name="rvariable" />

 <nonterminal name="operator" />

 <nonterminal name="rvariable" />

 <token>)</token>

 <token>{</token>

 <nonterminal name="statementseq" />

 <token>}</token>

 </rule>

 </rules>

 <rule name="forstatement" type="sequence">

 <token>for</token>

 <nonterminal name="counter" />

 <token>(</token>

 <token>0</token>

 <token>..</token>

 <token>$#inlist</token>

 <token>)</token>

 <token>{</token>

 <token>$runtime++; die if($runtime > $timeout);</token>

 <nonterminal name="statementseq" />

 <token>}</token>

 </rule>

 <rule name="nestedforstatement" type="sequence">

 <token>for </token>

 <nonterminal name="counter" />

 <token>(</token>

 <token>0</token>

 <token>..</token>

 <token>$#inlist</token>

 <token>)</token>

 <token>{</token>

 <token>for </token>

 <nonterminal name="counter" />

 <token>(</token>

 <nonterminal name="N1"/>

 <token>+1..</token>

 <token>$#inlist)</token>

 <token>{</token>

 <token>$runtime++; die if($runtime > $timeout);</token>

 <nonterminal name="statementseq" />

 <token>}</token>

 <token>}</token>

 </rule>

 <rule name="statementseq" type="selection">

 <nonterminal name="statement" />

 <nonterminal name="statements" />

 </rule >

 <rule name="statements" type="sequence">

 <nonterminal name="statement" />

 <nonterminal name="statementseq" />

 </rule >

 <rule name="rvariable" type="selection">

Pg. 244

 <token>$inlist[$tmp1%($#inlist+1)]</token>

 <token>$inlist[$tmp2%($#inlist+1)]</token>

 <token>$tmp1</token>

 <token>$tmp2</token>

 <token>$tmp3</token>

 <token>$tmp4</token>

 </rule>

 <rule name="wvariable" type="selection">

 <token>$inlist[$tmp1%($#inlist+1)]</token>

 <token>$inlist[$tmp2%($#inlist+1)]</token>

 <token>$tmp3</token>

 <token>$tmp4</token>

 </rule>

 <rule name="counter" type="selection">

 <token>$tmp1</token>

 <token>$tmp2</token>

 </rule>

 <rule name="operator" type="selection">

 <token><![CDATA[==]]></token>

 <token><![CDATA[!=]]></token>

 <token><![CDATA[>]]></token>

 <token><![CDATA[<]]></token>

 <token><![CDATA[>=]]></token>

 <token><![CDATA[<=]]></token>

 </rule>

</grammar>

Pg. 245

(2) A Regular Expression patterns grammar

<?xml version="1.0" encoding="utf-8" ?>

<!DOCTYPE grammar [

<!ELEMENT grammar (start,rules)>

<!ELEMENT start (nonterminal)>

<!ELEMENT rules (rule*)>

<!ELEMENT rule (nonterminal|token)*>

<!ELEMENT nonterminal EMPTY>

<!ELEMENT token (#PCDATA)>

<!ATTLIST rule

 type (selection|sequence) #REQUIRED

 name NMTOKEN #REQUIRED

>

<!ATTLIST nonterminal

 name NMTOKEN #REQUIRED

>

]>

<grammar>

 <start>

 <nonterminal name="REpattern" />

 </start>

 <rules>

 <rule name='REpattern' type='sequence'>

 <nonterminal name='opentag' />

 <nonterminal name='innercontent' />

 <nonterminal name='closetag' />

 </rule>

 <rule name='opentag' type='sequence'>

 <token><![CDATA[<]]></token>

 <nonterminal name='tagname' />

 <token><![CDATA[[^>]*>]]></token>

 </rule>

 <rule name='closetag' type='sequence'>

 <token><![CDATA[</]]></token>

 <nonterminal name='N1' />

 <token><![CDATA[>]]></token>

 </rule>

 <rule name='tagname' type='selection'>

 <token>DIV</token>

 <token>TABLE</token>

 <token>TR</token>

 <token>TD</token>

 <token>H1</token>

 <token>H2</token>

 <token>H3</token>

 <token>LI</token>

 <token>DIV</token>

 <token>P</token>

 <token>A</token>

 </rule>

 <rule name='innercontent' type='selection'>

Pg. 246

 <nonterminal name='datacontent' />

 <nonterminal name='REpattern' />

 </rule>

 <rule name='datacontent' type='selection'>

 <nonterminal name='capturedata' />

 <nonterminal name='tag_and_value' />

 </rule>

 <rule name='tag_and_value' type='sequence'>

 <nonterminal name='opentag' />

 <nonterminal name='innertags' />

 <nonterminal name='datacontent' />

 <nonterminal name='innertags' />

 <nonterminal name='closetag' />

 </rule>

 <rule name='innertags' type='selection'>

 <nonterminal name='empty' />

 <nonterminal name='singletag' />

 <nonterminal name='singletagseq' />

 </rule>

 <rule name='singletag' type='sequence'>

 <nonterminal name='opentag' />

 <nonterminal name='closetag' />

 </rule>

 <rule name=‘singletagseq' type='sequence'>

 <nonterminal name='singletag' />

 <nonterminal name='innertags' />

 </rule>

 <rule name='capturedata' type='sequence'>

 <token>[\s*?]</token>

 <token>(</token>

 <nonterminal name='expression' />

 <token>)</token>

 </rule>

 <rule name='expression' type='sequence'>

 <token>.*?</token>

 </rule>

 </rules>

</grammar>

Pg. 247

Appendix 4

This section consists of evolved sort programs which are based on ten random seedings, from the

experiments in Chapter 4. It is important to note that obviously redundant codes are removed from

these code examples to provide clarity.

Evolved ‘Sorting’ programs

Seed 1

for $tmp1(0..$#inlist){

 for $tmp2($tmp1+1..$#inlist){

 if($inlist[$tmp2%($#inlist+1)]<=$inlist[$tmp1%($#inlist+1)]){

 $tmp4=$inlist[$tmp2%($#inlist+1)];

 if($inlist[$tmp2%($#inlist+1)]!=$inlist[$tmp1%($#inlist+1)]){

 if($inlist[$tmp1%($#inlist+1)]>=$inlist[$tmp1%($#inlist+1)]){

 $inlist[$tmp2%($#inlist+1)]=$inlist[$tmp1%($#inlist+1)];

 $inlist[$tmp1%($#inlist+1)]=$tmp4;

 }

 }

 }

 }

}

Seed 2

for$tmp1(0..$#inlist){

 for$tmp2(0..$#inlist){

 if($inlist[$tmp2%($#inlist+1)]>$inlist[$tmp1%($#inlist+1)]){

 $tmp3=$inlist[$tmp2%($#inlist+1)];

 if($inlist[$tmp1%($#inlist+1)]!=$tmp3){

 $inlist[$tmp2%($#inlist+1)]=$inlist[$tmp1%($#inlist+1)];

 $inlist[$tmp1%($#inlist+1)]=$tmp3;

 }

 }

 }

}

Seed 3

for $tmp2(0..$#inlist){

 for $tmp1($tmp2+1..$#inlist){

 $tmp3=$inlist[$tmp2%($#inlist+1)];

 if($inlist[$tmp2%($#inlist+1)]>=$inlist[$tmp1%($#inlist+1)]){

 $inlist[$tmp2%($#inlist+1)]=$inlist[$tmp1%($#inlist+1)];

 $inlist[$tmp1%($#inlist+1)]=$tmp3;

 }

 }

}

Pg. 248

Seed 5

for $tmp2(0..$#inlist){

 for $tmp1($tmp2+1..$#inlist){

 if($inlist[$tmp2%($#inlist+1)]>$inlist[$tmp1%($#inlist+1)]){

 for $tmp2(0..$#inlist){

 for $tmp2($tmp2+1..$#inlist){

 $tmp4=$inlist[$tmp1%($#inlist+1)];

 }

 }

 $inlist[$tmp1%($#inlist+1)]=$inlist[$tmp2%($#inlist+1)];

 $inlist[$tmp2%($#inlist+1)]=$tmp4;

 }

 }

}

Seed 7

for $tmp2(0..$#inlist){

 for $tmp1($tmp2+1..$#inlist){

 if($inlist[$tmp2%($#inlist+1)]>=$inlist[$tmp1%($#inlist+1)]){

 $tmp3=$inlist[$tmp2%($#inlist+1)];

 if($tmp2!=$inlist[$tmp2%($#inlist+1)]){

 $inlist[$tmp2%($#inlist+1)]=$inlist[$tmp1%($#inlist+1)];

 $inlist[$tmp1%($#inlist+1)]=$tmp3;

 }

 }

 }

}

Seed 11

for $tmp2(0..$#inlist){

 for $tmp1($tmp2+1..$#inlist){

 $tmp4=$inlist[$tmp2%($#inlist+1)];

 if ($inlist[$tmp2%($#inlist+1)]> $inlist[$tmp1%($#inlist+1)]){

 $inlist[$tmp2%($#inlist+1)]=$inlist[$tmp1%($#inlist+1)];

 for $tmp2(0..$#inlist){

 for $tmp2($tmp2+1..$#inlist){

 $inlist[$tmp1%($#inlist+1)]=$tmp4;

 }

 }

 }

 }

}

Seed 13

$inlist[$tmp1%($#inlist+1)]=$inlist[$tmp2%($#inlist+1)];

for$tmp1(0..$#inlist){

 if($inlist[$tmp2%($#inlist+1)]>=$tmp2){

 for$tmp2(0..$#inlist){

 $tmp3=$inlist[$tmp2%($#inlist+1)];

 $tmp4=$inlist[$tmp1%($#inlist+1)];

 if($inlist[$tmp1%($#inlist+1)]<$tmp3){

 $inlist[$tmp2%($#inlist+1)]=$tmp4;

 $inlist[$tmp1%($#inlist+1)]=$tmp3;

 }

 }

 }

}

Pg. 249

Seed 17

for $tmp2(0..$#inlist){

 for $tmp1($tmp2+1..$#inlist){

 if($inlist[$tmp1%($#inlist+1)]!=$tmp4){

 for $tmp1(0..$#inlist){

 for $tmp2($tmp1+1..$#inlist){

 if($inlist[$tmp1%($#inlist+1)]>=$inlist[$tmp2%($#inlist+1)]){

 $tmp4=$inlist[$tmp1%($#inlist+1)];

 $inlist[$tmp1%($#inlist+1)]=$inlist[$tmp2%($#inlist+1)];

 $inlist[$tmp2%($#inlist+1)]=$tmp4;

 }

 }

 }

 }

 }

}

Seed 19

for $tmp1(0..$#inlist){

 for $tmp2($tmp1+1..$#inlist){

 if($inlist[$tmp1%($#inlist+1)]>=$inlist[$tmp1%($#inlist+1)]){

 if($inlist[$tmp2%($#inlist+1)]<$inlist[$tmp1%($#inlist+1)]){

 $tmp3=$inlist[$tmp1%($#inlist+1)];

 if($inlist[$tmp2%($#inlist+1)]>$tmp1){

 $inlist[$tmp1%($#inlist+1)]=$inlist[$tmp2%($#inlist+1)];

 for$tmp1(0..$#inlist){

 if($tmp2==$tmp1){

 $inlist[$tmp2%($#inlist+1)]=$tmp3;

 }

 }

 }

 }

 }

 }

}

Seed 23

$tmp4=$inlist[$tmp2%($#inlist+1)];

for $tmp1(0..$#inlist){

 for $tmp2($tmp1+1..$#inlist){

 $tmp4=$inlist[$tmp1%($#inlist+1)];

 if($inlist[$tmp1%($#inlist+1)]>=$inlist[$tmp2%($#inlist+1)]){

 $inlist[$tmp1%($#inlist+1)]=$inlist[$tmp2%($#inlist+1)];

 $inlist[$tmp2%($#inlist+1)]=$inlist[$tmp1%($#inlist+1)];

 $inlist[$tmp2%($#inlist+1)]=$tmp4;

 }

 }

}

Pg. 250

Appendix 5

This appendix contains the statistical comparison between ‘solution seeded’ and ‘solution mutated’

techniques in Chapter 4. This appendix also contains the complete result of these techniques:

i. Table 1 – solution seeded

ii. Table 2 – solution mutated

Statistical result of solution seeded and solution mutated population

The evolution system did 10 runs each with a maximum of 50,000 generations with one hundred

different random seeds. The aim of this run is to find out if these two techniques of Initial Population

manipulation (seeding with known solution); seeded and mutated, have any difference and if there

is then to find out which technique is better.

Population size is 7 and Roulette Wheel selection was applied to select two individuals from this

population to the reproduction process.

The first technique is ‘seeded’ or in this thesis referred to as ‘Solution Seeded’. It is to have the first

chromosome in the population seeded from the pool of successfully evolved solutions and the rest

of the population is created at random. This technique provides a chromosome of a good solution to

start with.

The second technique is ‘mutated’ or referred to as ‘Solution Mutated’ in this thesis. It takes a

successfully evolved solution and applying ‘one gene per chromosome mutation’. This technique

assumes that the solution to the problem is not far from the existing one.

The result of these two techniques is below:

Paired Samples Statistics

 Mean N Std. Deviation Std. Error Mean

Pair 1
Mutated 454.83 100 471.188 47.119

Seeded 256.67 100 304.261 30.426

Paired Samples Test

 Paired Differences t df Sig.

(2-tailed) Mean Std.

Deviation

Std. Error

Mean

95% Confidence Interval

of the Difference

Lower Upper

Pair 1
Mutated -

Seeded
198.160 577.509 57.751 83.570 312.750 3.431 99 .001

Pg. 251

Table 1 – Solution seeded

Seed Gen Time Seed Gen Time Seed Gen Time

1 1 0:00:00 197 613 0:00:54 491 708 0:00:56
2 155 0:00:13 199 446 0:00:36 493 95 0:00:09
3 486 0:00:36 211 42 0:00:04 497 277 0:00:25
5 151 0:00:12 223 3 0:00:01 499 51 0:00:04
7 317 0:00:24 227 1179 0:01:37 501 32 0:00:03
11 15 0:00:02 229 551 0:00:49 503 754 0:01:05
13 90 0:00:07 233 221 0:00:17 509 128 0:00:10
17 459 0:00:41 239 1102 0:01:29 511 156 0:00:14
19 353 0:00:33 241 132 0:00:12 513 334 0:00:28
23 231 0:00:18 251 436 0:00:47 521 0 0:00:00
29 0 0:00:00 257 474 0:00:43 523 152 0:00:16
31 20 0:00:02 263 262 0:00:23 541 0 0:00:01
37 1206 0:01:34 269 1197 0:01:44 547 457 0:00:37
41 590 0:00:51 271 291 0:00:28 557 1 0:00:00
43 566 0:00:45 277 211 0:00:19 563 183 0:00:16
47 1 0:00:01 281 3 0:00:01 569 329 0:00:25
53 158 0:00:13 283 225 0:00:18

59 1 0:00:00 293 281 0:00:23

61 939 0:01:30 331 0 0:00:00

67 9 0:00:01 337 185 0:00:15

71 0 0:00:00 347 14 0:00:02

73 122 0:00:10 349 244 0:00:18

79 783 0:01:03 353 1 0:00:01

83 0 0:00:01 359 0 0:00:00

89 0 0:00:00 367 1 0:00:01

97 16 0:00:02 397 970 0:01:11

101 392 0:00:30 401 168 0:00:14

103 166 0:00:21 409 409 0:00:31

107 685 0:00:55 419 112 0:00:09

109 9 0:00:01 421 0 0:00:00

127 130 0:00:11 431 35 0:00:03

131 83 0:00:07 433 0 0:00:00

149 977 0:01:38 439 246 0:00:20

151 434 0:00:35 443 626 0:00:56

157 31 0:00:03 449 202 0:00:19

163 56 0:00:05 457 2 0:00:00

167 411 0:00:37 461 5 0:00:01

173 4 0:00:01 463 163 0:00:15

179 156 0:00:14 467 45 0:00:04

181 192 0:00:20 473 239 0:00:20

191 86 0:00:07 479 133 0:00:11

193 0 0:00:00 487 60 0:00:05

Pg. 252

Table 2 – Solution mutated

Seed Gen Time Seed Gen Time Seed Gen Time

1 328 0:00:28 197 336 0:00:26 491 323 0:00:25

2 1 0:00:00 199 536 0:00:40 493 749 0:00:57

3 1001 0:01:15 211 298 0:00:23 497 556 0:00:42

5 196 0:00:15 223 1024 0:01:19 499 395 0:00:29

7 30 0:00:03 227 48 0:00:04 501 291 0:00:22

11 64 0:00:06 229 695 0:00:56 503 356 0:00:32

13 12 0:00:01 233 904 0:01:13 509 553 0:00:42

17 27 0:00:02 239 1232 0:01:35 511 654 0:00:50

19 398 0:00:30 241 169 0:00:12 513 305 0:00:22

23 17 0:00:02 251 630 0:00:50 521 560 0:00:43

29 958 0:01:09 257 239 0:00:20 523 195 0:00:15

31 309 0:00:25 263 253 0:00:19 541 1449 0:01:47

37 130 0:00:10 269 0 0:00:00 547 1367 0:01:43

41 440 0:00:32 271 1548 0:02:11 557 196 0:00:15

43 490 0:00:40 277 285 0:00:24 563 130 0:00:09

47 188 0:00:14 281 309 0:00:24 569 119 0:00:10

53 241 0:00:18 283 215 0:00:17

59 581 0:00:45 293 418 0:00:36

61 1022 0:01:21 331 307 0:00:23

67 714 0:00:55 337 437 0:00:32

71 69 0:00:06 347 1355 0:01:42

73 137 0:00:11 349 171 0:00:13

79 412 0:00:34 353 329 0:00:25

83 428 0:00:34 359 78 0:00:06

89 319 0:00:24 367 563 0:00:43

97 790 0:00:58 397 80 0:00:06

101 311 0:00:24 401 3346 0:00:32

103 417 0:00:31 409 126 0:00:10

107 226 0:00:19 419 273 0:00:22

109 305 0:00:24 421 66 0:00:05

127 65 0:00:05 431 444 0:00:34

131 288 0:00:23 433 72 0:00:05

149 220 0:00:18 439 1655 0:02:19

151 37 0:00:03 443 216 0:00:18

157 1254 0:01:32 449 185 0:00:14

163 368 0:00:29 457 153 0:00:14

167 134 0:00:11 461 257 0:00:21

173 752 0:01:00 463 13 0:00:02

179 474 0:00:37 467 238 0:00:18

181 313 0:00:25 473 401 0:00:31

191 890 0:01:08 479 632 0:00:47

193 622 0:00:49 487 771 0:00:58

Pg. 253

Appendix 6

This appendix contains PHP implementation of regular expression generator discussed in Chapter 5.

The regular expression is built from the training set provided by the user. There are two different

generators written in this thesis. First is to convert the jQuery path to its equivalent regular

expression pattern and the second is responsible to convert the data format (textual feature).

TS-WIE Automatic Regular Expression Generators (in PHP)

Transformation of the data or path into the equivalent regular expressions is quite complicated. As
for the data, it needs to be split into chunk of words, taking into care the white spaces and special
characters e.g. dot and brackets. Then these individual regular expression representations have to
be combined if the patterns are the same.

It is even more complex with paths transformation. This is because HTML documents structure can
be irregular. The weakness of regular expression is to balance the structure, for example, an open
tag should have its matching closing tag. Some web page may omit this balancing as it is not
mandatory to have it in place e.g. <p> to create a paragraph or having a single tag to indicate an
open and close tag e.g.
 tag to insert a line break.

It can also be seen that the resulting regular expressions are not always as simple as
<DIV[^>]*>.*?</DIV>. The outcome might be an extremely huge regular expression pattern
consisting of thousands of alphabets, digits and meta-characters. It is important to note that the
regular expression translation is not character by character translation as this will require time in
O(C1* Cn), where n is the total characters. Rather, it is translated word by word except when meta-
character exists within the word e.g. 20-21 contains a symbol ‘-’, in which case this will be translated
as \d+\-\d+. Meta-character will be handled separately as it requires the escape character ‘\’ to be
treated as it should be.

In this approach, the structural (jQuery path) and the textual features of the captured data will be
converted to regular expression pattern. Two automatic regular expression generators were
developed in this thesis to handle conversion of (i) the structural feature and (ii) the textual feature.
Once they are successfully converted, they will be combined together to form one complete regular
expression.

The first regular expression generator is to handle the conversion of the structural feature. The steps
are:

1. The jQuery path is disjointed (breakpoint is indicated by the separator ‘>’) into tokens.

2. Generate regular expression based on the tokens, applied the following in order (first match

wins):

a. If a token contains ‘eq’, replace with sets of lowercase open tag, ‘[^>]*>’, closing tag

and ‘.*?’ . The number of set required is determined by the integer (index) after ‘eq’

e.g. tr:eq(1)> shows that the index is 1 and it indicates that the data is in the second

Pg. 254

tr. Therefore this requires 2 sets of tr tags. This is translated to <tr[^>]*>.*?<\tr><

tr[^>]*>

b. Upon reaching the last tag, ‘(.*?)’ and all balance of the closing tags are added.

‘(.*?)’ indicates the start and stop capture process and it is the text pattern features.

For example, if the path is div>table>tr:eq(1)>td, the translation is
<div[^>]*><table[^>]*><tr[^>]*>*<\tr>< tr[^>]*> <td[^>]*>(.*)</td></tr></table></div>
The above algorithm was implemented in jQuery as below:

function convertPath(path) {

 var tags = [];

 var RE_tag_equiv = '';

 var position = 0;

 var lastTag='';

 tags = path.split('>');

 tagsLen = tags.length - 1;

 $.each(tags, function(index, value) {

 if (value.match(/:eq\(\d+\)/g)) {

 value = value.toLowerCase();

 position = value.match(/(\d+)/g);

 value = value.replace(/:eq\(\d+\)/,"");

 var i=0;

 for(i=0; i<=position;i++) {

 if (i != position) {

 RE_tag_equiv += "<"+value+"[^>]*>.*?</"+value+">";

 } else {

 RE_tag_equiv += "<"+value+"[^>]*>";

 }

 }

 } else {

 RE_tag_equiv += "<"+value+"[^>]*>";

 }

 if (index < tagsLen) {

 RE_tag_equiv += ".*?";

 }

 lastTag = value;

 });

 RE_tag_equiv += '(.*?)</' + lastTag +'>';

 return RE_tag_equiv;

}

The following describes the conversion of the textual feature into regular expression pattern.

The regex to define the textual format of the extracted information is automatically generated using
the following logic (extracted from Conrad (2007) with some modifications on the order and addition
of new logic (a, to suit the problem specification in this thesis):

1. Break given example into words (tokens).

Pg. 255

2. Generate regex based on the tokens applied in order (first match wins):

If words > 1
a. If it matches pre-defined format, replace with pre-defined format

b. If it’s a number, replace with \d+ (1 or more digits)

c. If it’s a word with the first letter capitalized, replace with [A-Z][a-z]+ (uppercase

letter, followed by one or more lowercase letters).

d. If it’s uppercase word, replace with [A-Z]+ (one or more uppercase letters)

e. If it’s lowercase word, replace with [a-z]+ (one or more lowercase letters)

f. If it’s alphanumeric word, replace with [A-Za-z0-9]+ (one or more alphanumeric

letters)

g. If it contains meta-character, split the word into characters and replace with

appropriate regular expression notation (alphanumeric or escaped meta-character)

Else: keep the token as a literal regex or an escaped meta-character.

3. Simplify regex (delete regex that match with previous)

The jQuery implementation of textual feature conversion is:

function converttoregex(the_text) {

 var RE_data_equiv = "";

 var words = (the_text.split(/(\s+|\(|\)|\!)/)).filter(function(n) {return n.trim()});

 var onechar = the_text.split('');

 var wordcount = 0;

 var counter = 0;

 var the_word = '';

 var pattern = [];

 if (onechar.length > 1) {

 while (counter < words.length) {

 if (words[counter].match(/^(Jan(uary)?|Feb(ruary)?|Mar(ch)?|Apr(il)?|May|

 Jun(e)?|Jul(y)?|Aug(ust)?|Sep(tember)?|Oct(ober)?|Nov(ember)?|

 Dec(ember)?),?$/i)){

 pattern[counter] = (?!Jan(uary)?|Feb(ruary)?|Mar(ch)?|Apr(il)?|May|Jun(e)?|

 Jul(y)?|Aug(ust)?|Sep(tember)?|Oct(ober)?|Nov(ember)?|Dec(ember)?),?";

 } else if (words[counter].match(/\d{1,2}(st|nd|rd|th)$/)) {

 pattern[counter] = "\\d+[(st)(nd)(rd)(th)]\\s+";

 } else if (words[counter].match(/^\d+(,\d{3})*(\.\d{2})?$/)) {

 // match integer or float e.g. 200.20 or 21,000

 pattern[counter] = "\\d+(,\\d{3})*(\.\\d{2})?\\s*";

Pg. 256

 } else if (words[counter].match(/^(\d{1,2})[\/.-](\d{1,2})[\/.-]

 ((\d{4})|(\d{2}))$/)) {

 //match date e.g. 12/12/2013, 12.3.2013, 12-3-2013

 pattern[counter] = "(\\d{1,2})[\/.-](\\d{1,2})[\/.-]((\\d{4})|(\\d{2}))\\s*";

 } else if (words[counter].match(/^((£)|£)\s*()?\d+/)) {

 pattern[counter] =

 "\\s*((£)|£)\\s*()?\\d+(,\\d{3})*(\.\\d{2})?\\s*(GBP)?";

 } else if (words[counter].match(/^(\d+)$/)) {

 pattern[counter] = "(\\d+\\s+)+";

 } else if (words[counter].match(/^[A-Z][a-z]+$/)){

 pattern[counter] = "([A-Z][a-z]+\\s*)+";

 } else if (words[counter].match(/^[A-Za-z0-9]+$/)){

 pattern[counter] = "([A-Za-z0-9]+\\s*)+";

 } else if (words[counter].match(/[{}\[\]\)\(^$|*+?\-\\:\.,@]/)) {

 // Break string containing metacharacters into tokens

 // each word is a token, and each symbol (like "@" or "-") is a token

 var char1 = words[counter].split('');

 var charcount = 0;

 var split_pattern = "";

 while (charcount < char1.length) {

 if (char1[charcount].match(/[A-Za-z0-9]/)){

 the_word += char1[charcount];

 if (charcount + 1 == char1.length ||

 !char1[charcount + 1].match(/[A-Za-z0-9]/)) {

 split_pattern += "[A-Za-z0-9]+";

 the_word = '';

 }

 } else { // Escape all metacharacters - we want to treat as literals

 the_word = '\\' + char1[charcount]+’?’;

 split_pattern += the_word;

 the_word = '';

 }

 charcount++;

 }

 pattern[counter] = split_pattern + '\\s*';

 } else {

 pattern[counter] = words[counter] + '\\s*'

 }

 counter++;

 }

 } else { // token is a single character

 if (/\d/.test(onechar)) {

 RE_data_equiv = "\d";

 } else if (/[a-z]/.test(onechar)){

 RE_data_equiv = "[a-z]";

 } else if (/[A-Z]/.test(onechar)){

 RE_data_equiv = "[A-Z]";

 } else if (/[{}\[\]()^\$|*+?-\\:@]/.test(onechar)){

 RE_data_equiv = "\\" + onechar;

 } else {

 RE_data_equiv = onechar;

 }

 }

Pg. 257

 //simplified patterns

 var new_pattern = [];

 var j = 0;

 if (pattern.length != 0) {

 new_pattern[j] = pattern[0];

 j++;

 for(var i = 1; i < pattern.length-1;i++) {

 if (pattern[i] != pattern[i-1]) {

 new_pattern[j] = pattern[i];

 j++;

 }

 }

 RE_data_equiv = new_pattern.join("");

 }

 return RE_data_equiv;

}

Pg. 258

Appendix 7

This appendix contains the algorithm for updating the value of the chromosome. This update

is important to make sure that the genome mapped to the same phenome when the rules in

the grammar is update due to presence of new token in the example(s) provided by the

human user.

Algorithm for Genome Alteration

When there is an update to the list components of a rule, e.g. SECTION tags inserted in the

tags rule, the genome, which block mapped to this rule becomes invalid and cannot be used as

a seeder to the new initial population. Therefore, this genome needs to be updated. The

following algorithm is intended to meet this requirement:

1. Get genome and phenome

2. Find affected block in genome through phenome

3. Determine blockgene = the affected gene

4. Determine mod = the selected rule component

5. newGene = int(gene/numberOfOption) * (numberOfOption + 1) + mod

6. replace gene with newGene

7. repeat step 2 – 6 until all affected blocks are updated

for example :

gene = 9

mod = 1

numberOfOption = 4

therefore the newGene = (9/4) * (4 + 1) + 1

 = 2 * 5 + 1

 = 11

