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Abstract 

 

The aim of this paper is to explain critical features of the human primary generalized 

epilepsies by investigating the dynamical bifurcations of a nonlinear model of the 

brain’s mean field dynamics. The model treats the cortex as a medium for the 

propagation of waves of electrical activity, incorporating key physiological processes 

such as propagation delays, membrane physiology and corticothalamic feedback. 

Previous analyses have demonstrated its descriptive validity in a wide range of 

healthy states and yielded specific predictions with regards to seizure phenomena. We 

show that mapping the structure of the nonlinear bifurcation set predicts a number of 

crucial dynamic processes, including the onset of periodic and chaotic dynamics as 

well as multistability. Quantitative study of electrophysiological data supports the 

validity of these predictions and reveals processes unique to the global bifurcation set. 

Specifically, we argue that the core electrophysiological and cognitive differences 

between tonic-clonic and absence seizures are predicted by the global bifurcation 

diagram of the model’s dynamics. The present study is the first to present a unifying 

explanation of these generalized seizures using the bifurcation analysis of a dynamical 

model of the brain.  
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Introduction 

 

Primary generalized seizures are pathological brain rhythms that, by definition, 

involve all cortical regions and which are associated with a gross disruption of 

cognitive activity. Absence (Petit Mal) and tonic-clonic (Grand Mal) seizures are the 

two main generalized seizures in humans. Several features critically distinguish these 

two seizure types: Tonic-clonic seizures are associated with markedly different pre- 

and post-ictal EEG, lengthy duration, and dynamically evolving wave-forms that 

occur within each seizure. Whilst subjects are typically awake and conscious prior to 

the seizure, they are invariably unconscious post-ictally. In contrast, Absence seizures 

have a brief on-off quality, similar pre- and post-ictal EEG and a well structured 

periodic spike and slow-wave shape which slows only slightly during the seizure but 

does not significantly alter in its morphology. Remarkably, cognitive function is only 

minimally disrupted after the seizure. The aim of this paper is to study the 

mechanisms underlying the onset, evolution and offset of these seizures using a 

physiologically motivated model of the brain’s dynamics. More specifically, we test 

and extend a number of specific predictions (Robinson et al. 2002) based on the 

premise that generalized seizures represent a transition from stable, linear dynamics to 

unstable nonlinear behavior by studying the nature of the model’s bifurcations. In 

doing so, we seek a formal and unified explanation of the generalized seizures. 

 

A bifurcation is a sudden change in a dynamical system’s activity, such as from 

steady state to periodic behavior. The transition from laminar to turbulent fluid flow is 

a well-known physical example. Nonlinear instabilities and bifurcations in large-scale 

neural activity may be of special significance to brain dynamics: Depending on the 

context, timing and extent, such phenomenon may be either adaptive – allowing 

flexible switches in cognitive set (Wright et al. 1985, Friston 2000, Breakspear 2002, 

Freeman & Rogers 2002, Breakspear et al. 2003) and behavior (Kelso et al. 1992, 

Fuchs et al. 2000, Daffertshofer et al. 2000) – or disruptive, such as at the onset of a 

generalized seizure (Arnhold et al. 1999, Stam & van Dijk 2002). Understanding such 

nonlinear instabilities may provide a unique window into the nature of 

neurophysiological processes occurring in neural systems since they denote particular 

types of dynamical processes (Crevier & Meister 1998, Izkehelde 2001), such as those 

with strong feedback and nonlinearity. Finally, a bifurcation from linear to nonlinear 

brain dynamics would render any data analysis method grounded in stochastic linear 

theory problematic. Hence the elucidation of bifurcations in large-scale neuronal 

systems has cognitive, physiological and methodological significance to neuroscience. 
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Bifurcations occur in a variety of forms, such as from linear (steady state) to nonlinear 

dynamics or from one type of nonlinear oscillation to another (Abraham & Shaw 

1992). The former can occur if the strength of a feedback process rises above a critical 

value. Several empirical studies have concluded that large-scale electrical activity in 

the healthy human brain is, indeed, predominantly a linear/stochastic phenomenon 

with intermittent instances of weakly nonlinear fluctuations in the alpha frequency (8-

13Hz) range (eg. Stam et al. 1999, Breakspear & Terry 2002): The nonlinear neural 

model employed in the present study is able to predict and explain a variety of resting 

and sleeping state EEG when evolving in a stable, weakly damped linear regime 

(Robinson et al. 2001, 2004). This view (of only occasional and weak nonlinearities) 

also finds strong support in the success of classic functional neuroscience algorithms 

which are rooted in a stochastic/linear framework (Friston et al. 1994). In contrast, 

clinical research suggests that several pathological processes, such as seizures 

(Andrzejak et al. 2001) and abnormal rhythms in pathological states (Stam et al. 

1997a,b) have a strong nonlinear component. In Robinson et al. (2002) it was 

proposed that the transition from resting-state EEG to seizure activity may be viewed 

as a bifurcation from linear to nonlinear oscillations in the brain’s electric activity, 

whereas different types of seizures may be viewed as bifurcations between distinct 

types of nonlinear dynamics (see also Wendler et al. 2002, Lopes da Silva et al. 2003, 

Perez Valezquez et al. 2003).  

 

The present paper undertakes to formally study this hypothesis in a physiologically-

based model of brain activity (Robinson et al. 2001). Two instabilities are studied – 

one at approximately 3Hz and the other within the alpha (10Hz) rhythm. These 

represent the respective frequencies at which Absence and tonic-clonic seizures are 

initiated. The behavior of the model at and beyond such instabilities is compared to 

three EEG data sets - one of young subjects with absence seizures, one of tonic-clonic 

seizures and another of resting state healthy adult subjects. The former two sets allow 

comparison between modeled and experimental seizure data. The latter data have 

been previously shown to be associated with weak nonlinear structure (Stam et al. 

1999, Breakspear & Terry 2002) and hence permit analysis of the model in a stable, 

resting state - although in the vicinity of an instability. The local bifurcation diagrams 

are studied for each instability and then compared to the observed phenomena. The 

global bifurcation diagram – obtained by examining the structure of the bifurcation set 

under changes in multiple parameters potentially permits local features of each 

instability to be understood from a global and unifying perspective. We hence 

investigate whether the topology of the global bifurcation diagram explains the 

essential difference between absence and tonic-clonic seizures by inter-relating them 

within this broader framework. 
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Methods 
 

There are three components to the methodology: (1) The nonlinear corticothalamic 

model which forms the basis for the bifurcation and time series analysis. A 

description of this model is given below, and follows Robinson et al. (2001, 2002). 

(2) Scalp EEG data - which permits empirical testing of the predictions generated by 

the model - is then described. (3) Nonlinear techniques are employed in order to study 

numerical data generated from the model and the observed scalp EEG data. These are 

described last. 

 

Corticothalamic brain model 

 

Large-sale neural activity arises from interactions between several neural populations, 

notably excitatory and inhibitory cortical neurons and specific subcortical nuclei such 

as the thalamus. The corticothalamic model studied here is based upon the evolution 

of several dynamical variables within each of these populations. The variables 

represent the local mean value of a physiological process at position r in these neural 

systems, averaged over a small patch (~0.3mm) of surrounding neuropil. Hence this 

model belongs to the class of ‘lumped’ or ‘mean field’ neural models (Nunez 1974, 

Freeman 1975, Jirsa & Haken 1996, Robinson et al. 1997).  

 

General (spatially continuous) model 

 

We first describe the model in its general form. The dynamical variables within each 

neural population are the local mean cell-body potentials Va, the mean rate of firing at 

the cell-body Qa, and the propagating axonal fields φa. The subscript a refers to the 

neural population (e=excitatory cortical; i=inhibitory cortical; s=specific thalamic 

nucleus; r=thalamic reticular nucleus; n=nonspecific subcortical noise). The firing 

rates Qa are related to the potentials Va according to the sigmoid activation function 

Qa(r, t)=S[Va(r, t)] where S is a smooth sigmoidal function that increases from 0 to 

Qmax as Va increases from -∞ to ∞. We model S as 

 

 (1) 

 

 

where � is the mean neural firing threshold, σ is the standard deviation of this 

(normally distributed) threshold and Qmax is the maximum firing rate.  
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In each neural population, firing rates Qa are propagated outwards as oscillating fields 

φa according to the damped wave equation 

 

(2) 

 

where the (spatio-temporal) differential operator Da is given by 

 

 (3) 

 

The parameter γa=va/ra - where ra and υa are the characteristic range and conduction 

velocity of axons of type a - governs the dispersion of propagating waves. ∇ 2 is the 

Laplacian operator (the second spatial derivative). The system of equations is closed 

by introducing the effect of incoming axonal inputs to neurons at r from other neural 

populations. The cell body Va results after post-synaptic potentials have been filtered 

in the dendritic tree and then summed. For excitatory and inhibitory neurons within 

the cortex, this is modeled using a second order delay-differential equation (Robinson 

et al. 2001),  
 

(4) 

 

where a=e,i and the (temporal) differential operator, given by 

 

(5) 

  

 

incorporates dendritic filtering of incoming signals. The quantities α and β are the 

inverse rise and decay times of the cell body potential produced by an impulse at a 

dendritic synapse. Note that input from the thalamus to the cortex is delayed in (4) by 

a propagation time t0/2.  For neurons within the specific and reticular nuclei of the 

thalamus it is the input from the cortex which is time-delayed and hence 

 

(6) 

 

where a=s,r. The synaptic strengths are given by vab=NabSb where Nab is the mean 

number of synapses from neurons of type b to type a and Sb is the strength of the 

response to a unit signal from neurons of type b. The final term on the RHS permits 

ascending stochastic input from the brainstem: To simulate a real physiological 
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system, this term is noise modulated for the time series illustrations. However, for the 

bifurcation diagrams the term is constant. The default values of all parameters are 

given in Table 1. All parameter values chosen in this study have been employed in 

previously published studies (Robinson et al. 2002), emphasizing that the results of 

the numerical analysis are used in a predictive rather than exploratory vein in 

relationship to the EEG data. 

 

Setting all spatial and temporal derivatives in (1)-(6) to zero determines global 

(spatially invariant) corticothalamic steady states. Small perturbations around these 

states (representing noisy influx from the brainstem) obey a linear wave equation, the 

study of which has been employed to explain resting state EEG temporal (Robinson et 

al. 1997, 2001, 2004) and spatial (O’Connor et al. 2002) spectra. We use a 2-D cortex 

and a standard first order approximation to ∇ 2 (Abramowitz & Stegun 1970). 

 

Global (spatially invariant) model 

 

A full nonlinear analysis of this system is a highly nontrivial task. However, in certain 

circumstances, particularly in the study of generalized seizures, brain activity may be 

dominated by very large scale – or even whole brain – processes, in which case the 

dynamical variables may not depend greatly on spatial position r. This ‘global model’ 

can be studied by setting the spatial gradient term in equation (3) to zero, yielding   

 

(7) 

 

 

The variables Va, Qa and φa now depend solely on t and not r. The smallness of ri also 

let’s us set γi≈∞, yielding a set of seven first order delay-differential equations. These 

equations permit a computationally parsimonious method of studying large-scale 

brain dynamics and are employed for the majority of the present study. They are 

given in Appendix A1.  

 

Studying the linear stability criteria for this system permits mapping of the boundary 

which marks the transition between steady state behavior and nonlinear oscillations. 

Previous exploration of the model for realistic parameter ranges revealed a small 

number of key instabilities which constrain the way nonlinear oscillations may arise 

(Robinson et al. 2002). As well as the 3Hz and alpha instability studied in the present 

study, slow wave (<1Hz) and spindle instabilities (approx. 12Hz) may also arise. The 

occurrence of only a small number of instabilities suggests that it may also be possible 
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to study the dynamics and stability of the brain in a phase space of low 

dimensionality. Indeed, formal analysis of low frequency instabilities suggests that 

three variables x, y and z – parameterizing corticocortical, corticothalamic and 

intrathalamic instability – fully capture the parameter combinations at which the brain 

model loses stability (Robinson et al. 2002). These combine dynamic variables and 

state parameters and are given in Appendix A2. They enable visualization of where in 

parameter space the model becomes unstable. In Fig. 1 the instability boundary within 

this truncated space is presented. The zone within the tent-shaped region is associated 

with stability of the model, whereas points outside are associated with nonlinear 

oscillations. The bifurcation diagram studied in further detail below includes this “tent 

diagram” (Robinson et al. 2002) plus further information concerning transitions 

between different types of nonlinear oscillations. 

 

In the present study, the general model is only required in the section dealing with 

weak nonlinear interdependence in the resting state data. The spatially invariant 

model is employed to study the onset of the generalized seizures. Numerical 

integration was performed using a fourth order Runge-Kutta integrator. A cubic-

spline interpolator was employed in order to estimate the time delayed values of the 

midpoints required for the Runge-Kutta algorithm. 

 

Scalp EEG Data 

 

Three EEG data sets are studied. All are scalp EEG data with electrode placement 

following the 10-20 international system and linked earlobe reference. Ethics 

approval was obtained prior to data collection for each data set, according to the 

Ethics Committee at each Institution. 

1. Healthy human EEG alpha data collected from 40 adults (age 20-54) who 

disavowed psychiatric or neurological illness at Westmead Hospital, Sydney. 

Skin resistance at each site was < 5 kΩ. Data was collected at a rate of 250 Hz 

through a SynAmpsTM amplifier and filtered with a 50 Hz low-pass third order 

Butterworth filter. Artifacts caused by eye movement were corrected offline 

according to the method of Gratton et al. (1983). Data was collected from each 

subject during 130 s of a resting eyes-open paradigm, and 130 s during a 

resting eyes-closed paradigm.  

2. Absence seizure data drawn from a database of thirteen adolescent epileptic 

patients in the department of Neurology, Westmead Hospital, Sydney. Data 

was collected at a rate of 200Hz and filtered with a 70 Hz low-pass filter. 

3. Generalized tonic-clonic seizure data drawn from a data base of seven 

epileptic patients (Quian Quiroga et al. 2002). These patients were admitted to 
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an epilepsy monitoring unit with diagnosis of pharmacoresistant epilepsy and 

no other accompanying disorders. Antiepileptic drugs (AEDs) were gradually 

tapered after admission. Each signal was digitized at 409.6 Hz through a 12 bit 

A/D converter and filtered with an “antialiasing” eight pole lowpass Bessel 

filter with a cutoff frequency of 50 Hz. The signal was digitally filtered with a 

1-50 Hz bandwidth filter and stored at 102.4 Hz. The scalp recording was 

measured bipolarly from the T4-T6 (right temporal) locations.  

 

Nonlinear Data Analysis 

 

EEG data 

 

In order to test whether seizure activity is associated with nonlinearity – implicit 

within the hypothesis that a seizure occurs after a nonlinear bifurcation - a nonlinear 

prediction algorithm (Casdagli 1989) was employed. Briefly, the data is divided into 

discrete time windows. In each window a “nonlinear prediction error” is calculated. 

This error reflects the ability of a local nonlinear model to predict the amount of 

uncertainty in the data. Low errors indicate a good fit and hence nonlinear structure. 

Using a bootstrap or resampling scheme (applied to the original data), an ensemble of 

prediction errors is then calculated to represent the null hypothesis that the values of 

the errors are due to purely linear correlations within the data (Theiler et al. 1992). 

The data is said to contain nonlinear structure if the observed (experimentally derived) 

prediction error lies outside of the distribution of these “surrogate” errors (for further 

details see Terry & Breakspear 2003). Nineteen surrogates were constructed to allow 

for non-parametric statistical inference at 95% confidence within each window. For 

graphical clarity, the inverse of the prediction errors – which we denote the ‘nonlinear 

prediction indices’ – are plotted in the Results. 

 

A modification to this algorithm allows multichannel EEG data to be tested for 

evidence of nonlinear interdependence - a nonlinear equivalent to the coherence 

function (Schiff et al. 1997, Terry & Breakspear 2003). A multivariate surrogate 

algorithm (Prichard et al. 1994, Rombouts et al. 1995) is then employed to exclude 

the contributions of purely linear correlations. This can be used in conjunction with 

the spatially discrete version of the corticothalamic model to estimate the predicted 

nonlinear contribution to spatiotemporal patterns within brain activity. 

 

Numerical data 
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Bifurcation diagrams visualize sudden changes in a dynamical system subsequent to 

incremental changes in a state parameter. In order to construct these, numerical 

integration was performed across a varying range of vse - the excitatory influence of 

cortical pyramidal cells onto the specific thalamic nuclei. This parameter was chosen 

because of its simple physical meaning and the prior implication of excitatory 

corticothalamic feedback in the pathophysiology of generalized tonic-clonic (Zifkin & 

Dravet 1997, McCormick & Contreras 2001) and absence (Destexhe & Sejnowski 

2001, McCormick & Contreras 2001, Meeren et al. 2002) seizures. Local maximums 

and minimums of the resulting numerical time series are plotted for each parameter 

value. For the time series comparison of the model and EEG data, we plot the 

macroscopic excitatory field potentials φe as these best represent the cortical correlate 

of scalp potentials up to a linear transformation of the amplitudes (Nunez 1995). 

Specifically, scalp potential is proportional to the cortical potential, which is 

proportional to the mean cellular membrane currents, which are in turn proportional to 

the firing rates. Hence, apart from a (dimensional) constant of proportionality, and the 

effects of volume condition scalp EEG signals correspond closely to φe (Robinson et 

al. 2004).  Parameter values are given in Table 1. To better simulate a real 

physiological system, small amplitude (SNR=0.90) autocorrelated stochastic terms 

were added to the parameters (system noise) for the numerical time series plots. Such 

noise was generated according to, 

 

 (8) 

 

where r(t) is drawn from of a set of zero mean independent random numbers, 

s(t0)=r(t0) and the desired autocorrelation factor tc between adjacent time steps is 

given by, 

 

(9) 

 

Such a model of parameter noise represents the simplest method of simulating an 

autocorrelated stochastic process. It should be noted that such noise is only used in the 

time series plots and has no impact on the calculation of the model’s bifurcation 

diagram. 

 

Results 
 

The analysis of the results is presented in three sections: (1) The bifurcation occurring 

at the 3 Hz instability is first studied as a model for Absence seizures. The analysis of 

( ) ( ) ( ),1 2
1 nnn trtsts ρρ −+= −



 11

the model is given first, permitting prediction of the electroencephalographic data 

which follows. (2) The alpha instability is then presented. In order to underline that 

the model predicts the emergence of seizure activity from resting state data, and 

because previously published data is available, we first present an analysis of the 

model very close to the alpha instability – a “weak” instability. Subsequently, we 

present the full bifurcation of the global model to predict generalized tonic-clonic 

seizures. As with the 3 Hz instability, the model and then the EEG data are studied. 

(3) The global bifurcation is then presented in order to permit potential unification of 

the 3Hz and alpha instabilities. 

 

Absence seizure: Corticothalamic model 

 

We first study the nonlinear instability occurring at approximately 3 Hz. This is 

achieved by choosing physiologically plausible parameters which place the system in 

the vicinity of a weak 3Hz instability (Robinson et al. 2002) as given in Table 1. As 

stated above, vse is then varied in order to study the geometry of the bifurcation set. 

 

The results are presented in Fig. 2. The bifurcation diagram - Panel (a) - exhibits a 

Hopf bifurcation to periodic dynamics with an initial (supercritical) instability at vse 

≈1.8x10-4 Vs and further period-doubling instabilities at vse ≈3.4x10-4 Vs and vse 

≈4.2x10-4 Vs. In this noise-free plot, it can be seen that only periodic oscillations 

occur. An exemplar time series, with added system and measurement noise is given in 

Panel (b). This was created by dynamically ramping vse from the linearly stable 

(weakly damped region) upwards into the region of linear instability (Panel c). The 

dashed lines in Panel (a) show the extreme values of the ramp function. Close-up 

images of the onset (Panel d) and offset (Panel e) of the seizure exhibit a number of 

key phenomena: (1) Shortly after the onset of ramp-up of vse at t=5 s periodic 

oscillations of growing amplitude appear in the field potentials. These occur as the 

system passes through the periodic regime in the bifurcation plot. (2) After two to 

three cycles, spike and slow-wave oscillations appear, heralding the onset of period 

doubling limit-cycle oscillations. These continue throughout the seizure, although 

their amplitude is modulated by the combined effects of system and measurement 

noise. (3) During the ramping down of vse at t=19.5 s the amplitude of the spike and 

wave oscillations diminish. The spikes disappear at approximately t=20.5 s as the 

system passes through the simple period-one regime. (4) Finally, the remaining 

oscillations are damped away and the system returns directly to the same preictal EEG 

state, governed by stable damped stochastic fluctuations. This is reflected in the 

spectrum of the seizure (Panel f), showing similar pre- and post-ictal spectra. The 
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seizure spectrum is dominated by the 3 Hz spike and wave oscillation and its 

harmonics. 

 

A (three dimensional) time-delay embedded phase portrait of a simulated (noise-free) 

seizure is shown in Panel (g). Grey arrows indicate the flow of orbits away from the 

unstable fixed point subsequent to the bifurcation and onto the limit cycle attractor. 

The growth in amplitude of the spike (at the far side of the attractor) can be seen as 

the orbits spiral outwards. The orbits follow the same unstable manifold (but spiraling 

downwards) at the conclusion of the seizure (not shown). Panel (h) depicts the 

morphology of the seizure in the space spanned by the corticocortical, 

corticothalamic, and intrathalamic “stability” variables, x, y, and z. As expected, the 

seizure is located outside the tent-shaped stability zone. Because the seizure 

corresponds to limit cycle dynamics, it can be embedded within this three dimensional 

space without crossing of the orbits (i.e. with uniqueness of the solution curves). This 

indicates that, during such a seizure, a dynamical system of reduced dimensionality 

should be able to sufficiently describe the macroscopic neural dynamics – or, 

equivalently, a relatively small number of physiological processes may be responsible 

for the onset and maintenance of the seizure activity. 

 

Panel (i) shows the spike and slow wave morphology of the three principal fields 

plotted together (cortical excitatory-solid, specific thalamic-dotted and reticular 

thalamic-dashed). It should be noted that such behavior occurs after two period 

doubling bifurcations have occurred: Hence the above dynamics reflect a period-4 

oscillation. Because of this, two full “circuits” through the corticothalamic loop are 

required in order to complete a full Absence waveform. Further simulations within the 

parameter space of 3 Hz nonlinear oscillations yield a variety of spike and wave and 

poly-spike morphologies. The exact wave form is sensitive to changes in the state 

parameters, possibly accounting for the between-subject variance of Absence 

waveforms. This illustration reveals the potential of a corticothalamic model to 

elucidate the mechanisms and sequence of events leading to epileptic waveforms. 

Although a spike may be most apparent firstly in the reticular nucleus in this 

realization, the existence of a spike is an emergent phenomenon of the corticothalamic 

system in the current parameter regime – that is, on a period-two limit-cycle attractor. 

The exact mechanisms of spike formation within this system are beyond the scope of 

the present study. 

 

Absence seizure: Scalp EEG data 

 



 13

The first step of the experimental EEG data analysis was to test the key premise of the 

paper, namely that seizures correspond to bifurcations from linearly stable to 

nonlinear oscillations. As discussed above, this was achieved by using a measure of 

nonlinear predictability and comparing EEG to phase-randomized surrogate data. An 

exemplar Petit Mal seizure (Fz electrode) is shown in Fig. 3, Panel (a). In Panel (b), 

the normalized predictability index is given as the solid line. Plots obtained from 19 

surrogate sets are dashed lines. It can be seen that the occurrence of the seizure is 

coincident with a sudden and large increase in this index of nonlinear structure, 

consistent with the appearance of nonlinear oscillations. Also noteworthy is that the 

pre- and post-ictal EEGs are associated with intermittent and weak nonlinearity, 

evident as occasional increases in the nonlinear predictability of the real compared to 

the surrogate data (arrows).  This is consistent with noisy perturbations of a weakly 

damped nonlinear system. In other words, pre- and post-ictal states represent a system 

close to a bifurcation. Comparable results were observed for all Petit Mal seizures 

studied. 

 

Panels (c) and (d) illustrate an example of a numerically simulated Petit Mal seizure, 

integrated over a comparable time frame to the real seizure. Because the seizure was 

generated by pushing the system briefly through nonlinear bifurcations, it is not 

surprising that a transient increase in nonlinear structure is seen. Prior to, and 

following, the seizure the system has been set just below the Hopf bifurcation (see 

Fig. 2a). Hence, the occasional slight increases in nonlinear structure in the model 

over the surrogate data time series (arrows) during these times are to be expected, 

when fluctuations toward the bifurcation occur.  

 

The nature of the nonlinear oscillations in the Petit Mal seizure, their growth and 

decay is studied in Fig. 4. Panel (a) shows a complete seizure, revealing an 

approaximately symmetrical appearance. The spectrum of this seizure (Panel b) is 

dominated by the 3 Hz spike and wave morphology. Notably, the post-ictal spectrum 

returns rapidly to its featureless pre-ictal form. In Panels (c) and (d) the onset and 

offset of simple periodic, then spike and wave oscillations are clearly visible. A time-

delay embedded reconstruction of this seizure is given in Panel (e). The seizure onset 

(t=3 s to t=5.8 s) is given in blue and the remainder of the seizure (t=5.8 s to t=19.5 s) 

in black. This plot directly illustrates the outward periodic spiral (blue) of the system 

onto a large amplitude oscillatory ‘attractor’, comparable to Fig. 2 Panel (g).  

 

It finally remains to determine the nature of the oscillations during the seizure. We 

refrain from calculating dynamic ‘invariants’ such as Lyapunov spectra, as these are 

notoriously unreliable in short, noisy time series data (Dammig & Mitschke 1993). 
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Rather, we study the first-return map, which is an assumption-free method of 

visualizing the nature of oscillatory dynamics (Perez Valezquez et al. 2003). Briefly, 

level crossings of a dynamical variable are noted. Denote the temporal period between 

successive crossings as Tn. The graph of Tn against Tn-1 gives a truncated 

representation of the full dynamics. A plot of the seizure in Panel (a) is given in Panel 

(f). For ease of interpretation we plot fn=1/Tn - the point-wise frequency of the system. 

The first feature to be noted is that the points fall close to the line fn=fn-1. That is, the 

system is nearly periodic (the level crossing was chosen below the spike so that in 

effect we produce a second-return plot – i.e., a true full period of the oscillation). As 

the arrow denotes, the frequency starts above 3 Hz and quickly falls to approximately 

2.6 Hz. It then varies around 2.6 Hz in a manner without any obvious geometrical 

structure – that is, not confined to any obvious low-dimensional invariant. We 

interpret this as the noisy modulation of a fixed point in this plot – that is, a noisy 

limit cycle of the full dynamics. This is consistent with the findings of a purely 

empirical study using a different methodology (Feucht et al. 1998). 

 

In summary, the evolution of this seizure quantitatively matches that of the numerical 

seizure generated by the corticothalamic model in a number of crucial aspects, namely 

the simple period-doubling manner of onset and offset, the similar pre- and post-ictal 

spectra and the period (two) nature of the full seizure. The bifurcation plot of Fig. 2a 

explains these phenomena. 

 

“Weak” nonlinear alpha instability 

 

Previous analysis of scalp EEG data revealed an increase in amplitude and sharpness 

of the alpha peak during the instances of nonlinear interdependence (Breakspear & 

Terry 2002). Empirical studies alone, however, are unable to test competing 

explanations for this phenomenon whereas the current model permits its explicit 

investigation. The system parameters are first chosen to yield resting state eyes closed 

dynamics, using previously published parameters (Robinson et al. 2002), to yield a 

strongly damped, stable state. Increasing vse towards (but not beyond) the linear 

instability boundary yields a very weakly damped, marginally stable system. 

Comparing the spectral plots of the model in these two states to previously published 

empirical data investigates whether the resting brain functions in the vicinity of a 10 

Hz nonlinear ‘corticothalamic’ instability. The results are presented in Fig. 5. 

 

The empirical results from the database of healthy subjects’ EEG recordings are 

presented in Panels (a)-(d). Panel (a) shows a pair of bipolar derivations (O1-P3 and 

O2-P4) that exhibit strong nonlinear interdependence according to the nonlinear 
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prediction algorithm discussed above. Panel (b) shows data that do not exhibit such a 

property. Note the ‘cleaner’, higher-amplitude alpha oscillations of (a) compared to 

(b). Panels (c) and (d) show the linear and nonlinear properties of these epochs: In (c) 

is shown the cross-spectral density plots of all epochs showing nonlinear 

interdependence (solid) compared to those that do not (dashed). The increased 

amplitude and sharpness of the alpha peak of the ‘nonlinear’ epochs is clearly visible. 

Panel (d) shows the ‘nonlinear interdependence’ prediction errors ∇ H plotted against 

the length of the forward prediction iteration H, for the EEG data (solid lines with 

crosses) compared to an ensemble of 19 ‘surrogate’ data (dashed line). Lower 

prediction errors correspond to stronger nonlinear interdependence. The plain solid 

line denotes the boundary of the null (purely linear) distribution, defined as the 

minimum of the surrogate data. The data pair in Panel (a) yielded the lower prediction 

curve, consistent with strong nonlinear interdependence. The pair in (b) crosses into 

the null distribution after 6 time-steps and is hence classified as containing only linear 

cross-dependence (the root-mean-square of the twenty prediction errors is within the 

root-mean-square of the surrogate distribution).  

 

The corresponding plots for the corticothalamic model are shown in Panels (e)-(h). 

Setting vse=10.4x10-4 Vs places the system close to the alpha instability (see below) 

and yielded data as shown in Panel (e), which exhibits the same waveform as the 

‘nonlinear’ scalp data of Panel (a). In comparison, vse=10.1x10-4 Vs places the system 

further from the instability, hence ensuring strong damping of any nonlinear 

perturbations. This yields the noisier data of Panel (f). Comparing the linear cross-

spectra of these data (Panel g) reveals the same increased amplitude and sharpening of 

the alpha peak derived from the weakly nonlinear data (solid) compared to the 

strongly damped data (dashed). The nonlinear interdependence prediction plots are 

given in Panel (h). The ‘weakly nonlinear’ time series in (e) clearly exhibits nonlinear 

interdependence (solid line with crosses) as the prediction errors are consistently 

smaller than their surrogate counterparts. The strongly damped epoch (solid line with 

stars) yields prediction errors well within the null distribution. 

 

Tonic-clonic seizure: Corticothalamic model 

 

We now study the nonlinear dynamics that follow the instability occurring at 

approximately 10 Hz. This is achieved by increasing vse from that studied in the last 

section. The results are presented in Fig. 6. Bifurcation diagrams are given for both 

the macroscopic field potentials φe (Panel a) and for the pyramidal cell potential Ve 

(Panel b) as the latter reveal additional dynamical structure. Both of these show a 
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region of bistability from µse≅ 9.5 x 10-4 to µse≅ 10.35 x 10-4 Vs. To illustrate this, we 

first plotted the bifurcation from left to right in black and then from right to left in red. 

A “continuation technique” is employed whereby the final system values from a 

previous parameter value are used as the initial conditions when that parameter is 

changed (either up or down). Hence the region of bistability is revealed when both red 

and black solutions can be viewed separately. Otherwise black solutions are overlaid 

by red.  

 

What are implications of this bistable region for the dynamics? An exemplar 

numerical time series is given in (c). The corresponding values of vse are given in (d).  

The system is initialized on the linearly stable (black) arm within the bistable zone, 

close to the linear instability vse≅ 10.2 x 10-4 Vs. Next, vse is increased to vse=10.45 x 

10-4 Vs. The system bifurcates from the fixed point at vse≅ 10.3 x 10-4 Vs (Arrow 1). At 

this point, the fixed point becomes an unstable spiral and the orbits hence grow 

exponentially in amplitude (Panel f), reaching the large amplitude attractor seen to the 

right of the instability. The structure of Ve reveals that this is a period 6 attractor. If vse 

is then decreased (Arrow 2), the system does not become immediately unstable, but 

rather tracks back through parameter space on this large amplitude attractor. This 

explains the ongoing existence of large amplitude oscillations in the time series. 

When vse<9.8 x 10-4 Vs the attractor does again become unstable and the orbits 

collapse back onto the fixed point (Arrow 3). Although the system is back on the 

fixed point attractor, it has reached this state in quite a different (more strongly 

damped) region than its initial configuration: In order to return to the original state, it 

is necessary for vse to be increased again to vse=10.25 x 10-4 Vs.  

 

This ‘loop’ through parameter space creates a distinctive fingerprint in the spectral 

plot (Panel e). Prior to the onset of the seizure, the spectrum displays the characteristic 

alpha peak of resting state EEG. The power within this peak increases after the 

bifurcation has been passed, and as the orbits grow exponentially toward the large-

amplitude attractor. This power is particularly strongly expressed during the seizure. 

Due to the nonlinear nature of the oscillations, higher order harmonics (at 20 Hz, 30 

Hz, 40 Hz, etc) are clearly evident. Due to the bistability, this pattern remains evident 

even though vse is dropping below its initial value (Panel d). Once vse<9.8 x 10-4 Vs, 

the attractor loses stability and the system returns to the stable linear regime. 

However, because of the strong nonlinear damping, the overall spectral power is 

much diminished. Note that power across all frequencies is lower and the alpha peak 

is absent. The characteristic alpha peak returns when vse is restored to its initial value 

(10.25 x 10-4 Vs). 
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Figure 6 (g) shows the large amplitude attractor (in black) that occurs when vse is 

increased across the bifurcation point. The red orbits show the exponential growth in 

amplitude towards this attractor once the fixed point has become unstable. In (h) the 

attractor is depicted again in relationship to the tent-shaped stability zone in the 

truncated space spanned by the stability variables, x, y and z. For this panel, all 

(system and parameter) noise has been with-held, revealing a periodic underlying 

attractor. An additional feature of the spectral plot (e) during the seizure, most notable 

at higher frequencies (e.g. between 40 and 50Hz) is the existence of subharmonics at 

approximately 1/3 and 2/3 of the fundamental frequency. This reflects the period 6 

character of the seizure attractor. 

 

Grand mal seizure: Scalp EEG data 

 

As with the Petit Mal seizure, we first investigate whether Grand Mal seizures 

correspond to the expression of nonlinear structure in scalp EEG. Figure 7 shows a 

seizure (Panel a) together with its nonlinear time series analysis (b). Prior to the 

seizure (t<80 s) there is evidence of nonlinear structure in the EEG only weakly at 

t~53 s. Immediately after the seizure onset (80-110 s) there exists evidence of 

nonlinearity in three of four consecutive epochs. There then follows a period (110-140 

s) during which time, according to the nonlinear prediction technique, there is no 

evidence of nonlinear structure. Notably, the variance of the surrogate (null) 

distribution is particularly narrow during this period. The significance of this and the 

limitations of the nonlinear algorithm are discussed below. Strong nonlinear structure 

is then evident until the seizure terminates (~155 s). There is no nonlinearity evident 

for the remainder of the recording. 

 

A corresponding model simulation is given in Panels (d-f): Nonlinear structure is 

evident weakly in the first half of the time series as vse is held just below the 

bifurcation point (f). Strong nonlinear structure appears as soon as vse crosses the 

bifurcation point and remains evident until the seizure offset. Subsequently, there is a 

period of time during which nonlinear structure is strongly suppressed. It weakly re-

emerges once the alpha power is restored toward the end of the simulation (t>45 s). 

 

Hence there is evidence for an increase in nonlinear structure in the Grand Mal data, 

although it much less striking than the Petit Mal seizure. Figure 7(c) shows the 

spectral density plot for the experimental data. As with the numerical seizure, 

increased power in the 10 Hz frequency peak coincides with the seizure onset 

(approx. 90 s). A peak persists throughout the seizure, although the peak frequency 
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slows considerably. At one stage (~100 s), two such peaks are visible. In comparison, 

the single peak frequency of the model seizure falls only marginally prior to the 

seizure offset (Fig. 6e). Of particular note is that, as with the model seizure, the 

experimental spectrum shows a marked post-ictal suppression of power across all 

frequencies (at ~155 s). As discussed above, this is the critical fingerprint of 

traversing the bistable 10 Hz bifurcation diagram. Such a feature is also reflected in 

the highly asymmetrical character of both the modeled and experimental seizure. 

 

Another critical feature of the epilepsy spectrum is the extremely strong increase in 

broad spectrum (10-50 Hz) power from t ~ 120 s until seizure termination. Given that 

this is a scalp EEG recording, such power putatively reflects EMG contamination 

corresponding to the motor output of the seizure. It can be seen that this corresponds 

to the period of time during which the nonlinear prediction algorithm failed to find 

nonlinear structure in the data (Panel b). It is probable that any putative nonlinear 

structure would be obscured by the high amplitude noise, which also explains the 

small variance of the nonlinear index in the surrogate data. By comparison, no such 

EMG effect occurs in Petit Mal activity, so that the signal-noise ratio is more 

favorable. 

 

The properties of the seizure are explored in further detail in Fig. 8. Panel (a) shows 

the onset of the seizure. A rapid nonlinear growth of orbit amplitude is clearly visible 

and this proves to be close to exponential. This is hence consistent with dynamical 

evolution away from an unstable spiral outset as observed in the model. Comparing 

the seizure onset with the seizure termination (b) reveals a number of features. Firstly, 

in distinction to the Petit Mal seizure, the waveform has changed markedly – 

suggesting nonstationarity of the dynamics. The frequency has fallen and the 

waveform now has spike and slow waves. Secondly, the abrupt seizure offset is 

visible, and thirdly, the post-ictal EEG suppression can be seen. The strong 

nonstationarity of the dynamics represents an additional obstacle for the nonlinear 

prediction algorithms employed in Fig. 7. However the marked temporal asymmetry 

of each oscillation visible just prior to seizure termination is a classic feature of 

nonlinear dynamics (Stam et al. 1998). 

 

In the model seizure presented above, only the single parameter vse was varied. It is 

inevitable that, during a lengthy seizure, other physiological parameters may vary as a 

consequence of the abnormally high activity and/or hypoxia resulting from 

disruptions to normal respiratory effort. Other parameters may additionally be varied 

by regulatory mechanisms in order to terminate the seizure (Engel et al. 1997, 

McCormick & Contreras 2001). One parameter that would be expected to vary is the 
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corticothalamic delay term t0, as this depends upon axonal and synaptic transit times 

which may be hindered by both sustained high activity (Poolos et al. 1987) and 

hypoxia - leading, for example, to changes in ion concentration and diminished pre-

synaptic neurotransmitter supply. The total transit time for a complete seizure also 

depends upon the membrane time constants α and β – which would also be affected 

by these factors (although we do not explicitly model these affects here).  

 

A numerical simulation is presented in Fig. 9. This was obtained by increasing t0 

linearly from 80 ms to a “grossly pathological” 250 ms during the seizure, and then 

allowing it to return to its normal value after the seizure has terminated. The time 

series (a) and spectrum (b) reveal that the peak seizure frequency falls appreciably, as 

observed experimentally. The bistability “fingerprint” remains evident in the post-

ictal spectral suppression. Introducing a second parameter nonstationarity has the 

additional effect of increasing the nonstationarity of the seizure waveform, so that a 

spike and slow wave morphology is now also observed in the model seizure (Panel c).  

 

It must be emphasized that this is an exploratory illustration of varying one additional 

parameter after seizure initiation to simulate the secondary effect of a seizure 

(sustained high frequency neuronal activity in a hypoxic environment) on neuronal 

physiology. An attempt to capture all the variance in the seizure dynamics through 

manipulation of a large number of system parameters (within their pathophysiological 

ranges) will be the subject of future research. 

 

Global Bifurcation Diagram 

 

Figures 2(a) and 6(a) illustrate local bifurcation diagrams obtained by varying the 

single parameter vse. Each can be thought of as a one dimensional cross-section 

through the larger ‘global’ bifurcation set spanned by all of the model’s free 

parameters. It is natural to enquire as to the nature of such a set, which may shed light 

on a range of possible transitions to seizure activity in addition to being of 

mathematical interest in its own right.  

 

The contrasting shape of the two local bifurcations suggests that they may be related 

through a simple ‘unfolding’ of the bistability region of Fig. 6(a) into the Hopf 

bifurcation of Fig 2(a). That is, the region of bistability would be expected to grow 

smaller until the fixed point became unstable to the left (rather than the right) of the 

onset of the large amplitude oscillations of Fig. 6(a). This hypothesis is motivated by 

the observation that such an unfolding is one of the basic geometric forms of all 

global bifurcation sets (Thom 1975). In order to test this hypothesis we generated a 
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series of bifurcation diagrams stretching between those of Figs 2(a) and 6(a) in 

parameter space. This was achieved by linear interpolation of all parameters that vary 

between these two figures, as given in columns 2 and 3 of Table 1. A total of 100 such 

intervening plots were produced. The pertinent plots are given in Fig. 10. In Panel (a) 

is the “tonic-clonic” bifurcation of Fig. 6 and in Panel (e) is the “Absence” bifurcation 

of Fig. 2. The critical transition between the two types of bifurcations occurs 

approximately 60-65% of the distance (in parameter space) between these two Panels. 

Panel (b) shows the interpolation at 61% of the distance. Surprisingly, it can be seen 

that the fixed point has undergone a Hopf type bifurcation within the zone of 

bistability. To the left of this instability, there hence exists both fixed point and high 

amplitude 10 Hz (aperiodic) oscillations: To right of this instability, the same 10 Hz 

oscillations coexist with smaller amplitude 3 Hz periodic oscillations. Panel (c) shows 

interpolation 63% of the distance. It can be seen that the Hopf bifurcation to 3 Hz 

activity occurs to the left of the region of bistability. Hence 10 Hz aperiodic and 3 Hz 

periodic oscillations coexist within this region. By 64% of the distance (Panel d), the 

Hopf and subsequent period-doubling bifurcations are now the only apparent 

nonlinear instabilities: The 10 Hz aperiodic branch of the tonic-clonic seizure cannot 

be accessed in this region of parameter space. Such a period doubling-type bifurcation 

set continues until the Absence case (Panel e) is reached. 

 

Hence, rather than there being a smooth transition between the two bifurcations, we 

instead see that they intersect orthogonally. This implies that both seizure types may 

coexist in the same region of parameter space and reflects upon the complexity of the 

high dimensional dynamics of brain systems. 

 

Conclusion 
 

By performing the bifurcation analysis of a model of large-scale brain activity, this 

paper presents a parsimonious and unifying explanation of the defining features of the 

two major human generalized seizures – and their main differences. In summary, we 

observed a period-doubling bifurcation from healthy resting EEG to Absence (3Hz) 

seizures. This yielded time series realizations with periodic spike-and-wave 

morphology with close similarity to scalp EEG data taken from an Absence seizure 

data base. Moreover, the nature of the bifurcation set yields a symmetrical on-off 

character that is also found in the EEG data. In contrast, the bifurcation diagram for 

tonic-clonic (10Hz) seizures shows a sudden, discontinuous transition from damped 

(fixed point) dynamics to large-amplitude nonlinear oscillations with aperiodic 

behavior. The bifurcation set was of a “subcritical” nature – that is, associated with 
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bistable behavior. This yielded time series realizations compatible with tonic-clonic 

seizures. Critically, once the seizure commenced, the system displays high amplitude 

aperiodic oscillations and is required to traverse a considerable distance through 

parameter space before a stable (damped) linear regime re-emerges. This provides the 

explanation for the difference between pre- and post-ictal EEG spectra and cognitive 

states that is a defining feature of tonic-clonic seizures. This is the central finding of 

this study. It extends upon and tests the predictions concerning the onset of epileptic 

activity in Robinson et al. (2002) that seizure phenomena arises when corticothalamic 

dynamics lose linear stability in specific regions of parameter space. We are not aware 

of any prior unifying explanations for these key features of the generalized seizures. 

 

A common criticism of many physiologically-based models of neural activity is that 

their numerous parameters undermine their explanatory power. Whilst this is an 

important consideration, a number of features of the current study are relevant in this 

regards. Firstly, the model we employed was not formulated specifically to generate 

seizure waveforms but rather to incorporate the critical features of corticothalamic 

dynamics to describe and predict the EEG temporal and spatial spectra in healthy 

resting and sleep states – when the activity is weakly damped and the nonlinearities 

can be neglected (Robinson et al. 1997, 2001, 2002, O’Connor et al. 2004). In the 

model, as in the clinical setting, seizures arise from ‘background’ resting EEG states 

when - due to a slight change in an underlying physiological property - the 

nonlinearity surpasses a critical threshold. The behavior of the model’s dynamical 

variables during nonlinear dynamics permits predictions to be made regarding real 

physiological processes. In the present study, such prior predictions (Robinson et al. 

2002) were further elaborated and compared to physiological data. Secondly, we 

observed that setting the model within the “resting state” regime but in the vicinity of 

a bifurcation point yielded weakly nonlinear alpha oscillations consistent with 

previous nonlinear analyses of resting EEG data (Stam et al. 1999, Breakspear & 

Terry 2002a). Thirdly, there are no free parameters in the sense that they all 

correspond to discrete physiological processes that have been constrained by 

independent empirical estimates and matched against a large data base of EEG spectra 

(Robinson et al. 2004). We used previously published parameters and did not perform 

any a priori exploration of parameter space. Fourthly, our numeric simulations 

yielded a number of phenomena which did lend themselves to potential refutation, 

such as the periodic nature of the Petit Mal seizures and the spectral properties of pre- 

and post ictal EEG. Finally, we employed a nonlinear prediction algorithm in order to 

test the main conjecture of the paper – that the onset of generalized seizures 

corresponds to a bifurcation from damped to strongly nonlinear behavior. The present 
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study hence represents a predictive application of an existing model in a novel 

direction, rather than an exploratory or confirmatory study. 

 

Several interesting questions remain to be answered. Firstly, does the onset of the 

spike and slow wave morphology represent the smooth deformation of a limit cycle 

attractor, or the superposition of two cycles. The present study suggests the latter 

possibility, although this requires explicit analysis of the nonlinear stability properties 

of the limit cycle. Secondly, the corticothalamic model employed above does not 

explicitly include T-channels within the thalamus (although the present model is not 

inconsistent with such channels). T-channels, which show a refractory period 

following sustained bursting, have been incorporated into related neural population 

models of 3 Hz absence seizures (Destexhe & Sejnowski 2001). Destexhe and 

Sejnowski treated axonal propagation times as negligible and hence there was no 

time-delay. In comparison, the presence of time-delayed corticothalamic feedback is a 

crucial ingredient in the Petit Mal waveform we observed. In fact, qualitatively 

similar spike-wave oscillations can be generated by our model with a variety of time-

delayed feedback loops which differ in some detail from those presented above. This 

is interesting, since it is known experimentally that Petit Mal seizures can arise as a 

result of changes in a number of different neuronal pathways. However, the present 

model incorporates the important components of the corticothalamic system together 

with the time delays that – due to finite axonal conduction speeds - are present in the 

brain (Meeren et al. 2002). Interestingly, although there are some differences in 

comparison to the Destexhe & Sejnowski model, both models emphasize the 

increased excitatory loops between the cortex and the specific and reticular nuclei of 

the thalamus underlying the generalized seizures. Thirdly, recent analysis reveals that 

spikes can be generated without any time-delayed loops at all: These may provide an 

explanation for purely cortically-generated spikes (McCormick & Contreras 2001).  

 

For this study, we investigated a larger number of clinical seizures than were 

presented in the paper. However, the properties of these seizures that are pertinent to 

the validity of the model – such as the periodic waveform of the Petit Mal seizure – 

are the common and defining features of these seizure types and not at all limited to 

the examples presented. Furthermore, some features of the corticothalamic model 

seizures, such as the higher harmonics of the Grand Mal seizure (Figs 6e, 9b) were 

not present in our EEG examples. However, these harmonics are quite obvious in 

intra-cranial EEG recordings of Grand Mal seizures (Schiff et al. 2000), suggesting 

that they are simply obscured by the EMG activity present in scalp recordings.  
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It also important to note that the present paper employed primarily numerical analysis 

of the proposed corticothalamic model. Numerical analysis of delay-differential 

equations has its own caveats, such as the choice of the time-delayed values of the 

numerical interpolations. We chose a third-degree (cubic) interpolate and observed 

almost identical results for a variety of time. Increasing the time step or decreasing the 

accuracy of the time-delayed interpolates has the effect, as expected, of decreasing the 

values of vse at which bifurcations occur. This is consistent with the presence of 

multiplicative numerical noise. We are currently undertaking a formal stability 

(Lyapunov) analysis in order to complement the results presented here. 

 

To illustrate the effect of hypoxia and neural fatigue on the modeled Grand Mal 

seizure, we linearly increased the corticothalamic conduction delay. This had the 

effect of slowing the peak seizure frequency, imparting the “chirp” property observed 

in the clinical recordings (Schiff et al. 2000). Whilst it is unlikely that the 

corticothalamic delay would increase as markedly (from 80 ms to 250 ms) as in the 

exemplar seizure we present, it is probable that other physiological processes would 

also be affected by the impact of a grand mal seizure. Rather than attempting to study 

the influence of many changing parameters simultaneously, we choose to vary only a 

single likely target of hypoxia and neural fatigue – corticothalamic conduction time. 

Future work could study the manipulation of other model parameters. Such work, 

together with the incorporation of other physiological mechanisms into the model 

(such as T-channels) may have the effect of improving the match between the model 

seizure waveform and the properties of the clinical EEG. Mismatches between a 

model and the observed phenomena are, in fact, to be expected whenever relevant 

physiological mechanisms are omitted as they indicate precisely where the model is 

insufficient. Simply adding more and more detail to a model, however, without testing 

simpler realizations, adds to the validation problem discussed above. Critically, the 

present paper illustrates that a relatively simplified corticothalamic model is able to 

capture and explain the key features of the generalized seizures in a novel, unified 

manner. Physical models play an important integrative role in all of the physical 

sciences: There is no reason to believe that the brain should be an exception. 
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Appendix A 
 

In this appendix we first give the eight first order delay-differential equations 

describing the brain in the spatially uniform case, followed by an outline of the 

stability variables x, y, and z. 

 

A1. First order delay-differential equations for the spatially uniform model 

 

We assume that intracortical connectivities are proportional to the numbers of 

synapses involved, implying Vi=Ve and Qi=Qe (Robinson et al. 2002), so that the 

cortical inhibitory and excitatory processes are enslaved. The smallness of ri and the 

thalamic nuclei allow us to set γc≈∞, c=i,r,s, yielding the local approximation from 

Eqs. (2) and (7),  φc(t)=S[Vc(t)]. 

 

Thus from Equations (2) and (4-7), we obtain 
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A2. Reduced parameter space 

 

Linear stability analysis suggests a three-dimensional parameterization of low 

frequency instabilities, defining an xyz coordinate space by (Robinson et al. 2002) 

 

(A9) 

 

(A10) 

 

(A11) 

 

where gain Gab=ρavab is the response in neurons a to unit input from neurons b, 

sigmoid slope ρa=dS(Va)/dVa, with Gese=GesGse, Gesre=GesGsrGre, and Gsrs=GsrGrs for 

convenience. In previous work, these parameters have only been used in the steady 

state where they were derived. Here we take them to define a coordinate 

transformation of the dynamical variables Va. 
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Figure captions 

 

Figure 1 

Linear stability zone for the corticothalamic model within the truncated space spanned 

by the three stability variables x, y, and z. The shaded surface represents the values at 

which the system loses instability at slow (red), spindle (blue) and alpha frequencies 

(green). Within the tent are shown representative values for eyes closed, eyes open 

and sleep stages 1, 2, and 4. The present study concerns the onset of nonlinear 

oscillations as the system passes outside of the stability zone. 

 

Figure 2 

Results for 3 Hz bifurcation analysis in the corticothalamic model. (a) Bifurcation 

diagram. Time series of (b) the cortical excitatory field potentials φe and (c) the 

corresponding (noise perturbed) corticothalamic ‘gain parameter vse. Period doubling 

oscillations evident at the seizure onset (d) and offset (e). (f) Color contour 

representation of the dynamic spectrogram of φe. (g) Time delayed phase portrait of 

the seizure onset transient and seizure attractor. Arrows indicate the direction of flow. 

(h) Seizure plotted within the phase space spanned by the “stability parameters” x, y, 

and z. (i) Dynamics of the cortical φe (solid) specific thalamic φs (dotted) and reticular 

thalamic φr (dashed) activities. 

 

Figure 3 

Nonlinear time series analysis of the EEG Petit Mal seizure (left column) and 

corticothalamic 3Hz seizure (right column). (a) EEG seizure (F3 electrode) and (b) 

evolution of the “nonlinear predictability index” (NPI). Solid line is the real data and 

dotted lines are derived from the 19 surrogate data sets. (c) Excitatory cortical field 

potential φe and (d) corresponding NPI evolution of the corticothalamic model. 

Arrows show instances of “weak” nonlinear structure (slight increases in the real 

compared to the surrogate nonlinear indices) before and after the seizure. 

 

Figure 4 

Analysis of scalp EEG data from channel Fz. (a) Entire seizure and (b) corresponding 

dynamic spectrogram showing strong 3 Hz peak and multiple harmonics. Seizure (c) 

onset and (d) offset. (e) Time-delayed phase portrait. (f) Peak-to-peak frequency first 

return map. 

 

Figure 5 
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Nonlinear and linear characteristics of scalp EEG (a-d) and modeled cortical field 

potentials (e-h). (a) A pair of posterior bipolar EEG recordings which exhibit 

nonlinear interdependence. (b) The same electrodes where there was only linear 

interdependence. (c) Spectra of panel a. (solid) and b. (dashed), (d) Nonlinear 

prediction errors for 20 future iterates. Dashed lines are for surrogate data. The plain 

solid line shows the lower limit of the null (surrogate) realizations (from Breakspear 

& Terry 2002). The two solid lines with crosses show the results for the bipolar 

recordings in (a) and (b). The lower of these is from panel (a). Time series realizations 

of the model with (e) vse=10.4x10-4 and (f) vse=10.1x10-4. (g) Power spectra of panel e. 

(solid) and f. (dashed). (h) The solid lines with crosses are the nonlinear prediction 

errors for panel (e) and (f). The lower of these is from panel (e). 

 

Figure 6 

Bifurcation diagram for the 10Hz instability for (a) φe and (b) Ve. Both are plotted left 

to right in black and thence right to left in red. The bistable window is evident when 

both black and red are visible (otherwise the black is overlaid by red). Arrows in 

panel (a) mark the sequence of events described in the text. Numerical time series for 

φe (c) with corresponding values of the state parameter vse. Arrows are as for panel (a). 

(e) Corresponding dynamic spectrogram. (f) Close-up of seizure onset, showing 

exponential growth of amplitudes. (g) Phase portrait spanned by the three field 

potentials φe, φs, and φr. Red shows transient outset from the (unstable) fixed point. 

Black shows aperiodic attractor. 

 

Figure 7 

Nonlinear time series analysis of the EEG Grand Mal seizure (left column) and 

corticothalamic 10 Hz seizure (right column). (a) EEG seizure (Cz electrode) and (b) 

evolution of the “nonlinear predictability index” (NPI). Solid line is the real data and 

dotted lines are derived from the 19 surrogate data sets. (c) Corresponding spectra of 

seizure. (d) Excitatory cortical field potential φe, (e) corresponding NPI evolution of 

corticothalamic model and the corresponding (noise perturbed) corticothalamic 

parameter vse (f). 

 

Figure 8 

Close-up image of (a) the onset and (b) offset of the EEG Grand Mal seizure depicted 

in Figure 6. Note the nonlinear amplitude growth during the seizure onset. 

 

Figure 9 
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Numerical simulation of the corticothalamic model with additional linear increase of 

corticothalamic delay time t0 during the seizure. (a) Entire seizure. (b) Spectrum. (c) 

Close-up of the seizure termination. 

 

Figure 10 

Global bifurcation diagram, visdualised by linear interpolation of all parameters 

between those for the (a) 10 Hz instability and (e) 3 Hz instability. Interpolates at  (b) 

61%, (c) 63% and (d) 64% of the interpolated distance, in parameter space, between 

(a) and (e). 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 4  
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Figure 5 (a)-(d) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Breakspear, et al. (2005) 

Figure 5 (a) – (d) 
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Figure 5 (e)-(h) 
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Figure 5 (e) – (h) 
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Figure 6 
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Figure 6(a)-(b) 
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Figure 6 (c)-(h) 
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Figure 7  
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Figure 8 
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Figure 9 
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Figure 10 
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Figure 10 
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Table 1 
 
 

Quantity 
Value for 

Absence Seizure 
Value for Tonic-
Clonic Seizure 

Unit Meaning 

 

Qmax 

 

� 

 

σ 

 

γe 

 

α 

 

β 

 

t0 

 

µee 

 

-µei 

 

µes 

 

µse 

 

-µsr 

 

µsnφn 

 

µre 

 

µrs 

 

 

250 

 

15 

 

6 

 

100 

 

50 

 

200 

 

80 

 

1.0 

 

1.8 

 

3.2 

 

4.4 

 

0.8 

 

2.0 

 

1.6 

 

0.6 

 

 

250 

 

15 

 

6 

 

100 

 

60 

 

240 

 

80 

 

1.2 

 

1.8 

 

1.4 

 

1.0 

 

1.0 

 

1.0 

 

0.2 

 

0.2 

 

 

s-1 

 

mV 

 

mV 

 

s-1 

 

s-1 

 

s-1 

 

ms 

 

mV s 

 

mV s 

 

mV s 

 

mV s 

 

mV s 

 

mV s 

 

mV s 

 

mV s 

 

 

Maximum firing rate 

 

Mean neuronal threshold 

 

Threshold variability 

 

Ratio of conduction velocity to mean 

range of axons 

Inverse rise time of membrane 

 

Inverse decay time of potential 

 

Corticothalamic return time (complete 

return loop) 

Excitatory cortico-cortical gain 

 

Inhibitory corticocortical gain 

 

Specific thalamic nuclei to cortical gain 

 

Cortical to specific thalamic nuclei gain 

 

Thalamic reticular nucleus to specific 

thalamic nucleus gain 

Nonspecific subthalamic input onto 

specific thalamic nuclei 

Excitatory cortical to thalamic reticular 

nucleus gain 

Specific to reticular thalamic nuclei gain 
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