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Abstract—This paper presents photovoltaic-oriented nodal
analysis (PVONA), a general and flexible tool for efficient
spatially resolved simulations for photovoltaic (PV) cells and
modules. This approach overcomes the major problem of
the conventional Simulation Program with Integrated Circuit
Emphasis-based approaches for solving circuit network models,
which is the limited number of nodes that can be simulated due
to memory and computing time requirements. PVONA integrates
a specifically designed sparse data structure and a graphics
processing unit-based parallel conjugate gradient algorithm
into a PV-oriented iterative Newton—Raphson solver. This first
avoids the complicated and time-consuming netlist parsing,
second saves memory space, and third accelerates the simulation
procedure. In the tests, PVONA generated the local current and
voltage maps of a model with 316 x 316 nodes with a thin-film
PV cell in 15 s, i.e., using only 4.6% of the time required by
the latest LTSpice package. The 2-D characterization is used as
a case study and the potential application of PVONA toward
quantitative analysis of electroluminescence are discussed.

Index Terms— Circuit simulation, nodal analysis, numerical
simulation, parallel computing, photovoltaic (PV) cells.

I. INTRODUCTION

HOTOVOLTAIC (PV) cells are often simplified as a

lumped diode model without spatial considerations. This
is a simplification which is only valid for small cells in rela-
tively low irradiances. This approximation is not valid, e.g., in
the case of devices with very high currents (e.g., concentrator
devices) or larger thin film devices with strong lateral resis-
tance effects. The effect of this on the current-voltage (I-V)
curve is demonstrated [1] when considering lateral resistances
in a thin-film device using a 1-D distributed model. Moreover,
the lumped model does not allow the representation of faults
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seen in a production environment. Methods of quality control
currently are largely /-V measurements, which show the
effect of any production issue but not the issue itself. With the
development of modern scanning and imaging characterization
methods, e.g., laser-beam-induced current [2], electrolumines-
cence (EL) [3], photoluminescence [4], and lock-in thermog-
raphy [5], some manufacturers are moving to include spatial
measurement techniques into their quality control. However,
the commonly used luminescence imaging in industrial envi-
ronments is often qualitative and thus does not realize the
full potential of these measurements. This requires a tool that
allows the modeling of the local electrical properties in a 2-D
approach, with reasonable spatial resolution (e.g., equivalent
to a mega-pixel image) in an industrially relevant speed. This
paper will present such a simulation engine that can be used
in computing intensive high-resolution simulations.

2-D modeling techniques take the spatial nature of devices
into account and were mainly done by circuit simulation
tools, e.g., Simulation Program with Integrated Circuit
Emphasis (SPICE) derivatives. Galiana et al. [6] presented a
model with detailed parameterization for concentrator PV cells
and demonstrated its fidelity on depicting localized properties.
Eidelloth et al. [7] proposed an elaborate model structure
for wafer-based cells with metal contact grid. However, the
case study of a 400 x 400 nodes simulation requires a 5-GB
memory space and 8 h for a single bias condition.
Vorasayan et al. [8] and Ott et al. [9] simplified model
structures were implemented, and simulations for mismatched
thin-film modules were achieved. Pieters [10], [11] further
introduced a variable meshing system to adjust the resolution
and can describe complicated geometric patterns of the contact
grid.

The 2-D approach for describing PV devices has been
widely accepted and applied. Grabitz et al. [12] utilized
a multidiode model to study how the overall performance
of solar cells deteriorates with increasing inhomogeneities.
Grote et al. [13] and Hinken er al. [14] investigated lateral
variations in solar cells using SPICE-based approaches.
Michl et al. [15] reviewed and analyzed series resistance mea-
surement methods based on luminescence imaging techniques,
and Bothe and Hinken [16] advanced this by implementing
quantitative EL analysis using network modeling and
simulations. Haase ef al. [17] and Petermann er al. [18]
employed 2-D models on loss analyses, respectively, which
were also SPICE based.
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However, the SPICE-based approaches require not only
complicated preparation (e.g., generating and parsing net lists)
but also significant memory consumption and long execution
time increasing quadratically with node number, which rule
them out for high-resolution simulations, e.g., a full-resolution
EL image, in industrial environments. Recently, simulation
approaches based on the finite-element method have
been proposed [19] for 2-D modeling of PV cells with high
computational speeds, based on an advanced meshing strategy.
The meshing may reduce computational loads when carrying
out simulations but does not link directly to the measurements
taken, e.g., by a camera and needs to be adjusted in a
case-by-case basis as it otherwise might lose information of
defects in the wrong locations. Thus, it is complementary to
SPICE-based modeling in generating understanding of the
effects of faults, though SPICE may be better when it comes
to creating tools for the analysis of imaging measurements.

A PV-oriented nodal analysis (PVONA) is presented in
this paper that allows efficient 2-D simulations of PV cells
and modules. This is achieved by integrating a specifically
designed sparse data structure and a graphics processing
unit (GPU)-based parallel conjugate gradient (CG) algorithm
into a PV-oriented Newton—Raphson solver. Tests based on a
normal PC with a consumer-level graphics card and achieved
significantly improvements than the conventional SPICE-based
approaches, demonstrating the ability to simulate mega-pixel
camera images (which is not possible in many SPICE deriva-
tives due to memory allocation issues) and requiring about 5%
of the time required by a SPICE version used for comparative
purposes. The approach could be easily deployed on various
high-power parallel computing platforms, which should allow
deployment in industrial applications.

II. SPATIALLY RESOLVED MODELING FOR PV CELLS

Spatially resolved modeling allows the investigation of the
local electrical properties in a large-area device. The local
characteristics of a PV cell can be described as a Poisson
problem as given in [10]. However, analytically solving the
continuous Poisson equation can be inefficient. Using circuit
simulation to solve a discrete equivalent circuit model,
i.e., a spatially resolved model (SRM), then becomes a
commonly accepted alternative.

An SRM of a PV cell is composed by an array of finite
areas, i.e., subcells, where each one is an analogue of a
segment of the PV material. It makes the assumption that
current through the solar cell is only in the vertical direction
and thus the device can be broken down into virtual subcells
or nodes that do not interact with each other except for
resistances that represent the contacts and lateral currents [8].
As sketched in Fig. 1(a), each subcell (block with an arrow)
represents a rectangular-shaped segment of the bulk, while
the resistor network on the top represents the front contact
scheme. Since the resistivity of the metal contact is low
and can be assumed uniform, the back contact scheme is
neglected in this paper, as done in [6] and [20]. The benefit
of this simplification will be seen when constructing the
nodal equation system (Section III-B). The front resistor
network can be configured to suit both the contact grid for
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Fig. 1. (a) Schematic of the SRM structure of a PV cell. (b) and (c) Simulated
voltage maps of a thin-film cell and a wafer-based cell operating under their
maximum power points, respectively.
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Fig. 2. (a) Schematic of a subcell. (b) Single-diode model used as the
PV unit in a subcell.

TABLE I
CALCULATION OF THE LOCALIZED ELECTRICAL PARAMETERS
WITH RESPECT TO THE MESH SIZE

Photocurrent (Iph) Jonwl
Dark saturation current (/) Jsat Wl
Ideality factor () n
Internal series resistance (R,) I;/wl
Front sheet resistance (Ru) paw/ld or pgl/wd
Shunt resistance (Ry;) Ly /Wl

wafer-based cells and the transparent conducting oxide sheet
for thin-film devices, as demonstrated in Fig. 1(b) and (c),
respectively.

A subcell is the elementary component of the SRM, as
shown in Fig. 2(a). A subcell is composed by two lateral
resistors for the front contact scheme and a PV unit. The
PV unit is represented by a diode model that reflects the
behavior of the semiconductor material used. In this paper,
the single-diode model, as shown in Fig. 2(b), is used for
demonstration purposes, while it can be easily replaced by
double-diode model or Merten’s model [21]. In this paper,
only rectangular (square by default) meshes are used as this
links to the pixel resolution delivered by EL cameras. The
mesh size depends on the resolution of the model and remains
invariable throughout each simulation. The local electrical
parameters of each subcell are corrected with respect to their
geometries [1], [6], as shown in Table I. Here, w and [ are
the width and length of a subcell, respectively; Jpn is the
photocurrent density; Jgat is the diode dark saturation current
density; n is the diode ideality factor; Iy is the internal series
resistance corrected by the area; I'sp is the shunt resistance
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Fig. 3. 3-D chart shows the ratio of zero elements in the G matrix as the
size of the SRM increases.

corrected by the area; and pw and d are the resistivity and
thickness of the front layer, respectively.

III. SPARSE NODAL EQUATION SYSTEM

A. Nodal Equation System and Sparsity

Using nodal analysis or its derivatives is the most common
way to solve a circuit network [22]. The complete nodal
equation system (NES) of a model can be organized into a
matrix—vector form as given in

GV =1I (1

where V is the unknown vector of node voltages, G is the
admittance matrix, and I is the current vector containing all
the independent current sources. The target of nodal analysis
is to solve the node voltages V, through which all the local
operating conditions in the circuit can be derived.

For the SRM of a PV cell, special features can be found
in the NES. The admittance matrix G represents the ohmic
interconnections between adjacent nodes in the circuit as
given in

N1 o

— i=j

Gij = b:llRlb | o

R;j Rj; ’ i#J

where 1 < i, j < (the number of nodes), N is the total number

of branches connected to the ith node, and R;; represents

the resistance between the ith and jth nodes. Therefore, G is

first symmetric and second highly sparse when the size of the

model is large (for example, zero elements occupy 99.95%

space in an SRM with a size 100 x 100, which increases with

bigger sizes), as shown in Fig. 3. Moreover, the G matrix is
strictly diagonally dominant [23] by satisfying

)

N

Giil > D |Gal, 1<i<N. 3)
k=1,k#i

Being symmetric and strictly diagonally dominant, G is
guaranteed to be positive definite [24]. This special feature
is not satisfied in most general circuit simulation scenarios
(an SRM including the full back contact scheme only holds
positive semidefinite) and enables efficient numerical solvers
to be applied for solving (1).

B. Sparse PV-Oriented Data Structure

For an SRM consisting of R rows and C columns, the
RC +1 nodes (one top node for each subcell plus one positive
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Fig. 4. Schematic of a node object in the SpNES data structure and its
indexing mechanism in matrix—vector multiplications.

terminal node, while the negative terminal is set as the
reference) produce a G matrix of the size (RC + 1)? in which
only a very small amount of entries are nonzero. A sparse
data structure for the NES (SpNES) is developed and shown
in Fig. 4 (top).

The SpNES is built based on the node objects and records
only the existing interconnections by two vectors, namely
neighbor and conductance. For example, if the ith node is in
connection with the jth node, then j is attached to neighbor as
the index and the mutual admittance (MA) between the two is
attached to conductance with the same sequence number. The
self-admittance of the node itself is attached as the last element
of conductance. Each node can replace a row of the NES (1),
as shown in Fig. 4 (middle), where V; is the node voltage to
be solved and /; is the local current. The use of SpNES not
only significantly saves the memory space for large matrices
originated from high-resolution simulations but also provides
a seamless interface to the iterative computing processes.

IV. NUMERICAL SOLVING PROCEDURE

The NES of the SRM is a nonlinear system. The most
common approach to solve such a nonlinear system is to
iteratively solve a sequence of linearized equations, for which
the method of linearization is determined by the nonlinear
root-finding algorithm. A solver based on dense matrices
and a direct equation solving algorithms was shown to be
ineffective for SRMs with a high number of nodes [25].
By integrating the SpNES and CG algorithm, the performance
of an Newton-Raphson (NR) solver can be significantly
improved fors high-resolution simulations.
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Fig. 5. Flowchart shows the Newton—Raphson loops to iteratively solve
a nonlinear circuit network.

A. Newton—Raphson Iterations and Linearization

Fig. 5 shows the steps of using NR to solve the SRM for
one voltage-bias condition [25]. These steps repeat until the
difference between the solutions from two successive iterative
sequences meets the stopping criterion

Vi = Vi1ll2 < ellVill2 “)

where k represents the active iterative sequence. A small toler-
ance value e.g., ¢ = 1079 is set to evaluate the convergence.
If the number of iterations exceeds the maximum limit and the
stopping criterion is still not satisfied, which can be caused by
diverging or low converging rate, the solving process will abort
as a failure. However, PVONA has shown good stability for
the simulations using typical parameters for PV devices.

The PV-oriented linearization in the NR loop distinguishes
PVONA from general-purpose simulation tools. In standard
linearization, each nonlinear component, e.g., a diode in the
circuit is linearized individually [26]. In PVONA, however,
the entire diode model [Fig. 2(b)] is treated as a single entity,
as shown in Fig. 6. The tangent Geq of the [-V curve
is calculated in each NR iterative sequence by the given
operating voltage Vy. Only the values for Vi, Geq and Ieq
need to be updated in each NR loop. The following shows the
I-V characteristic and the Geq and Ieq derived from it:

q(V —IRy) V — IR,
I+ Ly, — I i -——=0
®)
i1 Jog exp[q(v IXRS)] + L
Geqzﬁ - IogR (V= IR) s ©)
v 14 s exp[ L ] + Rsh
qu =1I— Geq x (7

where [, is obtained by solving (6) with respect to V, using
an inner NR loop. As a consequence, the number of circuit
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Algorithm 1 Sequential and Parallelized CG Algorithm

1 x@ 0

2 r® —p

3 p© O

4 for k < 0 to kmax

3 a® — &= pk=Dy /g k=1) gpk=1)
7 if k is divisible by 10,000

8 r® — p— Axk=D

9 else
10 r®) o pl) (0 4pk=1)
11 BE — 0 p0y k=) pk=1))
12 p® — K4 plopk=1)
13 if the exit criterion is not satisfied
14 k < k + 1, continue the for-loop
15 else
16 break the for-loop and return x ®)

node 'x'
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Fig. 6. Schematic of the PV-oriented linearization of a local PV unit and
the parameters involved in the node object.

components of each single-diode model is reduced from 4 to 2,
while the number of nodes is reduced from 2 to 1, which
simplifies considerably the NES especially when the size of
the SRM is large. The same rule can be applied on double-
diode and Merten’s models [21].

B. Parallelized Conjugate Gradient Algorithm

Solving the linearized NESs is the predominant factor that
makes SRM simulation time consuming. In SPICE packages,
direct, e.g., triangular (LU)-factorization-based solvers are
normally used. Although such a direct analytical method has
high numerical stability [27], the exponentially increasing
time complexity with the increasing size of the SRM quickly
becomes bottleneck for high-resolution images. Iterative
methods can have lower time complexity and thus higher
efficiency than direct ones. Being row independent [28], they
are suitable to combine sparse matrix techniques.

For the symmetric positive definite SpNESs of the SRM,
CG is introduced as the solving algorithm. The iterative
steps of CG are shown in Algorithm 1. The use of the
SpNES structure provides an efficient indexing system for
matrix—vector multiplication [Fig. 4 (bottom)], in which
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each MA element in conductance can locate its multiplier
in V directly by the index stored in the corresponding
position in neighbor, without extra indexing operations.
The correlation

il < & llr—1ll ®)

is used as the stopping criterion for the CG, where ¢ = 107°.
The same analysis as done for the stopping criterion of the NR
loops (5) can also apply. The if-else block from lines 7 to 10
introduces a regular round-off error removal process, in
which the exact residual will be recalculated regularly to
eliminate accumulated floating point error in the recursive
formula [29].

Some computing-intensive applications for high-resolution
SRMs, e.g.,, the [-V calculation or the iterative local
parameter fitting, require more efficient approaches to keep
the accumulated computing time acceptable. This is especially
important in time-critical situations, e.g., the quality control
in a production line. Parallel computing is an appropriate
candidate for accelerating a program with intensive matrix
computations. It enables allocating independent row-wise
computations to the equipment, which is able to run these
smaller segments simultaneously and then to synchronize and
reassemble them [30]. This can be employed cost-effectively
using a GPU that can contain thousands of cores and is
therefore efficient for simultaneously handling multiple
small tasks for a PC-based solution. The compute unified
device architecture (CUDA) is a GPU computing architecture
proposed by Nvidia, enabling transfer of sequential code to
parallel, i.e., heterogeneous programming [31].

The parallelism of CG is performed by offloading row-
independent matrix arithmetic to a GPU, while the remain-
der still runs on the CPU. Each iterative sequence of CG
involves a few inner products (Lines 5 and 11), matrix-
vector multiplications (Lines 5, 8 and 10) and scaled vector
additions (Lines 6, 8, 10 and 12), as marked in Algorithm 1.
These row-independent operations can be manipulated by
functions dotc, multiply and axpy, respectively, using
CUDA built-in libraries cuSPARSE and cuBLAS [32], [33].
In this paper, an open source library CUSP is chosen as it pro-
vides a parallelized CG solver cusp::cg that utilizes those built-
in functions with adaptive thread dispatching [34]. The parallel
CG is integrated into the NR loop for solving the linearized
SpNESs while the other operations remaining sequential.

It will be demonstrated in the following sections that the use
of these libraries together with the sparse nodal analysis deliv-
ers the speed up and capabilities to analyze high-resolution
problems.

V. PERFORMANCE EVALUATION AND DISCUSSION

To verify PVONA, the latest SPICE-based circuit simulator
TLSpice v4.22 [35] is used as the reference. A desktop PC
with an Intel Core i5 CPU (3.20 GHz) and 4-GB memory
is used as the basic test platform. For the CUDA-based
parallel computing, a consumer-level Nvidia GeForce
GTX760 graphic card equipped with 1.03-GHz clock rate,
2-GB device memory, and 1152 computational cores is used.
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TABLE 11
LOCAL ELECTRICAL PARAMETERS FOR THE THIN-FILM PV CELL

Joh 1.35x107 A/em?
Jsat 1.0x10™° A/em?
n 2.0
R, 10.0 Q-cm?
Ry, 5.30x10° Q.cm*
Ra 8.0 Q/0
0.014[
x10°
001} 4
< 38
€ a3g @
§ 0.006| Z 24|°
32
0.002 100x100 178x178 316x316
Number of nodes
% 02 0.4 06 08 1

Voltage (V)

Fig. 7. I-V curves of the 100 x 100 model generated from LTSpice and
PVONA. Inset: RMSD values of the /-V curve pairs for the 100 x 100,
178 x 178, and 318 x 318 models.

Identical model structures with randomly selected electrical
parameters and external bias conditions were set up and solved
by both PVONA and LTSpice. The simulation of a thin-film
PV cell is demonstrated here as an example. The size of
the active area is 1 cm x 1 cm and the local electrical
parameters are listed in Table II. The standard test conditions,
i.e., irradiance 1000 W/m? and temperature 25 °C, were used
to set the environmental parameters. Five test cases with
10000 (100 x 100), 31684 (178 x 178), 99856 (316 x 316),
315844 (562 x 562), and 1000000 (1000 x 1000) nodes were
chosen.

Fig. 7 overlays the I-V curves from both PVONA and
LTSpice simulated between 0 and 1.0 V with 100 intervals,
using a 100 x 100 model. Visually they show perfect
alignment. The maximum difference, approximately 1 mV,
was found at the Vpoc (0.963 V) area, giving only a 0.1%
variation. This deviation is considered marginal in the context
of the overall modeling accuracy and should be sufficient for
all applications. The good agreement between / and V curves
can be confirmed by calculating the root-mean-square
deviation (RMSD) [36] values. The inset of Fig. 7
demonstrates the RMSDs between the I and V curve pairs
of different node numbers. It clearly shows that the RMSDs
remain in a low range, with an order of magnitude of 107.
LTSpice failed for the 562 x 562 and 1000 x 1000 cases due
to memory shortage. PVONA was able to handle these and
produced results consistent with the lower resolution cases.

The good consistency implies that the accuracy and
convergence are appropriately controlled in the three iterative
loops (outer NR loop for solving the nonlinear network, inner
NR loop for solving operating current in linearization, and
CG algorithm for solving linearized SpNES) in PVONA.
Double-precision floating point numbers were used, resulting
in: 1) the reduction of total round-off error and 2) the lower
possibility of numerical overflow. As to convergence, for CG,
the symmetric positive definitte G matrix guarantees the
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Fig. 8. (a) Averaged time for solving one voltage-bias condition by
PVONA and LTSpice for a varying number of nodes. (b) Percentage of time
consumption between PVONA and LTSpice for a different number of nodes.

convergence [23]. However, the convergence rate can depend
on the features, e.g., the condition number [23] of the
G matrix. For this reason, the application of preconditioned
CG may provide further improvement to the solver. The
performance of an NR solver may be affected by more
complicated and subtle issues, e.g., oscillations, ill-suited
initial values, and ill-conditioned NESs [26]. Nevertheless,
PVONA has shown good stability for the simulations using
typical parameters for PV devices and defects.

For each of the five listed test cases, the time for solving
six voltage biases (0, 0.2, 0.4, 0.6, 0.8, and 1.0 V)
were recorded and averaged. In terms of the computing
speed, PVONA does not necessarily have advantages over
LTSpice when the size of the model is relatively small,
especially lower than 50 x 50 nodes. For smaller sizes,
the iterative CG algorithm may require more time than
a direct method, e.g., LU factorization to solve linearized
NESs [25], and the time for parsing a short netlist in
SPICE is negligible. However, it is evident that PVONA is
significantly faster as the size of the problem increases,
as shown in Fig. 8. The sequential PVONA used 8.4%
of the time required by LTSpice for the 316 x 316 model. The
improvement due to the parallelized CG is also noticeable,
enabling another 54% faster than the sequential counterpart
in this case, i.e., only 4.6% compared with LTSpice. It is
noticeable that in LTSpice, since a large amount of time is
consumed on the initialization, e.g., netlist parsing and system
matrix generation stages, a high number of bias conditions
in a single run may balance the cost for the initialization.
For example, the average time needed from a 20-interval
I-V simulation is significantly shorter than that in the original
five-interval cases, as shown in Fig. 8(a). However, it is still
highly inefficient comparing with PVONA, especially for the
simulation of a single bias, e.g., an EL image.

The implementation of the SpNES allows simulations for a
higher number of nodes possible. The sequential and parallel
PVONA managed to solve the 1000 x 1000 model (equivalent
to a mega-pixel image) within 12 and 3.4 min, respectively.
Although the time consumption of a task can vary significantly
depending on the features of the NES and thus the parameter
values, the benefit of using PVONA is overwhelming.
In addition, further parallelization may be implemented for
PVONA. For example, the linearization processes can also
be parallelized due to the fact that the linearization for
each local diode model can be carried out independently.
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Fig. 9. (a) EL images show a partially disconnected finger in a c-Si cell.
(b) Simulated EL image of the rectangle area marked in (a). (¢) Comparison
of the measured and simulated (normalized) EL profile of the line marked
in (a).

However, extra efforts are needed to balance the overhead and
latency effects for the data transfer between the main memory
and the GPU memory [31]. For the same reason, using
CUDA-supported data structure, e.g., matrices and vectors
in the SpNES, may allow another level of improvement
to PVONA.

VI. POTENTIAL APPLICATIONS TOWARD 2-D PV CELL
CHARACTERIZATION AND PARAMETER EXTRACTION

One of the aims of developing PVONA is the analysis and
quantification of imaging techniques e.g., EL. In the following,
this is demonstrated in two case studies. They demonstrate
the initial steps toward 2-D analysis combining PVONA and
the EL. Two EL images with notable defects are shown
in Figs. 9(a) and 10(a) for a crystalline and a thin film device,
respectively. These features are illustrated using a line scan, as
the line-plot demonstrates the agreement between simulations
and measurements better. It shows that by properly adjusting
the local parameters, an excellent reproduction of all features
seen in the given examples can be achieved, although there
remains a missing calibration factor as well as an explanation
of the jitter seen in the camera images. The simulation of an
EL image is achieved by setting the illumination level to zero
and reversing the direction of the current at the electrodes of
the cell. The interpretation from the local operating points to
EL intensities is done by the following equation [3] at the
subcell level:

o Cexp(i—‘;j) ©)

where @ is the local EL intensity, C is the calibration factor,
and V; is the local junction voltage.

Fig. 9(a) shows the EL image (about 230 x 380 pixels)
of a multicrystalline Si PV cell taken under the current bias
equals to its Isc (0.914 A). The EL image clearly reveals
a dark strip in the rectangle area marked, which is typically
caused by an interruption in, or lack of contact of, the metal
finger. This is because the disconnected finger cuts the current
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Fig. 10.  (a) EL images show two local shunts in a thin-film a-Si mini-
module. (b) Simulated EL image of the mini-module. (c) and (d) Comparison
of the measured and simulated (normalized) EL profiles of the lines marked
in (a).

pathway from the particular area to the metal contact grid
and therefore the local current has to flow through a longer
distance. As a consequence, the increasing voltage drop results
in the lower local junction voltage, which is proportional to
the EL intensity [37].

In the 2-D modeling, the rectangle area was reconstructed
using the same resolution (a 0.43 cm x 1.47 cm area
with 65 x 220 nodes), with the initial parameters Jpn =
0.04 Alem?, Jr = 5.0 x 1077 A/em?, Ry = 0.03 Q-cm?,
Ru = 80.0 Q/0J, Ryp = 8.35 x 10* Q-cm?, and n = 1.12.
These parameters were extracted from the /-V curve of
a reference cell of the same type using a hybrid fitting
algorithm introduced in [38], while the Rg is an empiri-
cal value [39]. The disconnection point was simulated by
setting the resistance of the finger as Rm. Ry and Rpm
were gradually adjusted, stopped at Ry = 0.05 Q-cm? and
Ru = 65.0 Q/00, so that the pattern of the simulated normal-
ized EL profile in Fig. 9(b) agrees with the original. Further-
more, the line scan shown in Fig. 9(c) clearly demonstrates the
agreement. It can be observed that the features are represented
excellently, but there remains some room for improvement in
showing smaller variations of the device across area, i.e., a
single set of parameters does not fully represent the measured
data. This now demonstrates the strength of PVONA as well,
as the speed is high enough to develop an optimizer that will
allow a better estimation of parameters.

The simulation can be extended to the module level by
implementing a hierarchical architecture, as described in [25].
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The I-V curves of all the individual cells are generated by
PVONA, and the characteristic of the module can be obtained
by combining all these curves by interpolation. Fig. 10 shows
the EL image of a thin-film a-Si mini-module taken under the
current bias equal to its Isc (0.034 A) and simulated global and
line-scanned EL profiles. Two local shunts are found on the
fourth and the seventh cells, respectively. The local parameters
in Table I were used for the 180 x 20 SRMs (resolution
0.05 cm x 0.05 cm). For the stronger shunt in the fourth cell,
Ry, = 0.001 Q-cm? and Ry, = 0.001 Q-cm? were applied,
and for the weaker shunt in the seventh cell, Ry and Rg
were set to 0.01 Q-cm? and 0.01 Q- cm?, respectively.

To move this to quantitative measurements, further work
is required to qualify EL cameras better. The jitter seen
in Fig. 10, for example, is most likely not due to production
inhomogeneities but more to read out issues of the camera
involved. Work to quantify these is currently ongoing. Thus,
the next steps in this paper will be to optimize the localized
parameters and to link measurement uncertainty to parameter
extraction.

VII. CONCLUSION

A PVONA is presented in this paper that enables
significantly faster 2-D simulations of PV devices than
SPICE-based tools. The use of the sparse CG algorithm
and CUDA-based parallel computing techniques not only
significantly saves the memory space but also accelerates the
numerical solving procedure for high-resolution simulations.
Further acceleration is possible by upgrading to a dedicated
GPU and higher power CPUs. In the test, the accelerated
PVONA managed to accurately solve a 1000 x 1000 model,
equivalent to the pixel number of a mega-pixel EL image, of
a thin-film cell in only 3.4 min. The timing presented here
depends obviously on the hardware involved. The equipment
used was a reasonable PC with a high specification graphics
card, but even this was not top of the range.

The presented method presents a step toward quantitative
analysis as it allows simulations in reasonable times and
reasonable computing expense for the potential iterative-based
2-D parameter determination algorithms. This will potentially
allow a more quantitative assessment of EL images and
similar tools. The speed presented should, with some further
adaptations, allow the application in a production environment.

The quality of the model is validated against EL images
with notable features. This demonstrates the need for further
quantification of the analysis, which will be achieved by
a localized optimization procedure and quantification of
measurement uncertainties of EL images.
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