Loughborough University
Browse
TayongPaper_QNDE.pdf (1.07 MB)

Acoustic characterization of void distributions across carbon-fiber composite layers

Download (1.07 MB)
conference contribution
posted on 2016-10-14, 09:13 authored by Rostand B. Tayong, Robert A. Smith, Valerie PinfieldValerie Pinfield
Carbon Fiber Reinforced Polymer (CFRP) composites are often used as aircraft structural components, mostly due to their superior mechanical properties. In order to improve the efficiency of these structures, it is important to detect and characterize any defects occurring during the manufacturing process, removing the need to mitigate the risk of defects through increased thicknesses of structure. Such defects include porosity, which is well-known to reduce the mechanical performance of composite structures, particularly the inter-laminar shear strength. Previous work by the authors has considered the determination of porosity distributions in a fiber-metal laminate structure [1]. This paper investigates the use of wave-propagation modeling to invert the ultrasonic response and characterize the void distribution within the plies of a CFRP structure. Finite Element (FE) simulations are used to simulate the ultrasonic response of a porous composite laminate to a typical transducer signal. This simulated response is then applied as input data to an inversion method to calculate the distribution of porosity across the layers. The inversion method is a multi-dimensional optimization utilizing an analytical model based on a normal-incidence plane-wave recursive method and appropriate mixture rules to estimate the acoustical properties of the structure, including the effects of plies and porosity. The effect of porosity is defined through an effective wave-number obtained from a scattering model description. Although a single-scattering approach is applied in this initial study, the limitations of the method in terms of the considered porous layer, percentage porosity and void radius are discussed in relation to single- and multiple-scattering methods. A comparison between the properties of the modeled structure and the void distribution obtained from the inversion is discussed. This work supports the general study of the use of ultrasound methods with inversion to characterize material properties and any defects occurring in composites structures in three dimensions. This research is part of a Fellowship in Manufacturing funded by the UK Engineering and Physical Sciences Research Council (EPSRC) aimed at underpinning the design of more efficient composite structures and reducing the environmental impact of travel.

Funding

This research is part of a Fellowship in Manufacturing funded by the UK Engineering and Physical Sciences Research Council (EPSRC).

History

School

  • Aeronautical, Automotive, Chemical and Materials Engineering

Department

  • Chemical Engineering

Published in

AIP Conference Proceedings

Volume

1706

Citation

TAYONG, R.B., SMITH, R.A. and PINFIELD, V.J., 2016. Acoustic characterization of void distributions across carbon-fiber composite layers. IN: Chimenti, D.E. and Bond, L.J. (eds). 42nd Review of Progress in Quantitative Nondestructive Evaluation, AIP Conference Proceedings, Minneapolis, Minnesota, 26th-31st July 2015, 1706, 120008.

Publisher

© AIP Publishing

Version

  • AM (Accepted Manuscript)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Publication date

2016

Notes

This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. The following article appeared in Chimenti, D.E. and Bond, L.J. (eds). 42nd Review of Progress in Quantitative Nondestructive Evaluation, AIP Conference Proceedings, Minneapolis, Minnesota, 26th-31st July 2015, 1706, 120008 and may be found at http://dx.doi.org/10.1063/1.4940593.

ISBN

9780735413535

ISSN

0094-243X

eISSN

1551-7616;1551-7616

Language

  • en

Usage metrics

    Loughborough Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC