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Abstract: Acoustic emission (AE) is a common nondestructive evaluation tool that has been used 

to monitor fracture in materials and structures. The direct connection between AE events and their 

source, however, is difficult because of material, geometry and sensor contributions to the recorded 

signals.  Moreover, the recorded AE activity is affected by several noise sources which further 

complicate the identification process. This article uses a combination of in situ experiments inside 

the scanning electron microscope to observe fracture in an aluminum alloy at the time and scale it 

occurs and a novel AE signal processing framework to identify characteristics that correlate with 

fracture events. Specifically, a signal processing method is designed to cluster AE activity based on 

the selection of a subset of features objectively identified by examining their correlation and 

variance. The identified clusters are then compared to both mechanical and in situ observed 

microstructural damage. Results from a set of nanoindentation tests as well as a carefully designed 

computational model are also presented to validate the conclusions drawn from signal processing. 
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1.  Introduction 

The Acoustic Emission (AE) method, formally defined (per ASTM E1316) as the release of transient 

elastic waves from irreversible processes, has been used in several applications to detect fracture at 

both laboratory [1-8] and field conditions [9, 10] for a broad range of materials including metallic [1, 

2, 5, 6, 11-20], composites [3, 21-28], and concrete  [9, 10, 29, 30], among others. The data post-

processing of AE-related sensing has been exhaustively explored since in contrast with other 

acoustics nondestructive testing and evaluation (NDT&E) methods, AE lacks the precise 

information related to the source (e.g. compared to ultrasonics testing) which complicates efforts to 

relate AE activity to e.g. fracture location and size.  

Standard AE data processing utilizes features extracted from the recorded waveforms of the typical 

AE activity. Coupling between AE features and fracture is most commonly performed by using a 

specific loading scheme, material and specimen designed to only promote certain damage 

mechanisms, then recording in situ AE activity and verifying in post mortem the presence of the a 

priori expected damage using, also typically, microscopy and fractography tools. For example, 

Roberts et al. linked AE count rate with crack growth [19, 31] in an effort to predict the materials 

remaining life,  while others also attempted to identify noise sources such as friction [32]. Similar 

methods have been used to link observed AE data-trends with fracture [2, 4, 13, 15, 18, 20, 33] and 

crack growth [1, 16, 19, 31, 34-38] in metallic materials. In the case of composite materials, features 

such as the frequency content of the AE signals have been suggested for identifying damage 

mechanisms [22, 39]. Specifically, the highest frequency signals have been suggested to be linked to 
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fiber breakage [39], while the lower (intermediate) frequency ones are often linked to mechanisms 

such as matrix fracture or fiber pull outs [26].   

In addition to features, the burst or continuous nature of recorded AE waveforms coupled with the 

activation region in the stress-strain curve [5, 7, 13, 17, 25, 39, 40] has also been used to identify 

AE signals related to damage [41].  In the case of metals, frequency and burst or continuous nature 

of AE waveforms have been reported as a way to identify particular mechanisms such as particle 

fracture in precipitate hardened aluminum alloys [14, 15, 18, 35, 42, 43].   

Furthermore AE data has been coupled and cross-validated with a variety of other NDE techniques 

including infrared thermography  [20, 44], digital image correlation [5, 7-9, 12, 20, 25, 40, 45, 46] , 

ultrasonic testing  [30, 47], and visual inspection either through imaging [9, 20, 48, 49], or microscopy 

[1, 50-55]. Specifically, in relation to fracture events, AE monitoring has been coupled with DIC to 

identify the onset of visible crack growth to identify AE signals that can be attributed to this 

damage mechanism. Similar procedures have been implemented to investigate larger fracture events 

including visible crack initiation and growth by coupling AE with DIC to identify reliably the 

presence of a crack and link it to specific AE features [4, 7, 20]. In situ monitoring of microstructural 

changes during loading has substantiated the claims from ex situ experiments as to the initiation 

and evolution of specific damage mechanisms at key points in the loading curve allowing for 

validation of the source of AE signals. The authors of the present article have extended this concept 

of in situ monitoring inside the Scanning Electron Microscope (SEM) coupled with AE and DIC to 

identify particle fracture in precipitate hardened alloys in almost real time directly at the scale it 
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occur [5, 33]. In this way, it was possible to link the in situ damage observed at the time and scale 

it occurs to AE activity. 

Furthermore, machine learning tools have been also used to correlate AE content with fracture and 

damage in general. Specifically, both unsupervised [39, 56-58] and supervised [30] clustering 

algorithms are commonly used to separate noise from damage sources using features that are selected 

to achieve the desired clustering. Among these methods, k-means clustering is the most commonly 

used to separate AE signals based on feature characteristics. This method has been used to separate 

damage signals such as cracks from other AE signals [59, 60], as well as examine the different damage 

states of a material based on the evolution of the clusters [57]. Some authors even used the k-means 

approach to allow the quantification of uncertainty in the clustering [39, 61].  Other researchers 

have coupled data reduction techniques such as Principle Component Analysis (PCA) with k-means 

to produce reliable separation of the AE data with only the first two principle components [60]. 

Supervised pattern techniques including support vector machines [21, 30, 62, 63], Neural Networks 

[21, 27, 64], and Hidden Markov Chains [41, 64] have been used to isolate specific sources of AE 

signals as well as to successfully denoise the AE data. Moreover, knowledge of the damage processes 

and the points they initiate during loading can be used to connect clusters to potential sources. This 

process has been used to identify AE clusters that are most probable to represent composite damage 

mechanisms such as matrix cracking and fiber breakage [27, 64, 65]. Similar efforts have been made 

in metals where knowledge of the ductile nature of precipitate-hardened Al alloys vs the brittle 

nature of the inclusions provided a way to separate particle fracture clusters from noise and possible 
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dislocation signals [2, 5, 18, 35].  Such methods  have been also implemented to separate twinning 

and dislocation behaviors in Mg alloys specimens [17, 58]. 

In this context, this article presents a novel framework to post process AE data related to fracture 

in a commercially available aluminum alloy. To establish this framework the quality of the used 

datasets was of primary concern and therefore all experimental datasets are obtained by a one-of-a-

kind setup developed previously by the authors [5, 6] that includes testing inside the SEM chamber 

while simultaneously recording AE at a scale that both incubation and initiation of fracture can be 

monitored directly. Leveraging such datasets, a workflow for AE data post processing is developed 

that targets both a more objectified selection of the features that are then used in clustering, as well 

as on the use of temporal and spatial microstructural characteristics to further select feature 

combinations in clustering related to fracture. It is argued therefore that such post-processing 

workflow would be impossible to validate without the experimental and computational part of this 

investigation which, however, can be extended to other cases of fracture across materials and scales. 

2. Experimental Procedure 

2.1. Material and Specimen Geometry 

A precipitate hardened aluminum alloy, Al2024-T3, was used for this work in the as-received 

condition. The material contains up to 5% Cu, 1.8% Mg, 1% Mn, 0.5% Fe, 0.5% Si and trace 

amounts of Cr and Zn. The Al sheet was rolled to 2.5 mm nominal thickness and a small piece was 

cut from the plate and mechanically polished to 0.05 μm alumina suspension to identify the grain 

structure and texture. The average grain size is 50 μm with a strong rolling texture. Therefore, 
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specimens were cut with the rolling and loading directions aligned to reduce texture effects on 

damage incubation. The specimen geometry is shown in Figure 1a where the hourglass shape in the 

gage section (which is identified by the highlighted rectangle in the middle of the specimen) is used 

in conjunction with a nanoindented grid pattern [6, 46] to allow more focused observations during 

in situ monitoring inside the SEM. Furthermore, the larger section on either end of the specimen is 

used to attach AE sensors in the locations indicated by the circles in Figure 1a.   

2.2. Mechanical and Nondestructive Testing Setup 

Loading was achieved using a microscale testing device (made by GATAN) equipped with a 2100N 

load cell inside a FEI XL30 ESEM.  The load was applied monotonically at a rate of 0.1 mm/min 

until catastrophic failure ensuring the data collected represents all stages of the failure process.  

 
Figure 1: (a) Specimen geometry with sensor locations marked as blue circles, (b) Load curve with AE 

activity overlaid as amplitude. 

Cyclic loading to a maximum of 800N with an R ratio of 0, indicating a minimum load of 0N, was 

also applied to observe the damage initiation process and resulting AE data. As the loading was 
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conducted in the SEM with in situ monitoring using the same screw driven device as was used for 

the monotonic case, the load was applied at the same rate of 0.1 mm/min with approximately a one 

minute dwell at the peaks to obtain higher resolution images. In addition, nanoindentations were 

performed on specifically targeted areas of some of the specimens tested using a MTS Agilent G200 

nanoindenter with a cube corner tip. To relate the AE signals with the observed damage, each 

specimen was monitored during loading using secondary electron (SE) imaging by recording low 

resolution (720 X 480 pixels) video during the entire test and high resolution (1296 x 962 pixels) 

images obtained every 200N until failure in the monotonic loading condition and at every peak and 

valley for the cyclic condition. A test matrix listing the available AE data used for validation of the 

machine learning results by using in situ observed damage mechanisms and simultaneously recorded 

AE waveforms is given in Table 1.   

Table 1: Test Matrix of Available AE Data with in situ SEM observations 

 

Specimen
Loading 
Scheme

Catastrophic
Failure

Number of 
Tests

Double Sharp 
Notch

Monotonic No 7

Monotonic Yes 6

Cyclic No 2

Dogbone

Monotonic No 1

Monotonic Yes 1

Cyclic No 1

Notched -
Bending

Monotonic No 1

Monotonic Yes 1

Cyclic No 1
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Figure 2: Sample SEM observations of damage mechanisms (a) fractured particle, (b) large out of plane 
motion and fractures (red circles, and (c) final fracture. 

Microstructural changes were monitored during loading to allow for a coupling between the AE 

activity and material response. Examples of the damage mechanisms, including particle fracture 

(Figure 2a), out of plane motion effects and slip traces (Figure 2b), as well as final fracture (Figure 

2c), monitored during loading with the used setup allow the direct linkage between AE sources and 

resulting waveforms in this investigation. AE waveforms were detected and recorded using two 

PICO sensors with a frequency range from 150 to 750 kHz attached to the specimen in the locations 

shown in Figure 1a. The AE signals detected by the sensors were preamplified inside the SEM 

vacuum chamber by a 40 dB uniform gain across all frequencies. The use of the preamplifiers inside 

the chamber reduced the effect of any noise sources such as EMI, as previously described by the 

authors [5, 6, 33, 46].  All AE signals were recorded using a PCI-2 data acquisition board with a 
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Peak Definition (PDT), Hit Definition (HDT) and Hit Lockout Time (HLT) of 30, 200 and 200 µs, 

respectively at a sampling rate of 10 million samples per second (MSPS). All waveforms were 

bandpass filtered prior to recording between 100 and 1000 kHz which represents the closest setting 

available in the data acquisition software. Figure 1b shows a typical engineering stress-true strain 

curve obtained by using the average full field strain during loading (as computed by DIC data) 

overlaid with the AE data represented via the amplitude distribution.    

2.3 AE Signal Processing Framework 

To attempt the identification of damage mechanism activation in this article, each AE waveform 

was passed through a digital Butterworth band pass filter, depicted in Figure 3a designed based on 

the optimum sensor sensitivity range of the sensors used. The results of using the filter are observed 

when comparing the raw recorded waveform in Figure 3b to the filtered waveform in Figure 3c.  

Hence, the low frequency content below 150 kHz was effectively removed shifting the peak frequency 

values marked by the circle in the FFT from 140 kHz to approximately 500 kHz. After applying the 

filter, a combination of time and frequency based features identified in ASTM E1316 were extracted 

to characterize each waveform [66-68]. The extraction was performed using the commercially 

available NOESIS software (MISTRAS Inc) [69]. The data was then normalized between a minimum 

value of zero and a maximum of one to account for the effect of variable feature units.  

Each feature was subsequently examined using a combination of correlation, variance, and 

distribution metrics to select a subset of features that fully represented the separation of data in the 

full feature space with as few features as possible in an objective framework. Unsupervised clustering 

was then performed using a Gaussian Mixtures Model (GMM) which is more versatile in accounting 
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for directionality in data sets. The resulting clusters were coupled with in situ observed 

microstructural changes to identify those clusters most probable to be representative of noise or 

specific damage mechanisms such as particle fracture. The identified cluster centers were compared 

to those obtained in a cyclic loading case to identify noise and similar damage mechanisms present 

during cyclic loading [10]. Figure 4 shows the overall workflow for the AE signal post processing 

framework in this article. 

 

Figure 3: (a) Digital 10th Order Butterworth Filter used, (b) raw AE signal, and (c) filtered AE signal to 
the sensor range. 

 

Figure 4: Workflow for AE data post processing. 

Data Normalization

Feature Selection

Clustering

Identify Fracture 
Classes

Supervised 
Learning

Feature Extraction
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3. Results  

A total of 31 time and frequency based features were extracted from recorded AE datasets similar 

to the one shown in Figure 1b that corresponds to the tension tests described in section 2 of this 

article. The features selected were assigned identification numbers ranging from 1 to 31 so they can 

be identified in the signal processing framework described next and the list is given in the appendix. 

Note that a more detailed description of these features and their role in monitoring fracture is given 

in the appendix, as the workflow described in this section does not depend neither on the precise 

definition nor the number of selected features. Also note that to obtain the results presented in this 

section only three data sets, two monotonic and one cyclic, obtained using the geometry depicted 

in Figure 1were used to demonstrate the method in this article. The observed AE waveforms were 

compared to in situ observations made on this geometry and a sharp notch geometry used previously 

by the authors [5, 6, 46]. Therefore, the presented analysis, in conjunction with the in situ monitoring 

of particle fracture has the statistical basis to increase the confidence in the trends observed and 

conclusions drawn. To ensure that the most consistent data was combined, all data sets used the 

same AE acquisition settings, however, the procedure discussed here can be used for other materials 

and geometries. In fact, the in situ monitoring of particle fracture to identify associated AE 

characteristics were performed on two different geometries [5, 6, 33, 46]. 

A correlation matrix was generated as shown in Figure 5a. In addition, a covariance matrix was 

generated and the results are shown in Figure 5b. Feature 1 exists on the lower left corner of each 

matrix, and the features numerically increase as you move up and right. In general, the correlation 

matrix is a normalized form of the covariance matrix and it can be used to show the relationship 
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between a feature and all other features in a given dataset, while the covariance matrix can be used 

to examine the spread of values between features. More specifically, the diagonal of the covariance 

matrix shows the spread of the data within each feature. A large variance was considered in this 

article to be an indication of the feature’s capability to track changes in the recorded AE activity, 

as different sources were expected to produce sufficiently different values of certain features. At this 

point, though, this was a hypothesis that the workflow described in this article is targeting to test 

its validity. Furthermore, the correlation and covariance matrices can be evaluated as the average 

effect of each feature to all others. Such viewpoint and subsequent analysis was adopted in this 

article to identify features that under the conditions examined and the particular material and 

failure mechanism targeted appear to monitor damage evolution.  

 
Figure 5: (a) Correlation matrix and (b) covariance matrix for the monotonic load data. 

The average response of all features is shown in Figure 6. These average trends of correlation and 

covariance show almost linear behavior making the selection of a subset of AE features challenging. 

In this investigation, the appearance of the first inflection point that produced a consistent set of 

features in all data sets examined was used. In the curve of Figure 6a this corresponds to a correlation 
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value of 0.25 and above was used to select the number of features to be used later in the described 

workflow. Similarly, an inflection point that corresponded to a covariance 0.006 and below was 

selected [70]. This procedure resulted in the selection of 7 features based on correlation and 3 

additional features based on covariance.  

 
Figure 6: Average (a) correlation and (b) covariance of each feature with respect to all others. 

To further validate that the features selected will provide a good basis for further post-processing, 

histograms of the normalized values within each feature were generated. The criterion adopted in 

this step was based on the fact that features that show greater spread of values would practically 

assist in identifying changes in the AE datasets. Examples of resulting histograms are shown in 

Figure 7 in which each feature is labeled with its corresponding identification number. The features 
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displayed in Figure 7 all contain more than one peak and, therefore, they were identified as useful 

for clustering algorithms. The green box indicates two features in Table 2 that are highly correlated, 

therefore, only the “peak frequency” was used resulting in a total of nine features.  

 
Figure 7: Sample Feature distributions. 

Table 2: AE features useful for clustering. 

 

Unsupervised clustering was performed on the combined monotonic data sets using the identified 

reduced feature space using a GMM in part to account for any potential directionality in the data 

set and to account for the natural Gaussian nature of the AE data as observed in Figure 7. The 

optimum number of clusters was selected based on the Davies Bouldin (DB) and Silhouette (S) 
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clustering metrics. The DB metric evaluates the compactness of the resulting clusters while the S 

metric evaluates the separation between cluster centers. A GMM [71] was used because of its 

capability to expand differently along each feature vector as opposed to the commonly used k-means 

clustering method that expands uniformly. Three clusters were identified as the most compact 

number with the greatest distance between centers by identifying the number of clusters with the 

minimum DB value and maximum S value.  

The corresponding clustering results are plotted as a function of strain and overlaid with the load 

curve for the two datasets shown in Figure 8. The top row shows the results for a specimen loaded 

to catastrophic failure, while the second row was loaded to approximately 80% of the ultimate 

strength allowing identification of final fracture AE by comparing the two set of results. Both 

specimens show initiation of the AE activity during early loading stages, while two clusters were 

found to be present throughout the specimen’s life. The AE signals in cluster 3 were found to be 

present only at the time of failure in the first specimen (Figure 8a) while they were not present 

anywhere in the second specimen (Figure 8b) and are therefore expected to correspond to final 

fracture. Moreover, the nature of these final failure signals is similar to those obtained during failure 

of the double-notched specimens used in previous work [33] which further validates that  correspond 

to final failure. The identification of the source for the remaining two clusters required coupling 

between in situ monitored microscale damage evolution and the AE activity as it was previously 

attempted by the authors [5, 6, 33].   
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Figure 8: AE signal clustering results as a function of strain overlaid with the load curve for a load to 

failure (top) and a load to 80% of the ultimate (bottom) represented as (a) amplitude, (b) peak frequency, 
and (c) Absolute Energy. 

Significant differences in the AE signals that correspond to the three clusters were observed as 

shown in Figure 9 when plotting features against each other. Specifically, clusters 1 and 2 correspond 

to AE signals with low amplitude, while cluster three contains AE waveforms with much higher 

amplitude as expected from a dominant fracture source. Additionally, cluster 2 appears to consist 

of AE waveforms that have higher peak frequency compared with clusters 1 and 3, while cluster 1 

was found to contribute the most energy based on the results in Figure 8c. Previous work by the 

authors [5] showed in almost real time the connection between particle fracture and AE indicating 

that particle fracture is an instantaneous source represented by burst nature AE signals of a “higher” 

frequency content, generally between 450 and 550 kHz. This information was successfully separated 

from machine noise, which was identified by applying a small preload well within the elastic regime. 

These noise AE signals were found to be of continuous nature with low amplitude and relatively 

lower frequency content (around 150 kHz). In summary, based on the results in Figures 8-9, cluster 
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1 contains lower frequency AE waveforms with a range of risetime and duration values, while cluster 

2 comprises AE signals with higher frequency and more consistent low rise time and duration values 

indicating burst nature waveforms which agreed with previous work by the authors.  

 
Figure 9: Cluster separation in feature space showing (a) burst nature, (b) frequency nature, and (c) 

amplitude vs frequency. 

4. Discussion 

To investigate the potential of the AE clustering presented in section 3 to identify damage sources, 

specific AE characteristics are sought that could be reliably associated with such damage.  Previous 

investigations on the damage processes of Al 2024-T3 indicated particle fracture and void nucleation 

and coalescence to be the dominant sources of damage for this type of alloys [5, 72]. To verify that 

an uncracked particle inside an aluminum matrix would fracture given the applied loading, Figure 

10 shows results from a crystal plasticity finite element analysis (FEA) model that was developed 

by the authors. Specifically, a rate-independent crystal plasticity formulation for a FCC crystal 

structure in the form of a user subroutine was employed. The formulation and the development of 

the user subroutine was originally performed by Anand and Kothari[73]. For the [100] orientation 
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considered, eight of the twelve slip systems were activated. The load was applied in the vertical 

direction. The particle properties were assumed to be linearly elastic and isotropic with elastic 

modulus and Poisson’s ratios found in literature [74] for the case of θ phase (Al2Cu, E = 120GPa) 

particles. The Al matrix that was investigated was assumed to be in both the hard crystal 

orientation, the (111) crystal plane normal is aligned with the loading direction, (Figure 10) and the 

soft [100] crystal orientation, the (100) crystal plane normal is aligned with the loading direction, 

(Figure 11) to show the localization effects that result from elastic property mismatch and lead to 

particle fracture. The 3D FEA model had10688 elements and 11963 degrees of freedom and was run 

under displacement control. In both configurations, the crystal plasticity simulation was stopped at 

the same stress and was switched to an eXtended Finite Element Framework (XFEM) that used a 

maximum principal stress criterion to initiate damage. Stress and strain concentrations were 

observed as the result of the crystal orientation. In both cases, the stress and strain primarily builds 

near the particle with more pronounced accumulations in the harder orientation shown in Figure 

10. Further loading shows that the appearance of damage occurs in the particle near the boundary 

in the case of the hard orientation, as indicated by the red areas in Figure 10c, while damage occurs 

in the Aluminum matrix near the boundary as indicated by the corresponding red areas in Figure 

11c. 



19 
 

 

Figure 10: Theoretical particle contribution to (a)stress and (b) strain for an Al matrix oriented with the 
[111] direction aligned with the loading direction with an Al2Cu particle embedded. Damage location is 

shown in (c). 

 

Figure 11: Theoretical particle contribution to (a)Stress and (b) strain for an Al matrix oriented with the 
[100] direction aligned with the loading direction with an Al2Cu particle embedded. Damage location is 

shown in (c). 

Considering the number of particles present in the material as well as the number of grains, a large 

number of possible combinations of particle and surrounding matrix property can indeed induce 

conditions that result in particle fractures suggesting a large number of damage signals would be 

expected from such mechanisms. Both clusters 1 and 2 contain a large number of signals throughout 
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the load and could be the result of such sources.  Both particle fracture and dislocation motion occur 

at the microscale and therefore they were expected to correspond to AE signals with relatively low 

amplitude values. Thus, to determine the possibility to actually record AE that results from damage 

mechanisms such as particle fracture, a set of nanoindentations was performed directly on a particle 

while recording AE activity. In this case, the indentation was performed to a depth of 4 μm to 

ensure the particle would fracture. A burst nature AE activity shown in Figure 12a was recorded 

along with the crack growing from the tip of the indentation. Moreover, this AE signal has a peak 

frequency of 550 kHz and an amplitude 10 times higher than the noise level. The same indentation 

procedure was applied on a region without a particle for comparison. The AE activity observed 

comprised signals with amplitude within the noise floor and peak frequency occurred around 300 

kHz as shown in Figure 12b.   

 
Figure 12 Nanoindentation and corresponding recorded AE on (a) a particle that fractures, and (b) an area 

with no particle. 
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Examples of AE waveforms that correspond to the different clusters along with an example of a 

waveform determined to indicate particle fracture via in situ SEM testing are shown in Figure 13.  

Signals in cluster 1, depicted in Figure 13a, were found to be continuous in nature with low 

amplitude and frequency, while the waveforms in cluster 2 shown in Figure 13b, were found to be 

of low amplitude but burst in nature with a “higher” frequency content. Furthermore, Figure 13b 

and Figure 13d show similar waveforms, both of which have characteristics that are comparable to 

the waveform in Figure 12a. Figure 13d was observed at the time of particle fracture during in situ 

SEM monitoring suggesting that cluster 2 represents early damage and possible particle fracture. 

Figure 12c shows an example of final fracture AE signal that corresponds to cluster 3; it was found 

that it has fast risetime similar to cluster 2 and the in situ observed particle fracture signal, providing 

further support that both clusters 2 and 3 represent fracture events.    

 
Figure 12: Sample Cluster Waveforms (a) Cluster 1, (b) Cluster 2, (c) Cluster 3, and (d) waveform of 

particle fracture identified by in situ SEM monitoring. 
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Considering that clusters 1 and 2 were observed throughout the tests, it was further expected that 

these sources are either the result of early non-catastrophic damage sources, such as those discussed 

previously, or noise. Therefore, leveraging previous work by the authors that targeted the recordings 

of AE from inside the SEM and the AE results obtained from fracturing particles from 

nanoindentation, it is possible to compare the average value of each of the features for each of the 

clusters in this article to the value of the features from those AE signals found to be the result of 

particle fracture. Table 2 shows such values for all clusters. Clusters 1 and 2 contain the majority 

of recorded AE signals with only a few in cluster 3 as expected for the final fracture cluster where 

only a few large crack sources and reflections are possible at the point of failure.  Based on the 

comparison of the results from this article with the previous work by the authors, it is concluded 

that only cluster 2 has the burst nature and frequency content that matches the frequency content 

of the in situ observed and nanoindentation particle facture AE events. It should be noted that this 

frequency content comparison was based on several AE features including: peak frequency, partial 

power 1, 2 and 3, FFT width at 30% and reverberation frequency (a complete definition of all AE 

features in this article is given in the Appendix to assist the evaluation of the signal processing 

workflow shown in this article).  Furthermore, cluster 2 shows similar duration compared with the 

in situ [5, 6] and nanoindentation induced particle fracture observations. Cluster 3 shares the burst 

nature and some frequency characteristics of the particle fracture suggesting this cluster is also the 

result of a fracture event, though on a larger scale as discussed previously (see Table 3).  
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Table 3: Characteristics of PF from in situ observation compared to average and range of each cluster. 

 

The same processing framework was used to post-process AE signals obtained during cyclic loading. 

In this case, the loading was halted prior to final failure resulting in only early fracture activity such 

as particle fracture and no final fracture events.  Using the same method and features identified in 

Table 2, the AE data was separated into 3 distinct clusters using the same unsupervised clustering 

procedure discussed for the monotonic loading case. The results of the clustering are shown in Figure 

11 and are displayed as a function of cycle.  Clusters 1 and 2 were found to be similar to the 

monotonic case. Therefore, cluster 1 contains AE signals with relatively lower amplitude and peak 

frequency and generally larger duration values compared with cluster 2.  Cluster 2, shares 

characteristics of the corresponding cluster in the monotonic loading conditions including burst 

nature and “higher” frequency content. The large spike in activity at the 10th cycle corresponds to 

additional activity that occurred when the specimen was removed from the load cell for microscopy 

before being returned to the loading stage for further cycling.  In this case cluster 3 does not 

represent the presence of final fracture, but rather a set of signals that are much higher in amplitude 
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as would be expected of a final fracture signals, but contains much lower frequency content and are 

more continuous in nature. As the clustering performed was unsupervised it is not expected that 

this cluster would represent the same source as was the case for the monotonic loading condition 

and considering the cyclic nature of the loading may be the result of a fatigue source such as fretting. 

 

 
Figure 13: Unsupervised clustering results of a cyclic loading test. (a) Non-dimensional amplitude, (b) peak 

frequency, and (c) absolute energy as a function of the applied cycle.  The same AE data is shown to 
separate when plotting (d) amplitude vs frequency, (e) frequency vs partial power 3, and (f) the burst 

nature of the AE waveforms. 

5. Conclusion 

A signal post processing framework was presented in this article to investigate the potential of the 

acoustic emission method to monitor fracture. To collect appropriate data AE controlled 

experiments including both inside the scanning electron microscope and in a nanoindentation setup, 

targeted the activation of fracture mechanisms inherent to aluminum 2024. Moreover, the 

contribution of local microstructure to the initiation of damage mechanisms was verified by a crystal 
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plasticity finite element model. To account for the large amount of data that is generated and 

provide a method to link each AE waveform to a potential fracture source, the proposed data post 

processing framework objectively reduces the number of features required to represent the acoustic 

emission activity. The resulting data clusters were examined in relation to in situ SEM and 

nanoindentation observed sources to identify clusters indicative of damage including final fracture 

as well as particle fracture. Overall, it was argued that it is the combination of such post processing 

framework with in situ and small scale experiments that makes this approach both novel and 

applicable to a broad range of materials. To this effect, only AE signals that can be linked with a 

particular damage mechanism using such controlled in situ experiments are able to be identified by 

this method.  
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Appendix – AE Feature Definitions 

 

  

ID Feature Definition
1 Duration (FX) Time difference between the last threshhold crossings
2 Amplitude Peak voltage of the AE waveform
3 Counts to Peak Cycles from signal start to max amplitude
4 Counts Cycles from signal start to end
5 Energy Energy Counts
6 Absolute Energy Signal Energy
7 Signal Strength Area under signal envelope
8 Amplitude mV Max signal Amplitude in mV
9 Risetime Time from signal start to max amplitude

10 Rise Angle Angle from start to max amplitude
11 Decay Angle Angle from signal end to max amplitude
12 Average Frequency Average Frequency

13
Reverberation 

Frequency
Average frequency form max amplitude to end of signal

14 Initiation Frequency Average Frequency from signal start to max amplitude
15 Zero Crossings Number of zero crossings from signal start to end

16
Zero Crossings 

Frequency
Average Frequency based on zero crossings

17
Non Dimensional 

Amplitude
Ratio of max to mean signal amplitude

18 FFT Amplitude Max amplitude of FFT magnitude
19 FFT Peak Frequency Peak Frequency based on FFT
20 FFT Width @10% Bandwidth over 10% of the max amplitude
21 FFT Width @30% Bandwidth over 30% of the max amplitude
22 FFT Crossings @30% FFT magnitude at 30% max amplitude crossings

23 Partial Power 1
The ratio of the sum of the power in the spectrum from 0 to 200 kHz over the total 

power in the entire frequency range

24 Partial Power 2
The ratio of the sum of the power in the spectrum from 200 to 400 kHz over the total 

power in the entire frequency range

25 Partial Power 3
The ratio of the sum of the power in the spectrum from 400 to6400 kHz over the total 

power in the entire frequency range

26 Partial Power 4 
The ratio of the sum of the power in the spectrum from 600 to 800 kHz over the total 

power in the entire frequency range
27 Frequency Centroid
28 Peak Frequency The frequency corresponding to the maximum power in the power spectrum
29 Peak Power Maximum Power determined from FFT power spectrum
30 Threshold Dynamic threshold determined from peak amplitude
31 RA Value ratio between risetime and amplitude
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