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Abstract 

Additive manufacturing has provided a pathway for inexpensive and flexible 

manufacturing of specialized components and one-off parts. At the nanoscale, such 

techniques are less ubiquitous. Manufacturing at the nanoscale is dominated by 

lithography tools that are too expensive for small and medium size enterprises (SMEs) to 

invest in. Additive nanomanufacturing (ANM) empowers smaller facilities to design, create 

and manufacture on their own while providing a wider material selection and flexible 

design. This is especially important as nanomanufacturing thus far is largely constrained 

to 2-dimensional patterning techniques and being able to manufacture in 3-dimensions 

could open up new concepts. In this review we outline the state-of-the-art within ANM 

technologies such as Electrohydrodynamic Jet Printing, Dip-pen Lithography, Direct Laser 

Writing, and several single particle placement methods such as Optical Tweezers and 

Electrokinetic nanomanipulation. The ANM technologies are compared in terms of 

deposition speed, resolution and material selection and finally a prospectus of ANM in the 

future is given. This review is up-to-date until April 2014. 

 
1. Introduction 

Nanoscale manufacturing techniques are essential to live up to the promises made on the prospects of 

nanotechnology; without methods to rapidly fabricate and test new concepts, innovation in this emerging field 

can be stifled. Additive manufacturing is already employed at the macro scale for rapid prototyping and low 

volume production in areas such as dental and medical care, automotive, aerospace, fashion, and 

entertainment.1 These areas have benefited from the freedom of design and reduced time-to-market provided 

by additive manufacturing. Unfortunately, such rapid prototyping techniques are yet to be developed for 

nanomanufacturing. Such a technology would have the potential to transform manufacturing on the nanoscale 

as well. Within the scientific community the focus has been on tissue engineering,2, 3 electronics,4, 5 



 
 

microfluidics,6, 7 orthopaedics,8, 9 health care,10, 11 and materials,12 but as the resolution improves more 

applications such as photovoltaics,13, 14 optics,15 and nanoelectronics16, 17 are emerging. 

For decades, realistic options for full scale industrial nanomanufacturing have relied on photolithography using 

electromagnetic radiation with increasingly shorter wavelength.18 The equipment to reach nanometre 

dimensions reliably is, however, prohibitively expensive, thereby excluding smaller R&D facilities and small and 

medium enterprises (SMEs) from taking advantage of their innovations. Electron beam lithography (EBL) offers 

flexibility and high resolution19 for R&D and is comparably cheap but is still only affordable for well-funded 

universities and companies with large capital investments. Device fabrication using both photolithography and 

EBL relies on exposures of multiple layers of polymer thin films. These are planar technologies operating 

virtually only in two dimensions; developing fabrication methods that extend into the third dimension seems 

an obvious way to save space, cost and to gain additional functionality. Moreover, the lift-off and etching 

processes related to resist based manufacturing are extremely wasteful as only a small percentage of the used 

materials is turned into functional elements.20 Additive nanomanufacturing (ANM) does not seek to replace 

the resist-based planar manufacturing methods used for integrated circuit (IC) fabrication, but rather seeks to 

add functionally in ways these technologies cannot. More importantly, it could change the way we think about 

manufacturing at the nanoscale, which could also lead to much greater flexibility in the design. 

Before we begin a technical review, we will define ANM as we perceive it for the purposes of this review. We 

define ANM as incorporating techniques that directly add the desired material in its final shape, with sub-100 

nm resolution, without subtractive removal. This definition excludes thin film fabrication methods such as 

atomic layer deposition (ALD) and molecular beam epitaxy (MBE) although these methods might successfully 

be combined with additive manufacturing methods. Direct laser writing, near-field optical lithography and 

plasmonic lensing are borderline ANM technologies, as these can produce structures in their final shape after 

an additional development process. For completeness these are included in the review. One exception has 

been made for direct laser writing, which is included despite being a lithography method, because it is the one 

technology that has so far created true three-dimensional nanostructures.  



 
 

 
FIG. 1 (a) Equipment cost, patterning speed and minimum resolution of additive manufacturing methods (square) compared to 

traditional resist based lithography methods (ellipse). (b) Projection of the 3D graph in (a) showing the capital cost of equipment vs. 

minimum resolution for ANM methods (white) and traditional resist based methods (grey). (c) Projection of the 3D graph in (a) 

showing the capital cost of equipment vs. patterning speed for ANM methods (white) and traditional resist based methods (grey). 

(EUV = Extreme UV lithography, DUV = Deep UV Lithography, EBL = Electron-Beam Lithography, NIL = Nanoimprint Lithography, STM 

= Scanning Tunneling Microscopy, AFM = Atomic Force Microscopy).  

The cost of thin film nanolithography tools is growing rapidly with equipment cost ranging from $1 million to 

$100 million for the latest extreme UV lithography tools. In FIG. 1 (a) the patterning speed, resolution and 

estimated capital equipment cost of ANM methods (square) are compared with traditional resist based thin 

film manufacturing methods (ellipse). The capital equipment cost for ANM methods are generally much 



 
 

smaller than for resist based manufacturing methods without sacrificing resolution as clarified in FIG. 1 (b). 

This is one of the primary reasons ANM is envisioned to spread to SMEs and research labs. The price per unit 

can still be high for additive manufacturing1 because of the relatively low patterning speed as shown in FIG. 1 

(c); but for low volume and high value products, the comparatively low investment prospects of this technique 

can be particularly attractive.  

When comparing manufacturing methods at the micro- and nanoscale, one often focuses on the resolution of 

the technology as it is closely linked to the performance of the product. For commercial use, resolution is, 

however, only one significant parameter as the ability to position structures relative to one another 

(accuracy/alignment), writing speed and materials are equally important.  

Manufacturing at the nanoscale is very different from macroscale manufacturing because of fundamental 

physical limits. Therefore, the difficulties met are also very different. Fabrication at the nanoscale becomes a 

matter of manipulating very few atoms or molecules at a time and manufacturing variations of just a single 

atom or molecule can lead to catastrophic device failure. Additionally, structures with dimensions below 50 

nm also have a reduced melting point which can affect their mechanical stability21, 22 and even defining alloy 

composition, doping levels and crystallinity becomes complex as the presence or spatial location of a single 

atom will change the material properties. At the nanoscale, gravity is insignificant and the dominating forces 

become the surface interactions such as van der Waals forces that can cause unwanted adhesion. In liquid, 

Brownian motion and convection forces are comparatively strong making particle capture difficult and even in 

air or vacuum vibrations from fans, pumps or passing traffic can render structural alignment impossible.    

For ANM the challenge is to manufacture nanoscale structures at a large scale with great accuracy, high 

resolution, low cost and using materials ranging from biomaterials to ceramics and metals. However, ANM 

does not aim to compete with existing technologies and it can create new ways to manufacture and change 

the way we design products. In this review we focus on the range of ANM methods available today and the 

level they are at in terms of resolution, accuracy, speed and materials. We have divided the manufacturing 

methods into two groups: Direct Writing and Single Particle Placement. Within each group, the state-of-the-art 

ANM techniques will be described and evaluated and finally these techniques will be compared to provide an 

outlook on ANM and its prospects over the next decade. 



 
 

 
2. Direct Writing 

Direct writing of nanoscale devices composed of metals, insulators and organic materials is of interest for a 

range of ANM applications. Here we review recent advances in three key direct writing methods of 

nanostructures: dip-pen nanolithography (DPN), electrohydrodynamic direct writing (EHD), and direct laser 

writing (DLW). All three technologies are able to achieve sub-30 nm resolution, relatively high writing speed, 

and the capacity for 3-dimensional nanomanufacturing. The choice of materials, at least for DPN and EHD, is 

already vast ranging from metals to biomaterials and the material selection for direct laser writing is also 

increasing. In this section the promising future of direct writing ANM is outlined through examples of the 

state-of-the-art of each of these three technologies.    

    

2.1 Dip-pen Nanolithography 

Dip-pen Nanolithography (DPN) is a scanning probe microscopy-based flexible nanofabrication process for 

making 2-D nanoscale features that uniquely combines direct-write soft-matter compatibility with the high 

resolution and registry of atomic force microscopy (AFM), all in a mask-free and biocompatible system.23 

Originally, scanning probe microscopes (SPMs), such as the scanning tunnelling microscope (STM)24 and the 

atomic force microscope (AFM),25 emerged as nanoscale imaging and spectroscopic tools in the mid 1980s. 

Soon thereafter manipulation of single-atoms26 and atom-by-atom construction of nanopatterns marked the 

birth of scanning probe lithography (SPL), suggesting that SPMs could indeed be used for molecular printing or 

perhaps even manufacturing.27 

Hereafter, a series of indirect SPL methods based on destructive delivery of energy to create functional 

patterns were developed. Taking advantage of the positioning resolution enabled by piezo-actuation and the 

nanoscale radii of the tips, scientists were able to generate sub-50-nm features by scratching, etching and 

oxidizing surfaces.28 A process known as nanoshaving or nanografting uses the tip of an AFM and an applied 

force to remove a molecular monolayer on gold in a site-specific fashion29 and anodic oxidation of silicon was 

developed by Quate and colleagues for patterning silicon substrates.30, 31  

In contrast to nanoshaving and nanografting DPN selectively transfers material from an ink coated probe tip on 

to a surface with a variety of ink-surface combinations.23, 32 A schematic of the process is shown in FIG. 2. Ink 



 
 

molecules are transported via mass diffusion from the tip on to the surface. Features are formed on the 

surface via either chemisorption based self-assembly or physisorption.33 Ink transport is mediated by the 

presence of the water meniscus that forms when the tip is brought in close proximity to the surface under 

ambient conditions. Due to the naturally occurring water meniscus for mass transfer this method also avoids 

the necessity for ultrahigh vacuum. Moreover, there is no need to expose the substrate to ultraviolet, ion- or 

electron-beam radiation, characteristic of indirect patterning techniques, and therefore DPN can be used to 

print fragile or reactive organic and biological materials. 

 

FIG. 2 (a) Schematic representation of the basic molecular deposition by DPN through a water meniscus formed between the 

scanning probe tip and the substrate surface. (b) Direct deposition of SAMs (16-mercaptohexadecanoic acid) on Ag as an etch resist 

to pattern 70-nm wide features. Reproduced from
34,

 
35

. 

From initial demonstrations involving alkanethiols on gold,36 DPN has evolved into a versatile technique used 

to write or template both inorganic and organic nanostructures.23, 37 Polymers,38 colloidal nanoparticles (e.g. 

magnetic nanocrystals and carbon nanotubes),39, 40, 41 electrodeposited metals,42 sol-gel precursors,43 small 

organic molecules,44, 45 biomolecules (proteins46, 47 and oligonucleotides48) and even single viruses49 and 

bacteria have been patterned on a variety of substrates (including metals, semiconductors and insulators)39 by 

controlling various experimental parameters such as ambient humidity, writing speed, and dwell time.50, 45 In 

fact, these experimental parameters serve a useful function of being the levers that control the features size. 

However, DPN initially faced a drawback common to other indirect SPLs of poor throughput. This was because 

the first incarnations of DPN were serial processes, and were thus lower in throughput than stamping or 

optical lithography-based techniques. In order to compete with these techniques, it was necessary to increase 

the throughput of DPN by parallelizing the deposition process. The scalability of DPN was demonstrated by 

Salaita et al.51 who were able to fabricate a 55,000-pen 2D array generating 88 million Au dots (pitch distance 



 
 

400 nm) with a diameter equal to 100 ± 20 nm (See FIG. 3). This increased the throughput of DPN by four 

orders of magnitude, fabricating the 88 million dots in approximately 5 min. Even with impressive recent 

advances in cantilever array design, such arrays tend to be highly specialized for a given application. They are 

also mechanically fragile, expensive, and often difficult to implement. It is therefore difficult to imagine 

commercially viable production methods based on scanning probe systems that rely on conventional 

cantilevers.52 New scanning-probe contact-printing methods to reduce the cost barriers associated with 

massively parallel DPN were needed to achieve high-throughput and to define patterns with high-resolution.53 

 

FIG. 3 (a) Optical micrograph of part of the 2D array of cantilevers used for patterning. Inset: SEM image of the cantilever arrays at a 

different viewing angle. (b) Large-area SEM image of part of an 88 000 000-gold-dot array (40×40 within each block) on an oxidized 

silicon substrate. (c) Representative AFM topographical image of part of one of the blocks, where the dot-to-dot distance is 400 nm, 

and the dot diameter is (100±20) nm. Reproduced from
51

. 

The second key advance in molecular printing was therefore to replace the cantilever with an elastomeric 

pyramid on a solid backing. This approach is called Polymer Pen Lithography (PPL) and is shown in FIG. 4.54 The 

elastomeric tips can print a digitized pattern with spot sizes ranging from 90 nm to over 10 μm, simply by 

changing the force and time over which the ink is delivered. This feature-size dependence on force is a 

remarkably controllable parameter and distinguishes PPL from both DPN and conventional contact printing. 

Because the elastomeric tip array can absorb ink and act as a reservoir, it can be used to print over large areas 

and for multiple printing tasks without re-inking. The patterning capabilities have been demonstrated with 

arrays that contain anywhere between 15,000 to ~11,000,000 pyramid-shaped pens. PPL has also proven to be 

effective for patterning small molecules and proteins and has been used to make patterns of electronic 

circuits.54 



 
 

 

FIG. 4 (a) A schematic illustration of the polymer pen lithography setup. (b) A photograph of an 11-million-pen array. (c) Scanning 

electron microscope image of the polymer pen array. The average tip radius of curvature is 70 ± 10 nm (inset). Reproduced from
54

. 

A third key advance was to overcome the feature size limits of elastomeric pens in PPL by fabricating arrays of 

ultra-sharp Si tips on a spring-like elastomer layer that allows all of the tips to be brought into contact with a 

surface over large areas. This method is called Hard-tip, soft-spring lithography52 (HSL) and is illustrated in FIG. 

5. In HSL there is a lack of feature diameter dependence on the force exerted between the tip array and the 

surface, because Si tips do not deform under pressure. However, there is a linear relationship between the 

feature area and the square root of the dwell time. HSL is also distinguished from all other lithographic 

techniques by the ability to form arbitrary patterns in massively parallel (over a 1-cm2 area) and mask-less 

fashion at a feature resolution of less than 50 nm.  

Other challenges such as the direct writing of single sub-10 nm nanoparticles in a specific location individually 

on a substrate have allowed further development of DPN. Scanning Probe Block Co-polymer Lithography 

(SPBCL)55 relies on either DPN or PPL to transfer phase-separating block copolymer inks in the form of 100 nm 

or larger features on an underlying substrate. Reduction of the metal ions via plasma results in the high-yield 

formation of single crystal nanoparticles per block copolymer feature. For instance, integration of individual 

nanoparticles on devices56 or single-molecule protein arrays57 have been enabled by scanning probe block 

copolymer lithography. 



 
 

 

FIG. 5 (a) Schematic illustration of a Hard-tip, soft-spring lithography (HSL) tip array supported by a transparent, soft backing layer 

that provides mechanical flexibility to each tip. (b) An SEM image of the Si tip array on SiO2/PDMS/glass with a 150-μm pitch 

between tips. The inset shows a large area of the array to demonstrate the homogeneity of the tips. Reproduced from
52

.  

More recently, a cantilever-free SPL architecture that can generate 100 nm-scale molecular features using a 2D 

array of independently actuated probes has been reported.58 To physically actuate a probe, local heating is 

used to thermally expand the elastomeric film beneath a single probe, bringing it into contact with the 

patterning surface. Not only is this architecture simple and scalable, but it addresses fundamental limitations 

of 2D SPL by allowing one to compensate for unavoidable imperfections in the system. This cantilever-free 

dot-matrix nanoprinting will enable the construction of surfaces with chemical functionality that is tuned 

across the nano- and macroscales.  

In the latest DPN development called beam pen lithography, an array of tips adds photosensitive material to 

the surface followed by exposure of the material through a hole in the tip.59 Although nanoscale features have 

not yet been achieved one could envisage combining this method with near-field photolithography in order to 

create nanoscale three-dimensional structures.      

Dip-pen nanolithography has been widely applied to deposit biological material on a sub-cellular scale. The 

absence of high temperatures and aggressive chemicals make dip-pen nanolithography an excellent tool for 

sensitive biological materials such as proteins, peptides, DNA, lipids, viruses, and enzymes. As an example 



 
 

Curran et al60 reported dip-pen nanolithography deposition for sub-cellular surface modification in stem cell 

growth by depositing arrays of 70 nm dots with varying pitch (See FIG. 6 (a)-(c)). The dots contained self-

assembled monolayers (SAMs) with -OH, -CH3, -CO2H, or -NH2 termination in order to control the initial stem 

cell attachment and subsequent cell signalling. In this case dip-pen nanolithography provided a method to 

rapidly scan for stem cell growth factors by large-area nanoscale surface-modification, which is difficult to 

achieve by other fabrication technologies. Sekula et al61 showed that dip-pen nanolithography can be used to 

deposit phospholipids containing various amounts of biotin and/or nitrilotriacetic acid functional groups with a 

200 nm resolution. The structures were selectively functionalized and subsequently used for selective 

adhesion and activation of T-cells (See FIG. 6  (d), (e)). One benefit of using ANM is the ability to add 

functionality to existing structures. This was shown by Mitsakakis et al62 by using dip-pen nanolithography to 

deposit lipids with different functionalized head groups on a micro-fluidic surface acoustic wave biosensor. By 

using dip-pen lithography the sample preparation time was reduced and the sensitivity of the biosensor was 

increased 5 times. It is beyond the scope of this article to give an exhaustive review of all the biomaterials 

deposited by dip-pen nanolithography but an overview can be found in two excellent reviews by Zhou et al63 

and Wu et al.64   



 
 

 

FIG. 6 (a) AFM image of self-assembled monolayer dots printed using dip-pen nanolithography. (b) Human stem cells grown on 

nanopatterned surface. (c) Height profile of nanodots of self-assembled monolayers. (d) Fluorescence micrograph of phospholipid 

nanodots patterned by dip-pen nanolithography. (e) Fluorescence micrograph of a T-cell selectively adhered to and activated by 

functional proteins (anti-CD3/anti-CD28 antibodies) bound to phospholipid multilayer patterns via streptavidin. (a)-(c) reproduced 

from
60

. (d),(e) reproduced from
61

. 

DPN has evolved in order to achieve unlimited pattern design, low-cost, high throughput and pattern 

flexibility. The advances have been rapid and span many fields. However, issues such as individual tip actuation 

over large areas, feature size reduction to the single-molecule level (for example, individual proteins), and 

translation of the tips over large distances must be addressed to achieve the full potential of this technology. 

The use of these techniques as tools for rapid and parallel site-specific chemical transformations is an 

emerging approach that could transform the manufacturing of gene chips by providing a route to site-specific 

combinatorial synthesis. Rapid advances in tip engineering to reduce wear have been particularly important.65, 

66, 67, 68 

 

2.2 Electrohydrodynamic Jet Printing 

Inkjet printing by piezoelectric actuation is well known from home printing of documents and photos. The 

same technology with a little modification has been used to print microscale structures of a wide variety of 



 
 

materials including proteins,69 polymers14 and nanoparticles.70 An alternative driving force to expel the “ink” 

known as electrohydrodynamic (EHD) jet printing utilizes an electric potential applied between the nozzle and 

the substrate. The electric potential causes mobile ions to accumulate near the mouth of the nozzle and due to 

ionic electrostatic repulsion the meniscus deforms into a cone known as the Taylor cone16 consisting of one or 

more coaxial liquids (see FIG. 7). At low electric fields the meniscus enters a pulsating mode in which the 

Taylor cone contracts after expelling each droplet. The frequency of this pulsation is in the kHz range leading 

to a rapid stream of droplets before the meniscus retracts to its original shape. The time it takes to form a new 

burst of droplets depends on the flow rate of the supplied solution and the characteristic charging time 

determined by the resistance and capacitance of the system. If the electric field is increased the Taylor cone 

stabilizes and a continuous flow is established known as the stable jet mode which is used in electrospinning. 

At even higher electric fields, multiple jets can form and eventually the atomization mode is reached (also 

known as electrospraying) in which a fine cloud of droplets is created, a method widely used in mass 

spectroscopy and for thin film deposition. Thus, EHD jet printing can be harnessed to directly write structures 

in two or three dimensions or apply thin films with great uniformity. The key advantage of EHD jet printing 

over other dispensing technologies is that by controlling the electric field strength droplets or liquid streams 

with a diameter much smaller than the nozzle size can be achieved.71, 72 Nozzle clogging is exacerbated by a 

reduction in the nozzle orifice and is one of the main causes of dispensing failure. Clogging in addition to the 

difficulties of nanoscale nozzle fabrication are some of the main challenges in any nanoscale dispensing 

technology.      

 
FIG. 7 (a) Photograph of compound Taylor cone containing coaxial fluid flow. (b) Close-up of coaxial jet. Reproduced from

72
. 



 
 

Through the pulsating mode Park et al16 were the first to show that EHD jet printing can achieve feature sizes 

below 250 nm by using nozzles with an internal diameter down to 300 nm and reducing the nozzle to sample 

distance to 100 micrometres. By coating the nozzle opening in a hydrophobic self-assembled monolayer 

clogging and erratic dispensing was avoided enabling high quality printing. Through an integrated computer-

controlled system the group showed printing of complex structures in both conducting and insulating 

polymers as well as solutions of silicon nanoparticles and rods and single wall carbon nanotubes. They were 

also able to show printing of interconnects and functional transistors with critical dimensions down to 1 µm on 

a flexible plastic substrate.         

EHD jet printing was taken even further by Galliker et al73 who improved the resolution and extended the 

technology into the third dimension through electric field enhancement and rapid solvent evaporation. The 

resolution was improved by reducing the substrate to nozzle distance to 3-4 µm which enabled structures 

down to 50 nm to be written (see FIG. 8). The electric field enhancement from the first droplet guides the 

second droplet to land in exactly the same spot. In this way vertical and tilted gold nanowires with a 50 nm 

diameter and 850 nm heights could be fabricated (see FIG. 8 (d)).  



 
 

 
FIG. 8 Schematic of EHD printing process and set-up. (a) Growth of a liquid meniscus and subsequent ejection of ink nanodroplets 

from its apex on application of a DC voltage. During DC on-time, droplets are ejected at a homogeneous period τe and, once 

impacted, are vapourized (represented by wavy arrows) in the course of τe. After periodic repetition of this event (for illustration 

convenience merged into one cycle), a sharp structure consisting of a multitude of formerly dispersed nanoparticles rises from the 

substrate, attracting approaching charged droplets by electrostatic nanodroplet autofocussing (straight arrows). The growth process 

is further illustrated with SEM micrographs (150 nm scale bar) of (b) the deposition pattern of a single nanodroplet and that of (c,d) 

actual nanopillars. (e) Schematic of the ENA NanoDrip set-up with the nozzle located above an underlying glass substrate placed on 

an ITO-coated glass slide representing the grounded counter electrode. Voltage stimuli were applied in the form of amplified DC 

signals between the ink-filled, metal-coated pipette and the counter electrode. Reproduce from
73

. 

The nonlinear relationship between the applied voltage and droplet diameter was shown experimentally to 

vary the droplet diameter from the size of the nozzle orifice (1.2 µm) down to 80 nm at which point further 



 
 

electric field increments had no effect on the droplet diameter. This 15x reduction in feature size helps 

preventing clogging and enables microstructures to be written with the same nozzle as nanostructures. The 

applied voltage also increases the frequency with which the droplets are expelled (up to ≈100 kHz) and 

thereby the flow rate of the dispensed solvent. The increased frequency was shown to be outweighed by the 

reduction in droplet diameter thereby reducing the overall flow rate by almost a factor 100. However, near the 

minimum droplet diameter the flow rate reaches a minimum and further increase in applied voltage was able 

to restore the flow rate to near its original value (≈100 µm3/s). The implications of this is that with the given 

nozzle size, 80 nm wide lines can be written faster than 1 µm wide lines. Such inverse scaling of throughput to 

feature size is in contrast to other techniques and can thus be advantageous for nanomanufacturing.    

Combining EHD jet printing with block-copolymer self-assembly provides a pathway for further reduction in 

minimum feature size. The flexibility of EHD jet printing allows a desirable mixing of block-copolymers with 

different molecular weight and the material waste of the relatively expensive polymers is greatly reduced. In 

this way periodic structures with length scales ranging from centimetres to ≈10 nm can be fabricated74 within 

the geometrical limitations of block-copolymer self-assembly.  

 

FIG. 9 Poly(ethylene oxide) three-dimensional structures fabricated by electrospinning. Reproduced from
75

. 

Electrospinning from the stable jet mode is used for fast deposition of organic and polymer fibres for 

applications in nanowire electronic devices, physical biomimetic structures, and field-effect transistors. 

Traditional electrospinning can form fibres with speeds up to 10 m/s but the fibres are unaligned and form a 

mat of cross-linked fibres because of an uncontrollable wiping motion of the forming fibre.76 By reducing the 

distance between the nozzle and the substrate straight fibre arrays can be formed.77, 78 Through a further 



 
 

reduction of the distance and the applied voltage the fibre diameter can be reduced to 50 nm and positioned 

with great accuracy.79 A further development known as mechano-electrospinning utilizes the drawing force on 

the fibre from the moving stage to stretch the fibre80 achieving well-organized arrays of sub-20 nm diameter 

fibres.79 The fibre diameter decreases with the drawing speed and could be drawn with up to 40 mm/s. 

Recently Lee et al75 extended electrospinning to the third dimension by utilizing the electric field enhancement 

from a Pt electrode to control the wiping motion. By repeatedly passing the fibre along the same path 180 nm 

wide and 4.5 µm tall walls of poly(ethylene oxide) were deposited (see FIG. 9).  Additional advantages of 

electrospinning is the ability to fabricate hollow,81 co-axial82 and mixed composition nanowires83 in one step. 

An impressive example of the materials and dimensions achievable by electrospinning was reported by 

Nuansing et al84 who were able to deposit peptide and protein nanowires with a diameter around 100 nm but 

on occasion down to 5 nm, corresponding to a single molecule (see FIG. 10). These fibres will be highly 

biocompatible and biodegradable and a potential candidate for the most critical biological and medical 

applications, such as the proliferation of stem cells. Although these nanofibres were randomly orientated, the 

recent advances within EHD Jet printing mentioned previously in this review would enable controlled 

deposition.     

 

FIG. 10 (a)-(c) Biocompatible albumin (protein) nanofibres with diameters below 100 nm fabricated by electrospinning. Reproduced 
from

84
.  

Electrospraying (electrohydrodynamic spraying) is a method closely related to electrohydrodynamic direct 

writing in that an electric potential is applied between the nozzle and the sample to draw the solution 



 
 

containing charged particles from the nozzle. The distinction of this technique with regards to the pulsating 

and stable jet mode is that the electric field is much higher in this technique. In electrospraying the repulsive 

forces from the charged particles overcome the surface tension of the expelled liquid thereby breaking up the 

solution into droplets. Potential evaporation of the solution increases the repulsive surface charges thereby 

further breaking up the droplet into a cloud of micro- or nanodroplets.85 The size of virtually monodisperse 

droplets can be controlled by the solution flow rate, electrical potential at the nozzle, and nozzle diameter. 

Because the droplets are electrically charged, coagulation is absent. The trajectory and focus of the charged 

particle beam can also be controlled by an external electric field.86 In this way Lee et al were able to focus 

electrosprayed silver nanoparticles to write lines 100 µm wide and 100 nm thick with a deposition rate of 2 

µL/min. 87   

Electrospraying is a flexible deposition method that has been used for thin film deposition, direct writing, and 

nanoparticle fabrication within a variety of fields. Virtually all materials can be electrosprayed, which means 

that organic as well as inorganic thin films can be formed. An excellent review paper by Jaworek et al86 lists 

more than 40 materials and their solvents that have been used so far. Due to the spraying nature of the 

process the resolution of the process is currently limited to 100 µm for direct writing. Therefore 

electrospraying is not suited for direct writing of nanostructures but can distribute nanoparticles locally. 

However, electrospraying is a mature technology with a wide range of proven material choices which for the 

most can be used for nanofabrication if operating in the pulsating or stable jet mode EHD jet printing. A search 

for materials to use in EHD jet printing can herby benefit from looking through the literature for 

electrospraying.    

Taking into account the high writing speeds, wide material choice, and ability to print in three dimensions, the 

possibilities for EHD jet printing are vast. However, because EHD jet printing does not have an inbuilt 

alignment technique, as is the case for manufacturing technologies based on microscopy techniques, aligning 

consecutive layers will prove more difficult. Nevertheless, this technology is one of the most promising ANM 

technologies for large-scale fabrication of structures where nanoscale alignment is not essential.    

 

2.3 Direct Laser Writing and Resist Based Nanomanufacturing 



 
 

Direct laser writing (DLW) of nanoscale features is capable of building 3D structures from the ground up in a 

rapid and facile manner (see FIG. 11). Although DLW is a resist based fabrication method and therefore 

requires an additional development step, it is very similar in nature to additive nanofabrication because the 

fabricated structures have their final shape without following deposition or etch steps. Laser driven three-

dimensional (3D) nanofabrication this is best achieved by multi-photon polymerisation (MPP).88, 89 In MPP, the 

concentration of photons in the neck of a femtosecond pulse of a laser beam allows for the controlled 

photopolymerisation of a targeted volume (or voxel) in a photoresist. Development of this resin allows 3D 

features to be written at typically 10 to 500 µm/s with nanoscale resolution. This is particularly useful for 

fabricating 3D photonic structures89, 90, 91 that would otherwise be extremely expensive and difficult to 

manufacture with the alignment of sequential 2D layers via traditional lithography. The successful 

commercialisation of this technology by companies like Nanoscribe GmbH has enabled photonics researchers 

to investigate new applications in 3D with invisibility cloaks90, 91, Gecko-mimicking surfaces92 and 3D data 

storage93 among other impressive achievements in recent years.  



 
 

 

FIG. 11 Features and devices created by Direct Laser Writing literature (a) True colour images of carpet invisibility cloak for 

unpolarised light, ranging in wavelength from 500 to 900 nm, with both reference and cloak structures. Reproduced from
91

. (b-e) 

SEM images of silver microscale lines drawn arbitrarily onto 3D structures. Reproduced from
94

. (f, g) True-colour reflection-mode 

optical micrographs of woodpile photonic crystals 20 x 20 µm
2
 fabricated by (f) regular DLW (MPP) and (g) STED-DLW. Reproduced 

from
95

. (h) SEM image of a 22 nm silver dot grown by laser driven nucleation and growth, with (i) the corresponding intensity profile 

as indicated in the micrograph. Reproduced from
96

.  

The range of materials that can be polymerised for MPP nanofabrication is a significant challenge for materials 

science to explore. For solid structures advanced composites or solutions that respond to MPP have been 

demonstrated, resulting in structures of vanadium97 and silver96. The simplest approach to avoiding this is to 

use the surfaces of 3D polymer structures as scaffolds for the deposition of other materials. Metallisation of 

such scaffolds by atomic layer deposition or electroless plating has been shown to work for metallic photonic 

crystals98 and metamaterials.99 The polymer structures written can also be used for casting of 3D structures 

from other materials like titania.100 



 
 

Maximising the resolution of MPP is of course an important goal, with Abbe’s diffraction limit representing the 

typical limit. A recent review101 summarised the advances in sub-diffraction limit DLW. As an example Cao et al 

achieved the highest resolution of this technique to date with 40 nm dots in a highly sensitive photoresin102 

and 22 nm silver dots by laser activated nanoparticle growth.96 These results are extremely impressive, but the 

high resolution was only achievable for individual dots. When continuous structures were attempted, a larger 

line width of 130 nm was achieved at a comparatively low scanning speed of 3 µm/s.102 Stimulated emission 

depletion (STED), which has achieved 5.8 ±0.8 nm resolution in microscopy,103 is also being put forward as a 

promising route to sub-diffraction MPP. It has been effective in building 3D nanoscale structures over a large 

area91, 100 and shows significant improvement over regular MPP for 175 nm parallel structures95 achieving 65 

nm line widths104 whilst scanning at 100 µm/s.  

DLW is also able to create a wider range of features in 2D by initiating reactions locally with the input of 

energy from the laser. This includes reducing graphite oxide to draw supercapacitors,105 the laser-induced 

chemical vapour deposition of graphene on Ni,106 the growth of carbon nanotubes,107, 108 and the electroless 

plating of silver.94 Integrating these technologies could enable the entirely laser driven fabrication of carbon 

nanotechnologies. Other methods of laser writing like sintering of a silver nanoparticle ink109 could work well 

for large scale patterning of electrodes. In these cases higher scan speeds up to 1000 mm/s have been shown 

to reduce the features line width and height to below 5 µm and 50 nm respectively, with an increasingly high 

surface roughness an unfortunate consequence. 

Although technically not an additive manufacturing method, scanning near-field photolithography provides a 

cheap alternative to traditional nanoscale photolithography. By utilizing the evanescent field from an 

illuminated nanoscale aperture in close proximity to the photoresist, direct writing of sub-diffraction limited 

structures with resolution down to 70 nm can be achieved.110, 111, 112 Vast improvements to this technology has 

been achieved by utilizing flying plasmonic lenses thereby potentially outperforming electron beam 

lithography in terms of cost and speed.113 The inventors envisage this technology to be able to pattern a 12 

inch wafer in 2 min with sub-100 nm resolution in the future.  

 

3. Single Particle Placement 



 
 

Single particle placement covers both the ability to create structures atom-by-atom and positioning pre-

prepared nanoscale objects within an existing framework. We will cover electrical, mechanical and optical 

methods to attract, retain, and position particles enabling fabrication of the smallest human-made structures. 

We will especially focus on the possibilities afforded by Scanning Probe Microscopy (SPM) technologies, 

electrokinetics, and optical confinement. Finally we will briefly cover some of the possibilities self-assembly 

offers including the prospect of combining self-assembly with other single particle placement methods. 

 

3.1. Building Atom-by-Atom using STM 

Building devices from individual atoms remains the ultimate long-term goal for researchers in nanotechnology. 

As of yet, the only machines proven capable of such manipulations are SPM technologies: the scanning 

tunneling microscope (STM) and the atomic force microscope (AFM). 

In arguably the most well-known use of a STM, researchers at IBM pioneered atomic manipulation by 

rearranging Xe atoms on a Ni substrate to spell out “IBM” (FIG. 12 (a) and (b)).114 AFM manipulation of atoms 

even advanced the technology up to room temperatures, achieving the atomic switching of adatoms115 (see 

FIG. 12(c)-(e)) or the more unconventional vertical interchange of atoms between the surface and the tip.116 

These approaches demonstrate the impressive atomic limit of the current technology and are used frequently 

in fundamental research to position and characterise atoms and molecules.117, 118, 119 Although STM probes do 

not offer high throughput, it is the most precise nanomanufacturing tool available and is being used to 

fabricate some of the first single atom transistors for quantum computing.120 The process known as STM 

lithography involves selectively driving the electrical desorption of hydrogen atoms from the surface of 

hydrogen passivated silicon and letting a phosphorus atom diffuse through the window formed by the missing 

hydrogen atom. 

The manipulation methods of nanoscale objects by STM have been improved by the combination of multiple 

STM probes with scanning electron microscope (SEM) imaging allowing simultaneous visual guidance with 

manipulation and electrical characterisation of atomic to nanoscale devices.121 The consolidation of these 

functions has been useful to researchers, who can take measurements and images of their devices during 

processes driven by the probe tips. For example in work by Qin et al,121  this is demonstrated with carbon 



 
 

fibres that are pushed, bent, burnt and broken under the real-time observations of the SEM (see FIG. 13 (a) 

and (b)). Unfortunately, the need for active engagement of a human operator with the machine to ensure the 

success of iterative manipulation steps makes industrial adaptation impractical at present, with the best 

applications available in pure research. 

 

FIG. 12 (a, b) STM images of the arrangement of Xe atoms on a Ni surface (a) before and (b) after manipulation with the STM probe. 

Reproduced from
114

. Each letter is 5 nm from top to bottom. (c-e) A sequence of AFM images showing the lateral manipulation of 

substitutional Sn adatoms in a Ge surface by inducing adatom exchange at room temperature with an AFM probe tip. Reproduced 

from
115

. One of these manipulation steps is presented (c) before and (d) after adatom exchange of the brighter Sn atoms and (c) 

shows the final AFM image of the Sn atoms rearranged to give the atomic symbol Sn. (c) and (d) are 4.6 x 4.6 nm
2
 and (e) is 7.7 x 7.7 

nm
2
.  

3.2. Nanoparticle Manipulation by AFM 

The visual image of additive manufacturing is often a robotic arm picking up a component and inserting it into 

another component. This literal understanding of AM has been miniaturized and microscale electrothermally 

actuated robotic arms have been used to break off vertically aligned carbon nanotubes and place them onto 

surfaces, such as on the tip of an AFM probe.122, 123 With armss like these even nanotubes tens of nanometres 



 
 

in diameter can be gripped and moved.124 Although this is a process that struggles to manipulate smaller nano-

objects and operates at temperatures too high for many applications, microgrippers challenged the idea that 

some objects are just too small to pick up and place in a desired location.  

The AFM offers more flexibility to researchers; it is capable of manoeuvring a diverse range of materials from 

nanoparticles125, 126 and atoms115, 116 to biological cells,127 be it under vacuum or immersed in liquid. The 

rudimentary method of nanoparticle manipulation with an AFM uses the probe tip to push, pull and slide 

nanoparticles around on a substrate, positioning them into desired configurations.128 By moving the probe on 

a vector through the centre of the targeted particle in the desired direction, the nanoparticle can be moved 

across the surface by the interaction forces between the nanoparticle and tip apex. Unfortunately these 

methods have very low throughput and require the operator to constantly image the surface to track the 

particle’s progress. The accuracy of each iterative process has a high uncertainty, since the particle will be 

likely skewed to one side or the other of the intended path if not pushed precisely in the centre, which 

becomes more likely for smaller particles. Recognising these flaws, Kim et al pioneered a novel method of 

manipulating nanoparticles whilst simultaneously imaging the surface.125 They relied on the principle that 

static friction is time-dependant and will increase if two surfaces are left inert. They studied 15 nm Au 

nanoparticles on planar quartz surfaces. One nanoparticle was initially “kicked” to reduce the standing friction, 

before the surface was scanned at a sufficiently high rate (~7Hz) with the AFM in tapping mode. The kicked 

particle moved across the surface in a direction perpendicular to the scanning axis, with motion ceasing 

abruptly and precisely when the scan speed was dropped below the threshold. This phenomenon resulted 

from the mechanical force the probe tip exerts on the nanoparticle on each pass pushing it along the surface, 

which also created ghost images of the particle giving an intuitive picture of its path. Critically, this result was 

only observed for the nanoparticle that was initially kicked, validating the hypothesis regarding the importance 

of the change in friction. To demonstrate how effective this technique was, they ran comparison studies with 

the existing manipulation method, reporting that efficiency was improved by a factor of 5 to 10 whilst 

achieving at least parity of precision. Using this method of nanomanipulation, the same group have managed 

to characterise the coupling between a gold nanoparticle in a hybrid nanostructure with a semiconductor 



 
 

quantum dot,126 demonstrating the usefulness of this technique to more efficient mechanical manipulation. 

Testing with other particles and nanoscale objects will be needed to see how transferrable the method can be.  

 

FIG. 13 (a, b) An AFM probe with a haptic force feedback is used to move a carbon nanotube on the surface between two electrodes 

to create an infrared sensor. Reproduced from
129

. AFM images (a) before and (b) after the nanomanipulation show the successful 

transfer.  (c, d) SEM images of the bending of a carbon nanofiber with an STM probe in a 4-probe STM system. Reproduced from
130

. 

 

In an alternative approach to circumventing the unreliable manipulation of objects with the AFM, Li et al have 

developed a system that generates real-time force feedback to the operator through a haptic joystick,131 that 

is also used to update AFM scans of the surface.132 The development of this technology133 has culminated in a 

corrective fabrication technique, wherein carbon nanotubes (CNTs) are assembled near electrodes by 

dielectrophoresis before being repositioned to bridge the electrode gap (see FIG. 13 (a) and (b)).129 Using this 

technique of nanorobotic manipulation, they were able to build and test single-walled, multi-walled and 

bundles of CNTs onto electrodes to operate as functional infrared sensors.  

In many cases, visualisation is realised by building the manipulators into an SEM setup to give operators real-

time visualisation of the objects they are controlling. This is a common combination for microgrippers, but has 

also been employed using SPM probes. For example, in work by Qin et al130, carbon fibres are pushed, bent, 

burnt and broken under the real-time observations of the SEM (see FIG. 13 (c) and (d)). The combination of 

these machines could prove useful to researchers, who can take measurements and images of their devices 

during processes driven by the probe tips. 



 
 

The need for active engagement of a human operator with these different mechanisms to ensure successful 

manipulation of nano-objects makes industrial adaptation impractical at present, with the best applications 

available in pure research. This problem may be solved if recognition and positioning of components can be 

automated by software. Additionally, mechanical manipulations are primarily limited to the 2D rearrangement 

of existing nano-objects, which limits the scope for 3D manufacturing. 

 

3.3 Electrokinetic Nanomanipulation 

A force can be exerted on charged objects in solution when in a DC electric field, an effect known as 

electrophoresis, which allows for straightforward manipulation of particles towards charged surfaces. These 

charged surfaces are easily created by the application of a DC voltage between electrodes,134 although 

alternative methods of charge patterning down to hundreds of nanometres can also be used to direct the 2D 

assembly of components.135, 136, 137 Electrophoresis has been criticised for being limited to the manipulation of 

charged objects. However, the ability to functionalise nanoparticles with surface monolayers138 enables a wide 

variety of nanoparticles to be manipulated. It should be noted, though, that some researchers have 

encountered problems when attempting to assemble films with DC or AC fields alone.139 

Analogously, dielectrophoresis refers to the force generated on a neutral particle when it is in an AC electric 

field: the electric field polarizes the particle, which in the non-uniform field results in a non-zero Coulomb 

force acting on the particle. Although two electrodes are usually required for dielectrophoresis140, the use of a 

triaxial probe to generate a dielectrophoresis field that acts as a non-contact trap for dielectric nanoparticles 

has been recently demonstrated141, 142 (see FIG. 14). This method is proposed to work for particles as small as 5 

nm141 and has been verified for the isolation of 100 nm polystyrene beads.142 The non-contact manipulation of 

nanoparticles in 3D can thus be achieved, with the probe moving the particle through the solution and 

releasing it on command. However, the strength of the trap limits the positioning accuracy of the particles in 

the solution, with the polystyrene beads having standard deviations of 133 nm and 204 nm in the x and y axes 

from the intended location. The increasingly strong influence of Brownian forces will only exacerbate this 

problem as the manipulated particles become smaller. However, if the electric field confining the particle 



 
 

could be amplified, then its position might be more easily confined, and the accuracy improved. Despite the 

initial problems, this method represents one of the most impressive results within nanoparticle manipulation. 

 

FIG. 14 Non-contact capture of 200 nm polystyrene beads by a triaxial probe by dielectrophoresis. Reproduced from
142

. (a) 

Schematic and three representative fluorescence images of a 100 nm radius bead trapped in the negative-dielectrophoresis trap. (b) 

Scatter plots of the position of the bead in the trap (red dot) and the tip inferred from the position of an attached bead (blue dot). 

(c) Scatter plot of the separation between the trapped bead and the triaxial tip given by the separation of trapped bead/adhered 

bead pairs. The axes of tightest and loosest trapping are determined with principle component analysis and are shown on the plot as 

the x-axis and y-axis respectively. (d) Histogram of the spread of the trapped bead about the x-axis. (e) Histogram of the spread of 

the trapped bead about the y-axis. 

3.4 Optical Nanomanipulation 

The energy profile of a laser can be used as an optical trap for metallic and dielectric nanoparticles, capable of 

3D manipulation. The forces exerted by these optical tweezers are only of the order of piconewtons, generally 

making it useful only for objects immersed in liquid media, which has seen it used primarily for manipulating 

biological entities.143 Recent advances are now allowing the manipulation of nanoscale objects,144, 145, 146, 147 like 

gold nanoparticles145 and silver nanowires147 arbitrarily positioned onto surfaces. The error in the positioning 

of these particles, however, was untenably high for reliable fabrication practices e.g. 40 nm particles with 

deposition errors on the order of hundreds of nanometres.145 This limitation to the tweezers is unfortunate, 



 
 

given the flexibility of manipulation it offers such as using the polarisation of the light to orient and align the 

objects.144, 146 

 

FIG. 15 The capture of 22 nm polymer nanoparticles in a photonic crystal (PhC) resonator. Reproduced from
148

 (a) Scanning electron 

microscope image of a silicon nitride PhC resonator. (b) FDTD simulation showing the electric field distribution near the resonator 

cavity (indicated by the red dashed lines in panel (a). The colours indicate the relative field intensity (arbitrary unit). Strong field 

enhancement can be seen within the small hole at the centre of the cavity. Scale bars in (a) and (b), 1 μm. (c) Schematic showing 

trapping of a nanoparticle on a silicon nitride PhC resonator. (d) Schematic showing the relative locations of the resonator and the 

flow chamber. The resonator and the waveguides connected to the resonator are on the top of a silicon dioxide layer. The upper 

part of the resonator is exposed to the aqueous solution in the flow chamber, while the waveguides connected to the resonator are 

surrounded by silicon dioxide. (e, f) Histograms of the displacement of the trapped particle from the trap centre in the X and Y 

direction. 



 
 

The precision of this placement can be improved though: for instance by coupling the laser with cavities in an 

optical resonator, it has been demonstrated that even 22 nm polymer particles can be immobilised in the 

cavities148 (see FIG. 15). Because these cavities increase the electric field density within them when the laser is 

on, with positioning error typically within 25 nm achieved. This is comparable to the accuracy of the self-

assembly approach to single-particle placement.149 The use of these nanoapertures also benefits from a low 

increase in temperature of approximately 0.3 K, which helps limit the attraction of multiple particles to the 

aperture by thermophoresis and avoids damaging biological entities during manipulation. Following a similar 

design practice 50 nm polystyrene beads have recently been trapped in a nanoaperture on an optical fibre and  

manipulated in suspension over several microns150 (See FIG. 16). This near-field optical nanotweezer is able to 

both manipulate and track the particle in 3D through the same fibre, allowing a facile means of manipulating 

dielectric nano-objects, even though the wavelength of the laser used was more than 21 times the diameter of 

the bead. Additionally, the reflected signal collected by the fibre was able to make a distinction as to whether 

or not a particle was currently trapped at the tip. This represents an important leap forward into the nanoscale 

world for optical tweezers, almost certainly establishing the use of similar apertures for future mechanisms. 

The plasmonic heating effect can nevertheless be put to good use: by exposing a gold nanoparticle embedded 

in a layer of PDMS to laser light, the localised heating cures the PDMS in proximity to the particle.151 The laser 

also acted as an optical tweezer, which was able to move the particle around to draw 2D features into the 

PDMS, with no curing of the PDMS observed due to laser exposure alone, and producing PDMS nanowires 

several microns in length and 120-130 nm in diameter. It remains to be seen if these features could then be 

used as a mask for further processing. There is also a difficulty that arises from continuously write with a 

nanoparticle without retracing previous paths used by the particle to prevent over-cured and thus over-sized 

features, to build full nanostructures. Any large scale patterning with multiple particles would also need to 

initially locate particles in the PDMS, and write structures whilst presumably not coming into proximity of 

other particles causing unintended curing. However, the potential to write 3D features in this manner is an 

exciting future area of research. 



 
 

 

FIG. 16 The capture and manipulation of a 50 nm polystyrene bead with a near-field optical tweezer. Reproduced from
150

 (a) SEM 

image of an 85-nm-gap bowtie nanoaperture patterned at the extremity of a tapered optical fibre. (b) Schematic of experimental 

configuration. The 1,064 nm trapping laser is directly coupled into the fibre to excite the transverse mode of the bowtie 

nanoaperture. (c) Composite image reproducing the displacement of the trapped object. This displacement takes place over a 30 s 

time period with numbers 1–12 represent the successive steps of the tip and particle movement. 

3.5 Self-assembly 

By exploiting chemical processes through which materials bond to each other, it is possible to self-assemble 

features from the bottom-up with molecules and particles as the building block. The assembly of these 

components can be directed by a variety of interparticle forces,152 which are commonly used to create 

molecular monolayers on surfaces, which is extremely useful for thin film applications,153 and ordered arrays 

of nanoparticles.154 This has proven to be an extremely useful tool for nanofabrication, with an extensive body 

of research investigating the various methods and applications of self-assembly.154, 155, 156  

Combining multiple methods of self-assembly has even succeeded in the creation of an operational 3D motor 

from a single polymer crystal.157 Successive self-assembly processes allowed a crystal of R-hydroxyl-ω-thiol-

terminated polycaprolactone to be coated in three different types of nanoparticles: gold nanoparticles to 

facilitate optical visualisation; platinum nanoparticles to drive the motor by catalysing the decomposition of 

the surrounding hydrogen peroxide solution; and iron oxide nanoparticles to allow for remote magnetic 

guidance of the motor. The functioning motor is shown to perform all of these functions simultaneously, with 

attempts at moving around magnetic polystyrene microparticles proven partly successful. This type of study 

shows just how useful nanoparticles and self-assembly are to expanding the functionality of complex devices.  

However, the exact positions the molecules bond to in self-assembly requires careful engineering of the 

devices; lithography methods are vital to ensuring that the assembly occurs in the right locations. Self-



 
 

assembly is therefore not available as a standalone fabrication method that can build completely arbitrary 

assemblies, but it does allow for existing surfaces and objects to be functionalised to perform other useful 

tasks,153, 158, 159, 160 including large-scale growth of features like carbon nanotubes for circuits.161 

 

FIG. 17 Single nanoparticle printing. Reproduced from.
160

 (a) Schematic of the nanoparticle capture process: a colloid meniscus 

containing 60 nm Au nanoparticles is drawn across an indented PDMS surface. (b) A bright-field optical micrograph of the assembly 

in action; the bright line indicates the accumulation zone of nanoparticles in the colloid. (c, d) AFM topography scans of 60 nm Au 

nanoparticles (c) captured on the PDMS stamp and (d) printed onto a silicon substrate. (e) SEM image of detail (left eye) from a 

printed array of Au nanoparticles. (f) SEM image of silicon nanowires grown from a printed array of Au nanoparticles (inset is tilted). 

Patterning areas of a surface for self-assembly, although limited to the resolution of the preceding lithography 

steps, can even direct the very precise manipulation of nanoparticles individually. For instance, 60 nm gold 

nanoparticles were shown to be isolated onto a PDMS stamp by drawing a meniscus of gold colloid across the 

indented surface160 (see FIG. 17). As the nanoparticles that accumulated at the edge of the meniscus pass over 

the surface indents, individual nanoparticles are drawn into each dent by capillary forces while the Stokes drag 

of the meniscus pulls additional particles away. Transfer printing was then used to attach these gold particles 

to a separate PMMA coated substrate, transferring the majority of the pattern and allowing the PDMS stamp 

to be reused. Once hydrogen plasma cleaning has removed the PMMA film, the nanoparticles were shown to 

have retained their functionality for nanowire growth. Similar approaches to capillary driven assembly have 



 
 

also reported the capture of Au nanoparticles down to 2 nm in diameter.162 Since this technique can be 

extended to other types of nanoparticles, provided very good accuracy during transfer (reportedly within 100 

nm of their captured locations) and a positioning error rate of less than 20 p.p.m., this approach to 

nanoparticle printing could be extremely useful in nanomanufacturing. It may also benefit from an update with 

some of the latest transfer printing techniques being developed.163 

Unfortunately capillary assembly makes it hard to control the exact location that nanoparticles will adhere to, 

which is very important to positioning particles in desired configurations. A more accurate method of isolating 

nanoparticles may instead be achieved by electrostatic interactions between a colloid and self-assembled 

monolayers149 (See FIG. 18). The proof-of-concept device worked by employing patterned circular areas of a 

substrate with a self-assembled monolayer (SAM) terminated by amino groups, and the surrounding area with 

a carboxyl terminated SAM: these two surfaces had a static surface charge in solution (relative to the pH level) 

as a result of protonation and deprotonation respectively, such that the area inside the circle was positively 

charged and the area outside was negatively charged. Immersion of this gate in 20 nm colloidal gold 

nanoparticles capped with citrate ions that carry a negative surface charge in solution, resulted in the 

attraction of the gold towards the gates’ positively charged area, with the surrounding negative charge 

funnelling the gold nanoparticles to the centre of the gates. Once one of these particles was bound to a gate, 

the negative surface charge of the gold nanoparticle opposed the approach of additional particles, which 

insured only single particle placement. This is an extremely impressive result considering that the diameter of 

the gate is almost 7 times larger than that of the particle it isolated and could have been even better if the 

lithographic definition of the gates were more accurate. It is entirely likely that a combination of the 

techniques of the gating mechanism149 and transfer printing163, 164 can be combined for electrically directed 

assembly;165 incorporated into a probe configuration, this may be useful for the 3D printing of individual 

nanoparticles. 



 
 

 

FIG. 18 Single nanoparticle capture in an array by self-assembly. SEM images of 20 nm Au particles self-assembled onto a surface 

patterned with gates. (b) Histogram of the number of nanoparticles captured on each of 400 tested gates. (c) Superimposed plot for 

the positions of single nanoparticles. Inset: SEM image of a gate containing one Au nanoparticle. Reproduced from
149

. 

In conclusion, single particle placement is able to build structures ranging from individual atoms up to 

hundreds of nanometres, but so far the throughput is very low and only useful for basic research and proof of 

concept designs. However, once commercially viable technologies have been discovered, increased 

automation will be able to increase the throughput. The possibility to combine self-assembly with one or more 

of the technologies described in this review is especially promising. 

 
4. Discussion 

It is clear that although additive nanomanufacturing may not be suited to replace CMOS (Complementary 

metal–oxide–semiconductor), it is likely that emerging processes can provide rapid prototyping capabilities as 

well as the ability to manufacture one-off parts and products. ANM has the potential to enable the 

manufacturing of specialized components at the nanoscale. This draws a close parallel with macro-scale 

additive manufacturing that started off as an expensive tool to now being present in many school classrooms. 

Several ANM methods have been reviewed in this article, and we summarize the key capabilities of these in 

this section.  

ANM covers a large spectrum of technologies each with their strengths and weaknesses. The criteria for 

successful ANM are: design flexibility in the choice of materials and shape, resolution, writing speed/cost per 

unit, and initial investment cost. It is in the context of these criteria that future additive manufacturing 

techniques will be evaluated. As with all novel emerging technologies, it is worthwhile remembering that no 



 
 

one technology can provide the solution for all future manufacturing needs. However, in combination most of 

these needs can be met.  

Single particle placement technologies such as STM, AFM manipulation, and optical tweezers are 

comparatively slow but they may be able to enable quantum computing120 or advance fundamental research 

through proof-of-principle device fabrication. Self-assembly is essentially how nature works and in the future it 

is likely that bio-inspired self-assembly in combination with ANM will create novel structures on a large scale. 

So far self-assembly is in its infancy but as a tool to control wettability73 and adhesion16 or guide charged 

particles149 self-assembled monolayers (SAMs) have found extensive use.166  

Method Materials Speed Min. Feature Size References 

STM Single atoms (e.g. Xe) < 1 nm/s* atomic 114, 118, 130 

AFM manipulation Single atoms (e.g. Sn), 
any nanoscale object 
(e.g. carbon nanotubes, 
nanoparticles) 

< 10 nm/s* atomic 116, 125, 129, 167 

Dip-pen 
Nanolithography 
(DPN) 

From small organic 
molecules

 
to organic

 

and biological
 
polymers 

and from colloidal 
particles

 
to metal ions

 

and sols 

Increased with the 
number of probes: 
DPL< 2D arrays<PPL 

15 nm resolution on single 
crystal surfaces, <50 nm 
on polycrystalline surfaces 

23, 36, 168, 169, 
170 

EHD Jet Printing Metal nanoparticles, 
polymers, block 
copolymers 

80 mm/s 10 nm 73, 74, 79, 86  

Direct Laser Writing 
(DLW) 

Polymers, metals 100 µm/s 65 nm, 22 nm 96, 101 

Table I List of the materials, deposition speed, and minimum feature size reported for each additive nanomanufacturing technology. 

*=Estimated. 

Dip-pen lithography (DPN) has been shown to offer an excellent selection of both organic and inorganic 

materials with sub-50 nm resolution. In the course of the development of this technology, the traditional 

cantilever structure has been replaced by cantilever-free systems and arrays of probes. So far, the resolution is 

limited by the size of both the tip and the meniscus forming between the tip and the substrate. For many 

biological applications the current resolution is adequate; in fact, DPN is a powerful research tool for 

manipulating cells at subcellular resolution171 and changing the growth conditions for these cells. This 

resolution is, however, not sufficient for the future of Integrated Circuit (IC) manufacturing, but closely related 

lithography methods such as local anodic oxidation reach sub-10 nm resolution172 proving that better 



 
 

resolution is possible with DPN when combined with an electrically driven reaction. DPN has so far been a two-

dimensional lithography technique but the technology is very flexible with an inbuilt imaging capability and 

extending it into the third dimension seems plausible in the near future. 

Electrohydrodynamic (EHD) jet printing has gone through a rapid development in the last couple of years with 

resolutions now reaching sub-50 nm73, 79 or sub-10 nm when combined with block copolymer technologies.74 

The writing speed is unparalleled when compared to other additive manufacturing technologies presented 

here (see Table I) and is comparable to the writing speed of EBL. Additionally EHD is capable of printing in 

three dimensions73 and because the material is deposited through a solvent, a wide range of materials can be 

available. The equipment requirements are basic, so equipment cost can be kept low. The main challenges are 

nozzle clogging and layer-to-layer alignment but these are not insurmountable problems making EHD a 

promising candidate for future ANM.  

Direct laser writing (DLW) offers great flexibility and was one of the first technologies capable of three-

dimensional manufacturing at the nanoscale. It has proven invaluable for fabrication of three-dimensional 

photonic structures and has already had commercial success. Despite this success DLW has drawbacks 

particularly because material selection is still limited in spite of it being a relatively mature technology.  

Direct write nanomanufacturing is still not able to produce the billions of structures needed for the IC industry, 

but neither is macro-scale additive manufacturing able to compete with the cost per unit of injection moulding 

and other mass-fabrication methods. Macro-scale additive manufacturing first found a home in niche areas of 

dental and medical care, aerospace, automotive and entertainment; nevertheless, macro-scale additive 

manufacturing is on the rise and the market is predicted to double from 2011 to 20151. ANM will have to start 

out with markets smaller than IC manufacturing and the smaller investment needed for ANM equipment will 

help this development. 

Currently an IC manufacturing plant costs around $9 billion; an ANM unit at <$500,000 would be 

transformational for small and medium size firms to own their manufacturing facilities. Additionally, the way 

designers think will change as three-dimensional structures become readily available and the low material 

waste enables the use of expensive materials such as proteins in bio-sensors. There is also a potential 

environmental gain to using ANM over planar device fabrication as a traditionally built 2 g silicon chip requires 



 
 

1.6 kg of fossil fuel, 73 g of chemicals and 32 kg of water.20, 173 Research into additive nanomanufacture could 

focus on cutting this environmental impact, for example by eliminating waste by directly placing materials 

where needed. Additionally, ideas that previously had no future because the market did not require the 

millions of sold units needed to break-even may now become viable. The unit price of direct writing does not 

depend on the density of the printed structures, as is the case for planar device fabrication, but rather 

depends on the total printed area. For a chemical or biomarker sensor the detector area might be much 

smaller than the minimum die size and planar manufacturing could become prohibitively expensive.  

The aspect of resolution as compared to semiconductor manufacturing is also seeing progress; the resolution 

of some of these techniques has reached a level where it can compete with that of EUV-lithography. They are 

well suited to a range of materials, not just “CMOS-Compatible” materials; Table I summarizes a subset of the 

available materials possible in each of these technologies. 

 

FIG. 19 Additive nanomanufacturing in the coming decade is likely to fabricate single electron transistors, multiplexed bio-arrays and 

3D phase change memory. Devices and sensors could be directly printed on existing technologies within aeronautical, automotive, 

medical and optical industries. 

The future of ANM relies on these technologies to either enable fabrication of structures that cannot 

otherwise be built or add functionality to existing technologies. One example where ANM can enable new 

structures is the assembly of nanoparticles into functional devices. It has been shown that a wire of gold 



 
 

nanoparticles can be used as single electron transistors174 but it is currently almost impossible to mass-

manufacture such structures. Probe-based pick-and-place ANM can accurately position nanoparticles in the 

desired configuration making such devices possible in the future (See FIG. 19). Phase change memory devices 

are another example where ANM might enable a new technology. The device is a three-dimensional structure 

which is inherently difficult to fabricate using planar technologies and the ability to build these structures from 

individual nanocomponents using ANM is a real possibility. Promising biological applications of macro-scale 

additive manufacturing are three-dimensional scaffolds for bone and tissue growth,175, 176 direct printing of 

cells for organ growth as well as creating biocompatible films for drug delivery.177 At the nanoscale ANM has 

the capability to fabricate structures from a sub-cellular level to sizes suitable for cellular scaffolds (cells are 1-

100 µm in diameter). Biological applications of ANM include bio-arrays for screening, micro- and nanoscale 

robotics, bio-sensing, and biocompatible environments for cell growth. In biology multiplexing is of great 

importance due to the vast amount of proteins and small molecules found in living organisms. One of the 

challenges for bio-ANM will be to deposit single molecules; the ability to add parts of molecular functional 

elements, such as ion channels or molecular motors using ATP to harvest energy, will enable the study of 

individual cellular reactions or the creation of bionic micro-robots. Biocompatibility is an area of importance 

for bio-scaffolds and stem cells have especially proven difficult to grow in-vitro. The growth is affected by cell 

adhesion to the substrate, chemical growth, small-molecule extracellular signalling and mechanical strain.178 

ANM technologies such as EHD Jet printing have the ability to print protein fibres with sub-cellular resolution84 

which could solve some of the biocompatibility problems and potentially accelerate growth in the field. The 

challenge will be to build biocompatible or living structures in three-dimensions rapidly for medical 

applications. For electrochemical electrode array-based bio-sensing, smaller dimensions increase sensitivity via 

better signal-to-noise ratio, lower detection limits, and superior temporal resolution. Optimizing this electrode 

array design can improve diffusion of the reactive species to the electrode array or increase the surface area 

for increased sensitivity and it will be a challenge for ANM to show the flexibility to improve bio-sensing 

through design and material choice.  

Direct writing of graphene might also be possible in the future by allowing an AFM tip coated with graphite to 

slide over a surface, thereby leaving a nanoribbon/monolayer of exfoliated graphene. This would be an 



 
 

improvement of the results by Zhang et al179 who used a mounted graphite block on the cantilever as the tip of 

an atomic force microscope in order to transfer thin graphite samples onto a SiO
2
/Si substrate. “Writing” with 

the nanopencil yielded slices of graphite just a few tens of atomic layers thick, thereby almost succeeding in 

direct writing of graphene. This could enable device fabrication and repairing or modification of existing 

circuits to tailor functionality.  

Other areas in which ANM can solve fabrication challenges in the future are photonic crystals, metamaterials 

such as negative refractive index materials and invisibility cloaks, electrochemical reactors, and high-density 

electronics.  

Adding functionality to existing structures is also a way ANM can contribute in the future. For example, 

electronics could be printed directly at the end of an optical fibre thereby integrating optics and electronics in 

ways never seen before, and sensors can be printed directly onto engine parts or medical devices. ANM would 

also enable fully integrated devices including electronic, optical, and biochemical elements. 

In conclusion, we have reviewed both single particle placement and direct writing technologies able to create 

sub-100 nm structures. We have especially focused on their ability to create heterogeneous structures from 

multiple materials and the possibility to extend fabrication into the third dimension. We identified single 

particle placement technologies such as STM, AFM manipulation, and optical tweezers as enablers of 

technological advances but not as future manufacturing tools. Direct writing technologies, on the other hand, 

offer a much more promising future of design flexibility, high resolution and high throughput. DLW offers high 

geometrical flexibility and medium throughput but currently suffers from a poor selection of materials. DPN is 

a reasonably mature technology with a wide material selection and promises of sub-10 nm resolution. The 

technology can be scaled up and currently the main challenges are to print in three dimensions and combine 

more functional materials. EHD Jet Printing is a simple and inexpensive technology that offers writing speeds 

comparable to e-beam lithography with high resolution (~20 nm) and great material choice. Additionally, 

three-dimensional structures of only 50 nm wide have been printed proving the possibility of true 3D additive 

nanomanufacturing.  

Within the next few years we predict a rapid development of the ANM technologies presented here, especially 

towards 3D ANM. This new capability will inevitably lead to more innovation as new applications emerge. If 



 
 

ANM follows the development trajectory of the last decade, its rise as a nanoscale rapid prototyping tool will 

soon be imminent. 
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