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Abstract

Unmanned aerial vehicles (UAV) have been receiving unprecedented develop-

ment during the past two decades. Among different types of UAVs, unmanned

helicopters exhibit promising features gained from vertical-takeoff-and-landing,

which make them as a versatile platform for both military and civil applications.

The work reported in this thesis aims to apply advanced control techniques,

in particular model predictive control (MPC), to an autonomous helicopter in

order to enhance its performance and capability.

First, a rapid prototyping testbed is developed to enable indoor flight testing

for miniature helicopters. This testbed is able to simultaneously observe the

flight state, carry out complicated algorithms and realtime control of helicopters

all in a Matlab/Simulink environment, which provides a streamline process from

algorithm development, simulation to flight tests.

Next, the modelling and system identification for small-scale helicopters are

studied. A parametric model is developed and the unknown parameters are esti-

mated through the designed identification process. After a mathematical model

of the selected helicopter is available, three MPC based control algorithms are de-

veloped focusing on different aspects in the operation of autonomous helicopters.

The first algorithm is a nonlinear MPC framework. A piecewise constant

scheme is used in the MPC formulation to reduce the intensive computation

load. A two-level framework is suggested where the nonlinear MPC is combined

with a low-level linear controller to allow its application on the systems with

fast dynamics. The second algorithm solves the local path planning and the

successive tracking control by using nonlinear and linear MPC, respectively. The

kinematics and obstacle information are incorporated in the path planning, and

the linear dynamics are used to design a flight controller. A guidance compensator

dynamically links the path planner and flight controller. The third algorithm

focuses on the further reduction of computational load in a MPC scheme and the

trajectory tracking control in the presence of uncertainties and disturbances. An

explicit nonlinear MPC is developed for helicopters to avoid online optimisation,

which is then integrated with a nonlinear disturbance observer to significantly

improve its robustness and disturbance attenuation.

All these algorithms have been verified by flight tests for autonomous heli-

copters in the dedicated rapid prototyping testbed developed in this thesis.
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Chapter 1

Introduction

1.1 Overview

Enabled by the advancement in technologies and driven by a broad range of ap-

plication demands, the last two decades have witnessed the rapid development

of Unmanned Aerial Vehicle (UAV) systems. UAVs are now in the process of

replacing human piloted aircraft in many situations where they may provide a

safer, cheaper and more efficient solution than their manned counterparts. Mili-

tary tasks, such as Intelligence, Surveillance and Reconnaissance, have promoted

the development of UAVs from the early days; great potentials have also been

found in civil applications such as agriculture, line inspection, and search and

rescue. The growing demands on applications stimulate the further development

of UAV technologies, and impose higher requirements on autonomy. In turn, as

the control and system integration techniques become more capable, UAVs will

find an ever-expanding role undertaking tasks in more complicated scenarios.

Advanced control algorithms, combined with hardware and software enabling

technologies, are playing a critical role in providing means to achieve desired

capabilities that future UAVs should have. Among these various algorithms,

model predictive control (MPC) is of particular interested in this thesis, because

it offers a number of advantages such as a general framework for nonlinear sys-

tems, constraint handing, online planning with preview. These features make

MPC practically attractive for UAV applications. The receding horizon property

of MPC provides a natural framework for improving autonomous level of UAVs.

Within this framework, the process of measurement-optimisation-execution mim-

ics a human operator’s behaviour “look-think-action”. In addition, MPC algo-

1



1. Introduction

rithms utilise dynamic models of UAVs with real-time updates of the current

status of the vehicle and its environment. With the progress of a mission, they

can replan a new route in real-time for UAVs if necessary to accommodate changes

of task priorities and dynamic environments.

To this end, this thesis tries to use MPC techniques to explore the dynamic

properties of an UAV system, in particular a helicopter-like UAV, due to its

versatile flight patterns and complicated dynamics. Flight control design and

path planning for a miniature helicopter are studied, which span from modelling,

control design and synthesis, and verification using flight tests. A particular

attention is paid on the engineering implementation and flight testing of MPC

based algorithms developed in this thesis.

1.2 Outlines

This thesis aims at providing a systematic framework of delivering advanced

control, in particular MPC based techniques, to autonomous helicopters. The

proposed control algorithms in this thesis try to address a number of tasks in

the operation of an autonomous helicopter, namely trajectory tracking, local

path planning, and disturbance attenuation. The overall control design process,

including modelling, control development and validation, is covered. The outlines

of the remaining thesis are organised as follows:

• Chapter 2 provides a literature review on the topics related to this thesis.

First, the basic idea of MPC is explained, and issues associated with MPC

are discussed. Next, existing MPC techniques used in UAV applications

are surveyed and categorised in detail. At the end, popular flight control

algorithms for autonomous helicopters are reviewed, where some classic

issues and new trends are discussed.

• Chapter 3 describes the development of an indoor testbed for miniature

helicopters, which can rapidly realise complicated control algorithms and

implement them on physical vehicles. It effectively facilitates the flight con-

trol development and the following verification. This testbed is composed

of a Vicon Motion system, aerial/ground vehicles and a ground station. All

the components are linked and integrated into a Matlab/Simulink environ-

ment allowing a researcher to program in the same software environment

2



1. Introduction

from the modelling and analysis to control design and final experiments.

This indoor flight test environment is extensively used in supporting the

research work described in this thesis.

• Chapter 4 studies the modelling and system identification techniques for

miniature helicopters. It is important to understand the dynamic charac-

teristics of a helicopter before any attempts at the development of advanced

control can be carried out. Moreover, system identification technique is

essential in producing models of the target helicopter when validating pro-

posed algorithms on a real helicopter, or applying well established algo-

rithms on different helicopters. To this end, this chapter presents a simpli-

fied nonlinear dynamics model to capture the key dynamics of a helicopter.

The model is constructed based on the first principle method, and the corre-

sponding system identification process is conducted to obtain the unknown

parameters build in the dynamic model.

• Chapter 5 describes a MPC based control framework for autonomous he-

licopters. It is a two-level control structure, where the high-level MPC

generates baseline control profile by exploiting the nonlinear helicopter

model, and the low-level linear controller, designed based on the linearisa-

tion around the state reference provided by the high-level controller, com-

pensates the baseline control in the presence of disturbances and uncer-

tainties. The computational load rising from using a nonlinear helicopter

model is reduced by using a piecewise constant scheme in MPC. The sta-

bility analysis on such a control framework is carried out. This two-level

control is implemented on the testbed to address the trajectory tracking of

a miniature helicopter.

• Chapter 6 gives a hierarchical control framework for local path planning and

tracking control of a miniature helicopter. Following the same two-level con-

trol structure from Chapter 5, a nonlinear MPC planner is employed as a

high-level controller for local path planning subject to helicopter kinematics

and obstacles; a guidance compensator is then introduced to compensate

the low bandwidth of the MPC planner. The generated guidance command

is tracked by the helicopter under the control of a linear constrained MPC,

which on the other hand can guarantee the effectiveness of using the kine-

matic model for path planning. The overall hierarchical framework is also
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tested on the testbed in different scenarios where obstacles may appear on

helicopter’s routes.

• Chapter 7 aims to tackle the MPC based trajectory tracking control of

autonomous helicopter from an alternative way. Efforts have been taken

in Chapter 5 in reducing computational demand caused by nonlinear opti-

misation in MPC by using the piecewise constant scheme and a two-level

control structure, and the flight test have confirmed the real-time property

of the proposed control framework. However, there are still considerable

concerns about the computational time, the demand on computing power

and numerical properties of nonlinear optimisers. To this end, in Chapter 7

an explicit MPC is employed to undertake the tracking control to avoid the

online optimisation. This explicit MPC is designed based on a modified he-

licopter model where the disturbances and uncertainties are explicitly taken

into account as lumped unknown terms. A nonlinear disturbance observer

is then designed to estimate them and feed them into the MPC framework

to attenuate the influences from disturbances and uncertainties.

• Chapter 8 concludes this thesis with some discussions and future perspec-

tives.
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Chapter 2

Literature review

This chapter presents a literature review focusing on three aspects: MPC tech-

nique, its applications on UAV and flight control of autonomous helicopters.

2.1 Brief overview of MPC

MPC technology, also known as receding horizon control (RHC), was originally

developed to meet control needs of power plants and petroleum refineries, and now

is an attractive control methodology used in a wide variety of application areas

including chemicals, food processing, automotive, and aerospace applications [93].

The popularity and success of MPC are mostly due to its ability to explicitly

deal with constraints and explicitly exploit the dynamic model, leading to a

safe operation of the plant under all circumstances. It can cope with various

performance specifications for nonlinear systems and is able to embed specific

criteria into the MPC formulation. Due to these advantages, although MPC is

computationally intensive and initially developed for systems with slow dynamics,

it has drawn more and more attentions in the UAV community where aircraft

exhibit fast dynamics [88; 99].

Fig 2.1 depicts the basic principle of MPC. A predictive controller has a math-

ematical model that is used to predict the behaviour of the plant, starting from

the current time t, based on the measurements x(t) and over a future prediction

horizon Tp. This predicted behaviour depends on the assumed input û(τ ;x(t)),

τ ∈ [t, t + Tp], applied over the prediction horizon. The idea is to select that

input over the control horizon Tc by an optimisation process such that it gives

the best predicted behaviour, in terms of a predetermined performance index.

5
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Often the constraints on plant states and inputs are also taken into account in

the optimisation. If there were no disturbances and model mismatch and if the

optimisation problem could be solved over an infinite horizon, then the optimal

input signal found at t can be applied to the system in an open-loop fashion.

However, due to disturbances and model mismatch, the actual system behaves

different from the predicted one. To incorporate feedback, the optimal open-loop

input is implemented only until the next sampling instant t+ δ, when new mea-

surements become available and the optimisation is then repeated. This means

the MPC is implemented in a receding horizon fashion, and this constitutes a

feedback control strategy.

Figure 2.1: Principle of MPC

2.1.1 MPC formulation

Different types of prediction models can be employed for MPC design, resulting

into different optimisation problems (OP) which need to be solved repetitively.

Generally, a dynamic system can be described in the discrete-time domain by a

state-space equation:

x(t+ 1) = f(x(t), u(t)) (2.1)

6
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where x(t) ∈ R
n is the state vector at time instant t, x(t+1) denotes the successor

state, u(t) ∈ R
m is the vector of control inputs, and f(·) is the state-update

function. It is assumed that states and inputs are subject to constraints.

x(t) ∈ X ∈ R
n

u(t) ∈ U ∈ R
m

(2.2)

where these constraints should hold ∀t ≥ 0. Denote by x0 = x(t) the value of the

measured state at time t, and by x̂k (ûk) the predicted value of the state (input)

at time x(t+ k) (u(t+ k)).

The prediction is carried out over k = 0, . . . , N , where N is called the pre-

diction horizon. Then the corresponding finite time optimisation is stated as:

J∗

N(x0) = min
UN

F (xN) +
k−1∑

k=0

l(xk, uk) (2.3a)

s.t. xk+1 = f(xk, uk), (2.3b)

xk ∈ X, ∀k = 0, . . . , N, (2.3c)

uk ∈ U, ∀k = 0, . . . , N − 1 (2.3d)

xN ∈ Xf (2.3e)

where J∗

N(x0) ∈ R denotes the optimal value of the performance index (2.3a) as

a function of the initial state x0, UN = (uT0 , u
T
1 , . . . , u

T
N−1)

T ∈ R
Nm is the whole

sequence of optimal control inputs to be determined, xN is the final predicted

state, F (xN) is the terminal penalty function, l(xk, uk) is the stage cost at step

k, and Xf represents a terminal set constraint which is often added to obtain

certain properties for formulated MPC (e.g. stability and all-time constraint

satisfaction). This formulation is called nonlinear MPC (NMPC) and is general

enough to describe a wide range of systems, including UAV applications.

In particular, if the system (2.3b) is in the discrete linear form as:

x(k + 1) = Ax(k) +Bu(k) (2.4)

where A ∈ R
n×n and B ∈ R

n×m, the cost function (2.3a) is in quadratic form,

i.e. F (xN) = xTNPxN and l(xk, uk) = xTkQxN + uTkRuk with P , Q and R being

positive definite weighting matrices, and the constraints are also in the linear
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form, the formulation can be referred as linear MPC.

2.1.2 Issues of MPC

One of the open issues in MPC application is the computational burden associated

with the solution of the MPC optimisation problem. The concept of receding

horizon implementation of MPC assumes that the optimisation will be terminated

within one sampling interval. Thus, the time required for solving optimisation

problems sets a limit on the maximum admissible sampling rate of the control

system.

For linear MPC, the resulting optimisation problem (2.3) can be converted

into a standard Quadratic Programming (QP) form [70]:

J∗

N(x0) = xT0 Y x0 + min
UN

{UT
NHUN + xT0 cUN}

s.t. Az < b,

GUN ≤ W + Ex0

(2.5)

where the input control sequence UN is the optimisation variable, H and c are

matrices formulated according to the system equation (2.4) and control horizon

N, and G, W , E are also matrices reformulated based on the original optimal

control problem. Such a QP problem can be solved online by efficient algorithms,

such as active set method and interior point method. Both free and commercial

packages are available for this problems. Moreover, the recently developed multi-

parametric programming technique can solve this QP off-line to deliver an explicit

MPC [63].

For nonlinear problems, the MPC optimisation problem in (2.3) can be cast

as a nonlinear program (NLP) in the form of

min
z
V (z)

s.t. c(z) ≥ 0
(2.6)

where the minimisation variable z is typically the input control sequence UN to

be found. The cost function from (2.3a) is reformulated into V (z). The nonlinear

system dynamics (2.3b) are integrated into the constraint c(z) > 0. The state,

input and terminal set constraints in (2.3c)-(2.3e) are evaluated over the full time

horizon and also integrated into the constraint c(z) > 0.

8



2. Literature review

It is very difficult to solve this constrained nonlinear optimisation problem to

reach the global minimum because of the possible local minima and saddle points.

However, in real-time implementation, it can be solved locally by employing an

approximation. Common choices are sequential quadratic programming (SQP)

and interior point methods (IPM). SQP method are based upon the assumption

that the problem can locally be modelled as a quadratic program. The result

is then used to find the next quadratic program, and in this way the problem is

solved by sequential iterations. The commercial software NPSOL [43] implements

this technique. Newer methods use an IPM, which is based upon eliminating

the inequality constraints and replacing them by equality constraints through

the use of slack variables and logarithmic barrier functions. KNITRO [43] is a

software package using IPM for solving nonlinear programs. Similarly, IPOPT is

an open source code that can tackle nonlinear optimisation using this algorithm

[119]. In addition, a multiple shooting algorithm used in the OptCon package

[110] provides an extremely efficient solution for nonlinear MPC by exploiting

the special structure of the optimisation problems. Nevertheless, the computation

time increases rapidly with the dimension of the nonlinear system, which will be

an obstacle for applying it on systems with fast dynamics.

Another issue associated with the MPC approach is the stability of the closed-

loop system. The general MPC form does not guarantee the stability due to a

finite prediction horizon used in optimisation. With the development of the MPC

theory many methods have been proposed to find sufficient conditions for stability.

For nonlinear MPC, the widely used methods are to modify the optimisation

problem by adding a terminal equality constraint [74], a terminal region constraint

with dual mode control [84], or a terminal region constraint with a terminal

penalty [14; 19]. A comprehensive literature review on this topic can be found in

[75].

MPC has made its success in the process control area. The improving of tech-

nology and control theory enables the application of MPC in many new problems

[71]. There is now a great interest in introducing MPC in other process and non-

process applications such as paper-making, supply chain management, control of

many kinds of vehicles, including marine, air, space, road and off-road. Some

interesting biomedical applications are also very promising. Finally, the interest

in the control of complex systems and networks is also significantly increasing.

These new applications frequently involve tight performance specifications,
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model updates and formulation adaptations because of changing operating points,

environment, and safety-criticality. To this end, NMPC formulations which offer

guarantees of stability, robustness and output feedback are expected to be more

promising and to attract more research attention [3]. Moreover, the significant

effort in developing efficient solutions of optimisation problems both using an

explicit and a numerical approach is also critical for a wider diffusion of NMPC.

2.2 MPC on UAV applications

Many aspects need to be considered in order to achieve a higher degree of au-

tonomy for a UAV system, such as task assignment, route planning, path opti-

misation, trajectory tracking and vehicle stabilisation. Simultaneously meeting

requirements in all these aspects is very complicated and almost intractable, es-

pecially when an UAV is operated in a dynamically changing environment. As

a result, a hierarchical decomposition (see Fig 2.2) is widely used in UAV com-

munity to divide the autonomy into three decision making and control layers,

namely mission planning, trajectory planning and flight control [116]. The three

operational layers cover necessary functions that support UAVs to execute tasks

autonomously with necessary information provided by a situation awareness sys-

tem.

The highest layer is the mission planning, where a planner selects and priori a

sequential list of missions/tasks to be carried by the UAVs. In the case of multiple

UAV, the mission planner also deals with task assignment and allocation. A

mission planner usually sets up a global goal for each UAV in the operation area

by taking into account the task requirements, vehicle capability and environment

knowledge.

The path planning layer stays in between the mission planning and low-level

flight control. Its main function is to generate a trajectory that fits vehicle’s

performance limits and environment constraints like obstacles while still being

able to carry out tasks given by the mission planner. Moreover, additional con-

straints or requirements, such as generating shortest paths, minimum risk paths,

and minimum fuel and energy consumption paths, can also be included for bet-

ter performance and efficiency of the mission. As one of the key areas in UAV

autonomy, numerous algorithms have been developed within this layer, where a

thorough discussion can be found in the book [115].
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Figure 2.2: Hierarchical Control Architecture of UAV

The flight control layer is the lowest level. It stabilises the vehicle dynamics

in the presence of uncertainties and disturbances and endows them with the

capability to track a trajectory generated by a path planner. It is the fundamental

function for an autonomous vehicle, especially when vehicle dynamics are complex

and unstable.

In UAV applications, the boundaries among the different hierarchies are not

strictly defined. Both mission planning and path planning involve a process of

determining a series of waypoints leading UAVs to goal positions. The differ-

ence may lie in the time-scale on which planners operate and the horizon that

planning expands. In this sense, path planing actions can be split into two cate-

gories: global path planning and local path planning [36]. The former one needs

to generate a path from the current position of vehicle to the final target or at
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least being able to attain the final target in the future. The global knowledge

of the entire operational area is needed beforehand, and the global path needs

to update in response to the new mission goal or environment information. The

time-scale of the global path planning is relatively large such that the lower layer

may consider it as static. On the other hand, the local path planner only responds

to the surrounding environment of the vehicle. It re-plans local trajectories that

avoid immediate dangers such as collision with other vehicles, pop-up obstacles

and in some case threats, and rejoin to the global path after manoeuvres. Local

path planning usually works in a short time-scale, ideally in real-time, to react

to newly detected obstacles. Moreover, it needs to respect the vehicle’s dynamic

characteristics, such as velocity and acceleration constraints and potentially the

higher-order differential equation constraints associated with vehicle dynamics.

It can be noted that in both the local path planning level and the flight control

level, vehicle dynamics are taken into account, although in different degrees of

completeness. If the path planner uses full vehicle dynamics and updates fre-

quently enough to external disturbance, or from an opposite point of view, if a

flight controller with the prediction ability uses longer horizon, it is possible to

integrate low-level and mid-level into a single planning/control layer.

In each layer the planning and/or control problem can be abstracted as an

optimisation problem with the vehicle states and goals or reference trajectory in-

tegrated in the performance index, which is in turn subjected to differential con-

straints (vehicle dynamics), logical constraints (decision making) and inequality

constraints (state limitation and input saturation). However, the optimisation

along the entire mission period is computationally prohibitive, and is also not

applicable as new information is updated during the operation. To this end, the

feature of MPC or RHC makes it a suitable strategy, because the feedback na-

ture allows it to incorporate the latest environmental information in updating the

original plan, and a finite planning horizon used in optimisation requires only the

local information and reduces the computational effort. In the following, we will

give a brief overview of MPC techniques used in UAV in terms of both trajectory

planning and flight control.

2.2.1 Trajectory planning

Various algorithms for UAV trajectory planning have been developed to tackle

application problems in different scenarios. Comprehensive reviews can be found

12
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in [36; 87]. In terms of MPC or RHC based algorithms, they may have differ-

ent formulations (linear, nonlinear, etc.), functions (path-planning, cooperation,

formation, etc.), and properties (computation load, prediction horizon, stability,

etc). This subsection tries to categorise them according to problem formulations

that in turn very much depend on the adopted vehicle models.

A very popular trajectory planning approach is to formulate problems into

Mixed Integer Linear Programming (MILP). MILP is a powerful optimisation

framework allowing the inclusion of integer variables and discrete logic in a con-

tinuous linear optimisation [31]. Obstacle avoidance, as well as collision avoid-

ance, can be enforced with logical constraints by specifying that the vehicle must

be either above, below, left or right of a non-fly zone, while the dynamics or

kinematic properties of the vehicle are retained as continuous linear constraints.

Moreover, other decision feature like task assignment can also be included into

this optimisation framework.

Early work of using MILP for path planning can be found in [101] and [97] ap-

plied to spacecraft manoeuvring. Incorporating MILP into RHC framework pro-

vides efficient solutions to path planning in terms of obstacles avoidance [4; 95],

multi-vehicle coordination [5; 76], and task assignment and scheduling [1; 2; 56].

More advanced algorithms based on the combination of RHC and MILP have also

been developed to enhance UAV planning capabilities. For instant, [102] consid-

ers safety issue to guarantee the feasibility of future planning. In [62], the authors

use the robust-safe-but-knowledgeable trajectory planning to achieve robustness

to external disturbances and ensure safety with respect to changing environment.

A upgraded version of this algorithm is given in [60] for distributed cooperative

control of a UAV fleet. Similarly, in [61; 96], decentralised MPC algorithms for

cooperating multi-vehicles are developed to reduce the computational and com-

municational demand. Except for these achievements on algorithm and theoretic

aspects, various experiments and flight tests of this kind of technique are also

reported in [23; 57; 98; 103].

Among the existing algorithms of using MILP, cost-to-go functions are usu-

ally incorporated in MPC formulations as terminal penalties added on the cost

functions. In controlling general nonlinear systems, such a function is designed

based on control Lyapunov functions to guarantee the stability [48]. For tra-

jectory planning, a cost-to-go function is used to capture the trajectory beyond

the prediction horizon, so that the resulting MPC is able to overcome the finite
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planning horizon and guide UAVs to global goals. Cost-to-go functions can be

heuristically calculated based on a visibility graph representation of the environ-

ment with Dijkstra’s searching algorithm [4]. More recently, a finite-state spatial

value function is proposed to serve as a cost-to-go function, which captures the

critical interaction between the vehicle dynamics and environment [79].

It shall mention that although MILP is versatile and powerful, it is restricted

by using a linear model to represent UAV dynamics. A typical approximation

is to consider a UAV as a point mass moving with limited speed and limited

acceleration, such as

[

ppp(k + 1)

vvv(k + 1)

]

=

[

III ∆tIII

000 III

][

ppp(k)

vvv(k)

]

+

[
(∆t)2

2
III

∆tIII

]

aaa (2.7)

where ppp is the position vector, vvv is the velocity vector and aaa is the acceleration

vector. ∆t is the discretisation time step, and matrices III and 000 express an identity

matrix and a zero matrix, respectively. This representation may be acceptable in

global planning, but is not suitable for local planning of agile movements as the

resulting trajectory may be dynamically infeasible.

For more realistic predictions, nonlinear models of vehicle dynamics are in-

volved in MPC framework and result in nonlinear MPC. Initial trails have been

applied in a “collision-free” environment for the trajectory generation for Caltech

ducted fan [47] and for multi-vehicle formations [27]. In [111], the authors aim at

guiding a vehicle with nonlinear dynamics through a urban area with obstacles.

A two-step approach is adopted, where a feasible nominal trajectory is generated

first, then linearisation is performed around the nominal trajectory to convert

the nonlinear optimisation problem into a linear time varying one, which is fi-

nally solved within a RHC framework. Ref [68], proposes a nonlinear MPC path

planner for an information gathering task, which shows that MPC framework

can effectively deal with UAV dynamic constraints, multiple vehicle situations

and a range of objective functions. Another interesting planning framework us-

ing NMPC is proposed for sensing missions [114]. In this work, onboard sensor

model is incorporated in the online planning for the evaluation of information

gathering, and a variable prediction horizon is adopted to handle range-limited

sensors. Cooperation among UAV teams are achieved by sharing sensing infor-

mation and future actions. Formation flight of UAVs can also be handled by

nonlinear MPC as in [108], where the authors compared performance and com-
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putation loads of three different MPC formulations, i.e. centralised, sequential

decentralised, and fully decentralised methods.

The aforementioned nonlinear MPC methods for path planning use general

dynamic models in their predictions. The complexity of such models directly

affects the computational load of the online optimisation. To this end, a kinematic

model is usually adopted in nonlinear MPC formulation to represent aircraft’s

planar movement, such as

ẋ = v · cosψ

ẏ = v · sinψ

ψ̇ = ω

(2.8)

where the state vector is the 2-D position and heading xxx = [x, y, ψ]T , and the

inputs are the velocity and turn rate uuu = [v, ω]T . Constraints can be imposed on

the input vector to limit the aircraft’s ability.

Another important factor associated with the computation is the length of

the prediction horizon. Hence, even if it also depends on the hardware capabil-

ity, there is a three way trade-off between the planning horizon, vehicle model

accuracy and re-planning frequency, which consequently derives different MPC

formulations for different planning purposes. For example, in ref [114] a unicycle

model like (2.8) is incorporated to predict for 8-15 future steps, and the result-

ing re-planning cycle is 1-3 seconds. In [100], a detailed UAV dynamic model

with 12 states is employed and the resulting MPC can reach 10Hz (0.1 second)

updating rate but with a short prediction horizon of 5 steps. The former one

is suitable for mid-range path planning, whereas the latter one is adequate for

planning aggressive manoeuvring, of course in a local range.

To facilitate local path planning for agile movements of UAVs, more dynamics

information of the vehicle must be taken into account, so that the optimised tra-

jectory is dynamically feasible. Furthermore, the formulated optimisation prob-

lem has to be solved quickly enough to provide a high updating rate in order to

respond to external environments. To this end, there is a class of methods that

design a trajectory directly in the output space rather than by forward simulat-

ing a vehicle model [66; 112]. The constraints arising from vehicle dynamics can

impose on the trajectory through the differential flatness property. This property

allows vehicle’s states and controls to be expressed in terms of the output vector,
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i.e. the trajectory, and its derivatives. Such a strategy can be found in [22] for

generating an obstacle-free and time-deterministic trajectory for a quadrotor. In

[7], a similar technique is applied to local path planning of a micro air vehicle in

obstacle-rich environments. The vehicle performance limit, in the form of speed,

acceleration and jerk constraints, is generated off-line and available online via

look-up tables. A multiple vehicle situation of this algorithm is reported in [6].

In these applications, trajectories in receding horizon optimisation are repre-

sented by polynomial curves such as Chebyshev polynomials, Laguerre polyno-

mials, Bezier polynomials, etc. Generally, they can be expressed as a finite series

involving a product of coefficient ki and a basis function Bi

p(t) =
n∑

i=0

kiBi(t) (2.9)

where p(t) is a curve as a function of parameter t, and n is the order of basis func-

tion. Trajectory design and optimisation involves tuning the scaling factors ki to

determine the shape of trajectories. Planning in output space reduces computa-

tional load while being able to provide a feasible trajectory for UAVs. However,

it needs a dedicated control system to track such a trajectory.

2.2.2 Flight control

Using MPC techniques to stabilise an UAV with complicated dynamics in the

presence of disturbances and uncertainties, and ultimately to enable the trajec-

tory tracking function is a challenging work. It is mainly because the conflicts

between the fast dynamics of aerial vehicles and the computational burden of

MPC techniques. However, the benefits, like constraint handling, of using MPC

encourage researchers investigate the possibility of implementing such techniques.

For most aircraft, their dynamic systems can be further divided into two sub-

components: the outer-loop kinematics and inner-loop attitude dynamics [77].

Consequently, the flight control system can be considered at two levels: guidance

control and stability augmentation, governing the outer-loop and inner-loop of

an aircraft, respectively [88]. The guidance control aims to track the trajectory

or waypoints given by a path planner to achieve a given mission. The stability

augmentation is also referred as inner-loop control, and in some case as attitude

control. Its objectives are to provide stability for unstable dynamics and improve
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the response when the higher level guidance provides commands. No matter for

guidance problems or stab1ilising problems, from a control point of view it is

essentially to deal with a nonlinear plant, which cannot be abstracted by a linear

model as in the path planning level.

On the other hand, the control bandwidth associated with flight control, es-

pecially for the inner-loop, is considerably higher than the path planing layer.

Although it may also depend on particular UAV models, a common control up-

dating rate is 30Hz for a fixed-wind aircraft and 50Hz for a vehicle like a helicopter

or quadrotor [13].

As a trade-off between the plant complexity and computational demands,

some MPC based algorithms tend to use linear settings so that the formulated

optimisation problem can be solved by efficient QP solvers. To convert a nonlin-

ear flight control problem into a linear form, various linearisation techniques are

adopted. Standard linear MPC has been used on helicopter inner-loop control in

[11], where helicopter dynamics model is linearised around the hovering condition

and included in the MPC framework. Whereas the nonlinear kinematics is con-

trolled by a multiple PID (proportionalintegralderivative) controller to achieve

the trajectory tracking function. Another linear but explicit MPC is designed for

controlling a toy helicopter [26]. Similarly, a model linearised around the hover

condition is adopted. In [51], a UAV guidance control problem is solved by using

MPC, in which again a linearised model is used. However, this model is updated

every sampling time based on the measured states, and the nonlinear constraints

are converted to linear forms by using a polyhedral approximation. Such a strat-

egy is also applied on a F-16 aircraft for longitudinal control [52]. This study

shows that in a MPC framework a linearised model dependent on flight condition

is a necessary requirement for providing good performance as opposed to a single

linear time invariant (LTI) model based method. MPC formulated based on a

linear time varying (LTV) model is also reported for controlling autonomous ve-

hicles [28]. In this application, successive online linearisation is performed at the

current operating point at each time step and a linear MPC is designed for the

resulting model. The stability issue arising from using LTV model instead of the

original nonlinear model is discussed in [29]. In addition, linear MPC combining

with feedback linearisation techniques can be used to a delivery flight control

solution. In [117] the full attitude dynamics of a re-entry vehicle is feedback lin-

earised, and the resulting linear system with new control inputs is incorporated
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into the MPC framework. Input and state constraints are applied on the MPC

formulation with a constraint mapping algorithm developed to map the input

and state constraints on the new inputs after feedback linearisation.

As listed above, although flight control using NMPC can be found in various

places, most applications use auxiliary techniques to avoid using full dynamics

models of vehicles in their prediction. Therefore, they can only focus on either

outer-loop guidance or inner-loop stabilisation. If both outer and inner loops of

an aircraft are incorporated into a MPC framework, the resulting control system

has the so-called integrated guidance and control (IGC) property. Few applica-

tions have followed this philosophy. Ref [85] describes the receding horizon control

of Caltech ducted fan. The constrained RHC technique used in this application

includes the full dynamics of the vehicle and considers the computational time.

The resulting optimisation problem is parametrised by the B-spline technique and

solved by using Nonlinear Trajectory Generation (NTG) software package. How-

ever, this method only works efficiently with a system that is differential flatness.

In [100] an integrated estimation, planning and control framework is developed

for an autonomous aircraft. A nonlinear MPC based on full aircraft dynamics

is designed for trajectory tracking. The formulated nonlinear optimisation prob-

lem is solved by a FP-SQP algorithm, which allows the online calculation to be

terminated to a sub-optimal solution to accommodate the time critical control.

The proposed estimation and control algorithms have been verified on a SeaScan

UAV through simulations and flight tests [10].

A series of remarkable work has been carried by Kim, Shim and their co-

workers [53; 54; 106] to develop a NMPC based tracking control for helicopters.

At beginning, the feasibility of using NMPC on autonomous helicopters is in-

vestigated in [53]. As a detailed helicopter dynamic model is included in the

MPC framework, the resulting control signals can be directly applied to simul-

taneously stabilise the helicopter and achieve the desired tracking performance.

Simulations show that the NMPC outperforms multi-loop PID controllers and has

good robustness to parameter uncertainty. Later, a decentralised NMPC is pro-

posed for multiple vehicles [106]. To produce the collision-free trajectories among

multi-vehicles, a potential field method is incorporated in the NMPC framework.

The formulated optimisation problems, including potential field terms and the

full vehicle dynamics model, is very complicated. To overcome the difficulty,

a gradient-search-based optimisation is used to solve it in real-time. Extended
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applications from this framework can be found in [105] for autonomous explo-

ration in unknown area, in [107] for see-and-avoid manoeuvring, and in [113] for

vision-based landing and terrain mapping.

Although successful achievements of implementing NMPC to fast dynamics

have been demonstrated in these applications, the fundamental problem still ex-

ists. The inclusion of the complicated dynamics model dramatically increases

computational demands. It can be noted that in order to enable numerical

tractability and improve reliability, a hierarchical flight control system actually

takes in charges of helicopter dynamics in the flight test. This setting means

that the NMPC is employed as a trajectory planner and/or guidance controller,

which sends a dynamically feasible and obstacle-free trajectory to a low-level con-

troller used for tracking and control purposes. However, this configuration can

be attributed to the low bandwidth of the NMPC algorithm.

2.3 Autonomous helicopter and flight control

Autonomous helicopters are versatile flying machines that have drawn consider-

able interests from both industry and academia. Comparing to the fixed-wind

counterpart, they are capable of vertical take-off and landing (VTOL), fixed-point

hovering, low-speed and low-altitude cruise, and performing aggressive manoeu-

vres. These features make them suitable for a broad range of applications. In the

military side, missions like reconnaissance and surveillance, have already been

carried out by unmanned helicopters like Northrop Grumman MQ-8 Fire Scout.

Civil applications also have a wide perspective such as power line inspection,

aerial video, search and rescue, etc. Although great success has been made, the

development and application of autonomous helicopters are still at their initial

stage. More sophisticated applications propose demands on better dynamics per-

formance and higher autonomous ability. To this end, many research projects and

industry trials on autonomous helicopters have been carried out. A few examples

are listed below to show the activities in this area:

• Aalborg University – ASETA project;

• Carnegie Mellon University – Yamaha R50 Based UAV helicopters;

• ETH Zurich – AkroHeli;

• Georgia Institute of Technology Program – GTMax project;

• Massachusetts Institute of Technology – Draper Autonomous Helicopter;
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• National University of Singapore – HeLion and SheLion project;

• Stanford University – X-Cell Tempest;

• University of California at Berkeley – BEAR project;

• University of Southern California – AVATAR project.

Nevertheless, the complicated dynamics of helicopters pose challenges for the

flight control design, which include nonlinearity, multiple-inputs-multiple-outputs

(MIMO), natural instability, and internal couplings. Other issue like model

accuracy also affects the control design and performance. In the following, a

brief overview regarding the modelling and control techniques for unmanned he-

licopters are provided.

2.3.1 Helicopter Modelling

There are two well-established approaches for modelling system behaviour in the

control community: first-principles modelling, where models describing dynamics

are built from scratch based on underlying physical laws; and system identifica-

tion, where algorithms are used to find the relationship between the inputs and

outputs of a given system using data collected from experiments.

A typical first-principle mathematical model for a small helicopter is nonlinear

and contains many states, since it has to account for interactions between each

component, such as motor, rotors and fuselage. The advantage of this kind of

model is that it can cover a wide range of flight conditions. However, the quality

may be degraded by inappropriate simplification and assumptions within mod-

elling. Moreover, there are dozens of inherent physical parameters that need to

be determined [42]. Some physical parameters can be measured directly, but the

others may have to be measured by experiments or calculated based on assump-

tions or experience. All of these factors will cause inaccuracy and uncertainty in

such models. Although, this issue could be addressed to some extent by tedious

and trivial experimental validations and refinements.

A good example of using the first-principle method to modelling helicopter is

the Minimum-Complex Helicopter Simulation Math Model [42]. A more recent

and elaborate model for small-scale helicopter is given by Gavrilets [34], where

the dynamics equations were developed using basic helicopter theory, and nonlin-

ear expressions for external forces and moments were provided. The model was

successfully used for aerobatic flight control design [33]. In addition, researchers
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in Aalborg University carried out a series of projects involving autonomous heli-

copters including the development of first-principle nonlinear models [40].

System identification, on the other hand, naturally focuses on the observation

of input-output data, trying to provide a model that can interpret experiment

phenomena. This method is more direct and more effective since it integrates

validation into the modelling process. System identification is not a standalone

process as it requires a good understanding of helicopter dynamics, hence the

identification and first-principle approaches are essentially complementary and

shall be integrated together to develop a promising model [78].

An early attempt to identify a small helicopter can be found in the Caltech

experiment [86], where a linear model for attitude motions were derived and used.

In order to guarantee the linear behaviour of a Kyosho EP Concept 30 helicopter,

it was mounted on a stand allowing only angular movements. The authors used

the linearised rigid-body equation of motion as a parametrised model, and iden-

tified these parameters by using a prediction error method (PEM). The resulting

model was successfully used for control design for attitude movements. However,

helicopter dynamics on the stand are not representative of a free helicopter, so

there was still a big gap between the model and real flight response. Another

notable work was carried out by Kim and Tilbury [55]. The authors developed

a parametrised model using first-principle method which explicitly accounted for

the flybar (stabilizer bar) dynamics. However their identification was based on

single-input-single-output transfer functions, and the coefficients in the transfer

functions had no physical meanings.

Actually there was no significant progress in the system identification ap-

proach of modelling a small-scale helicopter until Mettler and his co-workers

completed their remarkable work [81; 82]. Their modelling and identification were

based on Carnegie Mellon’s Yamaha R-50 helicopter. First, a linear parametrised

model was developed, which was mainly based on the rotor-fuselage equations

with the extension of including stabilizer bar dynamics. With a proper simplifi-

cation, the main rotor was modelled through first-order tip-path-plane dynamics,

and the stabilizer bar was regarded as a secondary rotor. All the coupled compo-

nents were connected by cross-coupling derivatives. The final model resulted in a

linear MIMO state space model with 13 orders. Authors then applied frequency

domain identification tool CIFER (Comprehensive Identification from Frequency

Response) to identify these unknown parameters in the state-space model. The
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results showed that the model had a high fidelity even with a relative simple

model structure. His parametrised model appears to be general enough to de-

scribe other small-scale rotorcrafts. Later on the same methodology has been

successfully applied to MIT X-Cell 60 helicopter [80].

Following the model structure proposed by Mettler, a number of modelling

projects have been carried out by researchers. Some applications used this model

structure but relied on linear time-domain identification tool PEM to estimate

the parameters, including Ref [54; 109]. Although there were difficulties reported

in converging to the global minima during the identification, the control designs

based on these models were successful. A more comprehensive study has been

carried out by LaCivita et al [64]. The authors combined nonlinear modelling

with linear system identification to produce a high fidelity model that can cover

a larger operating condition. More recently, Grauer and Conroy adopted a two-

step equation-error/output-error process in both time and frequency domain to

identify a miniature helicopter [37].

2.3.2 Control design

For an ordinary helicopter, its position and orientation are usually controlled by

means of five control inputs: the main rotor throttle (power to the rotor), the

main rotor collective pitch inputs, which combining the throttle input can directly

affect the helicopter height (altitude control), the tail rotor input which affects

the heading of the helicopter (yaw motion) and produces the anti-torque to the

main rotor, the longitudinal cyclic which alters the helicopter pitch motion and

the longitudinal translation, and the lateral cyclic, which affects the helicopter

roll motion and the lateral translation. Hence, a helicopter is a multivariable

nonlinear uderactuated system with strong coupling in some control loops.

Initial trails on controlling an unmanned helicopter are based on heuristic

methods [12; 54]. By decomposing helicopter dynamics into outer-loop and inner-

loop and ignoring the coupling effects under the assumption of non-aggressive

flight, a cascaded control architecture can be designed based on the observation

that the translational motion depends on the attitude motion which is further re-

lated to control inputs. In this kind of control structure, multiple PID controllers

are usually employed to augment individual channels respectively. The benefit

of using PID is that its parameters may be easily adjusted according to the be-

haviour of the plant, which allows for online tuning when the helicopter model
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is unknown. However, the drawbacks are obvious, such as overlooking coupling

among different control variables, limited control bandwidth and agility.

With the mature of helicopter modelling techniques, model based control de-

sign has played more and more important roles in enabling autonomous flight

of helicopters. Due to the complicated dynamics of a helicopter, various control

techniques, including both linear and nonlinear methods, have tried to tackle the

problem from different direction and focusing on different aspects.

Linear control designs based on the system decomposition and linearisation are

still popular. In [109] two linear-quadratic-integral (LQI) controllers are designed

separately for inner-loop attitude and out-loop position control of a SF-40 small

helicopter. The control system is carefully designed to maintain the helicopter

out of the nonlinear region, and its performance is validated through simula-

tions and flight experiments. Ref [65] proposes the design and implementation of

an H-infinity loop shaping controller on the Carnegie Mellon University (CMU)

Yamaha R-50 robotic helicopter. The proposed controller consists of one multi-

variable (MIMO) inner-loop for stabilisation and four separate (SISO) guidance

loops for velocity and position control. Due to its ability to handle uncertainties,

although the controller is designed for hovering, it performs manoeuvres (square,

forward turn, backward turn and nose-out circle) efficiently in flight tests. An-

other controller based on H-infinite is reported in [32], where the output-feedback

design procedure is simplified to solve only two coupled-matrix design equations

and an efficient algorithm is provided for solving these. This procedure allows

output-feedback control design with pre-specified controller structures and guar-

anteed performance.

Although linear control design can achieve good performance and robustness,

its performance may be restricted from the beginning due to the linear model

is not adequate to describe all the motions of a helicopter. Therefore, nonlinear

control methods have been widely applied. Feedback linearisation as a common

nonlinear control technique is implemented on helicopter tracking control [58].

This study shows that the helicopter model cannot be converted into a control-

lable linear system via exact state space linearisation; however, by neglecting

weak couplings, input-output linearisation based on the approximated model can

achieve bounded tracking error.

A flight control approach based on a state-dependent Riccati equation (SDRE)

can be found in [9]. The control design uses a six-degree-of-freedom nonlinear
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helicopter model that is manipulated into a pseudolinear form. Therefore, system

matrices are given explicitly as a function of the current state and the control

effort can be calculated by minimising a quadratic-like performance index. The

formulated standard Riccati equation is then solved numerically at each step of

a 50 Hz control loop to deliver the nonlinear state feedback control online. In

addition, the SDRE control is augmented with a nonlinear compensator that

addresses issues with the mismatch between the original nonlinear dynamics and

its pseudolinear transformation. The feasibility of real-time implementation of

the proposed algorithm has been demonstrated by flight testing on a XCell-90

and a Yamaha R-MAX helicopters. However, the constraint handling feature of

SDRE is not included in this application.

Interests of designing nonlinear robust controllers are also pursued. In [46] the

problem of controlling the vertical motion of a nonlinear model of a helicopter,

while stabilizing the lateral and horizontal position and maintaining a constant

attitude, is investigated. A nonlinear controller, which combines nonlinear adap-

tive output regulations and robust stabilisation of systems in feedforward form by

means of saturated controls, is designed and tested in simulations. The simulation

results show robustness against uncertainties on the model and on the exogenous

reference signal. Following the inspiration from this study, [73] solves the prob-

lem of controlling the vertical, lateral, longitudinal and yaw attitude motion of a

helicopter along desired arbitrary trajectories. The proposed control structure is

a mixture of feedforward actions (computed according to reference signals and a

nominal model inversion), and feedback terms obtained by combining high gain

and nested saturation control laws. Experimental results obtained on a small

scale helicopter are also presented to show its performance and robustness.

Examples of using adaptive control methods can be found in [49] and [67].

In the first work, neural network based on adaptation to uncertainty in the at-

titude, as well as the translational dynamics, is introduced, thus minimising the

model error and leading to more accurate position tracking. The pseudocontrol

hedging method is used to enable adaptation to occur in the outer loop without

interacting with the attitude dynamics. A pole-placement approach is used that

alleviates time-scale separation requirements, allowing the outer loop bandwidth

to be closer to that of the inner loop to increase position tracking performance.

The second work presents a nonlinear adaptive controller to endow a small he-

licopter with the ability of aggressive flight. Adaptive backstepping technique
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is employed to systematically integrate the proposed controller with the online

parameter adaptation rule to the vehicle mass variations and with the recurrent

neural network (RNN) approximation to the coupling effect between the force

and moment controls.

An interest part of those two studies is that both works realise (and overcome)

the drawback in the conventional flight control design of two time-scale separa-

tion, which assumes that the bandwidth of the outer-loop dynamics is much lower

than that of the inner-loop dynamics. This assumption is actually unfavourable

to the aggressive and precise control of trajectory tracking. This also reflects

the trend in developing flight control for autonomous helicopter: synthesis entire

dynamics as an integrated system and increase the control bandwidth.

Except for trajectory tracking of helicopters, a few publications have focused

on specific control problems imposed by autonomous helicopters. Autorotation

as an emergency manoeuvre for helicopters safe landing in case of losing power

has been studied in [25], where an NMPC with the optimisation problem solved

by RNN is used to handle the problem. Ref [8] investigates the controlling of

a helicopter flying a slung load. An estimation and control system is designed

for this purpose where the estimator provides position and velocity estimates of

the slung load and is designed to augment existing navigation in autonomous

helicopters, and the controller is a combined feedforward and feedback scheme

for simultaneous avoidance of swing excitation and active swing damping.

As the research on autonomous control of helicopters booms rapidly in recent

years, it is very difficult to cover all aspects in this area. However, a number of

observations can be made based on above literature review in terms of control

design for autonomous helicopters.

First, classic control methods, like SISO PID control, are able to stabilise a

helicopter. Most recent control designs pay attentions on specific requirements

such as good robustness, aggressive flight and disturbance rejection.

Second, a common way to breakdown the design challenge is to use the sepa-

ration of the slow translational movement and fast attitude motion. The coupling

effect between them (which is rather significant for helicopters) is either ignored

(linear control), tolerated (robust control) or estimated and compensated (adap-

tive control) in the control framework.

Third, there still a gap between theory and practice. Implementing and vali-

dating a control method on a real helicopter is not straightforward. The most of
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advanced algorithms are exercised through simulations. This is partially because

the difficulty in development of a helicopter hardware including avionics and is

partially due to the difficulty of acquiring an accurate model that most model

based techniques rely on.

2.4 Summary

This chapter provides a literature review on three aspects that will be covered in

this thesis, namely the MPC technique, its applications on UAV and autonomous

helicopters. First, the basic principle of MPC is explained, and issues associated

with MPC are discussed. Next, existing MPC techniques used in UAV applica-

tions are surveyed and categorised in detail. In the end, popular flight control

algorithms for autonomous helicopters are reviewed, where some classic issues

and new trends are discussed.
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Chapter 3

A rapid prototyping platform for

UAV research

3.1 Introduction

Research efforts have been increasingly devoted to the field of UAV since it is

widely believed that numerous civil and military applications can be found for

UAVs. To enhance intelligence and autonomy of UAVs, advanced methodologies

ranging from individual flight control, multi-vehicle coordination control to mis-

sion planning and decision making have been developed. These algorithms need

to be evaluated and verified in order to assess their practical performance, and

to pave the way for inserting them into real world applications.

It is well known that flight tests are very expensive, impose high risks for

personnel and assets, and require a large airfield and heavy logistic support. Due

to these reasons, most of the research and development work in aerospace ve-

hicles such as aircraft, missiles, and rotorcrafts are still evaluated by numerical

simulations. This has been identified as one of the main obstacles for transferring

advanced control concepts and methods into real engineering applications [91].

On the other hand, the research on miniature helicopters carried out in this thesis

needs a facility to study the behaviour of the helicopter, design the control algo-

rithms and evaluate their performance in a realistic environment. Therefore, it is

imperative to have a proper test facility to facilitate these research activities and

de-risk the new research ideas generated from these activities. For this purpose a

unique indoor rapid prototyping platform has been developed in the Autonomous

System Lab at Loughborough University. This chapter details the development
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of the platform and discusses its basic features and potential functions. Some

initial test results are also included to show its capabilities.

A number of attempts have been made to develop various hardware-in-the-

loop simulation and flight test facilities. For example, at Georgia Institute of

Technology, an open system UAV testbed referred to as RTMax was developed

to investigate flight control algorithms [50]. Researchers in the University of Cal-

ifornia at Berkeley use a platform comprised of a fleet of commercially available

rotary-wing and fixed-wing UAVs to study UAV applications such as situation

awareness and collision avoidance in unknown urban areas [104]. In the Aerospace

Controls Laboratory at the Massachusetts Institute of Technology (MIT), an out-

door flight test platform integrated with a fleet of eight fixed-wing autonomous

UAVs provides a means for evaluating coordination and control algorithms [57].

In general, these outdoor platforms provide the most realistic flight tests. How-

ever, they suffer a number of drawbacks. Firstly, they are expensive and have

limitations on how quickly they can perform flight tests due to the constraints

on accessing a large airfield. Secondly, most outdoor UAVs can only be flown in

good weather conditions to avoid risks. Thirdly, UAVs typically require a large

logistic support team, which makes testing logistically difficult and expensive.

In contrast, indoor test environment may provide a much more flexible, acces-

sible and cheaper facility for testing UAVs and for general flight control research.

The main constraints for indoor testbeds are confined space and strict require-

ments on avionic systems. To this end, MIT’s RAVEN tesbed is the most impres-

sive indoor testbed, where an environment with a number of quad-rotor aircraft

has been developed to investigate long duration missions and health manage-

ment research [44]. Although, most of the hardware components are commercial-

off-shelf parts, the software environment, known as open control platform, was

initially developed and provided by The Boeing Company. Another promising

testbed named GRASP has been developed in the University of Pennsylvania

more recently [83], which is a multiple micro aerial vehicle (MAV) testbed used

to support coordinated, dynamic flight of MAV and associated applications.

The indoor testbed described in this chapter is characterised as a rapid proto-

typing platform. It can implement and verify algorithms at both control level and

mission level in the real world in a seamless way; speeding up the development

process from theory to practice. The main features of this platform are:

• Flexibility and versatility. Almost all small-sized commercial model vehicles
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and rotorcrafts can be operated in this environment to construct different

scenarios.

• Low cost and low maintenance. Commercial-off-shelf vehicles are afford-

able, easy to repair from crashes and no running costs except for charging

batteries.

• User friendly. This platform allows a user to carry out flight tests without

being an expert in coding or electronic.

• Rapid prototyping. This allows researchers to start from algorithm devel-

opment, complete numerical simulations and final physical implementation

all in the same software environment.

3.2 Platform architecture and components

3.2.1 Design challenges and philosophy

One objective of the rapid prototyping platform is to enable researchers to test a

variety of algorithms applicable to UAV systems, not limited to helicopter flight

control, in nearly real-world scenarios. Thereby, vehicles with good handling

quality and manoeuvrability are needed in this platform. Another objective is to

simplify the operation procedure of flight tests and allow an individual to carry out

the entire process from algorithm design to evaluation. This also means that com-

ponents must require a minimal modification, have good reliability and are easily

maintained. To meet these demands, the platform adopts proper commercial-

off-the-shelf equipment and combines them effectively. The key constraint of an

indoor test facility for flight testing is the limited operation space. Consequently,

only small unmanned vehicles can be used to perform various realistic flight tests,

other than just taking off and landing. This implies very little payload or no pay-

load can be put on these small aerial vehicles, therefore onboard sensors are not

appropriate. The core technique in the platform is an object tracking system

known as Vicon [118]. Vicon allows a ground station computer to perceive the

position and attitude of vehicles in the test area, instead of mounting an onboard

computer and a sensor suite on vehicles in the conventional way. In this way,

low-cost off-the-shelf radio controlled (R/C) vehicles can be used in the platform

without modifications since there is no significant payload requirement on the
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aerial vehicles except markers for the Vicon system. In addition, all these sep-

arate components are finally integrated into the Matlab/Simulink environment,

which is widely used in academia and industry for research and development.

The architecture of the platform follows a hierarchical design. Both high-level

autonomous algorithms and low-level control algorithms are built into the ground

station, but control algorithms can be modularised and customised for different

vehicles. Modularisation allows easy addition or removal of different types of

vehicles, as needed for different scenarios. Each low level control model has the

capability to access hardware directly to enable their functions. The structure of

the platform is shown in Fig.3.1.

Figure 3.1: Platform structure

This hierarchical architecture also reflects the configuration in realistic UAV

applications. In practice, the low-level control algorithm has to be executed by

an onboard autopilot to react to the dynamics of an UAV. The path planning

and mission planning algorithms can be carried out at remote ground control

station if the planning focuses on a large time-scale operation, or alternatively by

a secondary onboard computer to fast respond the surroundings in a local range.

3.2.2 Aerial/Ground vehicles

Small-scale vehicles play an important role in indoor tests for emulating the be-

haviour of UAVs and for setting various scenarios. These vehicles in the platform,
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especially aerial vehicles, need to be low-cost, low risk but be highly flexible and

have good maintainability. As a result, standard radio-controlled helicopters are

chosen as test vehicles, due to their suitability for flight in confined area, and more

importantly, to their interesting flight dynamics. One model helicopter adopted is

called Century Hummingbird (see Fig.3.2a). It is a fixed pitch electric helicopter

with a relatively low rotor tip speed, which means a low power consumption and

less energy in the main rotor system making the helicopter considerably safe to

operate in an indoor environment. Its plastic components can also be easily re-

placed after a crash. This kind of helicopter is mainly used for UAV operational

research and high-level tasks, such as the mission planning and task allocation,

where a detailed consideration of the aircraft dynamics are not needed. Another

helicopter used in the testbed is the Align Trex-250 helicopter (Fig.3.2b), which

is a collective pitch helicopter with well-designed Bell-Hiller stabiliser. It is capa-

ble of aerobatics with good control handling, and therefore is used as the target

helicopter in the following research on the helicopter dynamics and flight control

development.

(a) Hummingbird (b) Trex-250

Figure 3.2: Aerial vehicles used in the platform

The ground vehicles adopted in the platform are Tamiya TT01 cars, which

are R/C electric model cars. These aerial and ground vehicles enable the user to

construct various scenarios such as formation, surveillance, tracking, and so on.

It shall be highlighted that the dynamics and mechanisms of these helicopters

and ground vehicles are very much the same as the normal ones except the scale

or the change of certain coefficients.

31



3. Rapid prototyping platform

3.2.3 Vicon motion system

The most important component in the indoor flight test environment is the nav-

igation system used to obtain the flight (or driving) information for the vehicles.

The Vicon motion capture system provides a powerful tracking facility suitable

for the indoor environment, which uses dedicated cameras to sense the lightweight

reflective balls or stripes in the operating area [118]. Therefore, by attaching some

reflective markers to a vehicle, the vehicle can be detected by Vicon cameras. The

marker position information is then transmitted via Ethernet using TCP/IP pro-

tocol to a computer where the Vicon Nexus software calculates the position and

orientation of the vehicle.

Figure 3.3: Flight test environment

Currently, the Vicon system consists of 5 MX cameras and 3 T10 cameras.

MX cameras equipped with fish-eye lenses are used to cover a wider but relatively

shallow area, whereas T10 cameras have a higher resolution and a longer detection

range. The combination of those two kinds of camera gives a 5 m by 4.5 m by 2

m testing volume (see Fig.3.3). The static accuracy was assessed by measuring

the position of a helicopter sitting on the floor. The result in Fig.3.4 shows that

the drift in two hours is less than 0.25 mm. Due to the principle of the motion

capture system; this gives a fair indication of the position and attitude accuracy

of the motion-capture system during flight operations. The Vicon system can

capture an object motion with a refresh rate up to 200 Hz and can still track
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the vehicle even if one or two markers on a vehicle are missing. Therefore, the

Vicon system can be regarded as a high bandwidth and robust navigation system

in this platform. It can be considered as an indoor replacement for the global

positioning systems (GPS) but providing not only the position but also attitude

information.

Figure 3.4: Two hours drift of Vicon system

3.2.4 Ground station

The ground station consists of several personal computers (PCs) with Intel Core2

6600 CPU at 2.4GHz and some accessories. The ground station acts as the brain

of the platform, as vehicle information is processed here and control commands

are transmitted from here after the calculations are performed.

To control vehicles in the test area, the computers running Vicon Nexus and

Matlab applications provide the position and attitude information of vehicles

and calculate corresponding control commands based on autonomous algorithms,

respectively. In terms of high-level tasks, the ground station also manages tasks

such as mission planning and trajectory design. In this case, several computers

may be involved as will be discussed in later chapters.

In order to send control signals to the vehicles, the ground station is equipped

with JR9X2 computer transmitters. The bridge between computers and trans-

mitters is a PCTx adapter, which connects the computer to the R/C transmitter

through the USB port and the trainer port interface as shown in Fig.3.5. In

the actual tests, a PCTx adapter converts digital commands from the computer
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into PPM (Pulse Position Modulation) signals for the transmitter, and the latter

transmits the corresponding commands to test vehicles.

Figure 3.5: Transmitter and PCTx adapter

3.3 System integration in Matlab/Simulink

This section describes the details of integrating both hardware and software to

construct a rapid prototyping environment based on Matlab/Simulink. Although

the commercial-off-the-shelf components provide the necessary functionalities for

the platform, a considerable effort on system integration is required to link all

these components together within a single environment, because they have soft-

ware drivers/packages developed by different venders. In addition, the imple-

mentation environment should be governed by a real-time operation system or

similar software environment which enables all the components to communicate

with the others in real-time and synchronously during tests.

3.3.1 Initial feasibility analysis

Since multiple subsystems are involved in the platform, it is essential to synchro-

nise the execution among these subsystems in order to guarantee data compatibil-

ity, particularly when a physical helicopter or ground vehicle is involved. However,

there exists a challenge that each hardware product has its own software or driver

and is operated independently as originally designed. Vicon motion system pro-

cesses data captured by Vicon cameras using the Nexus software, which contains

a real-time engine providing processed position and attitude information of the

objects in the test area. This engine can only be accessed through Vicon real-time

application programming interface (API) written in C language. Moreover, the
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adapter connected to the computer through USB port is driven by a C++ API

under Windows operating system (OS). Fortunately, the process of transmitting

command signals from a PCTx adapter to a helicopter is straightforward and

needs no modification.

To achieve our purpose, Matlab/Simulink is used to build a software envi-

ronment to manage all the hardware. Matlab/Simulink is a very powerful and

convenient tool for control system design and simulation, which also provides a

number of communication means and mechanism for integrating with C/C++

languages. On the other hand, UAV autonomous algorithms, at the core of the

platform are usually developed and implemented by utilising Matlab/Simulink.

This makes it a very promising candidate for the seamless transition from design

to numerical simulation and real-time validation in a single software environment.

At the initial test stage, a simple program was developed to implement a

basic closed-loop control. First, a dynamic link library (DLL) is developed in

the C language, which contained API functions for the Vicon system. Similarly,

another DLL is created to talk to the PCTx adapter. Finally, a Matlab script

program (M-code) is coded to assemble these two DLLs with a simple control law

to control a ground vehicle running around a circle autonomously. This program

is actually a simple closed loop continually calculating and sending control signals,

and is executed in non-deterministic sampling time. However, it proved that the

structure of platform is feasible. To overcome the problem that the common

Matlab/Simulink programs are executed in computer time rather than real-time,

two different real-time implementation environments based on Matlab/Simulink

were tested by utilising different techniques.

3.3.2 Real-time environment using real-time blockset

An integrated implementation environment requires the capabilities of commu-

nication and execution in real-time. Simulink provides a powerful mechanism

for extending its capability, namely S-function, which is a computer language

description of Simulink block. S-function can be written in C/C++, which can

have access to the Vicon API receiving vehicle state data and can also drive

the adapter sending command signals. Thus, two dedicated S-function blocks

were developed to communicate with the Vicon system as well as the adapter

within the Matlab/Simulink environment. Despite the C/C++ programming

required in the development progress, the completed blocks can be treated as
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normal Simulink blocks. Thus, the control of hardware is ultimately realised in

the software environment .

After solving communication problems, a real-time block set is added into

the Simulink environment to ensure that the implementation is attached to real-

time [24]. This block set has the function of holding the execution of Simulink

simulations to real time flow. This means that if the execution time of one

simulation step is lower than the corresponding real time, this block set stops

the simulink simulation and releases the remaining CPU time to all the other

Windows processes or just idles. This concept is very simple but effective. A

typical task execution time (TET) with a normal set of control algorithms at

a sampling interval of 50ms is given in Fig.3.6. The lower line represents the

execution time spend on the Simulink program during the simulation, while the

upper line represents the remaining time for which Simulink waits for the next

step (and leaves the CPU to remaining Windows applications).
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Figure 3.6: Task execution time under real-time block set (lower line: execution
time of Simulink program; upper line: remaining time for other applications)

During the real-time tests, Vicon Nexus and Simulink programs are executed

on the same PC that connects to Vicon MX cameras through Ethernet and the

adapter thought USB port, respectively. In this manner, the time delay of data

transferring can be minimised. The latency of the calculated Vicon data due to

the network is less than 1 ms, while the latency of sending out control signals is

about 5 ms on average due to the property of the USB port. Currently, control

algorithms in this environment are running at the sampling interval of 20 ms,

which is adequate for most flight control applications.
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The software environment based on the Simulink can manage the data ex-

change and hardware communication autonomously in the background. There-

fore, it is possible to use this platform as if it is a normal Simulink environment.

A detailed structure of this environment is shown in Fig.3.7. The advantages of

this environment are that it provides many powerful toolboxes and other useful

built-in resources in Simulink, and it is also a very convenient way to observe

and record signals during the flight tests. The latter property is very important

for prototyping advanced and complicated control algorithms, since intermediate

states of the controller can be easily monitored compared to similar realisation

using embedded systems. To this end, it accelerates the development signif-

icantly, because there is no obstacle between algorithm development and rapid

prototyping. One can implement developed algorithms into this platform directly

for experiments as long as numerical simulations are completed in the Simulink

environment.

Figure 3.7: Structure of real-time block set environment

Nevertheless, there are some drawbacks which might influence flight tests for

some scenarios in the future. For a more complicated mission, due to the heavy

computation burden, it might be difficult to complete the calculation within the

sampling interval when the RT Block set is used. Furthermore, from the OS

point of view, Matlab/Simulink is running on Windows OS, which is not a true

real-time operating system (RTOS). That means that other applications with

a higher priority in Windows system may interrupt real-time experiments and

possibly cause loss of control of vehicles. To avoid these negative aspects, another
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real-time environment based on xPC Target was then developed.

3.3.3 xPC Target environment

xPC Target is a special product in Matlab for prototyping, testing, and deploying

real-time systems using standard PC hardware. It is an environment that uses a

target PC, separate from a host PC, for running real-time applications. Theses

applications are created from Simulink programs on the host PC, compiled and

downloaded onto the target PC through Ethernet or serial connection. xPC

Target can significantly enhance the reliability and have the capability of dealing

with more complicated algorithms.

The structure of xPC Target environment is different from the previous one.

Since the real-time execution is essentially guaranteed, the synchronising of com-

munication is the remaining issue that is of concerned in this structure. xPC

Target executes its applications on a real-time kernel, where Vicon Nexus is not

compatible and USB port is not supported. Therefore, the target PC has to

communicate with another server PC that can provide the vehicle’s states calcu-

lated by Vicon Nexus and send command signals calculated by the target PC to

transmitters.

There are two basic communication methods built in xPC Target. One is

RS232 serial port transport, while another is user datagram protocol (UDP)

technology. The latter one is chosen in our case, because of its high bandwidth

and the ability of talking to multiple clients in the same network. Although UDP

protocol eliminates error check and recovery, it ensures that real-time applications

have a maximum chance of succeeding in real-time execution by only using the

most recent data. On the other hand, the target PC, host PC and server PC shall

be connected through a local area network (LAN) so that the network latency

can be minimised.

Next, a C/C++ server program is developed running on the server PC. This

program takes charge of the data transmission between target PC and server

PC, where Vicon data are converted into UDP packets to send out, meanwhile

received UDP packets from target PC are decoded into control signals to drive

the transmitter. The synchronisation of data transfer is implicitly dealt with in

a manner that the main application on the target PC calls each communication

port at a fixed interval, whereas the server program receive and send packets

passively. The entire structure of this environment is shown in Fig.3.8.
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Figure 3.8: Structure of xPC Target environment

When doing the real-time implementation using this environment, the user

needs to configure the network among these PCs first, and then compile Simulink

programs into executable real-time applications and download to the target PC.

This work is implemented in the Matlab environment. During flight tests, vehicle

states can be visualised by the Vicon Nexus on the server PC or can be displayed

in numerical or curve forms on the monitor of the target PC. After flight test all

the data can be logged back to the host PC for recording or further analysing.

The merits of xPC target environment are that it provides a considerably more

reliable environment for implementing various algorithms and has the potential

of expansion to meet the real-time requirement for sophisticated algorithms. Al-

though, the operation of this environment is not as convenient as the real-time

block set environment, it is very suitable to demonstrate relatively mature algo-

rithms into a complicated scenario such as multiple vehicle coordination and long

duration mission management.

3.4 Potential usage of the test platform

The rapid prototyping platform is very versatile and flexible and can meet flight

test requirements for various purposes. It can provide supports for many research

activities, not just those reported in this thesis, as outlined in this section.

• System identification and modelling

Modelling is always the first step in delivering control solutions for compli-
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cated dynamic systems. Various tests of helicopters and ground vehicles can

be performed under human remote control. All the control commands and

the response of the vehicles captured by Vicon system can be recorded syn-

chronously. All these data can be used to study and analyse the behaviour

of the target vehicle. Hence, this platform provides an ideal environment

for system identification and modelling, which is very much similar to wind

tunnels for fixed-wing aircraft.

• Flight control

Helicopters have very complicated dynamics, with strong non-linearities and

coupling between different channels. To some extent, control of small scale

helicopters is even more challenging than that of conventional helicopters

since they are more susceptible to ground effects and the change of structure

and propulsion. Various control algorithms are developed in this thesis

using advanced control methodologies such as non-linear control and robust

control and then evaluated in this flight test environment. The control

calculations can be performed in Matlab/Simulink on standard PCs, which

not only eases the implementation but also provides enough computing

power for complicated algorithms such as model predictive control where

one-line optimisation is required.

• Avionic systems

Navigation systems are a very important part of the onboard avionic sys-

tems, and provide essential information for aircraft control and positioning.

The Vicon optical tracking system can be used as a reference system to as-

sess the performance of various new navigation systems. For example, one

research topic is to investigate the integration of low cost inertial measure-

ment sensors with computer vision. Together with inertial sensors, a small

camera can be installed on the helicopter to perform various flight tests to

investigate the performance of these new concepts and algorithms. It can

provide support for similar work on vehicle navigation systems.

• UAV path and mission planning

One of the main motivations for developing this flight test environment is

to support research in UAV autonomous algorithms such as path planning

and mission planning. In these high-level algorithms, the UAVs are treated

as a mass point, so the algorithms are largely independent of the platforms.
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To this end, this test facility provides an environment to verify and de-risk

research work on UAV autonomy for various aerial vehicles including fixed

wing aircraft.

• Teaching

This flight test environment also provides support for teaching activities.

Two modules, flight control systems and avionic systems directly benefit

from it by setting the coursework and having experimental tests in this

environment. It has also been used to support various final year projects

and other group design projects in Loughborough University.

3.5 Real-time control example

In this section a real-time control example is presented to show the basic function

of the proposed rapid prototyping platform. The task is to control two ground

vehicles to follow circles with different radii at a constant speed. In this case the

control algorithm is fairly simple. It measures the distances of the vehicles with

respect to the centre of circles and compares them to the set-point radius. The

errors are fed into proportional-derivative-integral (PID) controllers to generate

steering signals. The controllers are realised in Simulink using standard blocks in

the simulink library. One controller is shown in Fig.3.9.

Figure 3.9: Simulink programme for real-time control

The real-time control can be achieved by using this diagram, where the Vicon

block provides vehicle information and the Transmitter block sends out com-

mands. More advanced algorithms can be added into the diagram to enhance
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the control performance or to execute more complicated tasks. The test result

of this control example is shown in Fig.3.10. It can be seen that although the

start points were not on the expected circles, the controller can make the cars

following the trajectories.

Figure 3.10: Test result of two vehicles control

It shall mention that the global coordinate system in Vicon Nexus is a Carte-

sian coordinate system (xiv, yiv, ziv) with ziv axis upwards (see Fig.3.11a). The

rotation of an object is represented by a set of Euler angles in the sequence of

X-Y-Z. It may be suitable for describing a ground vehicle, but is inconsistent

with conventional coordinates system in aerospace engineering. The latter one

adopts global coordinates (xi, yi, zi) with zi axis downwards as shown in Fig.3.11b

and represents rotations using Euler angles yaw-pitch-roll corresponding to the

sequence Z-Y-X.

To avoid misleading in implementing an algorithm developed from standard

flight control techniques and prevent crashes due to mis-match of coordinates,

it is important to convert default Vicon coordinates into conventional aerospace

coordinates. The position information can be corrected by rotating Vicon coor-

dinates about its xiv axis for 180◦, which is equivalent to change directions of z

and y axes. The rotation information can be extracted from a corrected rota-

tion matrix that is derived by first rotating (xi, yi, zi) about xi axis into Vicon

global coordinates (xiv, yiv, ziv), then following Vicon’s rotation matrix to Vicon
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(a) Vicon coordinates (b) Conventional aerospace coordinates

Figure 3.11: Coordinates system

body coordinates (xbv, ybv, zbv), and finally rotating about xbv axis to get body

coordinates (xb, yb, zb). The corrected rotation matrix is actually equivalent to

the Vicon rotation matrix derived using negative second and third Euler angles

as their axes are inverse. Therefore, this process can be implemented in Simulink

as shown in Fig.3.12 and is embedded in the Vicon block.

Figure 3.12: Coordinates conversion

3.6 Conclusion

In this chapter, the hardware and software architecture of a rapid prototyping

flight test environment for autonomous UAVs is discussed in detail. This plat-

form provides a convenient and effective facility for evaluating UAV related algo-

rithms and supporting general flight control research using real vehicles. This is

a versatile testbed and supports various scenarios, including single aerial vehicle,
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multi-vehicles, mixture of aerial and ground vehicles. It can also provide support

for a variety of research, teaching and demonstration activities. The adoption

of the widely used Matlab/Simulink environment enables researchers to test new

research outputs seamlessly on real vehicles. This multifunctional, low cost and

flexible indoor flight testbed also enables one researcher to manage and coordinate

UAV missions with multi-vehicles, which significantly reduces manpower and lo-

gistic supports required for this kind of study. Another important feature of this

platform is that model helicopters are adopted as test vehicles. On one hand,

the nature of helicopter dynamics, such as hovering, vertical take-off and landing

and low speed cruise, allows realistic and complicated missions to be simulated

in a confined space. On the another hand, it provide an opportunity to carry

out comprehensive study on the helicopter dynamics and flight control design as

shown in the rest of this thesis.
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Chapter 4

Modelling and system

identification of a miniature

helicopter

4.1 Introduction

This chapter describes a systematic methodology of obtaining a mathematical

model of a miniature helicopter towards the control engineering practice. He-

licopters are versatile flying machines that are ideally suited to tasks such as

surveillance and reconnaissance in confined and dynamic surroundings due to

their integrated abilities of hovering, low altitudes cruise, and agile manoeuvre.

To this end, the complicated dynamics of helicopters need to be well under-

stood; otherwise the operational capabilities of autonomous systems based on

small-scale helicopters will remain limited. On the other hand, in order to apply

modern control strategies and explore a broad range of flight conditions, a precise

mathematical model is a necessary. The model should not only have an accurate

reflection of the main dynamic characteristic of the helicopter, but also open to

a fair degree of simplification for control design and real-time prediction. Due

to the complexity of the dynamics of helicopters, developing such a model is a

challenge.

The previous works listed in the literature review (Chapter 2) have set a

good starting point for the continuous development of a model for miniature

helicopters, particularly for those used by the Autonomous System Lab. There

are still open problems in modelling and system identification, especially in some
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practical aspects. Firstly from a control point of view, a helicopter model that

is simple but can accurately predict the dynamic response is desired. Thus, a

complicated model built from first-principles is excluded, and the model should

be validated using real flight data to guarantee its fidelity. Secondly, in system

identification experiments, input signals to the helicopter should have sufficiently

large magnitude so as to guarantee that the helicopter is fully actuated and the

corresponding flight modes are excited. Therefore, the model needs to account

for the nonlinearity caused by manoeuvres. Thirdly, since the model structure

needs nonlinear terms, the selected identification algorithm should be able to

process nonlinear models, which implies the frequency domain methods are not

appropriate.

To solve these difficulties, a helicopter model is derived with nonlinear terms

to account for helicopter dynamics in a broad range of flight conditions, but

retains the first-order approximation of external forces and moments, so as to

reduce complexity to facilitate control design. The unknown parameters in the

model structure are identified from flight data by using the PEM algorithm in

the Matlab System Identification Toolbox [69]. This algorithm supports nonlinear

grey-box identification (with unknown structure and unknown parameters), which

makes it well suited for our purpose. Furthermore, to improve the accuracy of the

parameter estimation, the entire nonlinear model is broken down to several small

identification processes. The corresponding flight tests are also carefully designed

and performed to support the identification process. All these efforts guarantee

the fidelity of the model and the accuracy of the identification. The resulting

parametrised nonlinear model shows a consistent match with flight data, even

when both lateral and longitudinal channels are excited. Of particular interest

is that the prediction of translational speeds is further improved compared with

previous works. As there is no dedicated software involved in the identification

process, the proposed method can easily be picked up by other research groups

to accelerate the development of rotorcraft based autonomous systems.
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4.2 Model development

4.2.1 Overview

The miniature helicopter adopted in the research is a Trex-250 electronic heli-

copter, as shown in Fig 4.1. It is a 200-sized helicopter with the main rotor

diameter of 460mm and the trail rotor diameter of 108mm. The miniaturised size

and 3D aerobatic ability make it well-suited for flight tests in the environment

described in Chapter 3. Trex-250 has a collective pitch rotor and well designed

Bell-Hiller stabilizer mechanism that makes it representative of most widely used

small-scale helicopters found in literature. In addition, the Trex family features

a series of helicopters from the Trex-250 micro-size to the Trex-700 small-size all

with a similar structure and handing qualities meaning that the research outcomes

can be easily transferred into much wider applications.

Figure 4.1: Trex-250 Helicopter

A helicopter’s versatile flight ability is supported by its effective yet compli-

cated rotor system. The main rotor blades can change their pitch angle simul-

taneously and cyclically while rotating around the main shaft. This movement

is achieved via a swashplate mechanism. When the swashplate moves vertically

along the rotor shaft under the control of collective input δcol, the pitch angle

of all blades are altered at the same time, so that the thrust is changed. When

the swashplate is tilted, the blade pitching follows the swashplate’s perimeter

cyclically to produce different lifts at different angles. Then the whole rotor disc

demonstrates a flapping motion to generate torques on the helicopter fuselage.

The cyclic control inputs can be divided into lateral (roll) and longitudinal (pitch)

components δlat and δlon, respectively. On the other hand, the tail rotor only has a

collective input to alter its thrust used to counteract the main rotor moment and
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to change the heading. As in a real size helicopter where this control is accessible

via pedals, it is denoted as δped. In addition, there is a Bell-Hiller stabiliser bar

in the rotor system used to improve the ability to fly a model helicopter, which

actually provides a mechanical rate feedback (damping).

To study the behaviours of a helicopter, a body-fixed reference coordinate is

established and attached to the helicopter as shown in Fig.4.2. Its origin is at

the helicopter’s centre of gravity (c.g.), the x axis is along the forward direction

of the helicopter, the z axis is downward and the y axis is determined based on

the “right-hand” rule. The other principal variables are also shown on the x, y

and z body axes. They include: the projections of inertial velocity in the 3 body

axes u, v, w; the Euler angles φ, θ, ψ representing the helicopter orientation; and

the body angular rates p, q, r. The main rotor is represented by a disc which can

tilt about the rotor hub in both longitudinal and lateral directions. This motion

is described through the angles β1c and β1s measured with respect to a plane

perpendicular to the rotor shaft.

Figure 4.2: Body coordinates of the helicopter
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The transformation between the inertia coordinates and the body-fixed co-

ordinates can be parametrised in terms of Euler angles. The Euler angles refer

to a specific sequence of rotations about the vehicle body axes. A widely used

definition in flight dynamics is a sequence of yaw-pitch-roll, which are angle φ

about the z axis, angle θ about the current y axis, and φ about the current x axis

[21], respectively. In this way, the kinematic relationship is

[ ẋ ẏ ż ]T = Ri
b[ u v w ]T (4.1)

where the transformation matrix is (with s denote for sin(·) and c for cos(·))

Ri
b =






cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ

cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ

−sθ sφcθ cφcθ




 (4.2)

In addition, the relationship between the angular rate (p, q, r) and the Euler angle

rate (φ̇, θ̇, ψ̇) can be expressed in






φ̇

θ̇

ψ̇




 =






1 sinφ tan θ cosφ tanφ

0 cosφ − sinφ

0 sinφ sec θ cosφ sec θ











p

q

r




 (4.3)

4.2.2 Rigid-body model

Rigid-body equations of motion are extensively used in aerospace engineering to

describe the dynamics of a vehicle in air or in outer space which is free to translate

and rotate in all six-degrees-of-freedom (6DOF) [21]. The rigid-body equations

of motion can be developed from Newton-Euler equations of motion expressed in

the inertial reference coordinates. For a constant vehicle mass m and moment of

inertia (inertial tensor) I, they are:

m
dvI
dt

= F (4.4)

I
dωI
dt

= M (4.5)
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where F = [ X Y Z ]T is the vector of external forces acting on the vehicle c.g.,

and M = [ L M N ]T is the vector of external moments. For a helicopter, the

external forces and moments are produced by the main rotor and the tail rotor,

the gravitational force, and the aerodynamic forces produced by the fuselage and

the tail surfaces.

Using the kinematic principle of moving reference coordinates, the equations

of motion can be expressed with respect to the helicopter body-fixed reference

coordinate:

mv̇ +m(ω × v) = F (4.6)

Iω̇ + (ω × Iω) = M (4.7)

where v = [ u v w ]T and ω = [ p q r ]T are the fuselage velocities and

angular rates in the body coordinates, respectively, and × denotes the cross-

product. For a 6 DOF rigid-body system, Eq.(4.6) produces the three differential

equations describing the helicopter’s translational dynamics about the its three

body axes:

u̇ = (−wq + vr) +X/m

v̇ = (−ur + wp) + Y/m

ẇ = (−vp+ uq) + Z/m

(4.8)

Similarly, Eq.(4.7) produces the three ordinary differential equations describing

the vehicle’s rotational dynamics with the assumption that the cross-products of

the inertia are small:

ṗ = −qr(Iyy − Izz)/Ixx + L/Ixx

q̇ = −pr(Izz − Ixx)/Iyy +M/Iyy

ṙ = −pq(Ixx − Iyy)/Izz +N/Izz

(4.9)

After the rigid-body dynamics of the helicopter are expressed in Eq.(4.8) and

(4.9) as a function of the external forces F and moments M, the next step is

to find the components that construct the external forces and moments, and

express them as functions of control inputs and/or vehicle states. This is the

most difficult step in the modelling of a helicopter due to the complicated nature

of rotor aerodynamics and interactions. However, the principle components of F
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and M are generated by the main and tail rotors, the gravitational forces, and

the aerodynamic forces caused by a fuselage (including tail boom, vertical and

horizontal fins), such that:

X = XM +XF +Gx

Y = YM + YF + YT +Gy

Z = ZM + ZZ +Gz

L = LM + YMhM + ZMyM + YThT

M = MM +MT −XMhM + ZM lM

N = NM + YM lM − YT lT

(4.10)

where X∗, Y∗, Z∗ and L∗, M∗, N∗ denote, respectively, the forces and moments

from different sources, with the subscripts M , T , F indicating the main rotor,

tail rotor, and fuselage, respectively; (lM , yM , hM) and (lT , yT , hT ) denote the

coordinates of the main rotor and tail rotor shafts relative to the c.g. in the body

coordinates; and (Gx, Gy, Gz) denote the projections of gravitational force in the

body coordinate in the form of:

[ Gx Gy Gz ]T = Rb
i · [ 0 0 g ]T (4.11)

where g is acceleration of gravity.

Note that in the construction of Eq.(4.10), it is assumed that the tail rotor only

generates the force and torque along the y direction and that torques arising from

the aerodynamic forces of the fuselage are negligible. This is reasonable because

among all the components in Eq.(4.10), the forces and moments produced by the

main rotor and the thrust of the tail rotor have the most significant influences on

a small-size helicopter. Moreover, they can be altered by the control inputs so

that a helicopter can be controlled. To account for their mechanism and complete

the helicopter model accordingly, the rigid-body model needs to be extended to

include the main rotor behaviour.

4.2.3 Extension of rigid-body model

The objective of extending the rigid-body model discussed in the previous sub-

section is to take into account the higher-order effects that exist in helicopter

dynamics, and to investigate their interactions with the rigid-body dynamics.
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Except for the rigid-body motion, the most obvious and important movements

in helicopter dynamics are the tilting or flapping movements of the main rotor.

A combination of these two parts gives a hybrid model that is sufficiently simple,

but captures the main helicopter characteristics.

4.2.3.1 Simplified rotor dynamics

The rotor dynamics are naturally complicated due to the high degrees of freedom

of the motion of the rotor blades plus elusive aerodynamic characteristics. Con-

sequently, detailed rotor equations of motion can be extremely complex [89], but

they are not suitable for system identification and control design. However, earlier

work on modelling of small-scale rotorcraft showed that the main rotor system

with a stabiliser bar (flybar) can be lumped and represented by tip-path-plane

(TPP) flapping dynamics with only two states. In the following, this chapter

will describe the development of a highly simplified TPP rotor model for system

identification and later for the control design purpose.

The flapping motion quantified by a flapping angle β is a 2π periodic function

as it associated with blades rotating about the rotor shaft (speed Ω, position

Ψ). Thus the general solution to the flapping equation can be approximated by

first-order Fourier series

β(Ψ) ≈ β0(t) − β1c(t) cos Ψ − β1s(t) sin Ψ (4.12)

This type of motion results in a cone-shaped rotor shown in Fig.4.3. The top of

the cone is the so-called tip-path-plane. The constant term β0 describes the cone

angle and the coefficients of the first harmonic β1c and β1s describe the tilting of

the rotor TPP in the longitudinal and lateral directions, respectively. By using

the TPP presentation, the rotor flapping dynamics can be further simplified,

because a tilting movement of plane replaces the detailed rotation movements of

blades. The complete derivation and simplification can be found in [78]. The

solution is directly adopted in this thesis to extend the rigid-body model.

To investigate the dynamic modes of the rotor TPP, simplified notations, a

instead of β1c, b instead of β1s and a0 instead of β0, are used to formulate a tip-

path-plane state vector a = [ a0 a b ]T . Note that for the Trex-250 helicopter,

the coining angle β0 is exactly equal zero due to its hingeless rotor head. For

system identification, the rotor dynamics can be further simplified as not all effects
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Figure 4.3: Tip-path-plane rotor representation

can be identified from flight data. By focusing on the low frequency flapping

dynamics, the longitudinal and lateral flapping dynamics are approximated by

first-order equations [78]:

16

γΩ
ȧ = −a−

16

γΩ
q +

p

Ω
+

8

γΩ2

kβ
Iβ
b−B1 (4.13)

16

γΩ
ḃ = −b−

16

γΩ
p+

q

Ω
+

8

γΩ2

kβ
Iβ
b+ A1 (4.14)

where Ω is the rotor speed, kβ is the spring constant of the flapping restraint; Iβ is

the blade moment of inertia about the flapping hinge; A1 and B1 are, respectively,

the lateral and longitudinal cyclic blade pitch angles, γ is the blade Lock number

which represents the ratio between the aerodynamic and inertial forces acting on

the blade given by

γ =
ρcClaR

4

Iβ
(4.15)

where R is the rotor radius, ρ is the air density, c is the blade chord length, and

Cla is the lift curve slope.

These equations capture the key TTP responses due to control inputs and

helicopter motion. Moreover, these equations reflect rotor dynamics in a low

frequency range within which they will be coupled into fuselage dynamics. In

Eq.(4.13) and (4.14), one important coefficient is 16
γΩ

, which is defined as the

rotor time constant τ . Note that it depends on the rotor Lock number γ and

rotor angular speed Ω. By using the notation τ = 16
γΩ

, we have two terms τq

and −τp, which are important pitch and roll damping terms in the lateral and

longitudinal directions, respectively. They can also be seen as a rate feedback
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mechanism which is actually provided by the flybar. In contrast, − q

Ω
or + p

Ω
is

the lateral (or longitudinal) flapping produced by a body roll rate p (or pitch

rate q). This is one of the main rotor cross-coupling effects. 8
γΩ2

kβ

Iβ
is another

cross-coupling effect arising in the presence of a flapping restraint. It can be

denoted by the derivatives Ab and Ba for the longitudinal and lateral flapping,

respectively. Finally, the blade pitch angles A1 and B1 at lateral and longitudinal

directions are decided by the cyclic movement of the swashplate, which can be

modelled to be proportional to control inputs δlat and δlon:

A1 = Alatδlat + Alonδlon (4.16)

B1 = −Blatδlat −Blonδlon (4.17)

where Alat, Alon, Blat and Blon are control derivatives, in which Alat and Blon are

used to account for unmodelled cross-coupling effects.

The simplified rotor dynamic equations that are suitable for system identifi-

cation can be summarised as:

τ ȧ = −a− τq + Abb+Blatδlat +Blonδlon (4.18)

τ ḃ = −b− τp+Bab+ Alatδlat + Alonδlon (4.19)

where − q

Ω
or + p

Ω
are dropped, as their coefficients have one order of magni-

tude less than 16
γΩ

based on the estimation using its physical definition and final

identification results.

After the flapping dynamics of the rotor are studied, it is now possible to

investigate the basic function of the main rotor and its by-product, which are

main rotor thrust T and torque QM , respectively. The first one can be modelled

as

T = KTPMΩ2 (4.20)

where KT denotes the aerodynamic constant of the rotor’s blade, and PM is

the collective pitch angle of the blade, which is controlled by input δcol. The

main rotor’s torque has a more complicated form, which according to [34] can be
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modelled as:

IrotΩ̇ = QM −QR
M

QR
M = cΩ2 + dP 2

MΩ2

QM = Pe/Ω

Pe = P̄eδthr (4.21)

where Irot is the moment of inertia of the rotor blades about the main shaft,

QR
M is a reaction torque due to the aerodynamic resistance of blade (with phys-

ical parameters c and d depending on blade characteristic), and Pe denotes the

engine power assumed to be proportional to throttle input δthr with coefficient

P̄e. Although the main rotor torque varies in such a complicated way, modern

unmanned helicopters are equipped with onbard heading gyros, which help the

tail rotor to generate the correct thrust to cancel the main rotor torque.

It can be noticed from the above discussion that many of the coefficients in ro-

tor dynamics depend on the rotor speed. Fortunately, in most modern unmanned

rotorcraft, the rotor speed Ω is retained constant by an onboard electronic gov-

ernor. As a result the corresponding coefficients can be considered as constant at

the current modelling level.

4.2.3.2 Rotor and fuselage interaction

The interaction between the main rotor and the fuselage is reflected by the relation

between the rotor tip-path-plane angle, the thrust vector, and the forces and

moments produced by the rotor, which is shown in Fig.4.4.

The forces produced by the main rotor are considered to be the result of the

thrust vector tilting. With the assumption that the direction of the thrust vector

is perpendicular to the rotor TPP (common assumption for hover and low-speed

flight), XM , YM and ZM in Eq.(4.10) are the projections of the thrust vector on

the x, y and z body axes, such that

XM = −T sin a cos b ≈ −Ta

YM = T sin b cos a ≈ Tb

ZM = −T cos a cos b ≈ −T

(4.22)

Note that here we use the fact that the magnitude of flapping angle is small.
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Figure 4.4: Rotor force and moments acting on the helicopter fuselage

The moment produced by rotor flapping acting of the fuselage consists of two

parts. The first contribution results from the restraint in the blade attachment

to the rotor hub. This restraint can be approximated by a linear torsional spring

model. Using the TPP lateral and longitudinal flapping b and a, the correspond-

ing torsional moments are

Lk = kβb

Mk = kβa (4.23)

The second moment contribution is from the tilting of the thrust vector. As the

thrust vector will tilt proportionally to the rotor flapping angles, its projection

in the hub plane produces a moment with a moment arm of length equal to the

distance hM . Taking into account Eq.(4.22), the resulting roll and pitch moments

are

LT = hMYM ≈ hMTb

MT = hM(−XM) ≈ hMTa (4.24)

The total moments due to rotor flapping action on the fuselage are obtained by

summing the hub restraint and thrust tilting contributions.
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4.2.3.3 Complete helicopter model

After the rotor dynamics and their coupling with rigid-body dynamics have been

investigated, the complete helicopter model used for system identification can

be formulated by combining every force and moment component in Eq.(4.10).

In the first-principle modelling of helicopters, every noticeable contribution to

external forces and moments needs to be taken into account. However, in the

development of a model for system identification, some terms in Eq.(4.10) need

to be selectively dropped or further simplified. Firstly, this is due to their limited

contributions that cannot be identified from experiment data. Effects from trivial

contributions can be easily corrupted by disturbances in flight test or submerged

in sensor noise. Secondly, the extra terms need more free parameters to describe,

which will increase the degrees of freedom of parameters, thereby may cause

difficulties in identification.

It is a recursive process to refine the model structure, i.e. which term in the

equations which should remain or be dropped, by assessing the final identification

results. According to the literature and initial trails in our system identification

exercises, it was found that it is adequate to approximate some forces (or mo-

ments) using their first-order Taylor series. To this end, we express forces and

moments using stability derivatives and control derivatives, which are first par-

tial derivatives in Taylor series with respect to vehicle states and control inputs,

respectively. Note that in the translational and rotational equations, the forces

are normalised by the helicopter mass, and the moments are normalised by the

related moment of inertia.

In hover and slow flight conditions, the main rotor thrust is approximately

equal to the vehicle gravity, so Eq.(4.20) is approximated as

T

m
= −Zcolδcol + g ≈ g (4.25)

where Zcol is the collective pitch derivatives. By following this approximation and

combining Eq.(4.11) and (4.22), the forces in Eq.(4.10) can be reformulated as:

X/m = Xuu− g sin θ − ga (4.26)

Y/m = Yvv + g cos θ sinφ+ gb (4.27)

Z/m = Zww + g cos θ cosφ+ Zcolδcol − g (4.28)
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where, Xu, Yv and Zw are velocity damping derivatives, which account for the

relative fuselage drag forces. The approximation T
m

= g is only used in the

horizontal forces of the main rotor as their effects are reduced by small flapping

angles. Note that the lateral force YT produced by the tail rotor is dropped, as it

is compensated by a partition of the main thrust generated by a “sitting angle”

in flight and this effect can be eliminated by dropping the mean values in the

identification process.

Next, it follows from Eq.(4.23) and (4.24), that the pitch and roll moment

derivatives with respect to flapping angles can be expressed by

Ma = (kβ + hMT )/Iyy (4.29)

Lb = (kβ + hMT )/Ixx (4.30)

Thereby, the normalised moments are

L/Ixx = Laa+ Lbb (4.31)

M/Iyy = Maa+Mbb (4.32)

N/Izz = Nrr +Npedδped +Ncolδcol (4.33)

where La and Mb are cross-coupling derivatives used to capture unmodelled cou-

pling effects, Nr is the yawing damping derivative accounting for the rate feedback

from the onboard heading gyro, Ncol is collective control derivative, and Nped is

the yawing control derivative. Note that the torque NM produced by the main

rotor are ignored, because it can be compensated by the anti-spinning torque

YT lT from the tail rotor.

So far, the model structure used for describing helicopter dynamics is com-

pleted by substituting Eq.(4.26)-(4.28) and (4.31)-(4.33) back to Eq.(4.10). The

schematic of the model structure is illustrated in Fig.4.5. It shows that the control

signals first alter the states of the main and tail rotors, which produce correspond-

ing thrusts, torques and flapping angles, then these elements act on the main rotor

hub and tail boom to produce different forces and torques on the rigid-body of the

helicopter. These forces and torques combining fuselage forces and the gravity

through a mixer block completes the helicopter model. The equations contained

in each block are summarised in Table.4.1. The question remained in modelling is

how to decide the specific values of unknown parameters in the model structure.
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Figure 4.5: Schematic of the model structure

Table 4.1: Equations in the model schematic

Blocks Corresponding equations

Main rotor Eq.(4.18), (4.19), (4.20), (4.21)

Tail rotor YT , YT lT

Hub Eq.(4.22), (4.23), (4.24)

Fuselage force Xuu, Yvv, Zww

Gravity Eq.(4.11)

Mixer Eq.(4.10), (4.26)-(4.28), (4.31)-(4.33)

Rigid-body Eq.(4.8), (4.9), (4.1), (4.3)

4.3 System identification

This section introduces the identification procedure including the design of flight

experiments, the identification algorithm, model breakdown and parameter esti-

mation.
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4.3.1 Preparation

Flight experiments play an important role in the system identification. Ideally,

the flight experiments are executed in an open-loop style. In order to excite the

desired mode and obtain the dynamic response in a large frequency range, the

pilot should input sweep frequency signals and try not to add too much control

efforts to remedy the stability of the helicopter (as long as the helicopter does

not crash). Moreover, the input signals in the interested channels should have

sufficient magnitudes to suppress the interferences of disturbances. This is very

critical since the Trex-250 is small and light, and the response to disturbances

may submerge the real control responses. In the identification, the model needs

to be broken down into small blocks, and corresponding flight tests need to be

performed. During the flight tests, at least two sets of data need to be collected

for each pattern of flight. One is for identification and another is for validation.

The algorithm for parameter estimation used in this thesis is PEM, which is a

conventional identification technique and has been included in the Matlab System

Identification Toolbox [69]. PEM needs a parametrised model and determines

the unknown parameter in a way that the prediction based on the model matches

measured data as accurately as possible. It can be considered as an optimization

process, where the optimisation variables are the unknown parameters of the

model, the constraints are parameter ranges and model equations, and the cost

function is used to penalise the deviation between model prediction and measured

helicopter responses. The cost function that PEM tends to minimise can be

defined as follows:

VN(θ, ZN) =
1

N

N∑

k=1

l(ε(k, θ)) (4.34)

where θ is the vector of parameters to be estimated, ZN = [uk,yk], k = 1, 2, · · · , N ,

is the given experiment data set, l(·) is a positive defined scalar function, and ε

is the error between measured data and predicted responses from model which

depended on θ.

Since essentially there is a nonlinear optimisation involved in the estimation,

there is a chance that the algorithm may trap in a local minimum that is not the

actual value for a specific system, and the results can be sensitive to the initial

guesses of the parameters. To overcome these problems, the full helicopter is

partitioned into a few subsystems to describe the specific helicopter movement.

The flight tests for each kind of movement are carried out in order to serve the
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corresponding subsystem identification.

4.3.2 Model Breakdown and Identification

As stated before, identifying all the parameters at once is very difficult or even

impossible since there are 16 unknown parameters in the model structure. How-

ever, by breaking down the full helicopter model into several parts, it is possible to

find suitable initial values for the unknown parameters. The helicopter dynamics

can be divided into four channels, namely roll, pitch, yaw and heave. Thereby,

the identification and the corresponding flight tests are implemented according to

this sequence. When one channel is excited, the other channel should be kept as

calm as possible. To investigate the coupling effect between roll and pitch, those

two channels also need to be excited simultaneously. The identification flowchart

is illustrated in Fig.4.6. Note that in the identification process, the inner-loop

attitude dynamics are first identified, and then the outer-loop translational move-

ments are investigated.

Figure 4.6: Flowchart of identification process

After the system identification process is broken down, the related model in
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each step is also simplified as there are less unknown parameters to estimate.

Furthermore, the results obtained in the current step is set as the initial values

for the following identification procedure to avoid the sensitivity in parameter’s

initial guess. The detailed steps and results in the flowchart Fig.4.6 are given as

follows:

1. Decoupled roll and pitch dynamics

The roll and pitch dynamics are initially identified in this step, respectively.

Cross-coupling effects are avoided in the flight experiments, so these terms

in the equations can be dropped. Specifically, in identifying the roll channel,

the coefficients for flapping angle a and pitch rate q in Eq.(4.19) and (4.31)

are ignored to yield the following equations

ṗ = Lbb

ḃ = −p− b/τ +Blatδlat +Blonδlon
(4.35)

where Lb, Blat and Blon are unknown parameters to be estimated. Similarly,

the equations for identifying the pitch channel can also be derived from

Eq.(4.18) and (4.32) as:

q̇ = Maa

ȧ = −q − a/τ + Alatδlat + Alonδlon
(4.36)

where Ma, Alat and Alon need to be identified. The results in this step are

given in Fig.4.7, where the estimated responses and experimental responses

are compared.

2. Coupled roll-pitch dynamics

In this step, roll and pitch dynamics are integrated together through cross-

coupling terms La and Mb, such that

ṗ = Laa+ Lbb

q̇ = Maa+Mbb
(4.37)

The corresponding flight test should excite both channels in an interactive

way to identify La andMb and refine the other parameters from the previous

step. The control signals and identification results are shown in Fig 4.8.

3. Translational equations of motion
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Figure 4.7: Decoupled roll and pitch identification
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Figure 4.8: Coupled roll and pitch identification
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In this step, roll-pitch dynamics Eq.(4.37) and translational dynamics com-

posed of Eq.(4.26)-(4.27) and (4.8) are considered. To reduce the complica-

tion, two variables are defined in Eq.(4.38) to substitute the corresponding

nonlinear terms in Eq.(4.26) and (4.27). Since the newly defined variables

can be measured in the flight test, they can be treated as the control in-

puts. The key derivatives to be identified in this step are the translational

damping terms Xu and Yv.

termX = −wq + vr − g sin θ

termY = −ur + wp+ g sinφ cos θ
(4.38)

The same set of data used in step 2 is used for identifying the translational

movements. Comparing with the existing state-space helicopter model [82],

the model proposed in this paper introduces the two nonlinear terms to in-

crease the fidelity. The termX, termY and identification results are shown

in Fig 4.9.
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Figure 4.9: Translational dynamic identification

4. Yaw dynamics
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Trex-250 helicopter is equipped with a head holding gyro, which makes the

yaw channel quite stable and decoupled from the other channels. Hence,

a first-order system is adequate to model this dynamics with derivatives

of Nr, Nped and Ncol from Eq.(4.33). The control signal and identification

result are given in Fig 4.10.
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Figure 4.10: Yaw dynamic identification

5. Heave dynamics

In this step, the unknown parameters Zw and Zcol in Eq.(4.28) are identified.

Similarly to the strategy in step 3, the nonlinear term is defined as an input

variable in Eq.(4.39).

termZ = −vp+ uq + g cosφ cos θ − g (4.39)

6. Full helicopter model

After previous steps, all of the unknown parameters have been initially

estimated. The full helicopter model is evaluated in this step, where all the

parameters are further refined using the previous results as initial values.

The parameters identified are given in table 4.2.

4.3.3 Result validation

The model validation is conducted by driving the identified model using another

set of flight data that was not used in the identification process. The validation

flight data include excitations on all the channels to verify the model accuracy

with respect to coupled helicopter dynamics. The validation results are presented

in Fig 4.11. The results show a good agreement between the flight data and

predicted data especially for longitudinal and lateral movements.
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Figure 4.11: Model validation
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Table 4.2: Identified parameter for Trex-250

Parameter Identified Standard Parameter Identified Standard
(Unit) value deviation (Unit) value deviation
Xu (s−1) -0.233 0.006 Yv (s−1) -0.329 0.006
Zw (s−1) -0.878 0.022
La (s−2) 83.98 11.21 Lb (s−2) 745.67 13.85
Ma (s−2) 555.52 9.89 Mb (s−2) 11.03 3.44
τ (s) 0.045 0.001 Nr (s−1) -23.98 0.63
Alat (rad) 0.196 0.003 Alon (rad) 1.945 0.006
Blat (rad) 2.120 0.007 Blon (rad) -0.38 0.010
Zcol (m/s2) -5.71 0.06
Ncol (rad/s2) 8.89 2.9 Nped (rad/s2) 113.65 2.9

To examine the result quantitatively, a measurement of the Best Fit [69] is

introduced, which is defined as the percentage of the output that the model

reproduces:

BestFit =

(

1 −
|y − ŷ|

|y − ȳ|

)

× 100 (4.40)

where y is the measured helicopter response, ŷ is the output predicted by the

identified model and ȳ is the mean of y. 100% corresponds to a perfect fit, and

0% indicates that the fit is no better than approximating the output by a constant

(ŷ = ȳ). The Best Fit values are also displayed in the Fig.4.11.

In the flight test for model validation, all channels in the helicopter dynamics

are excited simultaneously, and the model predictions still match the experimental

data with a high accuracy. In contrast, in most of the literature, e.g. [82; 109],

their time domain validations carried out with only one channel excited at one

time. This means that the proposed identification process captures the majority

of cross-coupling effects. It can also be seen that there are some mis-matches in

both the heave and yaw channels. For the former, it is mainly due to the high

nonlinearity inherited in the rotor system and excited by the aggressive flight. The

effects such as inflow air instability and rotor speed variation cannot be captured

by the present thrust model. The mis-match in the yaw channel mainly exists in

the high frequency range. This is due to the presence of the head holding gyro,

which always tries to compensate for the external disturbances. The identified

model is able to capture the trend of the yaw movement and it is adequate for

control design.

It is worth pointing out that although efforts have been taken to obtain an ac-
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curacy model from the flight test data, there is still a modelling uncertainty with

respect to the real helicopter dynamics. The uncertainty, on one hand, is caused

by the limitation of the current model structure and identification method as dis-

cussed above. On the other hand, it can be introduced by the physical changes

of the helicopter. Because of the light structure of a miniature helicopter, its dy-

namics are vulnerable to mechanical changes, such different payloads, component

upgrading and repair from crash. Therefore, the control algorithm designed for

the miniature helicopter requires certain robustness to perform well in practice.

4.4 Basic control design

After a mathematical model of the helicopter is obtained, a control system can be

designed by using model-based techniques. This section describes the controller

design to support the non-aggressive flight of a small helicopter. Around the

hover mode, helicopter dynamics can be considered as a linear system with multi-

inputs-multi-outputs. Next, by decoupling the helicopter dynamics into several

subsystems, a cascaded PID controller can be developed.

4.4.1 Model analysis

A helicopter has four primary input commands δlat, δlon, δcol and δped for con-

trolling the roll and pitch rates, vertical velocity, and yaw rate, respectively. In

piloting a helicopter, the cyclic inputs produce rotor moments and then change

the fuselage attitude, but they cannot control the vehicle’s position and velocity

directly. After the fuselage’s roll and pitch angles are changed, the rotor thrust is

tilted accordingly to produce horizontal projections as propulsive forces. In this

way, the helicopter’s translational states can be controlled. On the other hand,

the dynamics of a helicopter can be divided into slow translational movements

(outer loop) and fast attitude movements (inner loop). Although this decom-

position is only valid in non-aggressive flight, it provides a guideline for control

analysis. So when a desired vehicle position is given, the controller first transfers

a position requirement into an attitude command in a low bandwidth, and then

controls the helicopter to track such a command in a high bandwidth.
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4.4.2 PID controller

By following the above principle, a cascaded control structure can be derived for

a helicopter’s low-speed flight. First, an inner-loop controller is used to stabilise

the attitude dynamics, which follows attitude commands and generates cyclic

controls. Then, an outer-loop controller is designed for tracking the position and

heading reference. It generates the collective pitch and pedal control directly

based on height and heading errors and provides desired attitude commands for

an inner-loop controller based on lateral and longitudinal errors. The control

diagram is shown in Fig.4.12.

Figure 4.12: Cascaded control sturcure

In this control structure, the outer-loop controller employs four PID con-

trollers. The first two measure the lateral and longitudinal error ebx and eby in

body-fixed coordinates and generate desired attitude requirements φr and θr.

Note that the position error is usually compared in the inertial coordinate, so a

correction block is introduced to transfer error eix = xr − x and eiy = yr − y into

body coordinates according to the heading angle ψ:

ebx = eix cosψ + eiy sinψ

eby = −eix sinψ + eiy cosψ
(4.41)

The other two PID controllers in the outer-loop eliminate the height and heading
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Table 4.3: PID gains

Kp Ki Kd

lateral 0.415 2 0.002 0.592
longitudinal -0.313 -0.002 -0.450
height -0.455 -0.010 -0.470
heading 0.750 0.010 0.500
roll 0.507 0.010 0.318
pitch 0.751 0.010 0.696

errors directly. In the inner-loop, there are another two PID controllers used to

track the attitude command.

An important feature of PID based control is that it can be implemented

without a specific model of the vehicle dynamics. All of the feedback gains in

the control structure can be tuned empirically based on the observation of flight

performance. However, this is a very tedious process and will be very risk if “trial

and error” is directly applied on a real helicopter. Since the helicopter model is

available, the tuning of feedback gains can be carried out using model-based de-

sign. To this end, a Simulink model is created including both the helicopter model

and the control structure. The overall control system is then decomposed into

four single-input-single-output (SISO) subsystems corresponding to four control

channels: δlat to position y, δlon to position x, δcol to height z and δped to heading

ψ. For each subsystem, we use Matlab’s control design toolbox to optimise PID

gains based on a step response criterion. The optimised gains are given in Table

4.3.

Simulations are carried out to verify the performance of the basic PID control.

Step response results are shown in Fig.4.13. It can be seen that the cascaded PID

can provide a satisfactory performance for non-aggressive flight.

It shall be noticed that the cascaded PID has its performance limit as it

is designed based on a linearised and decoupled model. The decoupling means

not only the translational and attitude separation, i.e. slow outer-loop and fast

inner-loop, but also the four separated control channels, i.e. lateral, longitudinal,

heading and heave. In addition, PID control exhibits poor robustness in the

experiments. The control parameters tuned for the same helicopter may not work

at the next experiment due to the trivial mechanical changes on the helicopter.

Therefore, for more demanding flight requirements and various flight conditions,

a comprehensive control analysis and design is required.
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Figure 4.13: Step responses under PID control

4.5 Conclusion

This chapter describes a modelling and system identification procedure for a

Trex-250 miniature helicopter. The identified model aims for control design and

online prediction in the following work. Thereby, it has a simplified structure but

contains the main nonlinear effects to cover a large flight region. The identifi-

cation process, including model breakdown and flight test design, is discussed in

detail. A specific flight test pattern has been used in each step to provide more

deterministic estimations. The system identification results show a good match

between the model predictions and the real flight data. Finally, a cascaded PID

based controller is designed for the Trex-250 helicopter, which will be used as a

baseline for future studies.
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Chapter 5

Piecewise constant MPC for

autonomous helicopters

5.1 Introduction

Chapter 4 describes the modelling process of unmanned helicopters. This chapter

is to develop advanced control strategies based on the developed model. More

specifically, the nonlinear model predictive control of autonomous helicopters will

be investigated in this chapter.

Comparing to other control techniques, the NMPC provides a number of

unique advantages for autonomous helicopter flight:

• It can deal with nonlinear, multiple-inputs-multiple-outputs dynamics of

helicopters by directly using their mathematical models in the control loop;

• It explicitly takes into account states and control constraints to guarantee

flight safety and prevent control saturation;

• The outer-loop and inner-loop of helicopters are considered as an entire

system, which results in an integrated guidance and control fashion that

enhances flight agility;

• It provides a local path planning function by combining future reference

and environment information such as obstacles and collisions.

However, MPC techniques, especially the nonlinear MPC, imposes challenges

in real-time implementation because a computationally intensive nonlinear opti-
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misation problem is required to solve at each sampling instant. This issue has

been discussed in the literature review in Chapter 2.

Although with the development of avionics and microprocessor technology on-

line optimisation becomes feasible, there are still difficulties in directly applying

MPC algorithms into plants with fast dynamics like helicopters. Initial trials on

implementation of MPC algorithms on helicopters with short prediction horizons

have been reported in [53; 106]. Nevertheless, the further reduction of computa-

tional burden in control algorithms can always benefit applications. The extra

computation power can be put on extending the prediction horizon, including

a more detailed model, and/or taking into account more information such as

obstacles in the flight environment.

This chapter proposes a control framework for autonomous helicopters, which

explores the advantages of nonlinear MPC while being able to apply to systems

with fast dynamics. Instead of attempting to implement a single NMPC, the

proposed framework employs a two-level control structure where the high-level

MPC generates baseline control by exploiting the nonlinear helicopter model and

environment information, and the low-level linear controller, designed based on

linearisation around the state reference provided by the high-level controller, com-

pensates the baseline control in the presence of disturbances and uncertainties.

These two-level controllers are parallelly operated at different time scales. The

high-level MPC strategy runs in a lower sampling rate allowing enough time to

perform online optimisation, while the low-level controller is executed in a much

higher sampling rate to accommodate helicopter dynamics.

One feature of the proposed control framework is that the high-level MPC

adopts the piecewise constant control scheme [72]. The modified algorithm al-

lows the online optimisation occurring at scattered sampling instants without

losing the prediction accuracy. More importantly, the piecewise constant MPC

significantly reduces the number of control variables to be decided (also known

as optimisation variables) in the optimisation problem, which helps to ease the

workload of the online optimisation.

The stability of the control framework is investigated particularly focusing

on the modified piecewise constant MPC. The design procedure of the terminal

region and terminal penalty that guarantee the close-loop stability is discussed

in detail and illustrated through an example. In addition, the stability analysis

also provides a way to construct a feasible initial control sequence for each opti-
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misation, on which the stability is assured even if only the suboptimal solution

can be found during the online optimisation.

To verify the proposed control framework flight tests on a small-scale heli-

copter are carried out. The flight test utilises the indoor test facility developed in

Chapter 3, where ground station is constructed with the capabilities of observing

the helicopter states and integrating the OP solver with the real-time controller.

5.2 Helicopter model

The dynamic model of a small-scale helicopter has been developed in Chapter 4.

Here the basic structure of the model is recalled in (5.1) for the completeness.

[ ẋ ẏ ż ]T = Ri
b(φ, θ, ψ)[ u v w ]T (5.1a)

u̇ = vr − wq − g sin θ +Xuu+Xaa (5.1b)

v̇ = wp− ur + g cos θ sinφ+ Yvv + Ybb (5.1c)

ẇ = uq − vp+ g cos θ cosφ+ Zww + Zcolδcol − g (5.1d)

ṗ = −qr(Iyy − Izz)/Ixx + Laa+ Lbb (5.1e)

q̇ = −pr(Izz − Ixx)/Iyy +Maa+Mbb (5.1f)

ṙ = −pq(Ixx − Iyy)/Izz +Nrr +Ncolδcol +Npedδped (5.1g)

φ̇ = p+ q sinφ tan θ + r cosφ tan θ (5.1h)

θ̇ = q cosφ− r sinφ (5.1i)

ψ̇ = q sinφ sec θ + r cosφ sec θ (5.1j)

ȧ = −q −
a

τ
+
Alat
τ
δlat +

Alon
τ
δlon (5.1k)

ḃ = −p−
b

τ
+
Blat

τ
δlat +

Blon

τ
δlon (5.1l)

where x = [ x y z u v w p q r φ θ ψ ]T is the state of the rigid-

body of the helicopter consisting of inertial position, local velocity, angular rate

and attitude, respectively, Ri
b is a transformation matrix from body to inertial

coordinates defined in Eq.(4.2), u = [ δlat δlon δped δcol ]T is the control inputs

including lateral and longitudinal cyclic, pedal and collective pitch, respectively,

and the other parameters in the model are the stability and control derivatives,

whose values are obtained using system identification. Note that the moment

of inertia along body axes Ixx, Iyy and Izz are remained in the model structure
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for the sake of completeness, whose values can be measured through a pendulum

experiment. The dynamics of the main rotor is described by the flapping angles

[ a b ]T with the effective time constant τ . However, the rotor flapping states a

and b cannot be directly measured, which usually relies on a state observer. In

order to reduce the complexity and focus on the control design, a steady state

approximation is adopted as a measurement of the flapping angles [9]:

a = −τq + Alatδlat + Alonδlon

b = −τp+Blatδlat +Blonδlon
(5.2)

By substituting (5.2) into (5.1), it is able to represent the helicopter model

into a compact form to facilitate the following analysis:

ẋ = f(x,u) (5.3)

Note that a more detailed model can be used to describe the helicopter dynamics

without affecting the controller design. However, to facilitate the flight test, the

presented model developed in Chapter 4 is adopted, because its parameters for

the selected helicopter has been obtained through system identification.

5.3 MPC based control framework

MPC techniques need to solve a formulated optimisation problem at each sam-

pling instant. The computational load will be significantly increased for a highly

nonlinear system with multi-inputs-multi-outputs. On the other hand, the fast

dynamics of a helicopter require quick responses to the external environment,

which means the controller has to work at a high bandwidth. In order to over-

come this problem, a control strategy which comprises of a high-level piecewise

constant MPC and a low-level linear controller is developed.

5.3.1 Piecewise constant MPC

The traditional MPC is either developed based on a continuous system model

or a discrete counterpart. A continuous-time model is much more natural and

accurate in terms of describing the behaviour of a system, but the corresponding

MPC algorithm involves continuously solving an optimisation problem, which is
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difficult to implement as a computational time is required for performing online

optimisation. In contrast, the discrete MPC uses the discrete representation of

the system and makes online implementation feasible by solving the optimisa-

tion problem only at each sampling instant. The computational demand reduces

when the discretisation sampling time increases, but as a result the accuracy of

the approximated discrete representation degrades. Moreover, system states and

constraints can only be evaluated at the sampling instants leaving those within

sampling intervals being ignored.

In this section, a modified MPC strategy that uses piecewise constant controls

to drive a continuous system or an accurate discrete approximation is introduced.

The piecewise constant control suggests that the control signals keep constant

values (i.e. zero-order holding) for several discretisation intervals, which makes

the proposed algorithm different from normal sampled data MPC or discrete time

MPC that has been investigated by many researchers [75]. This strategy allows

optimisation to be performed at the individual instants as in discrete MPC while

using a more accurate model to predict the evolution of the system.

By trading-off between the prediction accuracy and computational burden,

the discrete model approximated from a continuous model (5.3) with a high sam-

pling frequency is chosen as the prediction model. The discretisation sampling

time is defined as Td, which is also the integration step used in prediction. The

error between the discrete model and continuous model increases monotonically

with Td. The MPC designed on a discrete model can stabilise the original con-

tinuous model if Td is small enough [39]. However, the small Td increases the

computational burden, as there are more variables to be decided with respect to

the same prediction length.

To avoid this problem, it is necessary to introduce another important param-

eter, namely the MPC sampling time Ts, defined as the interval of the MPC

updating the current states and generating a new control sequence. In the con-

ventional discrete MPC setting, Td = Ts. However, with respect to Td and Ts

there is a control holding horizon N such that Ts = N ·Td, which also implies the

control inputs keeping the constant values for N integration steps.

To clearly explain the time setting, an example is illustrated in Fig 5.1. The

control holding horizon N is set to 4 steps, the same with the prediction horizon

H. Within the period of Ts the control variables are set to constant, while the

integration of system equation follows the discrete sampling time Td. This setting
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maintains the accuracy of the prediction but significantly reduces the number of

optimisation variables covering the same length of prediction. For example, when

N = 4 and H = 4, in the conventional MPC there are N × H = 16 variables

to be optimised, but in the control holding scheme, only 4 variables need to be

optimised.

Figure 5.1: Time setting example

Under this setting, a discrete MPC form is employed for the flight control.

By defining the reference trajectory as xr and the tracking error xe = xr−x, the

objective function to be minimised can be formulated as:

J(k) = F (x(k +HN))+

H−1∑

i=0

N−1∑

j=0

L(x(k + iN + j), u(k + iN + j)) (5.4)

L(x(k), xr(k), u(k)) = xe(k)
′

Qxe(k) + u(k)
′

Ru(k)

F (x(k +HN), xr(k)) = xe(k +HN)
′

Pxe(k +HN)

where L(x(k), xr(k), u(k)) is the penalty term for each integration step, F (x(k+

HN), xr(k)) is the terminal penalty, H is the prediction horizon, N is the control

holding horizon, and P , Q and R are the semi-positive definite weighting matrices.

Remark 5.1. The control holding horizon N plays an important role in the mod-

ified MPC formulation. If N = 1 the modified MPC reverts to the conventional

MPC setting. For the given prediction duration required by the closed-loop sta-

bility, increase of N can reduce the number of variables to be optimised, hence

significantly reduce the computational burden. On the other hand, for a given
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number of optimisation variables that the online solver can handle, increase of N

can expand the prediction length.

Remark 5.2. With the modified time setting the time allowed for OP solving is

increased to Ts, while maintaining the resolution of the integration to Td in the

prediction. Note that other MPC formulations may also have different sampling

time for discretisation and realtime implementation [41]. This is due to the heavy

computational load rather than actively using the control holding mechanism to

reduce the computational load.

The nonlinear optimisation problem that minimises the objective function

subjected to various constraints can be stated as:

xm, um = arg min
x̂, û

J(k) (5.5)

subject to:

x̂(k + j + 1) = f(x̂(k + j), û(k + j))

x̂(k + j) ∈ X

û(k + j) ∈ U

x̂(k +HN) ∈ Ω

j = 0, 1, · · · , N − 1

x̂(k) = x(k)

where x(k + 1) = f(x(k), u(k)) is the discrete form of the helicopter dynamics

with the discretisation time Td, and X, U and Ω are control constraints, state

constraints and terminal region, respectively. The hat symbol is used to indicate

the variables in the prediction distinguishing from the real variables. This optimi-

sation problem is solved at each sampling instant, producing the state reference

xm and the baseline control sequence um, in which the first element is applied

into the helicopter.

5.3.2 Two-level control framework

The proposed MPC scheme eases the computational burden by (i) increasing the

computational interval to give more time for optimisation and (ii) reducing the

number of variables to be optimised for a given predictive horizon. However, the

MPC strategy becomes an open-loop optimal control within the interval Ts. Un-

fortunately, due to the mis-match between the mathematical model and the real
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helicopter, the noises and disturbances in the process, this kind of optimal control

may result in a significantly degraded performance. Within the interval Ts, the

MPC cannot suppress any tracking error caused by these sources. Experiments

have shown that the bandwidth associated with the MPC may not be adequate

for stabilising and controlling the helicopters that have fast dynamics.

In order to overcome these difficulties in implementing NMPC with online

optimisation, a two-level structure is adopted in the control framework. The high-

level controller is the MPC strategy described before, which can provide optimised

state reference xm and the corresponding baseline control um, whereas the low-

level controller is a linear feedback controller that can provide stability around the

optimised state reference in the presence of disturbances and uncertainties. The

high-level controller runs at a lower sampling rate Ts to adapt the calculation time

caused by solving the nonlinear OPs. In contrast, the low-level controller works

at a much higher sampling rate to reject disturbances. The control structure is

shown in Fig 5.2.

Figure 5.2: Two-level control framework

In the implementation, the low-level controller measures real helicopter states

x and compares them against the state reference xm from the high-level MPC.

The error signals ∆x are used to generate local compensation control ∆u. The

overall control inputs u applied to the vehicle consist of two parts: the nominal

control inputs and the compensation control generated by the local controller,

i.e. u = um + ∆u.

The low-level controller is designed based on perturbation models around the

reference state xm and control um. Since the low-level controller works in a much

higher sampling rate, the controller design can be performed in the continuous
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time domain. The helicopter model can be linearised around the nominal refer-

ence and input as:

ẋ = f(x, u) ≈ f(xm, um) +
∂f

∂x

∣
∣
∣
∣
xm,um

(x − xm)

+
∂f

∂u

∣
∣
∣
∣
xm,um

(u − um) (5.6)

By defining the error state ∆x = x − xm and control compensation ∆u =

u− um. The system (5.6) can be stated as a parameter dependent system (5.7).

∆ẋ =
∂f

∂x

∣
∣
∣
∣
xm,um

∆x +
∂f

∂u

∣
∣
∣
∣
xm,um

∆u = Am(xm,um)∆x +Bm(xm,um)∆u (5.7)

Considering a static state feedback K, i.e. ∆u = −K∆x, the close-loop

system can further be expressed as:

∆ẋ = (Am(·) −Bm(·)K)∆x = Acl(·)∆x (5.8)

The parameters in Acl(·) are dependent on xm and um, which are bounded in the

high-level optimisation. Hence, the system (5.8) can be converted into a polytopic

system with its vertices computed by the uncertainty parameters with defined

boundary values, and the robust stability of such a system can be guaranteed by

using the parameter dependent Lyapunov function technique [35; 38].

5.4 Stability analysis

This section investigates the stability of the two-level control framework proposed

in the last section. To this end, the stability of the piecewise constant MPC as

the high-level controller will be analysed first.

5.4.1 Stability of the piecewise constant MPC

The stability of proposed piecewise constant MPC is investigated by using Lya-

punov technique inspired by [72]. The analysis considers the helicopter perform-

ing hovering flight which is a typical flight mode for helicopters. Since all the

states in the hovering are zeros, the error state xe in (5.4) can be replaced by x.
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Next, a terminal region Ω and an associated terminal controller kf (·) are defined

to satisfy a number of assumptions:

Assumption 5.1. The terminal region is a neighbourhood of the origin where

state constraints are satisfied in this region. 0 ∈ Ω, and Ω ∈ X is closed.

Assumption 5.2. There exists a terminal controller kf (·) such that control con-

straints are satisfied for all the states in the terminal region. kf (x) ∈ U, ∀x ∈ Ω.

Assumption 5.3. The N step evolution of the system under the terminal control

kf (·) stays in the terminal region. ϕN(x, kf (x)) ∈ Ω, ∀x ∈ Ω, where ϕi(x, u)

denotes the states of the system at i step from an initial state x under the constant

control signal u = kf (·).

Considering the evolution of the system along the time, at sampling instant

k the optimised cost function is denoted as:

V̄m(xk) = ‖x̄k+HN‖
2
P +

H−1∑

j=0

N−1∑

i=0

‖x̄k+j·N+i‖
2
Q

+
H−1∑

j=0

N · ‖ūk+j·N‖
2
R

(5.9)

where x̄k+j·N+i denotes the optimised states evolving from the time instant k, and

ūk+j·N denotes the control sequence that is generated in a zero-holding fashion.

Note that the bar symbol is used to indicate variables with the optimised values.

Following Assumption 5.1-5.3, at the next MPC sampling instant k+N there

is a feasible control sequence defined as:

ûk+N :k+HN =
{
ūk+N , ūk+2N , . . . , ūk+(H−1)N , kf (x̄k+HN)

}
(5.10)

where x̄k+HN is the terminal state in the previous prediction, implicitly staying

in the terminal region Ω. Thus, the corresponding cost function at time instant

k +N is:

Vm(xk+N) = ‖xk+HN+N‖
2
P +

H−1∑

j=0

N−1∑

i=0

∥
∥xk+(j+1)·N+i

∥
∥

2

Q
+

H−1∑

j=0

N ·
∥
∥uk+(j+1)·N

∥
∥

2

R

=
∥
∥xk+(H+1)N

∥
∥

2

P
+

H∑

j=1

N−1∑

i=0

‖xk+j·N+i‖
2
Q

+
H∑

j=1

N · ‖uk+j·N‖
2
R

(5.11)

When there is no error between the model and the real plant and in the

absence of disturbances, the measured state xk+N at instant k + N should be

81



5. Piecewise constant MPC

equal to the state x̄k+N predicted at instant k. Therefore, it is possible to inspect

the following relationship.

Vm(xk+N) − V̄m(xk)

=
∥
∥xk+(H+1)N

∥
∥

2

P
− ‖xk+HN‖

2
P +

H∑

j=1

N−1∑

i=0

‖xk+j·N+i‖
2
Q
−

H−1∑

j=0

N−1∑

i=0

‖xk+j·N+i‖
2
Q

+
H∑

j=1

N · ‖uk+j·N‖
2
R
−

H−1∑

j=0

N · ‖uk+j·N‖
2
R

=
∥
∥xk+(H+1)N

∥
∥

2

P
− ‖xk+HN‖

2
P +

N−1∑

i=0

‖xk+H·N+i‖
2
Q +N · ‖uk+H·N‖

2
R

−
N−1∑

i=0

‖xk+i‖
2
Q −N · ‖uk‖

2
R (5.12)

Note that at time instant k + N , the online optimisation is performed to

minimise the cost function initialised by (5.11). Thereby the optimised cost

function implies:

V̄m(xk+N) ≤ Vm(xk+N) (5.13)

The cost function Vm(x) is adopted as the Lyapunov function candidate for

the proposed piecewise constant MPC. The stability condition based on Lyapunov

theory requires:

V̄m(xk+N) ≤ V̄m(xk) (5.14)

which means the Lyapunov function is non-increasing. This is met if

Vm(xk+N) − V̄m(xk) < 0 (5.15)

By recalling Eq.(5.12) the above stability condition is satisfied if:

∥
∥xk+(H+1)N

∥
∥

2

P
− ‖xk+HN‖

2
P +

N−1∑

i=0

‖xk+H·N+i‖
2
Q +N · ‖uk+H·N‖

2
R < 0 (5.16)

To complete the stability analysis, the next step is to find a terminal penalty

P , a suitable terminal region Ω and an associated terminal control kf (·) such

that condition (5.16) and Assumption 5.1-5.3 are fulfilled for any xk+HN ∈ Ω.

This is a coupled problem, and some practical procedures will be provided in the
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next subsection to determine these parameters.

Remark 5.3. The terminal controller will never be applied to the real system, but

it can be used to construct an initial solution of the OP through Eq.(5.10). This

initial solution is feasible and available at each sampling instant as long as an

solution can be found for the formulated OP at beginning, and it speeds up the

convergence of online optimisation during the implementation.

5.4.2 Terminal region and controller

Assuming the linearised discrete model in the hovering mode is as follows (note

that the notations with the index in the round bracket are used to represent the

states of the linearised model):

x(k + 1) = Ax(k) +Bu(k) (5.17)

Because the control inputs remain constant during the MPC sampling time Ts =

N · Td as discussed before, it can be obtained that:

x(k + 2) = A2x(k) + ABu(k) +Bu(k)

...

x(k +N) = ANx(k) + (AN−1B + · · · + AB +B)u(k) (5.18)

By defining two matrices Ai = Ai and Bi = Ai−1B + · · · + AB + B, a compact

form of Eq.(5.18) is found:

x(k + i) = Aix(i) +Biu(k), i = 1, . . . , N (5.19)

Moreover, if one can find a linear terminal control

u(k) = −kfx(k), ∀x(k) ∈ Ω (5.20)

the equation (5.19) can be further written as:

x(k + i) = Aix(k) +Bikfx(k) = Acli x(k), i = 1, . . . , N (5.21)

where Acli is the close-loop system matrix. When designing the terminal controller

kf , the linear discrete control theory can be used. The resulting control has to
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guarantee that the eigenvalues of AclN stay in the unit disc.

Then, from a terminal state xk = x(k) to i step of the evolution under the

terminal control, the difference between the nonlinear model states xk+i and lin-

earised model states x(k + i) can be described by:

Φi(xk) = ϕi(xk, kfxk) − Acli xk (5.22)

By invoking (5.22), one can derive the following relationship from the stability

condition (5.16):

∥
∥xk+(H+1)N

∥
∥

2

P
− ‖xk+HN‖

2
P +

N−1∑

i=0

‖xk+H·N+i‖
2
Q +N · ‖uk+H·N‖

2
R

=
∥
∥ΦN(xk+HN) + AclNxk+HN

∥
∥

2

P
− ‖xk+HN‖

2
P

+
N−1∑

i=0

∥
∥Φi(xk+HN) + Acli xk+HN

∥
∥

2

Q
+N · ‖uk+H·N‖

2
R

= ‖ΦN(xk+HN)‖2
P + 2 · ΦN(xk+HN)

′

PAclNxk+HN +
∥
∥AclNxk+HN

∥
∥

2

P
− ‖xk+HN‖

2
P

+
N−1∑

i=0

‖Φi(xk+HN)‖2
Q +

N−1∑

i=0

2 · Φi(xk+HN)
′

QAcli xk+HN

+
N−1∑

i=0

∥
∥Acli xk+HN

∥
∥

2

Q
+N · ‖uk+H·N‖

2
R (5.23)

Notice that in the optimisation problem (5.5), the terminal state xk+HN is

forced in the terminal region Ω, which can be specified as the neighbourhood of

the origin with the radius α:

Ω(kf , N) = {x ∈ R
n : ‖x‖2

P < α} (5.24)

It follows from the definition of Φi(xk) that it depends on a high order of x, so that

‖Φi(xk)‖ is approaching zero faster than ‖xk‖ when the radius of the terminal

region α approaching zero. Therefore, for a small enough α, a positive scalar γ

and a positive definite matrix Q̃, where eigenvalues λ(Q̃) > λ(Q) can be found,

such that:

‖ΦN(xk+HN)‖2
P + 2 · ΦN(xk+HN)

′

PAclNxk+HN ≤ γ ‖xk+HN‖
2 (5.25)
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and

‖Φi(xk+HN)‖2
Q + 2 · Φi(xk+HN)

′

QAcli xk+HN +
∥
∥Acli xk+HN

∥
∥

2

Q
≤
∥
∥Acli xk+HN

∥
∥

2

Q̃

(5.26)

By substituting Eq.(5.25), (5.26) and terminal control (5.20) into the stability

condition (5.23), one can derive:

∥
∥xk+(H+1)N

∥
∥

2

P
− ‖xk+HN‖

2
P +

N−1∑

i=0

‖xk+H·N+i‖
2
Q +N · ‖uk+H·N‖

2
R

≤
∥
∥AclNxk+HN

∥
∥

2

P
− ‖xk+HN‖

2
P + xk+HN

′

(
N−1∑

i=0

∥
∥Acli

∥
∥

2

Q̃
)xk+HN

+N · ‖kfxk+HN‖
2
R

+ γ ‖xk+HN‖
2

=xk+HN
′

(

AclN
′

PAclN − P +
N−1∑

i=0

∥
∥Acli

∥
∥

2

Q̃
+N · kf

′

Rkf + γIn

)

xk+HN (5.27)

Solving the discrete Lyapunov equation

AclN
′

PAclN − P +
N−1∑

i=0

∥
∥Acli

∥
∥

2

Q̃
+N · kf

′

Rkf + γIn = 0 (5.28)

yields the terminal penalty weighting matrix P , which is also used to defined the

terminal region using (5.24).

At this stage, Assumption 5.1-5.3 and condition (5.16) are fulfilled by properly

choosing control parameters in the MPC design procedure, which is summarised

as follows:

1. Determine the process weighting matrix Q and control weighting matrix R

based on performance specifications.

2. Determine control holding horizon N according to the computation power

and burden, and calculate the corresponding linearised system matrices Ai

and Bi.

3. Design the terminal control gain kf with respect to Ai and Bi, with eigen-

values of AclN staying in the unit disc .

4. Determine γ and Q̃, and solve the Lyapunov equation (5.28) to obtain the

terminal weighting matrix P .
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5. Determine the terminal region radius α. For any states within the terminal

region, check if the resulting terminal control and evolved states ϕi(x, kfx)

stay in the corresponding constraints.

6. Check the maximum value of expression (5.16) with respect to all the states

in the terminal region. If the value is larger than zero, reduce the radius α

and repeat this process until its value is smaller than zero.

If Step 5 or Step 6 are failed or the resulting radius of the terminal region is too

small, one needs to go back to tune the design parameters (usually by increasing

γ or reducing N ) to obtain a proper terminal control gain and terminal region

that guarantee the stability of the piecewise constant MPC. The process outlined

in [14] can be adopted to implement Step 5 and 6. This procedure can be further

improved by adopting the method proposed in [16], where the terminal region

can be maximised using an optimisation algorithm to search the best terminal

penalty P and terminal control.

5.4.3 Stability of the two-level control framework

The control framework proposed for autonomous helicopters consists of two parts:

high-level MPC and low-level linear controller. Although the stability of the

high-level MPC and the low-level linear controller has been discussed separately,

the stability of the overall system needs to be investigated. There are different

sampling rates for the high-level and low-level controllers. The low-level linear

controller acts at a high sampling rate even could be in a continuous-time fashion,

so does the overall control signal applied to helicopters. It is convenient to analyse

the stability of the overall system in the continuous-time domain.

In the absence of uncertainty and disturbance, the helicopter state x(t) always

follows MPC trajectory xm(t) driven by the control u(t) = um(t). Therefore, the

stability of the two-level control framework naturally follows the argument made

for piecewise constant MPC in the last subsection.

In reality, within a MPC sampling interval t ∈ [tk, tk+1), the actual helicopter

state x(t) may diverge from xm(t) under the constant control um(tk) due to

uncertainties and/or disturbances. However, within a surrounding area of xm(t),

the error dynamics can be described by a linearised system (5.7), where the

surrounding is defined as Ω(xm) = {x|‖x − xm‖ ≤ ē}. When considering a

bounded constant disturbance d and a low-level controller, the behaviour of the
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divergence x∆ can be modified from Eq.(5.8) as:

∆ẋ = Acl∆x + Ed (5.29)

where E is a disturbance input matrix. It is important to point out that for any

perturbed state x(t) ∈ Ω(xm), t ∈ (tk, tk+1), its divergence ∆x(t) is bounded for

all t > 0. As at the time t = tk, the high-level MPC reset the error state to zero,

i.e. ∆x = 0, the state response in the period t ∈ (tk, tk+1) can be written as:

∆x(t) = A−1
cl (eAcl(t−tk) − I)Ed (5.30)

Therefore, x∆(t) is bounded by a limited value, which may depend on the magni-

tude of the disturbance. Furthermore, the high-level MPC resets the error state

to zero at t = tk+1, i.e. ∆x(t+k+1) = 0. After MPC synchronises the real helicopter

state x and MPC state xm, the overall stability is guaranteed as MPC runs in

an closed-loop fashion (with a long sampling time), rather than in an open-loop

fashion. Therefore, the low-level controller improves the performance of the high-

level MPC in the presence of uncertainties and disturbances, without scarifying

the original MPC stability.

This phenomenon can be further explained in Fig 5.3, where the dash lines

represent the MPC solutions, the dotted line is the real state of the system and

the reference trajectory is plotted as the solid line on the top. At sampling in-

stant tk = kTs there is a trajectory xm(t), tk ≤ t ≤ tk+1, yielded by the high-level

MPC, towards the reference xr. If the disturbance occurs or there is model mis-

matching, there is discrepancy between the real helicopter and MPC trajectories,

i.e. ∆x 6= 0. The low-level controller generates compensation controls to elimi-

nate ∆x. Even if it cannot be reduced to zero within a short time period, at next

MPC sampling point tk+1 = (k + 1)Ts the MPC measures the current state of

the system and produces a new trajectory xm(t), tk+1 ≤ t ≤ tk+1+H towards xr

based on the measured new state, and ∆x(t+k+1) is reset to zeros automatically.

It shall note that the stability analysis presented in this section is to inves-

tigate the theoretical properties of the proposed MPC based control algorithm.

It also shows that the two-level MPC framework has certain robustness against

the bounded uncertainty. However, this theoretical investigation do not always

provide guarantee for the stability of the actual control system implemented due

to the significant model/plant mismatch. Careful design and tuning of control
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Figure 5.3: State trajectory under the disturbance

parameters will be involved in flight experiments.

5.5 Controller design

5.5.1 High-level MPC

The aims of MPC design are to choose appropriate weight matrices for the desired

control performance, to determine the time settings for prediction accuracy and

online solvability, and to find appropriate terminal weighting and constraints for

MPC stability. After a number of trials, the MPC parameters used for simulation

and flight tests presented in this chapter are given in Table 5.1.

Table 5.1: MPC design parameters

prediction horizon H 10
control holding horizon N 10
discretisation time Td 0.02s
MPC sampling time Ts 0.2s
weighting matrix Q diag( 0.1 0.1 1 1 2 2 2 2 )
weighting matrix R diag( 0.02 0.02 )

The design procedure of the terminal weighting P , control kf and region

Ω developed in Section 5.4 is illustrated by an example where only the lateral

and longitudinal channels of helicopter dynamics are considered as they contain

the majority of the helicopter’s nonlinearity and avoid to illustrate the com-

plicated full helicopter states. In this simplified model the state is defined as

xs = [x y u v φ θ p q]T , the control input is us = [δlat δlon]
T , and the

system is described by the corresponding equations in Eq.(5.1).
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The auxiliary parameters used to determine the terminal region and control

are as follows: Q̃ = 1.1 · Q, γ = 0.2 and α = 125. The terminal penalty matrix

P in Eq.(5.31) is calculated by solving the Lyapunov equation (5.28), and the

terminal controller kf in Eq.(5.32) is designed by using the Linear Quadratic

Regulator (LQR) algorithm based on the linearised model.

P =



















30.89 0.02 15.49 0.04 0.02 −1.05 0.18 −39.92

0.02 30.80 0.05 14.91 0.81 −0.10 38.58 −0.34

15.49 0.05 20.68 0.07 0.03 −1.29 0.25 −53.72

0.04 14.91 0.07 19.36 0.98 −0.09 49.97 −0.38

0.02 0.81 0.03 0.98 1.08 −0.04 4.59 −0.16

−1.05 −0.10 −1.29 −0.09 −0.04 1.28 −0.36 5.90

0.18 38.58 0.25 49.97 4.59 −0.36 219.09 −1.41

−39.92 −0.34 −53.72 −0.38 −0.16 5.90 −1.41 230.96



















(5.31)

kf =

[

−0.01 0.07 −0.04 0.21 0.04 0.00 1.51 0.2937

−0.07 −0.01 −0.25 −0.02 −0.01 0.06 −0.15 1.7024

]

(5.32)

The terminal region yielded by ‖x‖2
P < α is in a high dimension space which

cannot be illustrated directly. To show the properties of the terminal region and

terminal control, it is assumed that the helicopter is in the hovering status and

only has the initial position errors. In this case, since all states other than the

position are zeros, the terminal region reduce to a constraint on the position:

[

x y
]

·

[

30.89 0.02

0.02 30.80

]

·

[

x

y

]

≤ 125 (5.33)

Starting from the boundary defined by (5.33), the position phase portrait plotted

in Fig.5.4 is calculated by using the helicopter model under the terminal control.

It can be observed that all position trajectories of the helicopter are driven to-

wards zero by the terminal control, which suggests that the terminal region is

an invariant set and Assumption 5.3 is fulfilled. During this process, the other

states are also bounded and within the range of their state constraints as shown

in Fig.5.5-5.7. Moreover, by focusing on one trajectory labelled by thick lines
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in phase portraits, the helicopter movement under the terminal control can be

examined. In this trajectory, the helicopter starts from left rear of the origin,

and needs to fly towards it. Hence, both the lateral and longitudinal velocities

increase first and then decrease as shown in Fig.5.5. Consequently, the helicopter

needs to roll right and pitch down to gain positive speed and then roll left and

pitch up to reduce speed (see Fig.5.6 and 5.7).
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Figure 5.4: Position phase portrait

5.5.2 Low-level control

The task of low-level control is to regulate the error dynamic system (5.7). The

error state is caused by uncertainties and disturbances, which cannot be fully

suppressed by the high-level MPC due to its low bandwidth. Under the current

flight test configuration and hardware including sensor, computing power and

communication, the bandwidth associated with MPC can reach 10Hz, which is

adequate for translational movements of a helicopter, but not fast enough for he-

licopter’s attitude movements. Therefore, the low-level controller design focused

on regulating the attitude tracking error.

As described in previous sections, the low-level controller is designed based on

an error system obtained by linearisation around the nominal state and control

generated by the high-level controller. Particularly for the attitude dynamics, the
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Figure 5.5: Velocity phase portrait
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Figure 5.6: Angular rate phase portrait
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Figure 5.7: Attitude phase portrait

state is defined as xa = [φ θ ψ p q r]T , the control is ua = [δlat δlon δped]
T

and matrices in error system (5.7) can be specified as:

Am(xm) =














a11 a12 0 1 a15 a16

a21 a22 0 0 1 + a25 a26

a31 a32 0 0 a35 1 + a36

0 0 0 −33.42 −3.76 0

0 0 0 −0.49 −24.90 0

0 0 0 0 0 −23.98














, (5.34)

and

Bm =














0 0 0

0 0 0

0 0 0

71.59 −5.39 0

5.93 48.24 0

0 0 113.65














(5.35)

where some elements are depended on the reference state xm from high-level
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MPC, such as

a11 = (q cosφ− r sinφ) tan θ, a12 = (q sinφ+ r cosφ) sec2 θ

a15 = sinφ tan θ, a16 = cosφ tan θ

a21 = −q sinφ, a22 = −r cos θ

a25 = cosφ− 1, a26 = − sin θ

a31 = (q cosφ− r sinφ) sec θ, a32 = (q sinφ+ r cosφ) sin θ
cos2 θ

a35 = sinφ sec θ, a36 = cosφ sec θ − 1 (5.36)

To avoid investigating the complicated relationship in the state matrix A(xm)

during the control design, this matrix is converted into a form that depends

affinely on parameters αi, i = 1, · · · , 12, such that

A(xm) = A(a) = A0 + α1A1 + · · · + α12A12 (5.37)

where A0 is the nominal state matrix obtained from the hovering statue, Ai, i =

1, · · · , k, k = 12 are known constructive matrices and α = (α1, · · · , αk), k = 12,

is a vector of uncertain and varying parameters, whose values are determined

according to Eq(5.36). As state xm from high-level MPC is bounded, the bounds

on each uncertainty parameter also can be found, i.e. αi ∈ [αi, αi]. This means

that the parameter vector α takes values in a hyper-rectangle called the parameter

box. In the sequel,

V := {(v1, v2, . . . , vk) : vi ∈ {αi, αi}} (5.38)

denotes the set of 2k vertices or corners of this parameter box. After the above

processes, the error system is then categorised into a linear parameter varying

(LPV) system ∆ẋa = A(α)∆xa +B∆ua as Eq.(5.8).

In this way, a feedback controller can be designed based on the nominal matrix

A0, as long as it is robust enough for any parameters within the parameter box.

Suppose there is a static feedback gain K, the closed-loop system for attitude

error dynamics can be written as

∆ẋa = Acl(α)∆xa (5.39)

where Acl = A0 −BK + α1A1 + · · ·+ α12A12. After the control gain is designed,
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a systematic way is required to examine the robustness of the closed-loop system

against any values in the parameter box. Accordingly, the following lemma is

adopted in this study:

Lemma 5.1 ([38]). Consider the linear uncertain system (5.39) and an affine

quadratic Lyapunov function

P (α) = P0 + α1P1 + · · · + αkPk (5.40)

The continuous-time system (5.39) is affine quadratically stable if A0 − BK is

stable and there exist k+1 symmetric matrices P0, P1, . . . , Pk, such that P (α) > 0

satisfies

L(v) = AT (v)P (v) + P (v)A(v) +
k∑

j=1

v2
jMj < 0 (5.41)

for all v ∈ V and

ATj Pj + PjAj +Mj ≥ 0, j = 1, 2, . . . , k (5.42)

where, Mj = MT
j ≥ 0 are some positive semidefinite matrices.

The feedback gain K is calculated by using LQR technique, and then the

robustness of the closed-loop system is evaluated by solving LMIs (Linear Matrix

Inequality) in Lemma 5.1. The bounds on the uncertain parameters can be

calculated based on their definition in (5.36) subjected to state constraints given

by the high-level MPC. Since the state constraints are ±1, ±1, ±π/6 and ±π/6,

on q, r, φ and θ, respectively, the parameter box is defined by

a11 ∈ [−0.8165, 0.8165], a12 ∈ [−1.8856, 1.8856]

a15 ∈ [−0.2887, 0.2887], a16 ∈ [−0.5774, 0.5774]

a21 ∈ [−0.5, 0.5], a22 ∈ [−1, 1]

a25 ∈ [−0.0670, 0.0670], a26 ∈ [−0.5, 0.5]

a31 ∈ [−1.6330, 1.6330], a32 ∈ [−0.9428, 0.9428]

a35 ∈ [−0.5774, 0.5774], a36 ∈ [−0.1444, 0.1444] (5.43)

After several trials, the weighting matrices for LQR design are determined

as Q = diag{10, 10, 40, 0.1, 0.1, 0.1} and R = diag{0.1, 0.1, 0.1}, and the robust
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low-level gain K that satisfies Lemma 5.1 is:

K =






7.02 0.81 −0.00 0.49 0.03 0.00

−0.81 7.02 −0.00 −0.06 0.51 0.00

0.00 0.00 11.8 0.00 0.00 0.65




 (5.44)

5.6 Simulation

Before the real flight test, simulations are first carried out. Since there is no

disturbance in numerical simulations, the high-level MPC along is able to control

the helicopter. The aims of numerical simulations are to investigate the com-

putational attributes of the proposed MPC scheme, and to compare with the

conventional MPC.

One simulation is to track a square trajectory containing sharp 90◦ turns,

which poses extra burdens on the OP solver as it has to replan a smooth trajec-

tory to adapt to helicopter’s dynamics. The time related settings for piecewise

constant MPC are Td = 0.02s, H = 10, and N = 5. Therefore, the MPC sam-

pling time is Ts = 0.1s and the prediction length is 1s. On the other hand, as

N = 1 in a conventional MPC, one has to increase H to 50 steps to cover the

same prediction length.1 The settings for the OP solver remain the same for both

scenarios and the full helicopter dynamics are used in prediction.

The simulation is performed on the computer with a 2.4 GHz CPU and 2GB

memory, where the OP is solved by the KNITRO solver [43]. From Fig.5.8, it

can be seen that the piecewise constant and conventional MPC gives almost the

same tracking performance. This observation is also supported by the integrated

squared error (ISE) performance indexes calculated form the simulation as shown

in Table.5.2. Nevertheless, the computational burdens in two MPC schemes are

quite different. Fig.5.9 compares the computation time spent at each sampling

instant along the simulation time. It is shown that in the piecewise constant

scheme the calculation time is around 0.05s and the maximal value is below the

sampling interval suggesting that it is suitable for online execution. In contrast,

the conventional MPC scheme needs more time to solve the OP due to more

variables (200 instead of 40 in the piecewise constant scheme) need to be handled,

1The reason of using prediction length of 1 second instead of 2 seconds in this comparison
is because in the latter case conventional MPC requires handling 400 variables, which exceeds
the ability of the OP solver.
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which means it has to scarify the control bandwidth or the prediction horizon in

order to be applied on helicopter control.

Table 5.2: ISE index performance comparison

States Piecewise Constant MPC Conventional MPC
x 3.8226 3.7715
y 3.6170 3.5458
z 0.0016 0.0015
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Figure 5.8: Square tracking

5.7 Flight experiment

The flight tests are executed on in the indoor flight testbed described in Chapter

3. To realise the proposed two-level control framework with online optimisation

function, a multi-computer configuration is adopted in the ground station. One

computer is used to achieve real-time control, whereas another one is dedicated

for online optimisation. The communication between the two computers relies on

LAN with UDP/IP protocol. The testbed configuration is given in Fig.5.10

Many flight tests have been carried out in our flight testbed to verify the

proposed controller in different scenarios, one of which presented in this section
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Figure 5.10: Testbed configuration with online optimisation
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is to execute the same flight pattern used in the simulation that tracks a square

trajectory with 2m length. The reference progresses at a constant speed of 1m/s,

so the helicopter needs to complete the whole manoeuvre in 8 seconds. Moreover,

this reference requires the helicopter starts from stationary at one corner and

finishes in stationary at the next corner and then keeps going. Such a trajectory

is dynamically infeasible for helicopters, but it is deliberately used to demonstrate

the prediction feature of MPC, which uses online optimisation to generate a

smooth trajectory allowing the helicopter to fly along the reference as close as

possible and keep stable.

The tracking result is shown in Fig.5.11 in a 3 dimensional plot. In the flight

test the helicopter was controlled to hover at the start point first and started to

track after 40s. During this process, the roll angle and pitch angle are cooperated

to increase the translational speed at one direction and decrease at another as

shown in Fig.5.12. Note that a positive roll angle gives a positive lateral accel-

eration and a positive pitch angle generates a negative longitudinal acceleration,

vice versa. The corresponding control signals are provided in Fig.5.13, where the

baseline control from the high-level is plotted in solid line, whereas the overall

control is given in dash line. It can be observed that the high-level MPC gives the

basic trend of the control signal and the low-level controller adds compensations

on it to achieve the required control performance.
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Figure 5.11: Flight tracking result
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Figure 5.12: Attitude angles

The flight test demonstrates a good tracking performance under the proposed

two-level control scheme except for a small steady state error. The steady state

error is introduced by untrimmed helicopter dynamics, and it can be eliminated

by carefully trimming or modifying the current control to incorporate an integral

action. It shall be reminded that control of a small-scale helicopter is even more

difficult than a large one as small ones are quite sensitive to any wind gust

and turbulence, and any small change in helicopter structure and propulsion

systems. To this end, a good robustness of the proposed scheme has been clearly

demonstrated in the flight tests. The model used in MPC online calculation is

simplified and the parameters are estimated through system identification. There

are certainly mis-match between the model and the real helicopter dynamics.

5.8 Algorithm modification

In previous sections, a two-level online optimisation based control framework is

established to address the flight control of small helicopters. The computational

burden in MPC is reduced by a piecewise constant scheme and the overall control

bandwidth is increased by introducing a low-level linear controller. A very satis-

factory performance of proposed framework has been demonstrated through both

simulations and experiments. However, by investigating the process of execution

of such a control scheme, the existing control framework can be further improved.
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5.8.1 High-level MPC with computational delay

Computational delay is another issue in the implementation of MPC algorithms.

Unlike conventional control techniques, the control signal in MPC is not instan-

taneously available after the plant state is updated. An online optimisation takes

time to generate the new control signals, which causes computational delay. In

the proposed piecewise constant MPC, although the computation load is reduced,

the time spend on online calculation is still not negligible.

Computational delay degrades the desired control performance, as depicted

by an example in Fig 5.14. A general continuous MPC strategy is considered

in this case. At sampling instant t, the system state x(t) is measured. Online

optimisation is then carried out to produce the control profile u(τ ;x(t)), τ ∈

[t, t+ T ], where T is the prediction horizon. In fact, this control is not available

to the system until time t + δ, where δ is the computational delay. During the

calculation period [t, t + δ], the system is under the control of previous control

profile u(τ ;x(t−δ)), τ ∈ [t−δ, t−δ+T ] (there is always an exception for the first

step). In Fig.5.14, the desired control is plotted in dotted lines and then in solid

line after available, whereas the actual control applied using thick solid lines. It

can be seen that the desired control profile cannot be fully applied to systems,

and it makes no sense to optimise the control profile u(τ ;x(t)),τ ∈ [t, t + δ] at

sampling instant t, since this part of control will never be applied. The above

phenomena also results in state mismatching in both online predictions and state

references for low-level control, as the predicted state and the real state at time

t+ δ are evolved from x(t) under different controls.

0.1
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Control profile with computational delay
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control during the computation
control available to the system
control actually applied 

u(τ;x(t))

u(τ;x(t−δ))

Figure 5.14: Control profile with computational delay

In order to take into account the computational delay and improve the control
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5. Piecewise constant MPC

performance, a modified objective function for helicopter autonomous flight is

adopted. By defining the reference trajectory as xr and the tracking error xe =

xr − x, we can reformulate the objective function to be minimised [19]:

J(t) =x̂e(t+ T )
′

Px̂e(t+ T ) +

∫ T

δ

x̂e(t+ τ)
′

Qx̂e(t+ τ)

+ û(t+ τ)
′

Rû(t+ τ)dτ (5.45)

where P , Q and R are the positive definite weighting matrices. Note that the

integration starts from state x̂(t + δ), which can be calculated by using current

state x(t) and previous control u(τ ;x(t − δ)), τ ∈ [t, t + δ]. In this modified

setting, computational delay becomes an important parameter that has to be

determined beforehand. Although it is known that the computational time for

a nonlinear optimisation problem is not constant depending on initial guesses,

optimum and other factors, the maximum calculation time can be determined

when the optimisation process can be terminated with a suboptimal solution.

This suboptimal solution is accepted as it still guarantees the MPC stability as

discussed in previous sections.

In the piecewise constant scheme, the MPC sampling time Ts can be set

equivalent to the maximum computational delay δ, so that the modified objective

function can be written as:

J(k) =x̂e(k +HN)
′

Px̂e(k +HN)+

H−1∑

i=1

N−1∑

j=0

x̂e(k + iN + j)
′

Qx̂e(k + iN + j)+

û(k + iN + j)
′

Rû(k + iN + j) (5.46)

Therefore, the nonlinear optimisation problem that needs to be solved at sampling

instant k can be stated as:

(xm, um) = arg min
x̂, û

J(k) (5.47)
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subject to:

x̂(k + j + 1) = f(x̂(k + j), û(k + j))

x̂(k + j) ∈ X

û(k + j) ∈ U

j = N, N + 1, · · · , HN − 1

x̂(k +N) = x(k +N)

where x(k + N) is calculated from the currently measured state x(k) under the

control u(k;x(k − N)) calculated at previous sampling instant, and the rest of

parameters follows the definition in optimisation problem (5.5).

After the high-level MPC is modified, the way it provides state references is

also changed. Owing to the computational delay, from sampling instant t = kTs

to t + δ = (k + 1)Ts, the reference is replaced by the system evolution from the

current state x(t) under the previous control, such that:

xm(τ ;x(t)) =

{

x̂(τ ;xm(t);um(t− δ)), τ ∈ [t, t+ Ts]

xm(τ ;xm(t);um(t)), τ ∈ [t+ Ts, t+HTs]
(5.48)

The benefit of this strategy is that the newly defined state reference (5.48) is

smoother for the low-level controller to track comparing to directly using the

previous optimised state, while the latter one causing state mismatching and

low-level control signal jumping.

The improvement from the modified MPC formulation that takes into account

computational delay can be verified by real-time simulations. Different from

purely numeric simulations, real-time simulations are carried out on the flight test

platform except that the real helicopter is replaced by a mathematical model. In

this way, simulations are attached to the real time frame and computational delay

is naturally embedded. A step response test is performed to compare the MPC

formulations with and without computational delay in consideration in terms of

helicopter flight control. The controller settings follow those in previous flight

tests, so the computational delay is set to a fixed values of 0.2 second equal to

the MPC sampling interval.

The position responses of the helicopter are given in Fig.5.15. It can be seen

that when computational delay is taken into account the responses are smoother

and have less oscillations. On the other hand, although proposed piecewise con-

stant MPC is affected by computational delay, it still delivers a satisfactory per-

formance due to the presence of low-level controller, which treats the mismatching
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Figure 5.15: Position step responses with and without computational delay in
MPC formulation (Numerical simulation)

in state references as the effect of disturbances and compensate for them. This is

reflected from the differences between control signals provided by those two MPC

schemes in Fig.5.16 and 5.17. In the former one, the control signals are smooth

and low-level controller almost takes no actions since there are no external dis-

turbances and artificial uncertainties. In contrast, when computational delay

influences the real-time implementation, the low-level controller has to compen-

sate the mis-matching occurred every time when new MPC control signals and

corresponding state references are available.

5.9 Conclusion

Development of a control system to support autonomous flight of helicopters is

very challenging as helicopters are unstable, highly nonlinear and exhibit fast dy-

namics. This chapter proposes a MPC based control framework for autonomous

flight of small-scale helicopters. The framework has two levels of controls includ-

ing a high-level MPC and low-level linear feedback control. The MPC works in a

piecewise constant fashion to reduce the computation burden and to increase the

time available for real-time optimisation. The linear feedback control responds

to fast dynamics of the helicopter in the presence of disturbances and model mis-
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Figure 5.16: Control signals with computational delay in MPC formulation (Nu-
merical simulation)
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Figure 5.17: Control signals without computational delay in MPC formulation
(Numerical simulation)
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matching and compensate the low bandwidth of the high-level control due to the

adoption of the piecewise constant control policy. With this configuration, it is

possible to implement nonlinear MPC algorithms in system with fast dynamics

such as helicopters. The stability issue of the high-level MPC and the overall

control scheme are discussed and the design procedure is provided. The over-

all control framework was successfully tested on a Trex-250 helicopter through

various flight experiments, and very satisfactory performance has been demon-

strated. In the flight experiments, the proposed framework also shows the local

path planning ability, which will be further explored in the next chapter.
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Chapter 6

Local path planning using MPC

techniques

6.1 Introduction

Local path planning aims at generating an obstacle-free trajectory that is dy-

namically feasible for an UAV to track and meanwhile leads an UAV to its global

trajectory. Local planning does not concern the global goal as it can be achieved

by following a reference provided by a higher level planner. It needs to re-plan a

feasible local trajectory according to surroundings, aircraft dynamics and global

references, so as to react to newly detected obstacles, and to guide the UAV back

to the global reference after avoidance manoeuvres or perturbed by strong gusts.

Moreover, local planning needs to cooperate with the flight control system so

that the re-planned trajectory can be accurately followed. The “foresee” feature

of MPC makes it as a very suitable strategy for both local path planning and con-

trol, because it takes into account the future values of references and information

of surrounding area.

In the last chapter, a piecewise constant MPC framework is proposed mainly

for tracking control of an autonomous helicopter. It utilises the full dynamic

model for predictions so that the control signals can be directly applied to the

helicopter to achieve high performance manoeuvres. However, when obstacles or

other environment information is taken into account in the prediction, the com-

putational load in online optimisation will increase dramatically. In this case, the

benefits of using full dynamic model may be overweighted by its disadvantages,

such as low update rate, short prediction horizon and potential loss of control
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6. Local path planning using MPC techniques

due to a failure of optimisation.

This chapter, however, proposes a hierarchical planning and control framework

for autonomous helicopters flying in a planar mode. First, local trajectory re-

planning, required by obstacle avoidance and dynamical feasibility, is managed by

a planning layer where the nonlinear MPC framework from the previous chapter

is adopted. A kinematic model is incorporated into the MPC formulation to

represent the motion characteristics of a helicopter and a potential field method

is included to realise the obstacle avoidance. Furthermore, a novel linear time

varying control law is developed as a low-level control in the MPC framework. As

the planning layer only considers the kinematics, it provides the desired velocities

and heading rate as guidance commands that the helicopter needs to track.

Next, after the desired velocity and heading rate are determined by the plan-

ning layer, a flight control layer is used to stabilise the helicopter and track the

guidance commands. In this layer, the helicopter dynamics is approximated by

a linear model, which shows a good fidelity in the normal flight mode. A linear

MPC controller is designed based on this model to achieve tracking control. The

main reason of using MPC in the control layer is because it can handle the con-

straints so that the normal flight mode can be guaranteed as well as the fidelity

of the linear model.

The key component in the proposed hierarchical framework is the time varying

control in the low-level of nonlinear MPC framework. It is designed based on the

kinematics of the helicopter, so it acts as a guidance controller and serves as a

link between the path planning and flight control.

6.2 Kinematic model and dynamic model

The kinematic model used to describe the planar motion of a helicopter can be

extracted from the full kinematic model by assuming small pitch and roll angles,

such that:

ẋ = u cos(ψ) − v sin(ψ)

ẏ = u sin(ψ) + v cos(ψ)

ψ̇ = ω

(6.1)
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6. Local path planning using MPC techniques

where (x, y) is the position of the helicopter, ψ is the heading angle, (u, v) is the

longitudinal and lateral velocities, respectively, and ω is the heading rate which

is equivalent to yaw rate r in planar flight. In the path planning configuration,

the state is defined as x = [x, y, ψ]T as well as the output y, whereas the input is

w = [u, v, r]T , which is also the commands sent to the next layer to be followed.

In the normal planar flight mode, u represents the forward speed of the helicopter,

whereas v is the side slip velocity that should be eliminated.

Remark 6.1. A widely used unicycle model for fixed-wind aircraft can be derived

from (6.1) by setting v = 0. This is because fixed-wind counterparts do no have

the ability to move laterally like helicopters. The difference lies in that the model

(6.1) enables the hovering flight mode when speed u or v is small.

For the purpose of flight control design, a linear model for hovering condition

is well accepted for capturing non-aggressive flight [32; 92]. Such a model can be

linearised from the full dynamic model developed in Chapter 4 as follows:

[

ẋ1

ẋ2

]

=

[

A1 0

0 A2

][

x1

x2

]

+

[

B1 0

0 B2

][

u1

u2

]

(6.2a)

z1 = C1x1 (6.2b)

z2 = C2x2 (6.2c)

where the state variables x1 = [u, v, φ, θ, p, q]T , x2 = [z, w, r]T , control inputs

u1 = [δlat, δlon]
T , u2 = [δcol, δped]

T , output variables z1 = [u, v]T , z2 = [r, z]T ,

and the elements in state and control matrices are given in Appendix A. It

can been seen that the linear model is decoupled into two sub-systems: ẋ1 =

A1x1 + B1u1 for describing longitudinal/lateral motions and ẋ2 = A2x2 + B2u2

for heaving/heading motions.

6.3 Path planning and flight control

The schematic diagram of the control structure for autonomous helicopters is

shown in Fig 6.1, where it is hierarchically divided into three layers. The top

layer is the global planning that provides the reference yref = [xref , yref , ψref ]
T

but its function is beyond the scope of this chapter. The middle layer is the local

path planning. Given the global reference yref and the obstacle positions, the

local planner generates a desired local path yo and its corresponding guidance
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command wc by taking into account the kinematic model of the helicopter. It

is of importance to include the kinematics and impose movement constraints to

generate a smooth and feasible trajectory. The bottom layer is the flight control

which is used to enable the stability of the helicopter motion with respect to the

surrounding air and track guidance commands from local planner.

Figure 6.1: Structure of the overall autonomous flight control

6.3.1 MPC planner

The MPC framework discussed in Chapter 5 can be used to govern the kinematic

system (6.1) for the path planning purpose. The time setting follows the piecewise

constant scheme, so there are discretisation time Td, control holding horizon N

and prediction horizon H. The optimisation problem that MPC solves at each

sampling instant can be stated as:

yo,uo = arg min
x̂, û

J(k) (6.3)

subject to:

x̂(k + j + 1) = f(x̂(k + j), û(k + j)) (6.4a)

û(k + j) ∈ U (6.4b)

j = 0, 1, · · · , N − 1 (6.4c)

x̂(k) = x(k) (6.4d)
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where yo = xo is the desired local trajectory, uo is the corresponding optimal

input, J(k) is the cost function to be minimised, Eq.(6.4a) is the discrete rep-

resentation of kinematics (6.1) and U is the control input constraint. The hat

variables is to distinguish the states in prediction from the true states. Note that

although only movements in horizontal plane is considered in this formulation,

the concept can be extended to 3 dimensions.

As in the local planning, multiple objectives are considered and the corre-

sponding cost function J(k) at time index k is constructed as

J(k) = Jf (k+HN)+
H−1∑

i=0

N−1∑

j=0

Jtk(k + iN + j) + Jobs(k + iN + j) + Ju(k + iN + j)

(6.5)

where Jf is the terminal penalty, Jtk, Jobs and Ju are stage cost for tracking,

obstacle avoidance and control effort, respectively. These cost functions, except

for obstacle avoidance term Jobs, can be defined in quadratic forms:

Jf = ‖y(k +HN) − yref (k +HN)‖2
P

(6.6)

Jtk = ‖y(k + iN + j) − yref (k + iN + j)‖2
Q

(6.7)

Ju = ‖u(k + iN + j)‖2
R (6.8)

where P , Q and R are positive definite matrices. Eq.(6.6) and (6.7) penalise the

deviation from the reference along the prediction horizon, and the term of (6.8)

penalises the control effort.

On the other hand, the cost penalty Jobs may consist of several contributors

such as Jobs =
∑n

i=1 J
i
obs, where n = 1, 2, · · · is the number of obstacles being

considered. For each obstacle, the penalty cost can be provided by a potential

function like a Yukawa function:

J iobs = β
eαdi

di + ǫ
, i = 1, . . . , n, (6.9)

where β is a scaling factor, α is the decay rate of the potential field, di is the

distance between the helicopter and the nearest point on the i-th obstacle, and ǫ

is a small positive scalar to prevent singularity.

An example of potential field around a point obstacle is shown in Fig.6.2,

where it can be seen that the penalty cost approaches infinity as the distance to

the obstacle gets close to zero. Acceptable safe clearance distance can be defined
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using the potential field design parameters α and β. For a detected obstacle with

location (xobs, yobs) and a safety distance robs, the distance di can be calculated

as di =
√

(x− xobs)2 + (y − yobs)2 − robs. By incorporating the potential term

Eq.(6.9), the overall cost function (6.5) can be seen as a trade-off performance

index for tracking a predefined reference and diverging from obstacles while min-

imising the control effort.

Figure 6.2: Potential field about a point at (0, 0)

6.3.2 Two-level guidance framework

Although only a kinematic model is used in optimisation, the inclusion of obstacle

information significantly increases the computational load, especially in an obsta-

cle rich environment. Moreover, as obstacles appear in an unexpected manner,

it is of importance to allocate enough time for online optimisation. As a result,

the update rate, i.e. the bandwidth, of the MPC planner is restricted. Therefore,

it is necessary to introduce a guidance compensator as the low-level controller in

the nonlinear MPC framework by following the same principle as in Chapter 5.

The linearised system of Eq.(6.1) around the operation point determined by
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MPC planner’s outcome yo and wo is given as:

∆ẋ = Ao∆x +Bo∆u (6.10)

where ∆x = x − xo = [ ∆x ∆y ∆ψ ]T , ∆u = w − wo = [ ∆u ∆v ∆r ]T ,

state transition matrix

Ao =






0 0 −uo sin(ψo) − vo sin(ψo)

0 0 uo cos(ψo) − vo sin(ψo)

0 0 0




 (6.11)

and control matrix:

Bo =






cos(ψo) − sin(ψo) 0

sin(ψo) cos(ψo) 0

0 0 1




 (6.12)

where the subscript (·)o denotes the optimal state and control from the mid-level

MPC planner.

For this linear time varying system, a novel feedback control is designed to

regulate its state to the origin, i.e. reduce the tracking error ∆x to zero. Let the

error based feedback law be given by ∆x = −K∆x, where the feedback control

gain is proposed as

K =






k1 cos(ψo) k1 sin(ψo) 0

−k2 sin(ψo) k2 cos(ψo) 0

−k3
sin(ψo)
uo

k3
cos(ψo)
uo

k4




 (6.13)

where k1, k2, k3 and k4 are positive gains, usually chosen to be constant.

The closed-loop error system is derived as:

∆ẋ = (Ao −BoK)∆x = Acl∆x (6.14)
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where the state transition matrix Acl has a complicated form:

Acl(xo,wo) =





−k1 cos2(ψ) − k2 sin2(ψ) (k2 − k1) cos(ψ) sin(ψ) −v cos(ψ) − u sin(ψ)

(k2 − k1) cos(ψ) sin(ψ) −k2 cos2(ψ) − k1 sin2(ψ) u cos(ψ) − v sin(ψ)

(k3 sin(ψ))/u −(k3 cos(ψ))/u −k4






(6.15)

where the subscript (·)o is eliminated for the sake of simplification.

This closed-loop error system (6.14) has a very nice property. That is, its

eigenvalues directly and only depend on the control gains under the proposed

control law (6.13). It can be shown from the characteristic equation:

det(λI − Acl) = (λ+ k1)(λ
2 + (k2 + k4)λ+ k3) (6.16)

where λ represents eigenvalues. It is easy to set all the gains ki, i = 1, . . . , 4 to

positive constant, so that eigenvalues λi, i = 1, 2, 3, all have negative real parts.

If the state transition matrix Acl is constant, the above condition is adequate to

guarantee the stability of error system (6.14) under the proposed feedback gain

(6.13). However, Acl is actually time varying and depends on the reference xo

and wo from the MPC planner. A more rigorous stability analysis is needed,

which is provided in Theorem (6.1). Theorem (6.1) is established by following

the technique developed in [120], and it is included for the sake of completeness.

Theorem 6.1. The closed-loop error system (6.14) is globally asymptotically sta-

ble if k1, k2, k3 and k4 are chosen as positive constants and such that different

eigenvalues are resulted.

Proof. Considers a Lyapunov function candidate

V (v, t) = vTM(t)vef(v,t) (6.17)

where v is used to denote the state ∆x, f(v, t) is a scalar function and the

functional matrix M(t) is defined as:

M(t) = (L−1(t))TL−1(t) (6.18)

where L(t) is the matrix consisting of all the eigenvectors of Acl(t). Thus, M(t)
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is a positive definite matrix. Because λi 6= λj, L(t) satisfies

L−1(t)Acl(t)L(t) = Λ = diag{λ1, λ2, λ3} (6.19)

Substituting Eq.(6.18) into Eq.(6.17) and using the property of Eq.(6.19) yields

V (v, t) = vTM(t)vef(v,t)

= (L−1(t)v)T (L−1(t)v)ef(v,t)

=
∥
∥L−1(t)v

∥
∥ ef(v,t)

(6.20)

With the properties of the norm and the exponential function, it can be seen that

V (v, t) ≥ 0 and the equality happens if and only if L−1(t)v = 0. Consequently,

this is implied by v = 0 as L−1(t) is invertible. Therefore, V (v, t) satisfies the

condition of being an Lyapunov function.

Taking the derivative of Lyapunov function V (v, t) with respect to time and

invoking the closed-loop error system (6.14) yields

V̇ (v, t) = [vTAcl(t)M(t)v + vTM(t)Acl(t)v + vTṀ(t)v + ḟ(v, t)vTM(t)v]ef(v,t)

(6.21)

where Ṁ(t) is the derivative of M(t) with respect to time. Next, by choosing a

function f(v, t) in the following form

ḟ(v, t) = −
vtṀ(t)v

vTM(t)v
(6.22)

the derivative of Lyapunov function Eq.(6.21) can be written as

V̇ (v, t) = vT
[
(Acl(t))

TM(t) +M(t)Acl(t)
]
vef(v,t) (6.23)

Taking into account Eq.(6.18) and Eq.(6.19), Eq.(6.23) can be written as:

V̇ =vT
[
(Acl(t))

T (L−1(t))TL−1(t) + (L−1(t))TL−1(t)Acl(t)
]
vef(v,t)

=vT (L−1(t))T
[
(L(t))T (Acl(t))

T (L−1(t))T + L−1(t)Acl(t)L(t)
]
L−1(t)vef(v,t)

=((L−1(t))v)T
[
(Λ(t))T + Λ(t)

]
(L−1(t)v)ef(v,t)

(6.24)

Note that ΛT + Λ = 2diag{ℜ(λ1), . . . ,ℜ(λ2)}. Furthermore, it can be shown
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from Eq.(6.16) that all the eigenvalues have negative real parts if all the gain ki,

i = 1, 2, 3, 4, are chosen as positive constants. Let −a ≤ ℜ(λi) ≤ −b ≤ 0. Thus,

−2aV (v, t) ≤ V̇ (v, t) ≤ −2bV (v, t) < 0 (6.25)

for all nonzero vectors v = ∆x. This completes the proof.

Theorem 6.1 guarantees the stability of the error system (6.14) under the LTV

guidance compensator, so that the composite signal wc = w + ∆w (provided by

the MPC planner and the LTV compensator) can drive the kinematics to follow

the reference yref and act as a desired guidance command for the flight control

system to track.

The flight controller is designed based on the helicopter dynamic model which

commands the helicopter to follow the guidance wc generated from simplified

kinematic model as described above. The over hierarchical control structure is

given in Fig.6.3

Figure 6.3: Hierarchical control structure

Due to the parallel two-level structure of the path planning layer, the guidance

compensator can be used as an emergency guidance controller to track a pre-

defined trajectory. For example, if the MPC planner failed to solve a nonlinear

optimisation problem, the guidance compensator can stabilise the helicopter on

the current position.
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6.3.3 Flight controller

The flight controller described in this chapter adopts the linear MPC technique

modified from [70] to achieve the tracking control of helicopter dynamics (6.2a).

Two linear MPC controllers with the same structure are employed to govern

the longitudinal/lateral and heave/heading subsystems, respectively. For each

subsystem, an augmented formulation is adopted:






xi(k + 1)

ui(k)

wi(k + 1)






︸ ︷︷ ︸

x̃k+1

=






Adi Bd
i 0

0 B 0

0 0 I






︸ ︷︷ ︸

Ã






xi(k)

ui(k − 1)

wi(k)






︸ ︷︷ ︸

x̃k

+






Bi

I

0






︸ ︷︷ ︸

B̃

∆ui
︸︷︷︸

ũk

(6.26)

ỹk = zi(k) − wi(k) = C̃x̃k (6.27)

where index i = 1, 2 indicates the longitudinal/lateral or heave/heading subsys-

tem, respectively, Adi and Bd
i are system and control matrices in the discrete form

of Eq.(6.2a) derived in Eq.(A.3), wi denotes the corresponding guidance com-

mand in wc, C̃ = [ Ci 0 −I ] is the output matrix, and ỹk is the output vector

of the augmented system, representing for the tracking error.

For such a system, a linear MPC is employed as the flight controller to stabilise

the state and regulate the output, where the performance index is specified by a

quadratic cost function to be minimised:

J(k) =
1

2

Hp∑

i=1

‖ỹk+i‖
2
Q +

1

2

Hc−1∑

i=0

‖ũk+i‖
2
R (6.28)

where k indicates the time step at which the state is updated, ỹk+i, i = 1, . . . , Hp

is the i-step ahead prediction of the tracking error withHp denoting the prediction

horizon. The predictions of tracking errors are functions of the future control

increments ũk+i, i = 1, . . . , Hc − 1, where Hc is the control horizon, beyond

which the control keeps the same value. Note that the subscript used to indicate

different subsystems is eliminated as the same MPC formulation can be applied

to both subsystems.

The optimisation problem needs to be solved at each time step k is then
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formulated as:

min
ũ

J(k) (6.29a)

s.t. x̃k+i+1 = Ãx̃k+i + B̃ũk+i, (6.29b)

ũk+i ∈ U, i = 0, 1, . . . , Hc, (6.29c)

x̃k+i ∈ X, i = 0, 1, . . . , Hp, (6.29d)

where Eq.(6.29a) is the cost function defined in Eq.(6.28), U is the control con-

straint which actually limits the increments of control signals, and X is the state

constraints including limits on subsystem’s state xi and its control input ui, for

i = 1, 2.

This optimisation problem can be converted into a QP formation for which

fast and numerically reliable algorithms are available. The reformulation can

start with considering the system state in a matrix form X̄ = [x̃T1 , x̃
T
2 , · · · , x̃

T
Hp

]T .

Note that the index k is dropped without losing generality. For each element x̃i,

the evolution of the system (6.26), i.e. the equality constraint Eq.(6.29b), can be

represented by

x̃i = Ãix̃0 +
i−1∑

j=0

ÃjB̃ũi−1−j (6.30)

for i = 1, 2, . . . , Hp. Thus, a matrix expression of the evolution of all the output

of the system (6.26) can be derived as:

Ȳ = C̄Āx̃0 + C̄B̄Ū (6.31)

where

Ȳ =
[

ỹT1 ỹT2 · · · ỹTNp

]T

(6.32)

Ū =
[

ũT0 , ũ
T
1 , . . . , ũ

T
Nc−1

]T

(6.33)

C̄ = diag{C̃, . . . , C̃} (6.34)
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with the corresponding dimension, and

Ā =















Ã

Ã2

...

ÃNc−1

...

ÃNp















B̄ =















B̃ 0 · · · 0

ÃB̃ B̃ · · · 0
...

...
...

...

ÃHc−1B̃ ÃHc−2B̃ · · · B̃
...

...
...

...

ÃHp−1B̃ ÃHp−2B̃ · · · ÃHp−HcB̃















(6.35)

Therefore, by inserting Eq.(6.31) into Eq.(6.28) the optimisation problem (6.29)

can be written as the following QP formulation:

J∗(x̃0) =
1

2
x̃T0 Y x̃0 + min

Ū
{
1

2
ŪTHŪ + x̃T0 FŪ} (6.36a)

s.t. GŪ ≤ W + Ex̃0 (6.36b)

where J∗ is the optimal cost as a function of initial state x̃0, Y = (C̄Ā)T Q̄C̄Ā,

H = (C̄B̄)T Q̄C̄B̄ + R̄, and F = (C̄Ā)T Q̄C̄Ā, in which Q̄ = diag{Q, . . . , Q},

R̄ = diag{R, . . . , R} in the corresponding dimensions. GŪ ≤ W + Ex̃0 is the

constraints translated from Eq.(6.29c)-(6.29d).

The QP problem (6.36) is solved at each sampling instant with a updated x̃0

to generate the control sequence Ū , where the first one ũ0 is actually applied to

the helicopter. The main advantage of using linear MPC as the flight controller

is the ability to handle the state and control constraints, so that the attitude of

helicopter can be retained in a reasonable range without violating the assumptions

of the linear dynamics model and the planar flight mode. The computational load

of solving a QP problem is now manageable by a microprocessor especially when

using an efficient solver [30].

6.4 Implementation

The realisation and implementation of the hierarchical control framework, com-

posed of a MPC planner, a guidance compensator and a flight controller, need to

be investigated to achieve local path planning and tracking control simultaneously

for an autonomous helicopter.

A modern avionic system for a UAV is usually configured to have two flight
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6. Local path planning using MPC techniques

computers. The low-level one functions as an autopilot, whereas the high-level

one executes some advanced functions like planning and management. Under this

configuration of avionics, it is natural to locate the guidance compensator and

flight controller on the low-level autopilot and the MPC planner on the high-level

flight computer, respectively. The arrangement is summarised in the Table 6.1 in

terms of three aspects: algorithms (or functions), the plants they deal with, and

their implementation means. The linear MPC algorithm needs to be implemented

on a low-level autopilot, because it directly controls the helicopter dynamics and

reacts to external disturbances. The guidance compensator is also executed on

the same computer so that it can cooperate with the flight controller and provide

the guidance compensation. More importantly, if the high-level computer fails

to provide guidance commands, the low-level autopilot itself can stabilise the

helicopter. Both the algorithms located on the low-level autopilot are executed

in a high sampling rate, as they are time critical functions. In the laboratory

environment, this low-level autopilot is realised by the simulink real-time control

environment. The nonlinear MPC planner is carried out by another high-level

flight computer due to its high computational load and to reduce inferences with

the time-critical low-level algorithms. In the test environment, this function is

performed in Matlab using a NLP solver KNITRO [43]. The overall hardware

configuration in the indoor testbed can refer to the diagram in Fig.5.10.

Table 6.1: Realisation of hierarchical control

Implementation Algorithm Plant/Model

High-level computer Nonlinear MPC Obstacle info

(Matlab NLP solver) (local path planning) Kinematics

Low-level autopilot Guidance compensator (Outer-loop)

(Simulink environment) Linear MPC Dynamics

(time critical) (tracking and stabilising) (Inner-loop)

6.4.1 Simulation

Simulations are carried out using the configuration introduced before. The full

dynamics model of the Trex-250 developed in Chapter 4 is used as the plant,

whereas the kinematic model and linearised dynamics model are used for design-

ing the local path planner and flight controller, respectively.
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The purpose of simulations is to choose the control parameters that can

achieve a good planning and tracking performance. The parameters determined

by simulations are given in Table.6.2. Simulation results are not presented here,

as performance of the proposed algorithms can be further verified by flight ex-

periments in a more realistic environment.

Table 6.2: Parameters for simulation

MPC planner Guidance compensator Flight controller

Td = 0.05s k1 = 1 ∆T = 0.02

N = 2 k2 = 1 Hp = 50

H = 20 k3 = 0.5 Hc = 4

Ts = 0.5s k4 = 2 Q = diag{1, 1}

α = 10 R = diag{10, 10}

A = 15

6.4.2 Experiment

After the control parameters are determined and the initial performance assess-

ment is done by simulations, flight experiments can be carried out on the testbed

to verify the proposed hierarchical control framework. Due to the confined test

space, only simple scenarios can be set up. The experimental result shown here

is to track a global square trajectory while avoiding two obstacles en route. The

tracking speed is set at 0.25 m/s because the test focuses on path planning and

is not aimed to excite aggressive manoeuvres. These obstacles are assumed to be

detected by the helicopter when the distance is less than 0.5m. The combined

local path planning and tracking result is shown in Fig.6.4, where the arrows

are used to indicate helicopter’s moving direction. The guidance command wc

composed of the MPC planner wo plus the guidance compensator, and the cor-

responding response of the helicopter w are shown in Fig.6.5. It can be seen that

the helicopter under the control of the linear MPC is able to track to guidance

commands that eventually lead to a collision-free trajectory as shown in Fig.6.4.

The calculation time of the online optimisation is given in Fig.6.6.

The linear MPC controller stabilises the helicopter and tracks the guidance

command. Its tracking performance is given in Fig.6.5, and stabilising perfor-

mance can be examined by observing the attitude history of the flight test in
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Figure 6.4: Flight test result

Fig.6.7. The corresponding control signals send to the helicopter are presented

in Fig.6.8. It shall be noted that the roll angle φ and pitch angle θ are retained

in small deviations during the normal flight phase, and can quickly reach high

magnitudes during the manoeuvres. The different mean values of φ and θ are

trim values for the helicopter used in experiments. The non-zero trim values do

not compromise the control performance as the linear MPC has the integral ac-

tion which automatically finds the corresponding control trims. As a result, the

steady state error is eliminated from the tracking output (see Fig.6.4). However,

it shall note that the flight test result outperforms those in Chapter 5 not only

because of the integral action in the controller, but also the slow flight speed

retained a linear dynamic region.

The emergency guidance provided by the guidance compensator is also tested

in flight experiments. In the test, the high-level MPC planner is deliberately

halted, but the helicopter can keep hovering on the last commanded position. The

experimental result is not included in this thesis, but this function has actually

saved the helicopter several times during the initial tuning tests.
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6.5 Conclusion

This chapter describes a hierarchical control framework for local path planning

and control of small helicopters. Two MPC techniques are used in this framework,

including a nonlinear MPC planner integrated with the potential field function

to achieve local path planning and obstacle avoidance, and a linear MPC used

for stabilising and tracking control. A guidance compensator based on a linear

time varying control law is then used to link the planning layer and the tracking

control layer, which provides quick responses to translational disturbances and

improves the robustness of the control framework. In addition, the integral action

incorporated in the linear MPC helps to reduce the steady state error. Flight tests

are carried out to verify this control framework, which show a good performance

of this control framework.
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Chapter 7

Explicit nonlinear MPC and

disturbance observer based

control for autonomous

helicopters

7.1 Introduction

MPC has been widely recognised as a promising control strategy for UAV systems.

Its capability and advantages on flight control and local path planning for au-

tonomous helicopters have been demonstrated in Chapter 5 and 6. However, one

main barrier in applications is that a solution of a nonlinear optimisation problem

has to be found in each sampling instant. To overcome this problem, Chapter

5 combines the piecewise constant MPC with a two-level control framework to

facilitate the real-time implementation. The formulated nonlinear optimisation

problem still has to be solved online, usually by a secondary flight computer.

The extra payload and power consumption are quite luxury for a small-scale

helicopter.

This chapter further looks at the real-time implementation issue of MPC by

avoiding online optimisation. An explicit nonlinear MPC (ENMPC) for trajec-

tory tracking of autonomous helicopters is introduced in this chapter. By ap-

proximating the tracking error and control efforts in the receding horizon using

their Taylor expansion to a specified order, an analytic solution to the nonlinear

MPC can be found and consequently a closed form controller can be formulated
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7. ENMPC and DOBC

without online optimisation [20]. The benefits of using this MPC algorithm are

not only the elimination of the online optimisation and the associated resource,

but also a higher control bandwidth, which is very important for helicopters in

aggressive flight scenarios.

Apart from the control algorithm, there are practical issues in controlling

autonomous helicopters from an engineering point of view. It is known that the

control performance of MPC, or other model based control technologies, heavily

relies on the quality of the model. However, the model of high accuracy for a

helicopter is difficult to obtain due to the complicated aerodynamic nature of

the rotor system. On the other hand, because of the light-weighted structure,

small-scale helicopters are more likely to be affected by wind gusts and other

disturbances than their full size counterpart, and the physical parameters such

as mass and moments of inertia can be significantly altered due to the change

of the payload and even its location. All these factors compromise the actual

performance of the controller designed based on the nominal model.

Robust control techniques, especially H∞ technique, have been used in han-

dling the parametric uncertainty and ummodelled dynamics [32; 65; 73]. Al-

though satisfactory performance has been demonstrated, robust control is known

to result in conservative solutions and presents trade-offs between performance

and robustness. On the other hand, adaptive control also shows promising results

of controlling autonomous helicopters in the presence of uncertainties [49; 59].

However, the controllers usually have complicated structures and very high or-

der. Other methods to compensate the wind disturbances are also available such

as [9] where the authors provided a method of calculating the trim control by

exploiting a detailed helicopter model. However, this method need either an

estimation or direct measurement of wind conditions.

To enhance the performance of ENMPC in a complex operation environment,

this chapter advocates a disturbance observer based control (DOBC) approach.

Disturbance observers have been applied to estimate unknown disturbances in

the control process [15; 18]. As the estimation of disturbances is provided, the

control system can explicitly take them into account and compensate them. The

advantage of the DOBC is that it preserves the tracking and other properties of

the original baseline control while being able to compensate disturbances rather

than resorting to a different control strategy.

In designing a disturbance observer augmented ENMPC for trajectory track-
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ing of autonomous helicopters, two problems need to be addressed, namely, de-

signing the nonlinear disturbance observer to estimate disturbances acting on the

helicopter, and integrating the disturbance information into the ENMPC scheme

to compensate their influences. To this end, another contribution of this chapter

lies in the synthesis of the ENMPC and DOBC by exploiting the helicopter model

structure. The disturbances are assumed to be a part of the helicopter dynamics

where the coupling terms can also be lumped into disturbance terms. In this way

an ENMPC is derived under the assumption that all the disturbances are mea-

surable, and then these disturbances are replaced by their estimation provided

by the proposed disturbance observers. In turn, the lumped disturbance terms

simplify the model structure allowing the derivation of ENMPC for helicopters.

The composite control framework provides a promising solution to autonomous

helicopter trajectory tracking in the presence of uncertainties and disturbances.

The performance of the proposed control system is tested through simulations

and verified in the indoor flight testbed.

7.2 Helicopter model

As discussed in Chapter 4, a helicopter is a highly nonlinear system with multi-

ple inputs multiple outputs and complex internal couplings. The complete model

taking into account the flexibility of the rotors and fuselage usually results in high

degrees-of-freedom and makes the following system identification much more dif-

ficult. Therefore, a practical way to deal with this issue is to capture the primary

dynamics by a simplified model and treat the other trivial factors that affect

dynamics as uncertainty or disturbances. This process has been demonstrated

in Chapter 4, and the resulting model for control design purpose is presented in

Eq.(5.1).

The helicopter model used in this chapter is modified from Eq.(5.1) by explic-

itly taking into account disturbances. With the translational kinematics in the

standard form

[ ẋ ẏ ż ]T = Ri
b(φ, θ, ψ)[ u v w ]T (7.1)

the translational dynamics of the helicopter are modified by keeping the thrust

of main rotor as a dominating force and considering other force contributions as
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disturbances, such that

u̇ = vr − wq − g sin θ + dx

v̇ = wp− ur + g cos θ sinφ+ dy

ẇ = uq − vp+ g cos θ cosφ+ T + dz

(7.2)

where, T is the normalised main rotor thrust controlled by collective pitch δcol,

in the way that T = g + Zww + Zcolδcol, and (dx, dy, dz) are normalised force

disturbances that include external wind gusts, internal couplings and unmodelled

dynamics. These force disturbances directly affect the translational dynamics and

result in tracking error. As force disturbances are not in the channels of control

inputs, they are called “mis-matched” disturbances. This modification on one

hand increases the valid range of the model compared to simplified helicopter

models for control design that neglect all other forces other than the main thrust

[58; 73; 94]. On the other hand it reduces the workload of deriving the ENMPC

for helicopters as different forces are lumped into one term .

Apart from the force disturbances in Eq.(7.2), small-scale helicopters also

subject to structural uncertainties and are vulnerable to physical alterations like

payload change. These factors are commonly ignored in the control design, as

they can be compensated by setting control trims in the implementation. To

save the trim tuning process in the real life operation, trims errors in the control

channel are considered as disturbances again. Thereby, combining helicopter’s

rotational dynamics in Eq.(5.1) and flapping angle approximation Eq.(5.2) yields

ṗ = −Lpq + Llat(δlat + dlat) + Llon(δlon + dlon)

q̇ = −Mpq +Mlat(δlat + dlat) +Mlon(δlon + dlat)

ṙ = −Npr +Nrr +Ncolδcol +Nped(δped + dped)

(7.3)

where

Lpq = qr(Iyy − Izz)/Ixx + τ(Laq + Lbp),

Mpq = pr(Izz − Ixx)/Iyy + τ(Maq +Mbp),

Npq = pq(Ixx − Iyy)/Izz

Llat = LaAlat + LbBlat, Mlat = MaAlat +MbBlat,

Llon = LaAlon + LbBlon, Mlon = MaAlon +MbBlon,

(7.4)
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and dlat, dlon and dped account for different trim errors. In addition, since they

are combined into the angular dynamics and affect the angular rate directly, they

can be considered as torque disturbances.

The modified helicopter model by combining (7.1)-(7.3) can be expressed by

a general affine form:

ẋ = f(x) + g1(x)u + g2(x)d

y = h(x)
(7.5)

where x = [ x y z u v w p q r φ θ ψ ]T is the helicopter state, y

is the output of the helicopter, and d = [ dx dy dz dlat dlon dped ]T is the

lumped disturbance acting on the helicopter. In the trajectory tracking control

of an autonomous helicopter, the interested outputs are the position and heading

angle. Thus, y = [ x y z ψ ]T .

7.3 Explicit nonlinear MPC with disturbances

Trajectory tracking is the basic function required when an autonomous helicopter

performs a task. To this end, a controller is needed such that the output y(t) of

the helicopter (7.5) tracks the prescribed reference w(t). In the MPC strategy,

tracking control can be achieved by minimising a receding horizon performance

index

J =
1

2

∫ T

0

(ŷ(t+ τ) − w(t+ τ))TQ(ŷ(t+ τ) − w(t+ τ))dτ (7.6)

where weighting matrix Q = diag{q1, q2, q3, q4}, qi > 0, i = 1, 2, 3, 4. Note that

the hatted variables belong to the prediction time frame.

Conventional MPC algorithm requires solving of an optimisation problem at

every sampling instant to obtain the control signals. To avoid the computationally

intensive online optimisation, an explicit solution for the nonlinear MPC problem

is obtained based on the approximation of the tracking error in the receding

prediction horizon [20].

7.3.1 Output approximation

For a nonlinear MIMO system like the helicopter, it is well known that after

differentiating the outputs for a specific number of times, the control inputs ap-
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pear in the expressions. The number of times of differentiation is defined as

relative degree. For the helicopter with output y = [ x y z ψ ]T and the cor-

responding input u = [ δlon δlat δcol δped ]T , the relative degree is a vector,

ρ = [ ρ1 ρ2 ρ3 ρ4 ]. If continuously differentiating the output after the con-

trol input appears, the derivatives of control input appear, where the number of

the input derivatives r is defined as the control order.

Since the helicopter model has different relative degrees, the control order r

is first specified in the controller design. The ith output of the helicopter in the

receding horizon can be approximated by its Taylor series expansion up to order

ρi + r:

ŷi(t+ τ) ≈ yi(t) + τ ẏi(t) + · · · +
τ r+ρi

(r + ρi)!
y

[r+ρi]
i (t)

=
[

1 τ · · · τr+ρi

(r+ρi)!

]









yi(t)

ẏi(t)
...

y
[r+ρi]
i (t)









, 0 ≤ τ ≤ T (7.7)

where i = 1, 2, 3, 4. In this way, the approximation of the overall output of the

helicopter can be cast in a matrix form:

ŷ(t+ τ) =









x̂(t+ τ)

ŷ(t+ τ)

ẑ(t+ τ)

ψ̂(t+ τ)









=









ŷ1(t+ τ)

ŷ2(t+ τ)

ŷ3(t+ τ)

ŷ4(t+ τ)









=







1, τ, · · · , τr+ρ1

(r+ρ1)!
· · · 01×(r+ρ4+1)

· · · · · · · · ·

01×(r+ρ1+1) · · · 1, τ, · · · , τr+ρ4

(r+ρ4)!







[

y1(t)
T , ẏ1(t)

T , · · · , y
[r+ρ1]
1 (t)T · · · y4(t)

T , ẏ4(t)
T , · · · , y

[r+ρ4]
4 (t)T

]T

(7.8)

For each channel in the output matrix, the control orders r are the same and

can be decided during the control design, whereas the relative degrees ρi are

different but determined by the helicopter model structure. Manipulating the
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output matrix (7.8) gives the following partition:

ŷ(t+ τ) =






τ̄1 · · · 01×ρ4 |

· · · · · · · · · | τ̃1 · · · τ̃r+1

01×ρ1 · · · τ̄4 |






[

Ȳ1(t)
T · · · Ȳ4(t)

T |Ỹ1(t)
T · · · Ỹr(t)

T

]T

(7.9)

where

Ȳi =
[

yi(t) ẏi(t) · · · y
[ρi−1]
i

]T

, i = 1, 2, 3, 4 (7.10)

Ỹi =
[

y
[ρ1+i−1]
1 y

[ρ2+i−1]
2 · · · y

[ρ4+i−1]
4

]T

, i = 1, . . . , r + 1 (7.11)

τ̄i =
[

1 τ · · · τρi−1

(ρi−1)!

]

, i = 1, 2, 3, 4 (7.12)

and

τ̃ = diag
{

τρ1+i−1

(ρ1+i−1)!
· · · τρ4+i−1

(ρ4+i−1)!

}

(7.13)

It can be observed from Eq(7.9) that the prediction of the helicopter output

ŷ(t+ τ), 0 ≤ τ ≤ T , in the receding horizon needs the derivatives of each output

of the helicopter up to r + ρi order at time instant t. Except for the output

y(t) itself that can be directly measured, the other derivatives have to be derived

according to the helicopter model (7.5). During this process the control input

will appear in the ρith derivatives, where i = 1, 2, 3, 4.

The first derivatives can be obtained from the helicopter’s kinematics model:






ẏ1

ẏ2

ẏ3




 =






ẋ

ẏ

ż




 = Ri

b ·






u

v

w




 (7.14)

ẏ4 = ψ̇ = q sinφ sec θ + r cosφ sec θ (7.15)

Differentiating (7.14) and (7.15) with substitution of helicopter kinematics (7.1)

132



7. ENMPC and DOBC

yields the second derivatives:






ÿ1

ÿ2

ÿ3




 =






ẍ

ÿ

z̈




 = Ri

b






dx

dy

T + dz




+






0

0

g




 , (7.16)

where T = Zww + Zcolδcol − g is the normalised main rotor thrust, and

ÿ4 =ψ̈ = q cosφ
cos θ

φ̇+ q sinφ sin θ
cos2 θ

θ̇ − r sinφ
cos θ

φ̇+ r cosφ sin θ
cos2 θ

θ̇ − Lpq
sinφ
cos θ

+Nr
cosφ
cos θ

r+

Llat
sinφ
cos θ

(δlat + dlat) + Llon
sinφ
cos θ

(δlon + dlon) +Ncol
cosφ
cos θ

δcol +Nped
cosφ
cos θ

(δped + dped)

(7.17)

Note that although control input δcol appears in (7.16), the other control inputs

do not, so it needs to continue differentiating the first three outputs. To facilitate

the derivation, the relationship Ṙi
b = Ri

bω̂ is adopted by using skew-symmetric

matrix ω̂ ∈ R
3×3:

ω̂ =






0 −r q

r 0 −p

−q p 0




 . (7.18)

Thus, the third and fourth derivatives of the position output can be written in:






y
[3]
1

y
[3]
2

y
[3]
3




 =






x[3]

y[3]

z[3]




 = Ri

bω̂






dx

dy

T + dz




+ Ri

b






0

0

Zwẇ + Zcolδ̇col




 , (7.19)

and






y
[4]
1

y
[4]
2

y
[4]
3




 =






x[4]

y[4]

z[4]




 =Ri

bω̂ω̂






dx

dy

T + dz




+ 2Ri

bω̂






0

0

Zwẇ + Zcolδ̇col




+

Ri
b






−Nrrdy −Mpq(T + dz)

Nrrdx + Lpq(T + dz)

Mpqdx − Lpqdy + Zwẅ




+

A(x,d)
[

δlat + dlat δlon + dlon δ̈col δped + dped

]T

(7.20)
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where

A(x,d) = Ri
b






Mlat(T + dz) Mlon(T + dz) 0 −Npeddy

−Llat(T + dz) −Llon(T + dz) 0 Npeddx

−Mlatdx + Llatdy −Mlondx + Llondy Zcol 0




 (7.21)

At this stage, the control inputs explicitly appear in (7.20). Therefore, the vector

relative degree for the helicopter is ρ = [ 4 4 4 2 ]. Note that in the formula-

tion of (7.20) δ̈col is the new control input, whereas δcol and δ̇col are treated as the

states which can be obtained by adding integrators. This procedure is known as

achieving relative degree through dynamics extension [45].

By invoking (7.14) -(7.19), it now can construct matrix Ȳi, i = 1, 2, 3, 4. How-

ever, in order to find the elements in Ỹi, i = 1, 2, . . . , r+1, further manipulations

are required. By combining (7.17) and (7.20) and utilizing the Lie notation [45],

one has:

Ỹ1 =









y
[ρ1]
1

y
[ρ2]
2

y
[ρ3]
3

y
[ρ4]
4









=









x[4]

y[4]

z[4]

ψ[2]









=









Lρ1f h1(x,d)

Lρ2f h2(x,d)

Lρ3f h3(x,d)

Lρ4f h4(x,d)









+ A(x,d)ũ (7.22)

where ũ = [ δlat + dlat δlon + dlon δ̈col δped + dped ]; nonlinear terms Lρi

f hi(x,d),

i = 1, 2, 3, 4, can be found in the previous derivation, and

A(x,d) =










Lg1L
ρ1−1
f h1 · · · Lg4L

ρ1−1
f h1

Lg1L
ρ1−1
f h2 · · · Lg4L

ρ1−1
f h2

· · · · · · · · ·

Lg1L
ρ1−1
f h4(x) · · · Lg4L

ρ1−1
f h4(x)










=

[

A(x,d)

A(x,d)

]

. (7.23)

where A(x,d) is given in Eq.(7.21) and

A(x,d) =
[

Llat
sinφ
cos θ

Llon
sinφ
cos θ

0 Nped
cosφ
cos θ

]

. (7.24)

Differentiating (7.22) with respect to time together with substitution of the
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system’s dynamics gives

Ỹ2 =









y
[ρ1+1]
1

y
[ρ2+1]
2

y
[ρ3+1]
3

y
[ρ4+1]
4









=









Lρ1+1
f h1(x)

Lρ2+1
f h2(x)

Lρ3+1
f h3(x)

Lρ4+1
f h4(x)









+ A(x,d)ũ[1] + p1(x, ũ) (7.25)

where p1(x, ũ) is a nonlinear vector function of x and ũ. By repeating this

procedure, the higher derivatives of the output and Ỹi, i = 1, 2, . . . , r, can be

calculated as

Ỹr+1 =









y
[ρ1+r]
1

y
[ρ2+r]
2

y
[ρ3+r]
3

y
[ρ4+r]
4









=









Lρ1+r
f h1(x)

Lρ2+r
f h2(x)

Lρ3+r
f h3(x)

Lρ4+r
f h4(x)









+ A(x,d)ũ[r] + pr(x, ũ, ũ
[1], . . . , ũ[r]) (7.26)

So far by exploiting the helicopter model, the elements to construct Ȳ and

Ỹ in Eq.(7.9) are available. Therefore, the output of the helicopter in the future

horizon y(t+ τ) can be expressed by its Taylor expansion in a generalized linear

form with respect to the prediction time τ and current states as shown in Eq.(7.9).

In the same fashion as in Eq.(7.9), the reference in the receding horizon w(t+

τ), 0 ≤ τ ≤ T can also be approximated by:

w(t+τ) =









w1(t+ τ)

w2(t+ τ)

w3(t+ τ)

w4(t+ τ)









=
[

Tf Ts

] [

W̄1(t)
T · · · W̄4(t)

T |W̃1(t)
T · · · W̃r+1(t)

T

]T

(7.27)

where

Tf =







τ̄1 · · · 01×ρ4
...

. . .
...

01×ρ1 · · · τ̄4







(7.28)

and

Ts =
[

τ̃1 · · · τ̃r+1

]

(7.29)

and the construction of W̄i(t), i = 1, 2, 3, 4, and W̃i, i = 1, . . . , r + 1, can refer to

the structure of Ȳi(t) and Ỹi, respectively.
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7.3.2 Explicit nonlinear MPC solution

The conventional MPC needs to solve a formulated optimisation problem to gen-

erate the control signal, where the control performance index is minimised with

respect to the future control input over the prediction horizon. In this chapter,

after the output is approximated by its Taylor expansion, the control profile can

be defined as

ũ(t+ τ) = ũ(t) + τ ũ[1](t) + · · · +
τ r

r!
ũ[r](t), 0 ≤ τ ≤ T (7.30)

Thereby, the helicopter outputs depend on the control variables ū = {ũ, ũ[1], . . . , ũ[r]}.

By recalling the performance index (7.6), the output and reference approxi-

mation (7.9) and (7.27), one has:

J =
1

2
(Ȳ (t) − W̄ (t))T

[

T1 T2

T
T
2 T3

]

(Ȳ (t) − W̄ (t)) (7.31)

where

Ȳ (t) =
[

Ȳ1(t)
T · · · Ȳ4(t)

T |Ỹ1(t)
T · · · Ỹr(t)

T

]T

, (7.32)

W̄ (t) =
[

W̄1(t)
T · · · W̄4(t)

T |W̃1(t)
T · · · W̃r+1(t)

T

]T

, (7.33)

T1 =

∫ T

0

T Tf QTfdτ, (7.34)

T2 =

∫ T

0

T Tf QTsdτ, (7.35)

and

T3 =

∫ T

0

T Ts QTsdτ. (7.36)

Therefore, instead of minimising the performance index (7.6) with respect to

control profile u(t+τ), 0 < τ < T directly, it is able to minimise the approximated

index (7.31) with respect to ū, where the necessary condition for the optimality

is given by
∂J

∂ū
= 0 (7.37)

After solving the nonlinear equation (7.37), it is able to obtain the optimal control
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variables ū∗ to construct the optimal control profile defined by Eq.(7.30). As in

MPC only the current control in the control profile is implemented, the explicit

solution is ũ∗ = ũ(t+ τ), for τ = 0. The resulting controller is given by

ũ∗ = −A(x,d)−1(KMρ +M1) (7.38)

where K ∈ R
4×(ρ1+···+ρ4) is the first 4 row of the matrix T

−1
3 T

T
2 ∈ R

4(r+1)×(ρ1+···+ρ4)

where the ijth block of T2 is of ρi×4 matrix, and all its elements are zeros except

the ith column is given by

[

qi
T ρi+j

(ρi+j−1)!(ρi+j)
· · · qi

T 2ρi+j−1

(ρi+j−1)!(ρi−1)!(2ρi+j−1)

]T

(7.39)

for i = 1, 2, 3, 4 and j = 1, 2, . . . , r + 1, and ijth block of T3 is given by

diag
{

q1
T 2ρ1+i+j−1

(ρ1+i−1)!(ρ1+j−1)!(2ρ1+i+j−1)
, · · · , q4

T 2ρ4+i+j−1

(ρ4+i−1)!(ρ4+j−1)!(2ρ4+i+j−1)

}

(7.40)

for i, j = 1, 2, . . . , r + 1; the matrix Mρ ∈ R
ρ1+···+ρ4 and matrix Mi ∈ R

4 are

defined as:

Mρ =







Ȳ1(t)
T

...

Ȳ4(t)
T






−







W̄1(t)
T

...

W̄4(t)
T







(7.41)

and

Mi =









Lρ1+i−1
f h1(t)

Lρ2+i−1
f h2(t)

...

Lρ4+i−1
f h4(t)









− W̃i(t)
T , i = 1, 2, . . . , r + 1. (7.42)

The detailed derivation and closed-loop stability can refer to [20]. The overall

controller structure is shown in Fig.7.1.

The system has a trivial zero dynamics as ρ1 + ρ2 + ρ3 + ρ4 = 14, which is the

order of the helicopter dynamics plus the dynamic extension. If the disturbance

terms are set to zero, the controller is equivalent to that designed using the

nominal model. The information of disturbances are hold in the controller to

eliminate their influences.
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Figure 7.1: ENMPC structure

7.3.3 Command prefilter

When the ENMPC is applied for trajectory tracking of autonomous helicopters,

not only the reference trajectory is required, but the higher derivatives of the

reference trajectory with respect to time are also needed in the prediction. Al-

though this can be achieved by using various modern path planning algorithms,

there are still some applications where the dedicated path generator is not avail-

able. In these cases the reference is more likely to be designed comprising only

the demanded helicopter position and the associated heading angle. To address

this problem, a simple but effective method of low-pass prefilter (7.43) is adopted

as shown in Fig. 7.2.

G(s) =
ω2
n

s2 + 2ζωns+ ω2
n

(7.43)

Given the appropriate parameters ζ and ω, the command prefilter can provide

first and second derivatives of the original reference, which is adequate for a

smooth trajectory tracking [15].

In order to implement the ENMPC strategy the disturbances must be avail-

able, which is unrealistic for helicopter flight. Next section will introduce a non-

linear disturbance observer to estimate these unavailable disturbances.
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Figure 7.2: Command prefilter

7.4 Disturbance observer based control

7.4.1 Disturbance observer

For a system like a small-scale helicopter, precisely modelling its dynamics or

directly measuring the disturbances acting on it is very challenging. However,

the disturbance observer technique provides an alternative way to estimate them.

In this section, a nonlinear disturbance observer is introduced to estimate the

lumped unknown disturbances d in the general form of helicopter model (7.5).

The disturbance observer [17] is given as follows (scalar variables are used for the

sake of simplicity),

d̂ = z + p(x)

ż = −l(x)g2(x)z − l(x)(g2(x)p(x) + f(x) + g1(x)u)
(7.44)

where d̂ = [ d̂x d̂y d̂z d̂lat d̂lon d̂ped ]T is the estimation of disturbances; z

is the internal state of the nonlinear observer, p(x) is a nonlinear function to be

designed, and l(x) is the nonlinear observer gain given by

l(x) =
∂p(x)

∂x
(7.45)

In this observer, the estimation error is defined as ed = d− d̂. Under the assump-

tion that the disturbance is slowly varying compared to the observer dynamics
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and by combining Eq.(7.44)-Eq.(7.45) and Eq.(7.5), it can be shown that the

estimation error has the following property:

ėd = ḋ−
˙̂
d

= −ż −
∂p(x)

∂x
ẋ

= −l(x)g2(x)ed

(7.46)

Therefore, d̂(t) approaches d(t) exponentially if p(x) is choose such that Eq.(7.46)

is globally exponentially stable for all x ∈ R
n.

The design of a disturbance observer essentially is to chose an appropriate

gain l(x) and associated p(x) such that the convergence of estimation error is

guaranteed. Thereby, there exist a considerable degree of freedom. Since the

disturbance input matrix g2(x) for the helicopter model is a constant matrix as:

g2(x) =



















03×3 03×3

1 0 0

0 1 0 03×3

0 0 1

Llat Llon 0

03×3 Mlat Mlon 0

0 0 Nped

03×3 03×3



















, (7.47)

It is possible to choose l(x) as a constant matrix such that all the eigenvalues of

matrix −l(x)g2(x) have negative real part. Next, integrating l(x) with respect

to the helicopter state x yields p(x) = l(x)x. The observer gain matrix l(x)

corresponding to g2 is designed in the form:

l(x) =

[

03×3 L1 03×3 03×3

03×3 03×3 L2 03×3

]

(7.48)

where matrix L1 = diag{l1, l2, l3} and

L2 = diag{l4, l5, l6}






Llat Llon 0

Mlat Mlon 0

0 0 Nped






−1

(7.49)
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for li > 0, i = 1, . . . , 6. Thereby, −l(x)g(x) = −diag{l1, . . . , l6}. Form the

above analysis, it can be seen that the convergence of the disturbance observer

is guaranteed regardless of the helicopter state.

7.4.2 Composite controller

External force and torque disturbances generated by wind, turbulences and other

factors coupled with modelling errors and uncertainties may significantly degrade

the helicopter’s tracking performance and may even cause instability unless their

influence has been properly taken into account in the system design. It shall be

noted that in the previous derivation of the ENMPC, the lumped disturbances

appear in the control law. Therefore, once the disturbance observer provides

the estimation of disturbances, the ENMPC controller takes into account the

disturbances by replacing the disturbance by their estimation and achieves desired

tracking performance. Let df = [dx dy dz]
T and de = [dlat dlon dped]

T . The

composite controller law using the estimated disturbances is given in

ũ = −A(x, d̂f )
−1(KM̂ρ + M̂1) (7.50)

where, the hatted variables denote the estimated values. If the trim errors is

considered in the helicopter dynamics, the composite control becomes

u = ũ − û0 (7.51)

where û0 = [d̂lat d̂lon 0 d̂ped]
T is the control trim error estimated by the dis-

turbance observer. The composite controller structure is illustrated in Fig.7.3.

7.5 Stability analysis

The stabilities of the ENMPC and the disturbance observer are guaranteed in

their design procedures outlined in Section 7.3 and 7.4, respectively. However,

the stability of the closed-loop system still needs to be examined, because the true

disturbances are replaced by their estimation in the composite controller (7.51),

and there are interactions among the ENMPC, the disturbance observer and the

helicopter dynamics.
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Figure 7.3: Composite controller structure

The closed-loop dynamics under the composite control law can be examined

by applying Eq.(7.51) into helicopter model (7.5). Since the resulting system is

too complicated, it is worth to define a new coordinate to describe the closed-loop

system. First, let position tracking error defined as:

z0
p = [x− w1 y − w2 z − w3]

T (7.52)

then it first derivative can be defined as:

ż0
p = z1

p = [ẋ− ẇ1 ẏ − ẇ2 ż − ẇ3]
T (7.53)

where the expressions of ẋ, ẏ and ż are given in Eq.(7.14). Since the real distur-

bances are replaced by their estimations in the closed-loop system, the next state

can be defined as:

z2
p = Ri

b






d̂x

d̂y

T + d̂z




+






0

0

g




−






ẅ1

ẅ2

ẅ3




 , (7.54)

By following the same procedure as Eq.(7.14) and (7.16), combining Eq(7.53) and
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(7.54) gives ż1
p = z2

p + Ri
b · edf

, where edf
= df − d̂f . Similarly, z3

p is defined as:

z3
p = Ri

bω̂






d̂x

d̂y

T + d̂z




+ Ri

b






0

0

Zwẇ + Zcolδ̇col




−






...
w1
...
w2
...
w3




 (7.55)

From Eq.(7.54) and (7.55) and recalling observer dynamics (7.46), it can be ob-

served that

ż2
p = z3

p − Ri
bėdf

= z3
p + Ri

bL1edf

(7.56)

Repeat this procedure, z4
p is defined from Eq.(7.20) by using estimated distur-

bances, such that

ż3
p = z4

p + Ri
bω̂ · L1edf

(7.57)

In addition, the heading tracking error and its derivatives are defined as z0
ψ =

ψ −w4, z
1
ψ = ψ̇ − ẇ4, where ψ̇ is given in Eq.(7.15) and z2

ψ = ψ̈ − ẅ4, where ψ̈ is

provided in Eq(7.17).

Finally, by invoking Eq(7.22) and the definitions of z4
p and z2

ψ, one has

[

z4
p

z2
ψ

]

= M̂1 + A(x, d̂f )(u + u0)

= M̂1 + A(x, d̂f )(−A(x, d̂f )
−1(KM̂ρ + M̂1) − û0 + u0)

= −KM̂ρ + A(x, d̂f )eu0

(7.58)

where, eu0
= u0 − û0 and K has the form:

K =









k11 · · · k14 01×4 01×4 01×2

01×4 k21 · · · k24 01×4 01×2

01×4 01×4 k31 · · · k34 01×2

01×4 01×4 01×4 k41 · · · k42









(7.59)

By recalling the definition of M̂ρ in Eq.(7.41), Eq.(7.58) can be further written

as:

[

ż3
p

ż1
ψ

]

=

[

K1z
0
p +K2z

1
p +K3z

2
p +K4z

3
p

k41z
0
ψ + k42z

1
ψ

]

+

[

Ri
bω̂ · L1edf

0

]

+ A(x, d̂f )eu0
(7.60)
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where Ki = diag(k1i, k2i, k3i), for i = 1, 2, 3, 4.

Summarizing Eq.(7.52)-(7.60) gives a linear form of the closed-loop system:














ż0
p

ż1
p

ż2
p

ż3
p

ż0
ψ

ż1
ψ














=














03×3 I3 03×3 03×3 0 0

03×3 03×3 I3 03×3 0 0

03×3 03×3 03×3 I3 0 0

K1 K2 K3 K4 0 0

01×3 01×3 01×3 01×3 1 0

01×3 01×3 01×3 01×3 k41 k41














︸ ︷︷ ︸

Az














z0
p

z1
p

z2
p

z3
p

z0
ψ

z1
ψ














︸ ︷︷ ︸

z

+














03×1

ǫ1

ǫ2

ǫ3

01×1

ǫ5














︸ ︷︷ ︸

ǫ

(7.61)

or, compactly

ż = Azz + ǫ (7.62)

where ǫ1 = Ri
b · edf

, ǫ2 = Ri
b · L1edf

, ǫ3 = Ri
bω̂ · L1edf

+ A(x, d̂f )eu0
and ǫ5 =

A(x, d̂f )eu0
. All these terms depend on the helicopter states and estimation errors

ed.

System (7.61) can be classified as a cascade system:

ż = f1(z) + ǫ(x, ed)ed

ėd = f2(ed)
(7.63)

where the upper system is Eq(7.61) and the lower system is the observer dynamics

(7.46).

When estimation errors are zeros, the upper system ż = f1(z) reduces to a

linear system ż = Azz. In this case, its globally asymptotic stability can be guar-

anteed by proper choosing MPC gain K such that Az is Hurwitz, which is assured

in the ENMPC design. On the other hand, the globally asymptotic stability of

the lower system is guaranteed during the design of disturbance observer. There-

fore, the closed-loop system under the composite control law is at least locally

asymptotic stable according to [45]. Moreover, it is able to extend the above

result further by introducing the following lemma.

Lemma 7.1 ([90]). If assumptions A7.1-A7.3 below are satisfied then the cas-

caded system (7.63) is globally uniformly asymptotically stable.

Assumption 7.1. The system ż = f1(z) is globally uniformly asymptotically

stable with a Lyapunov function V (z), V : R
n → R positive definite (that is
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V (0) = 0 and V (z) > 0 for all z 6= 0) and proper which satisfies

∥
∥
∥
∥

∂V

∂z

∥
∥
∥
∥
‖z‖ ≤ c1V (x),∀ ‖z‖ ≥ η (7.64)

where c1 > 0 and η > 0.

Assumption 7.2. The function ǫ(x, ed)satisfies

‖ǫ(x, ed)‖ ≤ α1(‖ed‖) + α2(‖ed‖) ‖z‖ (7.65)

where α1, α2 : R → R are continuous.

Assumption 7.3. Equation ėd = f2(ed) is globally uniformly asymptotically

stable and for all t ≥ t0

∫
∞

t0

‖ed(t)‖ dt ≤ β(‖ed(t0)‖) (7.66)

where function β is a class K function.

The rigorous proof of lemma 7.1 is given in [90]. The basic idea is first to

show that the upper system of cascade system does not escape in finite time and

are bounded for t > t0 with the condition that the input vector ǫ(x, ed) grows

linearly and at the fastest in the state z. Then it needs to show that as t → ∞,

estimation error ed → 0 and z → 0 due to the global asymptotic stability of

ż = f1(z).

Theorem 7.2. Given that the reference trajectory w, its first ρi derivatives, and

disturbance d are bounded, the closed-loop system (7.58) under the composite

control law (7.51) is globally asymptotically stable.

Proof. By using Lemma 7.1, for closed-loop system (7.58) in the cascade form

(7.63), if assumptions A7.1-A7.3 are satisfied, the proof will then be completed.

First, A7.1 is satisfied due to the fact that ż = f1(z) = Azz and Az is Hurwitz.

Then, it needs to investigate the boundness on ǫ(x, ed) in terms of ‖z‖ and ‖ed‖.
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From their definitions, there are

‖ǫ1‖ ≤ ‖ed‖ (7.67)

‖ǫ2‖ ≤ ‖L1‖ ‖ed‖ (7.68)

‖ǫ3‖ ≤ ‖ω̂‖ ‖L1‖
∥
∥edf

∥
∥+

∥
∥A(·, ·)

∥
∥ ‖ed‖ (7.69)

‖ǫ5‖ ≤ ‖A(·, ·)‖ ‖ed‖ (7.70)

The skew-matrix ω̂ can be seen consisted of nominal state decided by the reference

command and the error state, i.e. ω̂ = ω̂c + ω̂e. The former one is bounded

as the bounded command, and the latter one is bounded by tracking error ‖z‖.

Therefore, there exist two constant b1 > 0 and b2 > 0, such that ‖ω̂‖ ≤ b1+b2 ‖z‖.

Moreover,
∥
∥A(·, ·)

∥
∥ linearly depends on d̂ and state T . Due to d is bounded and

disturbance observer is globally exponentially stable, d̂ is also bounded. On the

other hand, T is bounded by ‖z‖ + ‖d‖ + g using Eq(7.16). Hence, there is
∥
∥A(·, ·)

∥
∥ ≤ b3 + b4 ‖z‖, for some b3 > 0 and b4 > 0. Then the bound on ǫ3 can

be write as ‖ǫ3‖ ≤ β1 ‖ed‖ + β2 ‖ed‖ ‖z‖, for some β1 > 0 and β2 > 0. At last,

following the same fashion ǫ5 ≤ b5 ‖ed‖, for some b5 > 0 if pitch angle θ 6= ±π/2.

Combining bounds on ‖ǫi‖, i = 1, . . . , 5 gives

‖ǫ‖ ≤ ‖ǫ1‖ + · · · + ‖ǫ5‖

≤ γ1 ‖ed‖ + γ2 ‖ed‖ ‖z‖
(7.71)

where γ1 > 0 and γ2 > 0. Thus, A7.1 is satisfied.

Finally, as lower system ėd = f2(ed) is globally exponentially stable, A7.3 is

satisfied.

7.6 Simulation

Several numerical simulations have been carried out to verify the proposed control

framework. Firstly, a comparison between the ENMPC and the MPC using online

optimisation from Chapter 5 is carried out. Secondly, tracking performance of

ENMPC and DOBC is studied under the uncertainties and constant wind gust.

Thirdly, the capability of disturbance rejection of the proposed control scheme

is investigated. The ENMPC is designed with the prediction horizon T = 4s,

control order r = 4 and Q = diag{1, 1, 1, 1}. The disturbance observer gain
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is simply set to L1 = diag{10, 10, 10}, and L2 = diag{5, 5, 5}. The command

prefilter parameters are chosen as ζ = 0.7 and ωb = 10rad/s.
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Figure 7.4: Tracking performance under different MPC schemes (Sim 1)

In the first simulation, the helicopter needs to track a multi-section refer-

ence connected by abrupt turns. The helicopter tracking performance is given

in Fig.7.4. It can be seen that the helicopter under both conventional MPC and

ENMPC is able to track the reference with very satisfactory performance. How-

ever, in the conventional MPC the average time for solving the formulated OP is

about 0.2s, which restricts the control bandwidth to 5Hz. The ENMPC tackles

this problem by directly using the explicit solution, therefore it can easily reach

the required control bandwidth.

In the second simulation, it is assumed that there are 20% uncertainties on

the model parameters. Moreover, there is a constant wind disturbance with

speed of 5m/s acting on the helicopter. Disturbance forces caused by wind are

calculated using velocity damping coefficients Xu and Yv, such that dx = Xudu
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Figure 7.5: Tracking performance with uncertainties and constant wind (Sim 2)

and dy = Yvdv, where du and dv are wind compoents along helicopter axes.

The helicopter is required to track a square trajectory under the control of the

original ENMPC, an ENMPC with integral action and the composite ENMPC

with DOBC. The tracking results are illustrated in Fig.7.5 with the control signals

given in Fig.7.6.

It can be seen from the tracking results that the ENMPC is able to deal

with uncertainties and achieve satisfactory tracking, but it cannot compensate

the steady state error mainly caused by the wind disturbance. In contrast, the

ENMPC with integral action cancels the steady state error, but it has side-effects

like overshoot and aggressive control commands (see Fig.7.5). Obviously, the

ENMPC augmented by DOBC outperforms the other two control strategies to a

large extent in delivering accurate tracking and smooth control signals. This is

because the disturbances is taken into account in the control scheme.

Although the disturbance observer is designed under the assumption of “slow”

disturbance, i.e. ḋ ≈ 0, it can be shown that DOBC is able to handle the

random turbulence as it can be designed quick enough for estimation. In the
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Figure 7.6: Control signals (Sim 2)

third simulation, a wind turbulence is introduced with its components along the

fuselage axes are independently excited by correlated Gauss Markov processes

[32]:
[

ḋu

ḋv

]

=

[

−1/τc 0

0 −1/τc

][

du

dv

]

+ ρBw

[

µu

µv

]

(7.72)

where µu and µv are independent white noise with zero mean, τc is the correlation

time of the wind µu = µv = 6m/s, Bw is the turbulence input identity matrix,

and ρ = 1/2 is the scalar weighting factor. The disturbance fed into the helicopter

is plotted in Fig.7.7 with respect to time.

The third simulation contains a forward step movement at 10s and a left step

at 25s. The tracking results are presented in Fig.7.8 along with the control signals

in Fig.7.9. Again, the ENMPC with DOBC has a much better performance

against that of ENMPC which is compromised by wind turbulence. On the

other hand, the disturbance observer also works well to estimate the random

disturbance. As shown in Fig.7.10 the estimated disturbance is very close to the

artificial disturbance fed into the helicopter.
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7.7 Flight test

After the initial verification using simulations, a number of flight tests have been

conducted to investigate the performance of the proposed control scheme on real

helicopters, where the uncertainties and unmodelled dynamics naturally exist.

The flight tests presented here include a hovering and perturbation test and a

pirouette manoeuvre.

In the first test, the helicopter was required to take-off and hover at the

origin at height of 0.5m. A wind perturbation was then applied on the helicopter

by posing a fan in front of the helicopter. The test result is given in Fig.7.11.

In the test, the helicopter was first under the control of ENMPC to perform

take-off and hovering. It can be seen that the ENMPC stabilised the helicopter

but with a steady state error due to the mismatch between the model used for

ENMPC design and the real helicopter dynamics. At 25 seconds of the test,

the disturbance observer switched on and the composite controller took action

to bring the helicopter to the setpoint. At 60 seconds, the fan was turned on

to generate the wind gust. The average wind speed is about 3m/s, which is

significant strong for the Trex-250 test helicopter with a small dimension. This

can be observed from the attitude history in Fig.7.12, where the magnitude of

pitch and roll angles of the helicopter dramatically surges after wind gust is

applied. However, the composite controller exhibited an outstanding performance

under the wind gust and maintained the helicopter position very well. The force

disturbances estimated by disturbance observer are given in Fig.7.13, and the

control signals are illustrated in Fig.7.14

It is also interesting to see where the disturbances come from without external

wind gust, and this will also explain why ENMPC based on the nominal model

cannot achieve asymptotic tracking if the helicopter is not trimmed properly. By

recalling helicopter dynamics model (7.1) and considering steady-state model, we

have

0 = −g sin θ0 + dx

0 = g cos θ0 sinφ0 + dy
(7.73)

where φ0 and θ0 are the trim attitude (also known as sitting angle) depending on

the particular helicopter. The trim attitude may be attributed to asymmetrical

structure and model uncertainties. Their values are small so that they usually
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are ignored in the theoretical analysis, but they do affect the actual control per-

formance as they project vertical lift to longitudinal and lateral directions. This

phenomena can be further explained by carefully examining the measurement

from the flight test. Observing the attitude measurement in Fig.7.12 reveals the

average roll and pitch angles are about 0.01rad, which contribute 0.1m/s2 and

−0.1m/s2 to dx and dy according to Eq.(7.73), respectively. The estimated dx

from observer is very close to our rough calculation, whereas the estimated dy is

smaller than what we expected. This is because that the tail rotor also generates

lateral thrust that has not been taken into account in the nominal model. The

above quantitative analysis gives a good confidence on the proposed disturbance

observer.

The second flight test aimed to examine the capability of aerobatic manoeu-

vre. Unlike the conventional MPC being restricted to a low control bandwidth,

the high bandwidth that ENMPC can achieve makes it a suitable candidate for

controlling helicopter to perform complicated manoeuvres. In the flight test, the

helicopter was controlled to perform a pirouette manoeuvre, in which helicopter

started from the hovering position and flew along a straight line while pirouetting

at a yaw rate of 120 deg/s. This is an extremely challenging flight pattern, be-

cause the lateral and longitudinal controls are strongly coupled by the rotation,

and they have to coordinate with each other to achieve a straight progress. Be-

sides, the varying position of the tail rotor with respect to the progress direction

poses severe disturbances on the forward flight. The result from the flight test is

shown in Fig.7.15 and the control signals are provided in Fig.7.16. It can be seen

that the helicopter under the control of ENMPC executed the manoeuvre with a

very high quality.

7.8 Summary

This chapter describes a composite control framework for trajectory tracking

of autonomous helicopters. The nonlinear tracking control is achieved by an

explicit MPC algorithm, which eliminates the computationally intensive online

optimisation in the traditional MPC. On the implementation side, the introducing

of disturbance observer solves the difficulties of applying model based control

technique into the practical environment. The design of ENMPC provides a

seamless way of integrating the disturbance information. On the other hand the
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robustness and disturbance attenuation of the controller are enhanced by the

nonlinear disturbance observer.

Simulation and experiment results show promising performance of the com-

bination of the ENMPC and DOBC. Apart from the reliable tracking that the

proposed controller guarantees, it also has the ability of estimating the helicopter

trim condition during the flight which helps controller to deal with the variation

of the helicopter status like payload changing and component upgrades.
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Chapter 8

Conclusions

8.1 Summary

This thesis presents the research work of applying advanced control to a miniature

helicopter. Multiple disciplines are involved in this research, including mathemat-

ical analysis, software/hardware integration, and flight test operation, to achieve

the following objects:

• to establish a systematic process of flight control design for miniature he-

licopters, including modelling, control analysis and design, and verification

using flight tests.

• to demonstrate the practical feasibility of applying computationally inten-

sive MPC algorithms into systems with fast dynamics such as helicopters.

• to improve the dynamic performance, e.g. trajectory tracking, aggressive

manoeuvre, and disturbance attenuation, of an autonomous helicopter by

using advanced control algorithms.

The research outcomes towards the study on the small-scale helicopter lie in

two aspects: synthesis of the flight control system and development of advanced

control algorithms. These contributions are summarised as follows:

Firstly, an indoor testbed for ground vehicles and miniature helicopters has

been constructed by adopting commercial-off-the-shelf components. This testbed

is able to observer the flight state of helicopters, carry out control algorithms and

real-time control of small aerial/ground vehicles. All these functions are inte-

grated in a Matlab/Simulink environment to facilitate the software development
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allowing the rapid prototyping of new control algorithms. The testbed has played

a fundamental role in the research work because all the other activities, includ-

ing system identification, control implementation and flight tests, are established

upon it.

Secondly, a general model of a miniature helicopter has been developed that

has a simple structure but can capture the main characteristic of helicopter dy-

namics. A specific system identification process has also been developed to iden-

tify the unknown parameters in the model for the Trex-250 helicopter. The pro-

posed process exploits the model breakdown in conjunction with the correspond-

ing flight patterns to improve the identification results. The resulting helicopter

model has successfully served the following model based control design.

Thirdly, a MPC based control framework has been developed where the in-

tensive computation burden of online optimisation is mitigated by the piecewise

constant scheme and the control bandwidth is increased by the two-level con-

trol structure with a local linear controller. This framework can adopt the full

dynamic model of a helicopter in the online prediction, so that it takes the advan-

tages of general nonlinear MPC that tackles the complicated helicopter dynamics

subject to state and control constraints. In particular, it integrates the outer-

loop and inner-loop of a helicopter to deliver an integrated guidance and control

fashion, and takes into account future reference to achieve smooth tracking. The

stability analysis has also been carried out, which shows that the composite con-

trol framework consisting of the MPC and low-level controller is stable under

mild condition.

Next, the local path planning and the corresponding tracking control have

been solved in a hierarchical framework for miniature helicopters. In the planning

part, the same two-level MPC based framework is employed. The MPC planning

algorithm as the high-level controller is designed based on the helicopter’s kine-

matic model and the potential field method, so that it can generate the kinemati-

cally feasible and obstacle-free trajectory and provide the corresponding guidance

command. This guidance command is compensated by the low-level controller

(guidance compensator) before propagated to the flight controller to follow. The

flight controller is designed using the constrained linear MPC. It is able to track

the guidance command without steady state error while maintaining the heli-

copter attitude in a linear range, which in turn guarantees the effectiveness of the

planning using kinematic model.
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Finally, a composite controller of ENMPC and DOBC has been developed for

trajectory tracking of autonomous helicopters under disturbances and uncertain-

ties. The controller is designed on a modified helicopter model where the unknown

forces and torques caused by uncertainties and external factors are treated as

lumped disturbances. An explicit nonlinear MPC is designed based the modified

model by assuming the lumped disturbances are measurable. Then, a disturbance

observer is designed to estimate these known disturbances and feeds them back

to the MPC. The control design enhances the model by explicitly accounting for

disturbances, which naturally leads to a better performance, especially in prac-

tice. On the theoretical side, the analysis has shown that the closed-loop system

under the composite controller is globally asymptotically stable given that the

disturbances and command reference are bounded.

8.2 Discussion and perspective

The indoor testbed proposed in this thesis provides an alternative way in deliv-

ering advanced flight control algorithms to UAV systems. Performing compre-

hensive simulations is a standard process in synthesis and verification of flight

control design, but it will be more elaborate if flight tests can be conducted to

provide a more realistic assessment of any new algorithms. This rapid proto-

type feature allows researchers to obtain more realistic performance of the newly

developed algorithm, to build up confidence and reduce risks when deploying

them on real UAVs. The future work related to the testbed is to expand its func-

tions, potentially in the following two directions: hardware-in-the-loop simulation

and automatic code generation. The first function is used to test the embedded

systems for onboard calculation of the proposed algorithms, whereas the second

function is to investigate the ability of converting Simulink programs into C codes

so that they can be implemented on embedded computers rapidly.

The works on modelling and system identification have solved the fundamental

problem in model based control design. In turn, the advanced control designed

based on the identified model have successfully deployed on the target helicopter.

The future work in this area is to take into account the main rotor speed of the

helicopter to generate a more accurate model that can account for a wider flight

envelop.

After the preparation works in the flight control development have been done,
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8. Conclusions

three advanced control algorithms based on MPC techniques are developed for

miniature helicopters focusing on different aspects in operations of autonomous

helicopters.

In applying MPC based algorithms to UAV applications, no matter for path

planning or flight control, the most critical conflict is between the computational

load and performance. High performance control can be achieved by adopting

more elaborate vehicle models or including more environment information, but

these will cause computational delay and consequently a low control bandwidth

that cannot accommodate UAV’s fast dynamics.

The MPC based control framework proposed in Chapter 5 solves this problem

to a certain extend by using the combination of a piecewise constant scheme and a

two-level control structure. This is a general framework that can adapt to different

MPC algorithms that need to be implemented on systems with fast dynamics. As

demonstrated in the thesis, this framework is able to control miniature helicopters

with complicated nonlinear dynamics.

When introducing environment information into the online optimisation, the

MPC framework using full dynamic models may become intractable. Hence, a

hierarchical framework for the path planning and the following tracking control

is adopted, which account for outer-loop kinematics and inner-loop dynamics,

respectively. Although the interactions between the outer-loop and inner-loop

dynamics are ignored, the planning and control separation is efficient for the

normal flight.

For the case of trajectory tracking, the composite controller combining an

explicit MPC and a nonlinear disturbance observer provides a promising solution.

This controller generates control signals based on a MPC criterion and takes into

account disturbances to improve the practical performance in various application

environment. It has shown this ability in the daily operation of the testbed, where

helicopters with different payloads and trim conditions can all perform flight in

the desired quality. The disturbance observer based control also has the potential

to combine with constrained MPC algorithms leading to a more promising control

scheme.

It can be seen that although some problems in applying MPC based algorithms

into UAV systems have been solved in this thesis, there are broader potentials that

can be explored to further improve the performance of UAVs by using advance

control. Here, two interesting directions are listed that can be considered as the
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8. Conclusions

future work based upon this thesis.

One interesting topic is to combine the local path planning and tracking con-

trol in a more tight manner. This is very useful for helicopters flying in cluttered

area, which requires a faster response to the external environment and needs to

exploit the full dynamic ability of a vehicle in the planning to perform aggres-

sive dodging manoeuvre. Along this line, a simplified representation of helicopter

dynamics like kinematic model may be used in the MPC framework to reduce

the computation time, but the constraints on the kinematics have to be updated

based on the current state of the helicopter to reflect the helicopter’s manoeu-

vrability.

The multi-vehicle coordination is also a potential area to be explored by using

MPC techniques. Employing a group of UAV can provide unique features such

as efficiency and redundancy. In cooperative control of multiple vehicles, the

path planning on each individual vehicle needs to consider the other vehicle’s

movements to avoid collisions. In this case, MPC techniques are naturally suited

because that a in MPC framework not only the current position of each vehicle

can be obtained, the future trajectory can also be predicted and to be known a

prior by other vehicles in the group through communications.

At last, the proposed MPC based algorithms described in the thesis, along

with the way of designing and synthesising them into real helicopters, are hoped

to contribute to the UAV development and encourage the future work in related

area.
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Appendix A

Linear dynamic model

The linear dynamic model can be linearised from the full dynamic model devel-

oped in Chapter 4 around the hovering state and by combining the flapping angle

approximation (5.2).

For the planner movement, i.e. for describing longitudinal/lateral motions, it

has
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where Llat = LaAlat + LbBlat, Llon = LaAlon + LbBlon, Mlat = MaAlat + MbBlat

and Mlon = MaAlon + MbBlon. By defining state variables x1 = [u, v, φ, θ, p, q]T

and control inputs u1 = [δlat, δlon]
T , a compact form of Eq.(A.1) can be expressed

as ẋ1 = A1x1 +B1u1.

For the heaving/heading motions it has
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(A.2)
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Again, by defining x2 = [z, w, r]T and u2 = [δcol, δped]
T , Eq.(A.2) can be written

as ẋ2 = A2x2 +B2u2.

Given a discretisation time ∆T , the continuous models developed in the last

section can be transferred into a discrete form for the MPC design. By assuming

the control input is constant during the time step, the transferring can use the

following relation ship.

xi(k + 1) = eAi∆Txi(k) + A−1
i (eAi∆T − I)ui(k)

= Adixi(k) +Bd
i ui(k)

(A.3)

where index i = 1, 2 indicates the longitudinal/lateral or heave/heading subsys-

tem, and k + 1 indicates the next time step.
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Appendix B

Publications

B.1 Paper under review

1. Cunjia Liu, Wen-Hua Chen and John Andrews. Trajectory tracking of au-

tonomous helicopters using explicit nonlinear MPC augmented with distur-

bance observers. Control engineering practice, 2011. Resubmission invited.

B.2 Published paper

1. Cunjia Liu, Wen-Hua Chen and John Andrews. Explicit Nonlinear Model

Predictive Control for Autonomous Helicopters. Proceedings of the Institu-

tion of Mechanical Engineers, Part G, Journal of Aerospace Engineering,

2011. To appear.

2. Cunjia Liu, Wen-Hua Chen and John Andrews. Trajectory tracking of

small helicopters using explicit nonlinear MPC and DOBC. Proceedings of

the 18th World Congress, Milano, Italy, 2011.

3. Cunjia Liu, Wen-Hua Chen and John Andrews. Piecewise constant model

predictive control for autonomous helicopters. Robotics and Autonomous

Systems, 59[7-8]:571 - 579, 2011.

4. Cunjia Liu, Jonathan Clarke, Wen-Hua Chen, and John Andrews. Rapid

prototyping flight test environment for autonomous unmanned aerial vehi-
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cles. International Journal of Modelling, Identification and Control, 12[3]:200–

209, 2011.

5. Cunjia Liu, Wen-Hua Chen and John Andrews. Model predictive control for

autonomous helicopters with computational delay. Proceedings of UKACC

International Conference on Control 2010, 2010.

6. Cunjia Liu, Wen-Hua Chen and John Andrews. Experimental tests of au-

tonomous ground vehicles with preview. International Journal of Automa-

tion and Computing, 7[3]:342-348, 2010.

7. Cunjia Liu, Wen-Hua Chen and John Andrews. Optimisation based control

framework for autonomous vehicles: Algorithm and experiment. Proceed-

ings of Mechatronics and Automation (ICMA), 2010 International Confer-

ence on, 1030-1035, 2010.

8. Cunjia Liu, Jonathan Clarke, Wen-Hua Chen, and John Andrews. Modeling

and identification of a miniature helicopter. Proceedings of Workshop on

Human Adaptive Mechatronics (HAM), 2010.
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