Advanced reliability analysis of polymer electrolyte membrane fuel cells in automotive applications

2016-06-08T11:17:18Z (GMT) by Michael Whiteley
Hydrogen fuel cells have the potential to dramatically reduce emissions from the energy sector, particularly when integrated into an automotive application. However, there are three main hurdles to the commercialisation of this promising technology; one of which is reliability. Cur- rent standards require an automotive fuel cell to last around 5000 h of operation (equivalent to around 150,000 miles), which has proven difficult to achieve to date. This hurdle can be overcome through in-depth reliability analysis including techniques such as Failure Mode and Effect Analysis (FMEA), Fault Tree Analysis (FTA) and Petri-net simulation. This research has found that the reliability field regarding hydrogen fuel cells is still in its infancy, and needs development, if the current standards are to be achieved. In this research, a detailed reliability study of a Polymer Electrolyte Membrane Fuel Cell (PEMFC) is undertaken. The results of which are a qualitative and quantitative analysis of a PEMFC. The FMEA and FTA are the most up to date assessments of failure in fuel cells developed using a comprehensive literature review and expert opinion. Advanced modelling of fuel cell degradation logic was developed using Petri-net modelling techniques. 20 failure modules were identfied that represented the interactions of all failure modes and operational parameters in a PEMFC. Petri-net simulation was used to overcome key pitfalls observed in FTA to provide a verfied degradation model of a PEMFC in an automotive application, undergoing a specific drive cycle, however any drive cycle can be input to this model. Overall results show that the modeled fuel cell's lifetime would reach 34 hours before falling below the industry standard degradation rate of more than 5%. The degradation model has the capability to simulate fuel cell degradation under any drive cycle and with any operating parameters. A fuel cell test rig was also developed that was used to verify the simulated degradation. The rig is capable of testing single cells or stacks from 0-470W power. The results from the verification experimentation agreed strongly with the degradation model, giving confidence in the accuracy of the developed Petri-net degradation model. This research contributes greatly to the field of reliability of PEMFCs through the most up-to-date and comprehensive FMEA and FTA presented. Additionally, a degradation model based upon Petri-nets is the first degradation model to encompass a 1D performance model to predict fuel cell life time under specific drive cycles.