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I 

Abstract  

One of the main objectives in digital imaging is to mimic the capabilities of the human eye, 

and perhaps, go beyond in certain aspects. However, the human visual system is so versatile, 

complex, and only partially understood that no up-to-date imaging technology has been able 

to accurately reproduce the capabilities of the it. The extraordinary capabilities of the human 

eye have become a crucial shortcoming in digital imaging, since digital photography, video 

recording, and computer vision applications have continued to demand more realistic and 

accurate imaging reproduction and analytic capabilities. 

 

Over decades, researchers have tried to solve the colour constancy problem, as well as 

extending the dynamic range of digital imaging devices by proposing a number of algorithms 

and instrumentation approaches. Nevertheless, no unique solution has been identified; this 

is partially due to the wide range of computer vision applications that require colour 

constancy and high dynamic range imaging, and the complexity of the human visual system 

to achieve effective colour constancy and dynamic range capabilities.  

 

The aim of the research presented in this thesis is to enhance the overall image quality within 

an image signal processor of digital cameras by achieving colour constancy and extending 

dynamic range capabilities. This is achieved by developing a set of advanced image-

processing algorithms that are robust to a number of practical challenges and feasible to be 

implemented within an image signal processor used in consumer electronics imaging 

devises. 

 

The experiments conducted in this research show that the proposed algorithms supersede 

state-of-the-art methods in the fields of dynamic range and colour constancy. Moreover, 

this unique set of image processing algorithms show that if they are used within an image 

signal processor, they enable digital camera devices to mimic the human visual system’s 

dynamic range and colour constancy capabilities; the ultimate goal of any state-of-the-art 

technique, or commercial imaging device. 
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Glossary 

Chromatic aberration  Lateral chromatic aberration is a type of distortion in which there 

is a failure of a lens to focus all colours to the same convergence 

point. Chromatic aberration manifests itself as "fringes" of colour 

along boundaries that separate dark and bright parts of the image, 

because each colour in the optical spectrum cannot be focused at 

a single common point. Lateral chromatic aberration is when 

different wavelengths are focused at different positions in the 

focal plane.  

Colour accuracy  The measurement of the deviation of colours captured by a 

camera and the expected colours using a test chart like the 

ColourChecker.  

Colour shading  The measurement of the variation of colour throughout an image 

(not just the centre compared to the edges).  

Colour space  A colour space is a mathematical model describing the way colours 

can be represented as tuples of numbers, typically as three or four 

values or colour components. The standard PC colour space for 

displays is sRGB, while webcams generally use YUV colour spaces 

for capture.  

Defect pixel correction   A defective pixel fails to sense light correctly. Dead pixels are 

typically classified as minor failures and major failures based on 

how significant the failure is.  

Demosaicing  Also known as de-mosaicing, demosaicking or debayering. This is 

an algorithm used to reconstruct a full colour image from the 

incomplete colour samples output from an image sensor overlaid 

with a colour filter array. 

Depth of field  Depth of field is the distance between the nearest and farthest 

objects in a scene that appear acceptably sharp in an image.  

Dynamic range  Dynamic range is the ratio between the largest and smallest 

possible values of a changeable quantity. For imaging it is 
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measured by how many F-stops can be imaged in one scene, which 

can be done with a step chart like the ST-52.  

Field of view  The field of view is the angular extent of the observable world that 

is seen at any given moment from a camera. Diagonal field of view 

is the angular extent from the upper left and lower right (or upper 

right and lower left) corners of the image.  

Focus  An image, or image point or region, is in focus if light from object 

points is converged almost as much as possible in the image and 

out of focus if light is not well converged. The border between 

these is sometimes defined using a circle of confusion criterion.  

Focus range  The focus range is the depth range that the camera can focus. For 

fixed focus cameras this is equivalent to the depth of field. For 

autofocus cameras it is the minimal distance the camera can focus 

on an object to the maximal distance.  

Frame stitch WDR mode ISP in WDR mode for ISP stitching of N number of exposures input. 

Image aspect ratio  The image aspect ratio is the image height: width ratio using the 

number of pixels for height and width.  

Gain The Gain consists of the values of the Sensor Analog gain, ISP 

Digital gain and Sensor Digital gain. 

Gamma  Gamma correction is a nonlinear operation used to code and 

decode luminance or tristimulus values in video or still image 

system.  

Geometric distortion  Geometric distortion is a deviation from rectilinear projection, a 

projection in which straight lines in a scene remain straight in an 

image. The two most common forms of distortion are barrel and 

pincushion.  

ISO ISO standard 12232:2006. A measure of photographic sensitivity 

to light 

Lighting temperatures  The three lighting temperatures used in these requirements are 

2856 K (incandescent light, also called A), 3500 K (a common 

fluorescent light in the US, using the bulb Sylvania Octron 3500 K 
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FO17/735/ECO, 75 CRI) and 6500 K (also called Day, using the bulb 

GRETAG MACBETH F20T12/65 D65).  

Linear mode ISP support for single exposure image 

Lux The lux (symbol: lx) is the SI unit of illuminance and luminous 

emittance, measuring luminous flux per unit area. Lux is equal to 

lumen per square meter. 

MTF  Modulation Transfer Function is the magnitude of the Optical 

Transfer Function. MTF30 is the cycles/pixel where the MTF=30%, 

generally considered to be the lowest acceptable MTF for imaging.  

Native WDR mode ISP in WDR mode for sensor stitching of N number of exposures 

input. 

Over sharpening  Over sharpening or under sharpening is an Imatest measurement 

that characterises the degree that the image is sharpened relative 

to a standard sharpening model. It if is negative, sharpening is 

applied to the original response; if it is positive, de-sharpening is 

applied.  

Pixel aspect ratio  The ratio of the height: width of a pixel. 1:1 is a square pixel.  

Relative illumination  Relative illumination, or vignetting, is a measure of the image 

brightness in the centre compared to the corners.  

RMS edge roughness  RMS edge roughness is an Imatest measurement of how rough an 

edge is. An edge can be rough due to demosaicing, image scaling 

and spatial denoising.  

Saturation  Colour saturation is determined by a combination of light intensity 

and how much it is distributed across the spectrum of different 

wavelengths. The purest colour is achieved by using just one 

wavelength at a high intensity, such as in a laser light. If the 

intensity drops, so does the saturation. An ideal ColourChecker 

chart has saturation of 100%.  

SNR  Signal to Noise Ratio is the ratio of the signal power to the noise 

power corrupting the signal. The SNR can be measured spatially 

using a single image or temporally using more than one image.  



 

XX 

sRGB  sRGB is a standard RGB colour space created cooperatively by HP 

and Microsoft in 1996 for use on monitors, printers and the 

Internet. 

Texture acutance  Texture acutance is a measure of how well a camera can capture 

texture in a scene. It is defined in CPIQ Phase 3 and was designed 

because denoising algorithms typically don’t degrade MTF but can 

significantly degrade texture.  

White balance  White balance is a colour balance that tries to make white (and 

grey) objects appear white (and grey).  

Zoom  Image zoom uses either optical zoom or digital zoom to decrease 

(narrow) the apparent angle of view of a digital photographic or 

video image. 

 

 



 

Chapter 1  

Introduction 

 

One of the main objectives in digital imaging is to mimic the capabilities of the human eye, 

and perhaps, go beyond in certain aspects. The HVS is so versatile, complex, and only 

partially understood that no up-to-date imaging technology has been able to accurately 

reproduce the capabilities of it.  

 

It was not until recent times that the ever-growing computational power, availability of 

microprocessors and imaging sensor technologies, made high quality imaging devices a 

reality for consumer grade electronic devices. Nonetheless, digital imaging systems are still 

significantly inferior, when compared with the HSV. The two most challenging features of 

the HVS are: its remarkable dynamic range capability to detect subtle contrast variations, 

and achieving colour constancy under a large variety of illumination conditions.  These two 

factors, have become a crucial shortcoming in digital imaging since digital photography, 

video recording, and computer vision applications have continued to demand more realistic 

and accurate imaging reproduction. 

 

The human eye is capable of adapting to lighting conditions that vary by nearly ten orders of 

magnitude, and within a scene, the HVS functions over a range of about five orders of 

magnitude [30]. In contrast, standard imaging sensors are only capable of reproducing two 

orders of magnitude of intensity variations [30]. To overcome the restricted dynamic range 

in standard digital imaging devices, researchers have proposed multi-exposure image fusion 

techniques that use standard dynamic range cameras to create high dynamic range (HDR) 

images. However, the main limitation of such current multi-exposure image fusion 

techniques is their inability to compensate for moving objects in a scene, camera shake, and 

being able to run in real time for HDR video content creation.  
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Colour constancy is the effect whereby the perceived or apparent colour of a surface 

remains constant despite changes in the spectral composition of the illumination and 

intensity levels [92]. The HVS is colour constant to a large extent, but this is affected by 

contents of the field of view, state of adaptation, intensity level of illumination and 

difference of the adapting chromaticity from different kinds of illumination conditions. Over 

decades, researchers have tried to solve the problem of colour constancy in digital imaging 

by proposing a number of algorithms and instrumentation approaches. Nevertheless, no 

unique solution has been identified; this is partially due to the wide range of computer vision 

applications that require colour constancy capability and the associated complexity of the 

HVS to achieve colour constancy [97].  

 

Achieving colour constancy and high dynamic range imaging are not only important for 

digital video or still photography in consumer cameras. It is also important for computer 

vision related applications that require high dynamic range vision and accurate colour 

representation. These facts led to the motivation behind the research presented in this 

thesis, i.e. to attempt to address the lack of dynamic range and inaccurate colour 

reproduction capabilities of current digital cameras by investigating and developing 

advanced image-processing algorithms that are robust and feasible for practical use and 

implementations.  

 

1.1 Aim and Objectives 

The aim of the research presented in this thesis is to enhance the overall image quality of 

digital cameras by increasing dynamic range capabilities and achieving colour constancy. 

This is to be achieved by developing a set of advanced image-processing algorithms that are 

robust to a number of practical challenges and feasible to be implemented in hardware 

within image signal processors (ISP) used in consumer electronic imaging devises. 

 

The specific research objectives are: 

1. Carrying out a literature review to identify current image quality limitations of digital 

camera devices in comparison to the HVS. 
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2. Studying existing HDR and colour constancy approaches to identify their weaknesses, as 

well as analysing the challenges that the algorithms will face when implemented and used 

in real imaging systems. 

 

3. Reviewing state-of-art image registration and image fusion algorithms. In particular, 

investigating the robustness of the image fusion algorithms in the presence of camera shake. 

 

4. Developing an HDR solution that allows compensating for camera shake through an image 

registration process, and proposing a novel image fusion approach that can handle practical 

challenges faced by the state-of-the-art algorithms. 

 

5. Developing a robust and low complexity multi-exposure image fusion algorithm for video 

HDR creation that is capable of compensating for motion due to camera shake and moving 

objects in the scene.  

 

6. Investigating the challenges of colour constancy in digital imaging and reviewing the state-

of-art colour constancy methods that can be used in real time applications, as well as 

identifying their weaknesses.  

 

7. Developing a novel colour management system that encompasses the colour constancy 

problem and the reproduction of pleasing colours within an ISP pipeline. 

 

8. Benchmarking the proposed colour constancy method to the state-of-art colour constancy 

methods proposed in literature, and identifying fundamental problems when trying to 

achieve colour constancy in digital imaging. 

 

9. Redesigning the colour constancy method in order to solve fundamental colour constancy 

problems in HDR imaging with multiple illuminants or reflectances in scene. 

 

10. Identifying the limitations of the proposed image processing algorithms and outline the 

future directions of research. 
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1.2 Contributions 

This thesis consists of a number of original contributions and novel ideas mainly focused on 

enhancing the overall image quality of digital cameras. The key contributions, which are 

outlined below and presented in detail in Chapters 5 - 7, have been published as conference 

papers and journal manuscripts. Citations are provided next to the equations’ number in 

order to differentiate equations from previous research, and equations that are originally 

derived and presented as a contribution in this thesis. 

 

I) HDR imaging 

A novel multi-exposure image fusion algorithm that has the unique capability of 

compensating for camera shake prior to image registration is proposed. This algorithm 

enables users to create HDR images with a standard dynamic range camera without the aid 

of stabilising devices such as tripods.  

 

The first contribution presented in this thesis is a novel multi-exposure image fusion 

algorithm suitable for practical implementation in hardware for video HDR content creation 

(presented in Chapter 5). The proposed approach for video HDR content creation is 

implemented as a pre-processing technique that works in RAW Bayer domain and can be 

incorporated within an ISP pipeline. This novel method performs global motion estimation 

and correction to compensate for motion due to camera shake, followed by an image fusion 

process, wherein its operational logic compensates for objects moving within the captured 

scene. The combination of these two steps, i.e., global motion compensation in conjunction 

with the motion aware fusing technique, allows the removal of motion artefacts and 

ghosting due to camera shake and moving objects in the scene. It is shown that the proposed 

algorithm performs efficiently in different lighting conditions, scenes, and is robust enough 

to be able to perform with different imaging sensors. The proposed novel solution for 

extending the dynamic range of digital cameras enables digital imaging devices to create 

HDR content in real time. 
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II)  Colour constancy 

A novel colour management system that works within an ISP and is able to compensate for 

different illuminants and at the same time reproduce pleasant colours is proposed in 

Chapter 6. The proposed approach is designed in such a way that it is robust enough to cope 

with sensor-to-sensor variations, accurate enough to pass industry image quality standards, 

and flexible to reproduce pleasant colours in images by following Kruithof theory [95].  

 

The proposed colour management system within an ISP pipeline encompasses three stages. 

First, the colour temperature of the illuminant is estimated (AWB module); secondly, a 

colour correction/balancing matrix is applied (CCM); and thirdly a cooling-warming effect is 

applied to achieve a typical camera end-user’s preferred colours, and therefore, achieving a 

solution to the colour constancy problem in digital imaging. 

 

In order to verify the performance of the proposed AWB module, a large database consisting 

of RAW Bayer images is captured using two different DSLR commercial cameras, and an 

image sensor commonly used in smart phones (OV8835). With this database, the proposed 

AWB method is benchmarked against the most known colour constancy methods in 

literature.  

 

The database of RAW Bayer images is published and can be accessed at: 

https://drive.google.com/folderview?id=0B2xIm02tjf9kTTFZSTB4UXB2UDg&usp=sharing 

 

The results of the experiment show that the proposed method outperforms all other state-

of-the-art colour constancy methods in terms of accuracy and robustness. That is, the 

proposed colour management system proves to be capable of balancing neutral and spectral 

colours under all types of illuminants, and is able to handle challenging scenes such as: 

monotonic colours, green grass colour versus CWF lighting, opposite colour objects’ surface 

reflectance to the light colour temperature in the scene, sunset, low light conditions, 

absence of grey, noisy images, mixed lighting, cloudy scenes, and scenes with blue-sky 

images etc. It is noted that all other colour constancy methods fail under these extreme 

circumstances.  

 

https://drive.google.com/folderview?id=0B2xIm02tjf9kTTFZSTB4UXB2UDg&usp=sharing
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The last contribution presented in Chapter 7 of the thesis is a unique and sophisticated non-

linear image processing method whose aim is to solve the colour constancy problem in HDR 

imaging with multiple illuminants or reflectances in the scene. The novelty of the proposed 

method is that it enables digital camera devices to increase dynamic range and colour 

constancy capabilities. This novel solution incorporates the proposed video HDR solution, an 

image segmentation process based on the image luminance levels, and a novel spatially 

variant white balancing correction method based on the proposed colour management 

system mentioned above. The results of the experiments performed demonstrate that the 

proposed method performs efficiently under different lighting conditions, scenes, and is 

robust enough to work well with different imaging sensors. Moreover, results of the 

experiments performed shows that the proposed method improves the subjective image 

quality and make high dynamic range images look more natural and well balanced in colour.   

 

1.3 Thesis Structure 

This thesis is organised in two parts. The first part includes non-contributory chapters 

providing basic information, framework, and fundamental background knowledge about the 

research problem addressed in the thesis. The second part of this thesis includes three 

contributory chapters, each dedicated to a particular problem in digital imaging and a novel 

approach to addressing the problem. A summary of the chapters of this thesis is presented 

below. 

 

Chapter 1 provides an overview of the thesis, defines the research problem, states the 

research motivation, specifies the thesis aims and objectives, and outlines the organisation 

of the thesis. 

 

The background theory and literature review are presented in Chapter 2 and Chapter 3, 

where fundamental concepts and theories on different areas of mathematics, computing 

and engineering related to the Human Visual System, digital video and still photography are 

introduced. Moreover, these chapters provide an insight to the existing chromatic 

aberration correction, HDR imaging, and colour constancy solutions proposed in literature. 
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Chapter 4 presents a description of the framework used in the algorithms presented in 

contributory chapters that fit within an ISP under a common programme i.e. the 

improvement of image quality within an ISP pipeline that can be implemented in hardware. 

 

Chapter 5 presents a multi-exposure image fusion algorithm suitable for practical 

implementation in hardware for video HDR content creation. This novel and optimised 

method is implemented as a pre-processing technique that works in the RAW Bayer domain 

and can be incorporated within an ISP. This chapter includes a literature review, 

experimental setup, results, analysis of experiments carried out, and explanation of the 

contributions made by the proposed algorithm. 

 

Chapter 6 presents a novel colour management system within an ISP pipeline that aims to 

solve the colour constancy problem in digital imaging. This chapter presents a 

comprehensive literature review of the state-of-the-art colour constancy algorithms, a 

detailed explanation of the proposed colour management system, experimental setup, 

analysis of experiments carried out, conclusions reached, and descriptions of the 

fundamental colour constancy problems found in digital imaging. 

 

Chapter 7 incorporates the research and algorithms proposed in this thesis to provide a 

solution to the fundamental limitations of current imaging devices in the areas of colour 

constancy and dynamic range. As a result, a novel spatially variant colour constancy 

algorithm within an ISP pipeline that solves the colour constancy problem in HDR imaging 

with multiple illuminants or reflectances in the scene is presented.  This chapter includes a 

literature review, description of the problem to be solved, experimental setup, analysis of 

experiments carried out, and the conclusions reached. 

  

Chapter 8 concludes the research presented in this thesis with an insight into the future 

directions of research and possible enhancements to the proposed algorithms. 



 

Chapter 2  

Background Theory and Fundamentals  

 

This chapter covers the background theory and fundamental concepts of digital camera 

components as an introduction to dynamic range, and colour constancy in digital imaging. 

These concepts are required for a better understanding of the novel methodologies 

proposed in the chapters that follow and the ability of digital cameras to capture light.  

 

For clarity of presentation, this chapter is organised as follows: In section 2.1, an introduction 

to the HVS and digital cameras ability to capture light in order to produce images is 

presented, followed by section 2.2 in which colour image reproduction of the HVS and digital 

cameras is explained. Section 2.3 presents an introduction to digital imaging sensor 

characteristics, and section 2.4 provides the background theory of image signal processors. 

Section 2.5 introduces the concepts of image quality in digital imaging and section 2.4 

summarises all the sections with the insight to make conclusions and identifying open 

research problems in the selected areas of research. 

 

2.1 Human Visual System and Digital Cameras  

One of the main objectives in digital imaging is to mimic the capabilities of the human eye, 

and possibly, go beyond in certain aspects. The single most challenging feature of optical 

information is the high dynamic range of intensities hitting the same light receptor from one 

instant to another, or hitting different light receptors in an observed scene at the same time 

[9]. As shown in table 2.1, this range may exceed eight orders of magnitude. This is 

particularly challenging when a digital camera captures scenes with a wide range of colours 

and intensities. 
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Condition Illuminance (lx) 

Clear night sky 0.001 

Quarter moon 0.01 

Full moon 0.1 

Late twilight 1 

Twilight 10 

Heavy overcast 100 

Overcast sky 1000 

Full daylight 10000 

Direct sunlight 100000 

Table 2.1: Optical intensities in photometric units in real-world scenes [9] 

Human eyes can see luminance levels between 10-3 cd/m2 and 108 cd/m2, about 220dB [11, 

12]. To achieve such a wide dynamic range, the eye has three mechanisms: photoreceptor 

cells, cones and rods, which correspond to photodiodes with different photosensitivity; a 

logarithmic response allowing saturation to occur very slowly; and by the dynamic 

adaptation of the logarithmic curve according to the average luminance levels or ambient 

light [12]. In contrast, typical digital imaging devices have a dynamic range of 60-70dB with 

a linear response rapidly reaching saturation [10].  

 

The human eye has a remarkable dynamic range capability to detect subtle contrast 

variations and to interpret scenes under a large variety of illumination conditions [8]. In 

contrast, a digital camera can only capture a limited dynamic range of possible variations of 

brightness information. As a result, when a digital camera is used to capture a scene that 

exceeds the maximum dynamic range of the camera, the image captured ends up being too 

dark in some areas or possibly saturated in others. Computer graphics and related digital 

imaging applications continue to demand more realistic and accurate imaging reproduction, 

however today’s digital cameras’ inability to captured high dynamic range scenes is 

becoming a crucial shortcoming in digital photography, video recording, and computer vision 

applications. 

 



CHAPTER 2 BACKGROUND THEORY AND FUNDAMENTALS 

10 

2.2 Colour Reproduction in Digital Imaging 

Visible light is a form of radiant energy that travels in space and is transmitted, absorbed, 

and reflected by different materials. In the case of the HVS, light that reaches 

photoreceptors inside eyes, produce visual sensations depending on the characteristics of 

the light spectrum. Human eyes are sensitive to light which lies in a very small region of the 

electromagnetic spectrum, “the visible light”, which corresponds to wavelengths of 400 to 

700nm, with colours ranging from violet through red [11]. Figure 2.1 shows the visible light 

spectrum of human eyes (image taken from [13]).  

 

 

Figure 2.1: HSV Visible Light [13]. 

In contrast to the HVS, imaging sensors are sensitive to UV light, from 250nm, and a 

considerable amount of infrared light, with wavelengths up to 950nm [15]. For standard 

photography, capturing infrared light is not desirable because accurate colour reproduction 

would be impossible due to a rapid saturation in the red channel, focal point convergence, 

and spectrum crosstalk in the three primary colours [15]. Thus, if the aim is to mimic the 

human eye, sensors have to be fitted with IR-cut filters to narrow down the spectrum of light 

captured by the imaging sensor, and therefore match the HVS “Visible Light”. Nonetheless, 

specialised digital cameras, mainly monochromatic, have been designed to exploit the fact 

of sensors being able to detect a broader spectrum than the HSV, and create camera 

applications for very low light, “night vision”, or for medical purposes [15]. 
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2.2.1 Colour image formation 

Trichromatic theory dates back to the seventeenth and eighteenth centuries when John 

Dalton, Isaac Newton and Thomas Young, to name a few [18], started studying the HSV 

response to light, and characterised the human eye sensitivities as shown in figure 2.2(a). In 

HVS, the colour image formation process is through the integration of the responses of the 

three types of cone cells, which are responsible of detecting the spectra of the illuminant, 

the surface reflectance of the scene, and the sensitivity of the image acquisition system over 

the entire spectrum [16]. This can be denoted as: 

 

𝐿 = ∫𝐶(𝜆)𝐿(𝜆) 𝑑𝜆,𝑀 = ∫𝐶(𝜆)𝑀(𝜆) 𝑑𝜆, 𝑆 = ∫𝐶(𝜆)𝑆(𝜆) 𝑑𝜆            (2.1) [125] 

 

Where l, m, and s are the three types of cone cells in the eye, L(λ), M(λ), S(λ), represent the 

relative sensitivities of the three cone cells, and C(λ) is the function of colour signal which is 

focused by the lens at the retina, and to which the light sensitive cone cells respond [17]. 

This same concept is used in digital images but in this case, C(λ) is focused into an imaging 

sensor with a Bayer RGGB CFA to emulate the cone cells in the human eye. The relative 

spectral sensitivity of an imaging sensor can then be formulated as: 

 

𝑋 = ∫𝐶(𝜆)�̅�(𝜆) 𝑑𝜆, 𝑌 = ∫𝐶(𝜆)�̅�(𝜆) 𝑑𝜆, 𝑍 = ∫𝐶(𝜆)𝑧̅(𝜆) 𝑑𝜆            (2.2) [125]  

 

Where X, Y, Z are the tristimilus values defined in CIE XYZ space. 

 

 In 1931 the Commission International de I’Éclairage (CIE) proposed standards for colour 

representation based on the physiological perception of light, which are based on a set of 

colour matching functions related to red, green and blue cones in the eye as shown in figure 

2.2(b) [17].  
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a)     b) 

Figure 2.2: a) The relative spectral response curves for the three types of cone cells. b) The relative 

spectral response curves for a typical trichromatic digital camera [17]. 

The colour matching functions give the amount of each primary colour necessary to generate 

a particular energy spectrum. Nonetheless, it is important to note that trichromatic theory 

has limitations and cannot accurately generate all the colours of the electromagnetic 

spectrum [19]. This fact is illustrated in figure 2.3(a), where the CIE 1931 chromaticity 

diagram is shown, along with the sRGB colour gamut space. Note that areas outside the sRGB 

gamut triangle cannot be accurately reproduced by the trichromatic theory. Many colour 

spaces have been proposed with the aim extending the accuracy of colour reproduction. 

Achieving all colours may not be possible without introducing more dimensions to the colour 

model [19]. Figure 2.3(b) shows examples of different gamut capabilities of RGB colour 

spaces. 

 

  

a)    b) 

Figure 2.3:  a) CIE 1931 chromaticity diagram showing the gamut of the sRGB colour space and 

location of the monochromatic colours. b) Examples of RGB colour spaces in the chromaticity 

diagram [19] 
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2.2.2 Colour Constancy 

Colour constancy is the effect whereby the perceived or apparent colour of a surface 

remains constant despite changes in the spectral composition of the illumination and 

intensity levels [20]. The HVS is colour constant to a large extent, but this is affected by 

contents of the field of view, state of adaptation, intensity level of illumination and 

difference of the adapting chromaticity from different kinds of illumination conditions [92]. 

 

The HVS has evolved in such a manner as to maintain a dynamic white balance at all times. 

For example, if a room with white walls is illuminated by a tungsten light bulb, the walls may 

be perceived with a yellow tint but all other objects in the scene will maintain their 

respective colour balance, as if they were illuminated by day light. Edward H. Land 

demonstrated this effect by setting an experiment using “Mondrian” consisting of random 

sets of colour patches illuminated by different illuminants [21]. Colour constancy is assumed 

to be fundamental to colour vision, allowing functions ranging from the primitive foraging 

for ripe fruit in a tree, to the modern use of textiles, cosmetics, and packaging. In theory, 

colour constancy is necessary for producing a stable visual world [20]. 

 

Colour constancy in digital imaging refers to the ability of a digital camera to recognise and 

reproduce the colour of an object as perceived under some canonical illumination, such as 

white light with a flat spectrum, regardless of the illumination that is incident upon it [126]. 

Digital cameras have to rely on fast colour balancing algorithms, integrated into their ISP 

pipeline, to estimate the colour temperature of a scene illumination in terms of the camera 

sensor response. However, since colour constancy algorithms have to calculate the colour 

temperature by processing only the digital pixel values, the colour temperature calculation 

of the illuminant is ill posed, and even more, when dealing with the colour constancy 

problem in digital photography, it is necessary to take into account the colour preference of 

end users. Pleasing or memory colours, the colours that are in a person’s mind that are 

inseparable from certain common objects, may be preferred over accurate reproduction of 

colours [94]. Thus, the target is not to reproduce accurate representation of colours in an 

image, but to reproduce what the pleasing memory colours in the HSV are [94]. 
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Achieving colour constancy in digital imaging is not only important for digital video or still 

photography in consumer cameras, it is also important for computer vision applications, 

especially if colour constant descriptors are used for object recognition. The work presented 

in Chapters 7 and 8 is intended so that colour constancy can be achieved in a controlled 

manner, and at the same time being able to produce pleasing-memory colours within an ISP 

in order to improve the overall image quality of a camera system. 

  

2.3 Imaging Sensors 

An imaging sensor is a solid-state device which captures light to form a digital image. Wafers 

of silicon are used as the base for the sensor’s integrated circuit, which is built up via a 

process known as photolithography [3]. This process creates millions of tiny wells (pixels), 

which sense photons arriving at a particular location in the sensor.  

 

Today’s cameras mostly use charge coupled device (CCD) or complementary metal oxide 

semiconductor (CMOS) sensors. These two are the underlying technology of digital cameras. 

The main differences between CCD and CMOS sensors arise from their pixel readout 

architectures. In a CCD, charge is shifted out of the pixel array via vertical and horizontal 

CCDs. Then, the charge is converted into a voltage via a simple follower amplifier and serially 

readout before digitising the analogue signal. In a CMOS image sensor, charge voltage signals 

are readout one row at a time, in a similar manner to a random access memory, using row 

and column select circuits [1].  

 

CCD and CMOS readout architectures have both their advantages and disadvantages. The 

main advantage of the CCD readout architecture is that it requires minimal pixel overhead, 

making it possible to design image sensors with very small pixel sizes, and since charge 

transfer is passive, CCDs have better temporal noise performance. Moreover, CCDs have a 

high output uniformity, which results in cleaner, high quality images [1]. However in CCD 

sensors, the charge transfer readout is serial, making the readout speed to be limited and 

requiring high power due to the need for high-rate, high-voltage clocks to achieve near 

perfect charge transfer efficiency [2]. CCD sensors are also distinct from CMOS is their use 
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of global shutters instead of rolling shutters. Global shutters process an entire image at once 

by exposing the full frame for a predetermined amount of time. This means that the entire 

sensor gathers an equal amount of light at once and therefore, images are free of distortion 

related to rapid movement or flashes of light. 

 

In a CMOS image sensor, the readout path comprises several active devices that introduce 

both temporal noise and fix pattern noise; nonetheless, the random access readout of CMOS 

sensors provides the potential for high-speed readout and window-of-interest operations at 

low power consumption [1]. Unlike CCDs, CMOS sensors have circuitry at the pixel level. This 

extra circuitry crowds the pixels, limiting their ability to capture light and resulting in 

generally poorer visual image quality in comparison to CCDs [1]. 

 

Imaging sensors are colourblind, thus a mosaic of coloured filter array (CFA) has to be placed 

over the pixels in order to reproduce colour images. One of the most common filter arrays 

used in today’s cameras, is the Bayer array, consisting of alternating rows of red-green and 

green-blue filters, known as the Bayer RGGB CFA [4]. Figure 2.4 shows an example of a 

sensor with a Bayer type CFA.  

 

 

Figure 2.4: Image sensor with a Bayer type CFA [126]. 

The CFA, and the analogue to digital (A/D) components of a sensor, allow capturing digital 

colour images. However, this data still needs to be processed by an image signal processor 

(ISP) to interpret and enhance this data so that the final image appears identical to what a 

human eye can see.  
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2.3.1 Types of noise and dynamic range of imaging sensors  

The accuracy of an imaging sensor in gathering photons and converting them into a digital 

signal is crucial for the quality of the recorded image. Any inaccuracies of an imaging sensor 

to capture light will constitute a degradation of signal, which is perceived as noise. There are 

several sources of noise in imaging sensors: read out, fixed pattern noise (FPN), temporal, 

thermal, pixel response non-uniformity, dark current, photon shot, and quantisation errors 

[6].  The combination of all these types of noise is considered to be the noise floor level of 

an imaging sensor.  

 

Read out noise: read out is the type of noise caused by voltage fluctuations in the sensor 

circuitry that contributes to a deviation of the digital pixel value (DN) from the ideal DN 

proportional to the photon count [6].  

 

Fixed pattern noise: The primary cause of FPN in image sensor is dark current non-

uniformity [6]. If the dark current of each pixel is not uniform over the whole pixel array, the 

non-uniformity is seen as FPN because correlated double sampling (CDS) cannot remove this 

noise component.  

 

Temporal noise: Temporal noise is a random variation in the signal generated by the sensor 

that fluctuates over time [6]. 

 

Thermal noise: Thermal agitation of electrons in an imaging sensor can liberate a few extra 

electrons [7], which cannot be distinguished from the electrons freed by photon absorption. 

Therefore, this effect causes a miscount of the photons count represented by the DN. 

Thermal electrons are freed at a relatively constant rate per unit time, and increases with 

exposure time [7]. 

 

Pixel response non-uniformity: this type of noise is presented as the fluctuation of the DN 

of output pixels at different exposure times due to the photon to output voltage conversion, 

i.e. nonlinear response of pixels at different exposure times.  
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Quantisation error: When analogue signal is converted into a digital signal, the analogue 

signal is rounded to a nearby integer value and this produces a rounding error of the actual 

signal. In practice, this is a minor contribution to the total noise of a sensor [7]. 

 

Dark Current: Dark current, also known as black level, is the current that is integrated as 

dark charge at a charge storage node inside a pixel. The amount of dark charge is 

proportional to exposure time and is also a function of temperature [6].  

 

In order to define the dynamic range of a sensor, it is necessary to know the full well capacity, 

also known as the saturation charge of a sensor [6]. The full well capacity indicates the 

maximum amount of charge that can be accumulated on a photodiode capacitance. The 

dynamic range (DR) capability of a sensor is measured as DR = 20log(S/N) in decibels. Where 

S is the saturation point and N is the root mean square readout noise floor measured in 

electrons or volts [10]. 

 

Figure 2.5 shows an example of the photoconversion characteristics taken from [6], 

illustrating total dynamic range, signal, photon shot noise, and read noise (noise floor) as a 

function of incident photons. In the plot shown in Figure 2.5, it is assumed that a virtual 

image sensor with a pixel size of 25μm2, a conversion gain (C.G.) = 40 μV/e-, a full-well 

capacity of 20,000 electrons, a noise floor of 12 electrons, and a detector’s quantum 

efficiency QE of 0.5. Dark current shot noise is not included in the plot. In this example the 

dynamic range of the sensor equals 20log(20000/12) = 64.4 dB 
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Figure 2.5: Example of photoconversion characteristics [6]. 

 

2.4 Image Signal Processors 

An image signal processor is responsible for enhancing and translating the Bayer RAW data 

output of an imaging sensor into a final image with full colour information at each pixel. The 

ISP processes have to be done in real time and is often implemented as an integrated 

component of a system-on-chip (SoC) image processor. This allows frontend image 

processing to be completed without placing any processing burden on the main application 

processor.  

 

An ISP pipeline is often composed of advanced image processing algorithms in order to 

enhance the overall image quality of a system. This is required since artefacts are introduced 

by the camera optics, sensor spectral characteristics, and noise performance. Some of the 

processes used for enhancing image quality within an ISP are: linearisation, hot pixel 

correction, noise reduction, green equalisation, demosaicing, dynamic range compression, 

colour correction, vignetting correction, black level subtraction, sharpening, cross talk 

removal, colour space conversion, down sampling, frame stitching, digital image 

stabilisation, and gamma correction. Moreover, the ISP is responsible for the real time 
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automated controls (3A algorithms) of a digital camera. The 3A algorithms are: auto 

exposure, auto white balance, and continuous auto focus [5]. In addition to removing 

artefacts introduced to the image by the optics and imaging sensor characteristics, the ISP 

is also used for improving the lack of functionality that an imaging sensor can provide. That 

is, achieving colour constancy, panoramic imaging, lens distortion correction and extending 

the dynamic range.  

  

Figure 2.6 shows an example of an ISP and its modules. The order of the ISP modules 

mentioned above completely depends on implantation trade-offs and flexibility of the 

system. Factors such as type of application, image quality, frame rate, power consumption, 

bandwidth, gate count, memory requirements, and time-to-market considerations usually 

determine the placements of each of the ISP modules used in digital cameras [6].  

 

 

Figure 2.6: ISP block diagram example. 

The image quality of digital cameras completely depends on the lens, sensor and the ISP’s 

ability to produce high quality images. However, the ISP plays a main role in achieving the 

best possible image quality of a digital camera, even if the optics and imaging sensor used 

are not the best of their kind. The work presented in the following chapters is intended so 

that all of them can be directly incorporated within an ISP to improve the overall image 

quality of a camera system. 
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2.5 Image Quality Assessment 

Digital images are subject to a wide variety of distortions during acquisition, processing, 

compression, storage, transmission and reproduction, any of which may result in 

degradations of the perceived image quality [22]. Previous research in image quality has 

shown that if the ultimate goal of digital imaging is to be viewed by humans, the only 

“correct” method of quantifying image quality is through a subjective evaluation [22]. 

However, studies have also shown that subjective image quality evaluation is usually 

inconvenient, time consuming, and to a great extent difficult to measure due to different 

societies’ culture and geography of human individuals’ visual preferences [22, 23]. This fact 

has led researchers to develop objective measurements in order to measure quantitative 

image quality measurements that can automatically predict, monitor, optimise, and 

benchmark the perceived image quality by the HVS. 

 

There are two key aspects of image quality [24]. i) Factors affected by post-processing. 

Contrast, colour balance, and colour saturation. These are the factors that can be enhanced 

in a darkroom (digital or chemical) under the control of the photographer. For example, 

higher contrast images usually score higher in visual quality assessment tests, unless the 

image is clipped. Because of their great importance to photo finishers these factors are the 

focus of much image quality literature, but they are outside the scope of this research. ii) 

Factors intrinsic to cameras, lenses, and printers. To mention a few: sharpness, noise, 

dynamic range, chromatic aberrations, tonal response, exposure accuracy, lens distortions, 

contrast, and colour accuracy. The work presented in this thesis focus on enhancing these 

image-quality factors in images captured by a digital camera. 

 

Sharpness: Sharpness is arguably one of the most important single image quality factors 

since it determines the amount of detail an image can convey. Sharpness can be measured 

as a spatial frequency response (SFR), also known as modulation transfer function (MTF). 

MTF is the contrast at a given spatial frequency (measured in cycles or line pairs per distance) 

relative to low frequencies. MTF is measured with a slanted-edge SFR chart, or using sine 

pattern charts that increase in frequency in a logarithmic manner [24]. 
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Dynamic range and tonal response: Dynamic range is a strong function of pixel area, which 

is proportional to the number of electrons a pixel can store. Dynamic range is usually 

measured in decibels, and it is closely related to noise, the tonal response, and contrast. 

High contrast usually involves loss of dynamic range when an image is displayed. Dynamic 

range, tonal response, and contrast can be measured by a step chart using a transmission 

step wedge or by a postprocessor for step chart that uses results from up to four differently-

exposed reflective step chart images [24]. 

 

Noise: noise is a random variation of image density, visible as grain in film and pixel level 

variations in digital images. It arises from the effects of basic physics, the photon nature of 

light and the thermal energy of heat inside image sensors [24]. Noise has a clear relationship 

to a signal, thus a signal to noise ratio (SNR or S/N) is often calculated. SNR can be defined 

in many ways, depending on how the signal S is defined [24]. Noise can be measured by 

using a step chart, which produces the most detailed results, or by using ColourChecker, SFR, 

SFRplus, and Uniformity charts [24]. 

 

Chromatic aberrations: Chromatic aberration is one of several aberrations that degrade lens 

performance. Chromatic aberration causes colours to focus at different distances from the 

image centre, and it is most visible near corners of images. Chromatic aberration can be 

measured by SFR, using edges at a distance from the image centre [24]. 

 

Colour accuracy: Colour accuracy is an important but ambiguous image quality factor. Many 

viewers prefer enhanced colour saturation; studies have shown that accurate colour 

reproduction is not necessarily the most pleasing [94]. Nevertheless it is important to 

measure a camera’s colour response: its colour shifts, saturation, and the effectiveness of 

white balance algorithms. Colour accuracy is measured by using the widely available 24-

patch GretagMacbeth ColourChecker. 

 

Image quality assessment plays an important role in digital imaging applications. A great deal 

of effort has been made in recent years to develop objective image quality metrics that 

correlate with perceived quality measurement in the HVS [23]. Unfortunately, only limited 
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success has been achieved since evidence showed that human visual error sensitivities and 

masking effects vary in different spatial and temporal frequency and directional channels. 

 

2.6 Conclusions 

This chapter reviews some of the concepts including: digital imaging and the HVS 

relationship; dynamic range and colour perception; imaging sensors characteristics; image 

signal processors; and image quality metrics used in digital imaging. These concepts are 

fundamental to digital video and photography, and will be used throughout this dissertation.  

 

Computer graphics, computer vision, and related digital imaging applications continue to 

demand more realistic and accurate imaging reproduction with high dynamic range scenes 

and colour constancy. As explained in the sections of this chapter, dynamic range and colour 

constancy are becoming a crucial shortcoming in digital photography, video recording, and 

computer vision applications. For this reason, the research carried out and presented in this 

dissertation aims to solve the problem of dynamic range and colour constancy in digital 

imaging. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Chapter 3  

Literature review 

 

The literature review presented in this chapter provides an insight into the existing 

chromatic aberration correction, HDR imaging, and colour constancy solutions proposed in 

literature. These topics cover the contributory subject areas of this thesis presented in 

Chapters 6, 7 and 8. Furthermore, this chapter reviews a number of fundamental concepts 

and theories in different areas of mathematics, computing and engineering that are used 

throughout the work presented in this dissertation.  

 

For clarity of presentation, this chapter is organised as follows: Section 3.1 focuses on the 

review of previous work on chromatic aberrations corrections. Section 3.2 covers multi-

exposure image fusion and image registration techniques, and section 3.3 presents a review 

of colour balancing methods found in literature that aim to solve the problem of colour 

constancy in digital imaging.  

 

3.1 HDR Imaging Techniques 

HDR imaging is the field of imaging that seeks to accurately capture and represent scenes 

with the largest possible intensity levels. Due to technological and physical limitations of 

current imaging sensors, the most common way to capture high dynamic range scenes is by 

combining multiple low dynamic range photographs through an image fusion process. The 

multi-exposure images are acquired with different exposure times through a process known 

as exposure bracketing [16]. 

 

Image fusion has been used in a wide variety of applications such as machine vision, 

automatic change detection, biometrics, medicine, remote sensing, etc. In general, the goal 
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of image fusion is to integrate multiple images so that the resulting image is clearer and 

more intelligible.  

 

In 1994, Mann and Picard proposed one of the first exposure bracketing based HDR imaging 

techniques in digital photography [26]. This method assumes that the camera radiometric 

response function, f, of the camera has already been calibrated, in order to map intensity 

levels of the scene to the pixel values. Then, if 𝑧𝑖
𝑝

denotes the image value at pixel p for 

exposure time τi, the irradiance estimate at pixel p is computed as the weighted average of 

𝑓−1(𝑧𝑖
𝑝
)/𝜏𝑖, i = 1,…,T. With this function, small weights are assigned to pixel values with very 

low or close to saturation values. This approach suffers from two main problems. The first is 

that the weights are arbitrarily determined and they are not derived from an imaging sensor 

noise model. The second is that the calibration of the camera response function is a problem 

on its own, and is prone to errors that are directly transferred to the irradiance estimator. 

Nonetheless, Mann and Picard’s work is an important contribution, since it inspired several 

approaches based on exposure bracketing, whose main difference relies in the way the 

multi-exposure images are combined. Kay [27] and Kirk [28] present a comprehensive review 

and comparison of these methods. 

 

HDR image fusion techniques can be classified in categories according to the nature of data 

where the image fusion process takes place. The first type of method assumes a linear 

camera response, and are to be used with the camera RAW Bayer data at an early stage of 

an ISP pipeline. [e.g., see 28, 33, and 34]. The second type of image fusion techniques, 

assume a non-linear camera response, gamma corrected RGB images, in which the inverse 

of the camera response has to be estimated. [e.g., see 26, 29, 30, and 31].  

 

In addition to the nature of data, image fusion techniques can be classified into another 

three different classes: pixel level, feature level and decision level. Pixel level fusion is the 

combination of pixels from multiple sources into a single resolution image. Feature level 

fusion extracts features, e.g. edges, corners, lines, textures, etc., from different image 

sources and then combines them into one final image. Decision level fusion combines the 

results from multiple algorithms to yield a final fused rule. Methods of decision fusion 

include voting, statistical, and fuzzy logic based methods.  
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The above categorisation does not encompass all possible fusion methods, since input and 

output of data fusion may be different at different levels of processing. In practice, fusion 

procedures are often a combination of the three classes mentioned above. The advantage 

in pixel level fusion is that images contain original data and therefore the pixel information 

is preserved. On the other hand, region and decision based methods are very useful because 

real world objects usually consist of structures at different scales as in the human visual 

system [71-77].  

 

Most image fusion techniques presented in the literature share the same shortcomings. In 

order to produce artefact free images, the fusion technique has to be able to compensate 

for motion caused by camera shake and object movements in the scene. Usually, during the 

fusion process, ghosting artefacts are generated due to the fractionally time difference 

instances of the objects’ displacement within the multi-exposure images captured. Thus, the 

ability of registering images prior to the image fusion process is extremely important to 

produce high quality images.  

 

A solution for image registration and removal of ghost artefacts was proposed by Greg Ward 

[31, 70]. This method is based on a median threshold bitmap (MTB), and variance estimation 

between the pixels of each exposure to create a segmentation mask used during the 

weighting average image fusion technique. This solution has demonstrated to be efficient to 

remove ghost artefact and recover small displacements between multi exposure images. 

However, this method is slow due to the iterative estimation of the weights assigned to each 

pixel and fails if the scene does not predominantly capture a static background.  

 

3.2 Colour Balancing Methods and Colour Constancy 

The review of colour constancy methods in this section is by no means exhaustive. This 

literature is intended as a summary of all major contributions on the colour constancy field. 

This allows the drawing of conclusions and identifying the shortcomings in achieving colour 

constancy in digital imaging. 
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Other researchers have tried to solve the problem of colour constancy in digital imaging by 

proposing a number of algorithmic and instrumentation approaches. Nevertheless, no 

unique solution has been identified; this may be due to the wide range of computer vision 

applications that require colour constancy and the complexity of the HSV to achieve colour 

constancy [97]. This led researchers in the field to identify sets of possible solutions that can 

be applied to particular problems in computer vision. Predominantly, previous efforts have 

been directed towards colour constancy approaches that can be used in real time video and 

still photography. 

 

The goal of colour constancy is to achieve an illuminant invariant description of a scene taken 

under illumination whose spectral characteristics are unknown [97]. Colour constancy can 

be achieved in a two-step process. First, an estimate of the illuminant parameters is 

obtained; followed by the illuminant independent surface descriptor, which is parametrically 

calculated [35, 36, and 37]. Often illumination invariant descriptors of the scene are 

estimated under an illumination whose spectral characteristics are known; this is referred 

as the canonical illumination, which is the illuminant used by the camera to colour balance 

an image [38]. 

 

In Chapter 2, Equations 2.2 introduced the formula of the relative spectral sensitivity of an 

imaging sensor. Equation 2.2 can be rewritten in terms of a colour image with k number of 

colour channels as a product of three variables: 

 

𝐸𝑘(𝑥, 𝑦, 𝜆) = ∫ 𝑅
𝜔

(𝑥, 𝑦, 𝜆)𝐿(𝜆)𝑠𝑘(𝜆)𝑑𝜆                            (3.11)[97] 

 

Where R(x, y, λ) is the surface reflectance, L(λ) is the illumination property, and Sk(λ) is the 

sensor spectral response, as a function of the wavelength λ, over the visible spectrum ω, 

and E(x, y, λ) is the image corresponding to the kth channel, k ∈ {R, G, B}. In the colour 

constancy literature, efforts are directed toward discounting the effect of illumination and 

obtaining a canonical colour appearance. 
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Hadamard, a French mathematician, stated that a problem is well posed if the following 

three conditions are satisfied, 1) there is a solution, 12) this solution is unique, and 3) this 

unique solution is stable. If any of these conditions are not satisfied, then the problem is 

known as ill posed [39]. Thus, achieving colour constancy is an ill posed problem since the 

uniqueness and the stability of the solution cannot be guaranteed due to the high correlation 

between the colour in the image and the colour of the illuminant. This non-independence of 

predictor variables directly affects the estimation of the illuminant. That is, imprecise 

estimation and slight variations of the predictor variables may lead to a large error in the 

illuminant estimation process. 

 

The most widely accepted approach for achieving colour constancy in digital imaging is to 

first estimate the prevailing incident illuminant, and then apply a transformation to map the 

imaging device colour response to a standard colour space. The key to this process in 

achieving colour constancy is the illuminant estimation, since the second step is relatively 

straightforward. Thus, a lot of research has been done on the illuminant estimation problem.  

 

Early solutions to the colour constancy problem focused on attempting to reduce the 

discrepancy between the number of known and unknowns in Equation 3.11, by adopting 

linear model representations of lights and surfaces [38-42]. These approaches set out the 

theoretical conditions under which the colour constancy problem can be solved uniquely. 

Unfortunately, for the case of a trichromatic device, the required conditions on lights and 

surfaces are not satisfied in most typical images. In general, illuminant estimation algorithms 

can be broadly classified as being either statistical or physics-based. Statistics-based 

approaches arrive at the estimated illuminant based on some sort of assumption about the 

distribution of colours in a scene. Physics-based approaches find the illuminant estimation 

by exploiting some artefacts of the underlying physics of image formation [16]. 

 

Statistical methods: within the statistical methods, simple and robust methods such as Grey-

word, Max RGB, and Database Grey-world, work on the assumption that there must by a 

grey object in the scene in order to estimate the illuminant of the scene. These approaches 

are not perfect but generally give reasonable and consistent results [43]. For these reasons, 
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Grey-world based methods are commonly used in the literature as a benchmark when 

evaluating colour constancy algorithms.  

 

There are three broad classes of colour constancy statistical methods: Gamut Mapping 

methods [38, 44-47], Bayesian methods [48-54], and Neural Networks [55]. The gamut 

mapping solution is one of the most well founded solutions to the colour constancy problem. 

Gamut mapping implementation is non-trivial and not always robust to real image data since 

these methods were developed using synthetic data. Bayesian methods, also known as 

probabilistic methods, share in common the fact that they attempt to capture information 

about the likelihood of observing a given RGB spectral response in the form of a statistical 

prior, and with that information chose the illuminant with the highest likelihood to colour 

balance an image. All Bayesian approaches operate according to the same underlying 

principle but they differ in terms of how they encode the prior knowledge, implementation 

details, and complexity. The neutral networks solution uses a large training set of images 

with known illuminants to learn the relationship between observed image data and scene 

illuminant. The shortcoming of neural networks approaches is their robustness to estimate 

the illuminant of the scene, and the training process where a large and general enough data 

set is needed to accurately predict any unseen scene. 

 

Physics-based methods: Physics-based approaches [56-60] adopt a more general model of 

image formation than Equation 3.11, and estimate the illuminant of the scene by exploiting 

knowledge about the physical interaction between light and surfaces. Physics-based 

approaches are based on the observation that the sensor response from different points on 

a given surface will all fall on a plane in the sensor RGB space. That is, for a fixed surface S(λ) 

and illuminant E(λ) responses, defined in equation 3.11, are constrained to a two-

dimensional subspace (a dichromatic plane) of the 3D RGB space [43]. This is an elegant 

solution to the illuminant estimation of a scene, however, these kinds of method rarely work 

in practice. This is because of the assumption that any scene can be reliably segmented into 

regions corresponding to the underlying surfaces, and determining the dichromatic planes 

become extremely problematic. Moreover, even if dichromatic planes can be determined, 

intersecting S(λ) and E(λ) to obtain a reliable estimate of the illuminant is often difficult and 
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inaccurate [43]. These difficulties have restricted the practical application of physics-based 

algorithms.  

 

According to the literature review, there is not a comprehensive solution to the colour 

constancy problem, and methods proposed in the literature have not been able to 

demonstrate an understanding of the issue of preferred versus neutral colours rendering. 

This is understandable given the subjective nature of the problem, and thus the reason for 

not being able to identify a unique solution to the colour constancy problem.  

 

The colour constancy algorithms proposed in literature have proved to perform well as a 

post-processing technique. However, most of these methods have never been tested as a 

part of an ISP that works in RAW Bayer domain. In addition, researchers have overlooked 

the fact that the images used in their experiments had some kind of colour correction 

processing before they applied their methods. Some of the processes are: static white, 

colour balancing (CCM), vignetting, demosaicing, gamma correction, and black level 

correction. This leads to a level of uncertainty, as to the ability of the proposed methods to 

correct colour casts on an already colour balanced image, or actually estimate and 

compensate colour shifts due to different colour illuminants. Furthermore, after analysing 

the image databases available at colorconstancy.com [105], which are the databases used 

by the previously proposed colour constancy approaches, none of them showed to have 

tested the methods to achieve colour constancy in challenging situations, also known in 

industry as “corner cases.” For instance, scenes with: monotonic colours, green grass colour 

versus CWF lighting, opposite colour objects’ surface reflectance to the light colour 

temperature in the scene, sunset, low light conditions, absence of grey, noisy images, mixed 

lighting, cloudy scenes, and scenes with a predominant colour.  

 

3.3 Summary and Discussion 

This chapter provides an insight into existing techniques for chromatic aberration correction, 

HDR imaging, and colour constancy, and reviews a number of fundamental concepts and 

theories in different areas of mathematics, computing and engineering that are used in this 
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thesis. Moreover, this literature review identified shortcomings and areas of improvements 

in chromatic aberration corrections, HDR imaging and colour constancy in digital imaging.  

 

 



 

Chapter 4  

Image Signal Processor Framework  

This chapter presents a description of the framework used in the algorithms presented in 

later chapters that fit within an ISP under a common programme i.e. the improvement of 

image quality within an ISP pipeline that can be implemented in hardware. 

4.1 Image quality and image signal processors  

The quality of a picture captured with a digital camera is determined to a large extent by the 

quality of the lens and the image sensor. The progress in digital signal processing and in the 

understanding of the physics behind the limitations of the components of digital cameras, 

have allowed many artefacts introduced by the optics and imaging sensors to be corrected 

in the digital domain within an ISP.  

 

There are several kinds of artefacts that degrade the quality of the image captured. These 

artefacts are due to imperfections added to the image caused by the lens, colour sampling, 

illumination, physical characteristics of image sensors, and artefacts added to the image in 

the digital domain, such as quantisation errors and compression artefacts. Image quality 

standards, either industry or academia, have not been able to classify all artefacts into 

certain categories, since a lot of them could overlap or be introduced by a combination of 

factors. For example, resolution and aliasing artefacts are related to the quality of the lens, 

the demosaicing process, pixel count, and sensor architecture.  

 

A review of image quality artefacts and how they can be corrected within an ISP is presented 

in the following sections.    
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4.1.1 Image quality artefacts introduced by the camera components 

Lens artefacts: The main problem with the lenses used in consumer digital cameras is the 

vignetting, also known as shading or light falloff artefact. Vignetting is the effect where 

intensity levels drop off towards the edges of the image.  

 

Another common lens artefact is the veiling glare, which causes loss of contrast due to light 

scattering within the lens elements and the inside barrel of the lens. This causes light 

reflections that affect the total dynamic range of cameras because intensity levels in shadow 

areas are increased, and sensor saturation levels are rapidly reached.  

 

Other common artefacts usually seen on wide angle lens are chromatic aberrations and lens 

distortions. Chromatic aberration occurs because the index of refraction of glass varies with 

the wavelength of light, causing undesired colourisation of edges in the image. Lens 

distortions artefacts are aberrations that cause straight lines to curve near the edges of 

images. Figure 4.1 shows examples of image quality artefacts introduced by the optics of the 

camera.  
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                                Original | chromatic aberrations                    Original | veiling glare                        

 

  

                                        Original | vignetting                                  Original | barrel distortion 

Figure 4.1: Examples of lens artefacts [62]. 
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Colour sampling and illumination artefacts: The absorption coefficient of silicon used in 

imaging sensors strongly depends on the wavelength of the incident light [61]. In principle, 

the wavelength of the incident light characteristics can be used to separate the incoming 

photons into the three colour planes; red, green, and blue. However, colour separation of 

silicon itself is not selective enough to allow colour imaging even in low light conditions [61]. 

For this reason, colour separation is typically done by means of a CFA on top of every pixel 

of the sensor, such as the Bayer CFA. Colour images captured using a Bayer CFA rely on 

interpolation of data to reconstruct all colour channels. The combination of Bayer CFA light 

crosstalk and the demosaicing process, which interpolates all the missing pixels to 

reconstruct RGB images, introduce several artefacts: blurred or over sharpened images, 

Moiré, false colours, and zippering [63]. These kind of artefacts are shown in Figure 4.2.    

 

The human eye interprets several combinations of red, green, and blue light as white, this 

effect is known as metamerism, something that does not happen in imaging sensors due to 

the fact that the sensor does not have equal quantum efficiencies for the various spectral 

bands [61]. In contrast to the human eye, image sensors perform an absolute measurement 

of the incoming light information [61], and thus, digital cameras have to rely on white 

balancing and colour correction processes to achieve colour constancy in digital imaging.   
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Original     Zippering 

a) 

  

Original     False colours 

b) 

 

Original     Moiré 

c) 

Figure 4.2: Examples of image artefacts caused by colour sampling [64]. In these examples the 

original image is mosaiced to RGGB pattern, and bilinear demosaiced to RGB. 

Image sensor artefacts: Most of the sensor artefacts arise from noise sources and pixel non-

uniformities reviewed in section 2.3. In still digital imaging, the temporal noise is frozen at 

the time of capture, and as a result, temporal noise becomes a second form of FPN. Most of 

the FPN in CCDs is random and it originates from dark-current non-uniformities. For CMOS 
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imagers the dark current is higher than for CCDs, this makes the contribution of dark current 

to FPN higher. Moreover, the readout architecture used in CMOS generates extra 

components of FPN: some of it is random, and some of it is fixed in the form of row or 

column-wise FPN. Figure 4.3(a) shows an example of row-column FPN. The residual noise 

after correction of FPN is mainly composed of photon shot and temporal noise produced by 

an image sensor, this is illustrated in Figure 4.3(b). 

 

  

a)       b) 

Figure 4.3: Examples of noise produced by imaging sensors [67]. a) row-column FPN, b) residual 

noise after correction of row-column FPN  

Other types of artefacts introduced by image sensors are the dead and hot pixels. Dead 

pixels are the pixels that are not sensitive to light at all, and hot pixels are the pixels that 

constantly report full saturation [61]. 

 

4.1.2 Artefacts correction within an ISP 

The understanding of the nature and dependencies of noise artefacts and lens aberrations 

has helped the development of advanced image processing techniques to remove artefacts 

and improve the overall image quality in digital imaging.  

 

Most of the artefacts described above can be removed or counteracted after the readout of 

the sensor within an ISP.  Unfortunately, every time that the sensor data is manipulated, 

either in the analogue or digital domain, there is a possibility of decreasing the dynamic 

range of the system. In this case, a loss in total dynamic range has to be accepted.  
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Many image processing algorithms that aim to improve image quality have been proposed 

in the literature, however most of these algorithms work in RGB colour corrected non-linear 

data, and cannot benefit from the advantages of working in RAW Bayer domain. Some of 

the advantages of working in RAW Bayer domain are: linearity of data, noise profile 

characteristics, higher data precision, reduced bandwidth, reduced memory requirements, 

and allowing a set of algorithms to work in conjunction within a pipeline to improve the 

overall image quality produced by a digital camera. For this reason, the work presented in 

this thesis is aimed to be implemented as part of an ISP pipeline to improve two of the most 

challenging aspects of image quality in digital cameras: dynamic range, and colour 

constancy.  

 

Ultimately it remains true: "to make a good image, one has to take a good image" [61]. But 

along the road from photons to digital numbers, the signal can pass through several 

calculation cycles to improve the quality of the end result. In order to remove the described 

artefacts, an ISP can adopt the following strategies. 

  

Correction of lens artefacts: Vignetting artefacts can be removed by pre-programmed look 

up tables that contain the lens vignetting profile. In this profile all red, green, and blue 

channels are multiplied by a constant value that becomes gradually larger than 1 towards 

the outer edges of the image, this allows equalising the intensity levels throughout the 

image.  

 

In a recent study [66], a novel image warping algorithm that works in RAW Bayer domain 

was proposed to solve the chromatic aberration problem. The advantage of correcting 

chromatic aberrations before demosaicing, is that the demosaic interpolation process can 

be performed in a more accurate away so that digital cameras can produce high resolution 

images. 

 

Colour sampling and illumination artefacts: Camera systems that use sensors with a Bayer 

CFA depend on the demosaic process to reconstruct the pixels that are not sampled for each 

of the colour channels. Demosaic interpolation algorithms can be very sophisticated, and 

have adaptive interpolation schemes in which information in the vicinity of the pixel under 
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consideration is analysed and interpolated in a specific direction: vertical, horizontal, or 

diagonals [68]. For example, if the image contains objects with vertical lines, the 

interpolation of those specific lines would be done only along the pixels that contribute to 

the vertical direction of that line.  

 

Due to the sparse sampling grids of the three colour channels and demosaic process, the 

resulting final image could be spatially blurred, as if it was processed with a low pass filter. 

To overcome the blurred appearance of the image, sharpening algorithms such as “unsharp 

mask” [69] can be used. The combination of advanced demosaicing and sharpening 

processes help to remove the colour sampling artefacts presented in Figure 4.2.  

 

In order to cope with imperfections of a Bayer CFA, and spectral sensitivity differences 

between pixels, the RGB image obtained after demoisaicing needs to be corrected. These 

processes are known as white balancing and colour correction. In Chapters 6 and 7, a novel 

solution to the colour constancy problem in digital imaging is proposed to address the 

challenges of white balancing and colour correction in digital cameras.  

 

Correction of image sensor artefacts: The column FPN can be measured by reading one or 

multiple dummy lines from the sensor. These values can be stored in digital memory in the 

ISP and subsequently apply the gain and offsets measured between the various column 

amplifiers. Since FPN is relatively constant over time, the stored digital values can be used 

to correct real image data [61]. Alternatively, FPN and dark current related artefacts can be 

corrected by subtracting a reference dark frame stored in the ISP digital memory.  

 

Temporal and spatial noise produced by the imaging sensor can be removed within an ISP 

pipeline by accumulation of frames and block matching technologies that use the sensor 

noise profile characteristics [82]. 

 

Defect pixels can be corrected by means of look up tables. In these look up tables the XY 

locations of the defect pixels are stored so that the ISP interpolates a new value for each of 

the defect pixels by using the knowledge of the neighbouring “good” pixels within the same 

colour plane [65]. 
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Dynamic range of a sensor, which is defined by the signal to noise ratio, can be improved if 

the sensor artefacts, noise floor, is decreased and pixel saturation level is increased. This can 

be achieved by the multi-exposure image fusion technology presented in Chapter 5.  

 

4.2 Image signal processor architecture 

The ISP pipeline of a digital camera is designed to exploit the processing power of dedicated 

hardware so that image processing algorithms can be executed to enhance the quality of 

image frames at very high rates per second. This results in an extremely efficient pipeline 

with deterministic performance which allows the increase of speed in which images can be 

processed, and therefore the rate at which pictures and video can be captured.  

 

The research presented in Chapters 5, 6, and 7 covers HDR imaging and colour constancy 

solutions. These novel solutions share in common that all of them work in RAW Bayer 

domain as a part of an ISP pipeline to exploit the benefits of the RAW Bayer data, and 

computational power to address the artefacts mentioned in section 4.1. This strategy allows 

the algorithms proposed in this thesis to improve the overall image quality produced by 

digital cameras in real time. 

 

In order to incorporate and demonstrate that the proposed HDR and colour constancy 

solutions can be implemented in dedicated hardware and used as a part of a digital camera, 

an ISP pipeline architecture is defined for their hardware implementation and testing. The 

top level architecture of the imaging system on chip (SoC) proposed is shown in Figure 4.4.  

In this architecture, synchronous dynamic random access memory (SDRAM) is used as an 

external frame buffer for the temporal noise reduction, HDR image fusion, or to stream 

Bayer RAW data directly to the encoder without passing through the ISP. Static random 

access memory (SRAM) is internally used by the ISP modules for storing pixel line memories, 

configuration parameters, and look up tables. The CPU in this architecture, plays an 

important role since it is used as the main configuration controller that drives the camera 

system.  
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Figure 4.4: Top level architecture of an imaging SoC imaging solution 

The top level ISP architecture block diagram is presented in Figure 4.5. The ISP architecture 

defined is an ISP solution with the minimum required modules for the testing of the 

algorithms developed in Chapters 5, 6, and 7. The placement of these algorithms within the 

ISP pipeline are highlighted in purple in the top level architecture diagram presented in 

Figure 4.5. 
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Figure 4.5: ISP top level architecture 
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The proposed ISP pipeline has been implemented on an Altera Stratix IV GX FPGA 

development kit, 530 Edition. This FPGA has a CPU NIOS II bare metal, ruining at 75MHz, and 

256 kB memory. For video output, a Terasic DVI HSMC card is used, and in order to capture 

images, a SD capture module is used. The FPGA setup is shown in figure 4.6. 

  

 

Figure 4.6: FPGA setup. 

The implemented ISP runs at a processing speed of 150Mpix/sec, which is sufficient to 

process HD video at 60 FPS or 4K video at 15 FPS. Synthesis figures for the ISP pipeline, 

implemented in the Altera FPGA showed that the full ISP design has a gate count of 1122 K-

gates. Out of the 1122 K-gates of the full ISP design, the proposed HDR and constancy 

solutions required 139 K-gates of the design. The illuminant estimation process of the colour 

management system proposed in Chapter 5 is run by the firmware on the NIOS II CPU. 

Measurements performed at 30FPS showed that the average CPU utilisation is 21%, with a 

peak utilisation of 69%. It requires 224 kB of memory for data and code, and the bandwidth 

measured is of 894 Kbytes/sec. 

 

In Chapters 5, 6, and 7 the algorithms are benchmarked against state-of-the-art solutions. 

During the benchmarking process, the proposed ISP architecture is implemented in 

software. This ISP software simulator is used as a test bench for the evaluation of all 

algorithms considered. This is because not all of the algorithms in the literature can be 
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implemented in hardware, or when implementation details and source code is not available; 

some of these are only distributed in binary form. Moreover, the benchmarking tests are 

aimed to evaluate the performance of the algorithms by themselves and not their hardware 

implementation feasibility. This way, the modules to be tested can be isolated and 

accurately measure their performance with a common ISP pipeline framework. 

 

4.3 Conclusions  

This chapter discusses the importance of an ISP, and how the HDR and colour constancy 

algorithms presented in Chapters 5, 6, and 7 can be incorporated within an ISP to remove 

image quality artefacts introduced by the image sensor and optics of digital cameras.  

 

In order to incorporate the HDR and colour constancy algorithms presented in the following 

chapters, an ISP architecture is defined and implemented in hardware in an Altera FPGA 

capable of processing HD video at 60 FPS or 4K video at 15 FPS. Moreover, the ISP 

architecture proposed in this chapter is implemented in software as an ISP simulator for the 

evaluation of the proposed algorithms against state-of the-art solutions on the field of HDR 

imaging and colour constancy. 

 

 

 

 

 

 



 

Chapter 5  

Multi-Exposure Image Fusion for Real 

Time HDR Content Creation 

 

This chapter presents a novel, robust and low complexity multi-exposure imaging algorithm 

for HDR content creating in real time. A special emphasis of the proposed approach is its 

unique ability withstand motion within the set of multi-exposure frames due to camera 

shake or moving objects in the scene, a fundamental drawback of the state-of-the-art 

algorithms.  

 

5.1 Introduction 

Multi-exposure image fusion is a well-known approach adopted to create high dynamic 

range images and emulate the human visual system using standard dynamic range cameras. 

The main limitation of current multi-exposure image fusion techniques is their inability to 

compensate for moving objects in a scene, camera shake, and being able to run in real time 

for HDR video content creation. Previous attempts to solve camera shake have been able to 

accurately align the multi-exposure images that have static backgrounds prior to their fusion. 

Nonetheless, image alignment cannot solve the issue of ghosting artefacts due to moving 

objects. 

 

HDR photography or HDR video can be achieved by capturing images at different exposures 

and then fusing them to produce HDR images. However, in order to produce artefact free 

images, the fusion technique has to be able to compensate for motion caused by camera 

shake and object movements in the scene. During the fusion process, ghosting artefacts are 

generated due to the fractionally time different instances of the objects’ displacement, 

within the multi-exposure images captured. Previous attempts have being made by other 
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researchers to resolve ghosting artefacts as in [78], and Chapter 5, where the HDR content 

creation with camera shake was solved. However, its complexity and memory requirements 

would not allow its implementation for real time HDR processing. Moreover, the approach 

presented in Chapter 5 was able to improve ghosting artefacts but it was not able to 

completely remove them in fused areas. That is, objects appeared in short and long 

exposures with slightly different positions. Thus, an ideal practical solution to the problem 

of multi-exposure image fusion that addresses the problem of HDR creation in real time has 

yet to be found.  

 

In previous research [82, 83] a practical method to perform spatio temporal noise reduction 

in RAW images within an ISP was proposed. The spatio temporal method relied on the idea 

of matching, blending, and recursive accumulation of image data into a frame buffer to 

improve signal to noise ratio. Errors due to motion were handled by the noise reduction 

engine. The spatio temporal noise reduction method [82], was adopted and extended so 

that it can be utilised for the purpose of multi-exposure image fusion in real time with local 

motion compensation [83]. It is noted that this HDR solution [83], is a practical application 

in which accumulation of data is carried out by the imaging sensor, and not by a frame buffer. 

Thus, the problem of accumulating images to improve signal to noise ratio, is transformed 

into the problem of matching images taken at different exposures in order to produce 

artefact free HDR images.  

 

The spatio temporal HDR solution [83], performs motion estimation and compensation in 

two stages. First, a robust optical flow in a Laplacian Pyramid style method is used for coarse 

motion estimation by adopting a robust optical flow method [83]; followed by a block-

matching process, which allow the matching of pixels to be at a sub-pixel level. Once the 

multi-exposure images were motion compensated, a temporal filter [81] is used to perform 

the image blending to produce a wide dynamic range image. Overall, this method produced 

impressive results and can run in real time [83], however, its complexity and memory 

requirements make this approach very costly in terms of hardware implementation.  

 

In this chapter, in order to overcome the shortcomings presented from the spatio temporal 

HDR solution [83], a robust and low complexity multi-exposure imaging method for video 
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HDR creation is proposed. In this method proposed, motion within the set of multi-exposure 

frames due to camera shake or moving objects in the scene is compensated by a global 

motion estimation process, followed by a fusing process that can compensate for local 

motion of objects in the scene. The proposed method exploits the benefits of the Laplacian 

Pyramid for motion estimation processes, and the linearity of Bayer RAW domain data for 

better noise predictability, accurate decisions when fusing, and decreased memory 

requirements.  

 

For clarity of presentation, Chapter 5 is organised as follows. Section 5.2 presents the 

functional details of the proposed system. Section 5.3 provides experimental results and a 

detailed evaluation of the system’s performance.  Concluded the proposed research, section 

5.4 gives an insight to further work.  

 

5.2 Proposed Image Fusion Method 

In the proposed HDR method, all processes are performed in the Bayer RAW domain as it 

allows more accurate calculations when fusing the images due to the linear nature of the 

data, and predictability of the noise characteristics. 

 

The first step in the proposed approach is to perform global motion estimation and 

correction to compensate for motion due to camera shake. The second step of the proposed 

method is to blend the set of multi-exposure images, wherein its logic, it compensates for 

objects moving within the scene. The combination of these two steps, global motion 

compensation in conjunction with the motion aware fusing technique, allows removing 

motion artefacts and ghosting due to camera shake and moving objects in the scene.  

 

Once the multi-exposure images are motion corrected and fused, a dynamic range 

compression (DRC) method is used to create the resulting HDR image. Figure 5.1 shows the 

block diagram of the proposed multi-exposure image fusion method. 
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Figure 5.1: Block diagram of the proposed multi-exposure image fusion block algorithm. 

5.2.1 Global motion estimation 

Global motion estimation is performed to remove possible artefacts due camera shake. This 

is achieved by adopting the idea of the multi-scale motion estimation technique proposed 

in [81 and 82], which is based on linear matching of images in a transform space. Global 

motion estimation is performed by first constructing a Laplacian Pyramid of two levels to 

reduce the number of computations during the motion estimation calculation, followed by 

an intensity matching process where Is (short exposure image) and Il (long exposure image) 

are equalised in the intensity domain.  

 

The intensity matching process is performed so that short and long exposures have the same 

intensity levels to allow the motion estimation algorithm to be able to compare the images 

in a more accurate way. The intensity matching process is performed as follows (Equations 

5.1 - 5.9): 

 

𝑝𝐼𝑠(𝑖) =  𝑝(𝐼𝑠 = 𝑖) =
𝑛

𝑛𝑖
, 0 ≤ 𝑖 < 𝐿                                          (5.1) 

 

𝑝𝐼𝑙(𝑖) =  𝑝(𝐼𝑙 = 𝑖) =
𝑛

𝑛𝑖
, 0 ≤ 𝑖 <  𝐿                                           (5.2) 

 

𝐼𝑐𝑓𝑑𝐼𝑠(𝑖) =  ∑𝑝𝐼𝑠(𝑗)

𝑖

𝑗=0

                                                         (5.3) 

𝐼𝑐𝑓𝑑𝐼𝑙(𝑖) =  ∑𝑝Î𝑙(𝑗)         

𝑖

𝑗=0

                                                (5.4) 

 

Motion 

estimation 

Image 

fusion 
DRC 
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Where p is the image the probability of an occurrence of a pixel of level i in the image, Pls 

and PIl are the histograms of Is and Il, and IcdfIs, IcdfIl, are the cumulative histograms of Is and Il. 

L is the number of intensity levels in the image, in this case 0 to 255 possible values, n the 

total number of pixels in the image and ni the occurrences of grey level i. The cumulative 

histograms are used for determining thresholds for creating the equalised intensity masks, 

Imaskdk and Imaskbr, as follows:   

𝑢 =  ∑𝐼𝑐𝑓𝑑Î𝑙
(𝑖)

𝑖

𝑗=0

< 𝐿 ∗ 0.95                                                (5.5) 

 

𝐼𝑐𝑢𝑡𝑑𝑘 = argmin𝑖𝑛𝑑𝑒𝑥 (|𝐼𝑐𝑓𝑑𝐼𝑠
− 𝑢|)                                             (5.6) 

 

𝐼𝑚𝑎𝑠𝑘𝑑𝑘(𝑥, 𝑦) =  {
1 𝑖𝑓 𝐼𝑠(𝑥, 𝑦) > 𝐼𝑐𝑢𝑡𝑑𝑘
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                

                                       (5.7) 

 

𝐼𝑐𝑢𝑡𝑏𝑟 = argmin𝑖𝑛𝑑𝑒𝑥 (|𝐼𝑐𝑓𝑑𝐼𝑙
− (1 − 〈𝐼𝑚𝑎𝑠𝑘𝑑𝑘〉) ∗ 𝑛|)                     (5.8) 

 

𝐼𝑚𝑎𝑠𝑘𝑏𝑟(𝑥, 𝑦) =  {
1 𝑖𝑓 𝐼𝑙(𝑥, 𝑦) > 𝐼𝑐𝑢𝑡𝑏𝑟
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                

                                       (5.9) 

 

Where u is the number of unclipped pixels in Il, and Icutdk and Icutbr are the thresholds 

calculated for the intensity masks. 

 

Once the intensity matching is performed, Is and Il are represented in a transform space of 

vectors.  �̂�ℎ𝑠, �̂�𝑣𝑠, �̂�ℎ𝑙, �̂�𝑣𝑙 are composed of the mean of each row and each column of 

Imaskdk and Imaskbr as in equations 5.10 and 5.11. 

 

�̂�ℎ𝑠(𝑥) =∑𝐼𝑚𝑎𝑠𝑘𝑑𝑘(𝑥, 𝑖)

𝑥

𝑖=0

,       �̂�𝑣𝑠(𝑦) =∑𝐼𝑚𝑎𝑠𝑘𝑑𝑘(𝑖, 𝑦)

𝑦

𝑖=0

                  (5.10) 

 

�̂�ℎ𝑙(𝑥) =∑𝐼𝑚𝑎𝑠𝑘𝑏𝑟(𝑥, 𝑖)

𝑥

𝑖=0

, �̂�𝑣𝑙(𝑦) =∑𝐼𝑚𝑎𝑠𝑘𝑏𝑟(𝑖, 𝑦)

𝑦

𝑖=0

                  (5.11) 
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Where x = {0, 1, … , ncol} and y = {0, 1, … , nrows}. 

 

In order to estimate the delta offsets, Δh and  Δv, due to possible motion from the multi-

exposure images, the vectors, �̂�ℎ𝑠, �̂�𝑣𝑠, �̂�ℎ𝑙, �̂�𝑣𝑙, are analysed as follows: 

 

𝑚�̂�ℎ(𝑖) =  ∑ 〈|�̂�ℎ𝑠 − (𝑒
(−(𝑑,…,𝑑)+𝑠)2⨂ �̂�ℎ𝑙)|〉

𝑑

𝑠=−𝑑

× 𝑒(

 
 
−

(−(−
𝑛ℎ
2
+.5,…,

𝑛ℎ
2
+.5)

2

)

(𝑛ℎ 4⁄ )2

)

 
 

     (5.12)  

 

∆ℎ=
argmin𝑖𝑛𝑑𝑒𝑥(𝑚�̂�ℎ)

𝑑
× 2                                              (5.13) 

 

𝑚�̂�𝑣(𝑖) =  ∑ 〈|�̂�𝑣𝑠 − (𝑒
(−(𝑑,…,𝑑)+𝑠)2⨂ �̂�𝑣𝑙)|〉

𝑑

𝑠=−𝑑

× 𝑒

(−
(−(−

𝑛𝑣
2
+.5,…,

𝑛𝑣
2
+.5)

2
)

(𝑛𝑣 4⁄ )2
)

      (5.14) 

 

∆𝑣=
argmin𝑖𝑛𝑑𝑒𝑥(𝑚�̂�𝑣)

𝑑
× 2                                              (5.15) 

 

𝑚�̂�𝑣 and 𝑚�̂�ℎ are the motion estimation vectors for the vertical and horizontal directions, d 

= delta, the amount of displacement to be measured in pixels, i = s +delta, nh is the number 

of columns in the image, and nv is the number of rows in the image. It is noted that in 

Equations 5.13 and 5.15 the calculated delta offsets are multiplied by 2 in order to 

compensate for the downscaled images during the construction of the two level Laplacian 

pyramid. 

 

An example of the proposed motion estimation process is presented in Figure 5.2. Figures 

5.2(a) and 5.2(b) illustrate the two Bayer RAW multi-exposure images prior to motion 

estimation. Figures 5.2(c) and 5.2(d) show the Imasks calculated using equations 5.9 and 

5.11. Figures 5.2(e) and 5.2(f) depict the ability of 𝑚�̂�𝑣 and 𝑚�̂�ℎto accurately estimate the 

image’s vertical and horizontal displacement vectors.  
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a)       b) 

  

c)       d) 

 

e)       f) 

Figure 5.2: Motion estimation process. (a) and (b) over and under exposed images to be registered. 

(c) and (d) Illustration of intensity equalisation for the motion estimation process. (e) and (f) plots of 

horizontal and vertical motion vectors, with delta parameter =100. 

The resulting delta offsets for the horizontal and vertical directions that are calculated during 

the motion estimation stage are propagated and used by the image fusion method to 

produce the HDR image. 
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5.2.2 Image Fusion 

In this research, a motion aware image fusion method is proposed in order to produce high 

dynamic range images. The fusion process uses the global motion compensation delta 

offsets previously calculated in section 5.2.1, and incorporates a motion aware logic for 

removing motion artefacts and ghosting due camera shake and moving objects in the scene. 

 

In order to blend the multi-exposure images, it is necessary to calculate the exposure ratio 

between Is and Il prior the fusing process; knowing the exposure ratio allows constructing 

fusing rules to decide which pixels with certain level of intensity will be chosen from Is or Il 

to create the final HDR image, Ihdr.  

 

The exposure ratio (ER) set from short to long images can be calculated as follows (Equation 

5.16). 

 

𝐸𝑅 = 
𝐸𝑇𝑠ℎ𝑜𝑟𝑡 × 𝐴𝐺𝑠ℎ𝑜𝑟𝑡 × 𝐷𝐺𝑠ℎ𝑜𝑟𝑡 × 𝐴𝑝𝑒𝑟𝑡𝑢𝑟𝑒

𝐸𝑇𝑙𝑜𝑛𝑔 × 𝐴𝐺𝑙𝑜𝑛𝑔 × 𝐷𝐺𝑙𝑜𝑛𝑔 × 𝐴𝑝𝑒𝑟𝑡𝑢𝑟𝑒
                         (5.16) 

 

Where ET is exposure time, AG is analogue gain, and DG is the digital gain set by the sensor. 

  

After the calculation of exposure ratio is done, luminance of Is and Il, represented by 

Lmaxs(x,y) and Lmaxl(x,y), are calculated using equations, 5.17 and 5.18 so that the fusing 

rules, α(x,y), can be applied on Is and Il to generate Ihdr. 

 

𝐿𝑚𝑎𝑥𝑠(𝑥, 𝑦) = 𝑎𝑟𝑔𝑚𝑎𝑥 (∑∑𝐼𝑠(𝑥 − 1 + 𝑖, 𝑦 − 1 + 𝑗)

2

𝑗=0

2

𝑖=0

× 𝐸𝑅)                 (5.17) 

𝐿𝑚𝑎𝑥𝑙(𝑥, 𝑦) = 𝑎𝑟𝑔𝑚𝑎𝑥(∑∑𝐼𝑙(𝑥 − 1 + 𝑖, 𝑦 − 1 + 𝑗)

2

𝑗=0

2

𝑖=0

)                 (5.18) 

 

The fusion rules in this approach consist of intensity thresholds, ths and thl, that determine 

the contribution of Is and Il to the final image as shown in Equation 5.19. 
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𝛼(𝑥, 𝑦) = {

1 𝑖𝑓 𝑎𝑟𝑔𝑚𝑎𝑥(𝐼𝑚𝑎𝑥𝑠(𝑥, 𝑦), 𝐼𝑚𝑎𝑥𝑙(𝑥 + ∆ℎ, 𝑦 + ∆𝑣)) > 𝑡ℎ𝑠                                             

0 𝑖𝑓 𝑎𝑟𝑔𝑚𝑎𝑥(𝐼𝑚𝑎𝑥𝑠(𝑥, 𝑦), 𝐼𝑚𝑎𝑥𝑙(𝑥 + ∆ℎ, 𝑦 + ∆𝑣)) < 𝑡ℎ𝑙                                              
𝑡ℎ𝑙 − 𝑡ℎ𝑠
−1

× (1 − 𝑎𝑟𝑔𝑚𝑎𝑥(𝐼𝑚𝑎𝑥𝑠(𝑥, 𝑦), 𝐼𝑚𝑎𝑥𝑙(𝑥 + ∆ℎ, 𝑦 + ∆𝑣)) + 𝑡ℎ𝑠, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (5.19) 

 

In order to compensate for local motion or non-matching areas from the set of multi-

exposure images, the absolute difference, ΔI, is calculated using Equations 5.20, 5.21 and 

5.22 so that non-matching areas in the image can be identified and therefore compensated.  

 

𝐼𝑎𝑣𝑒𝑙(𝑥, 𝑦) =
1

9
× (∑∑𝐼𝑚𝑎𝑥𝑙(𝑥 − 1 + 𝑖, 𝑦 − 1 + 𝑗)

2

𝑗=0

2

𝑖=0

)                      (5.20) 

 

𝐼𝑎𝑣𝑒𝑠(𝑥, 𝑦) =
1

9
× (∑∑𝐼𝑚𝑎𝑥𝑠(𝑥 − 1 + 𝑖, 𝑦 − 1 + 𝑗)

2

𝑗=0

2

𝑖=0

)                      (5.21) 

 

∆𝐼(𝑥, 𝑦) =  {

|𝐼𝑎𝑣𝑒𝑙(𝑥 + ∆ℎ , 𝑦 + ∆𝑣) − 𝐼𝑎𝑣𝑒𝑠(𝑥, 𝑦)| × 𝛿

𝐸𝑅
                               

0 𝑖𝑓 |𝐼𝑎𝑣𝑒𝑙(𝑥 + ∆ℎ , 𝑦 + ∆𝑣) − 𝐼𝑎𝑣𝑒𝑠(𝑥, 𝑦)| ≤ 𝐼𝑡ℎ                                    

(5.22) 

 

Where Ith is an intensity threshold that can be used for masking very dark areas of the image. 

Ith is usually used for pixels below the black level of the sensor that may contain high level of 

noise, and δ is a signal amplifier that can be used for fine-tuning the detection magnitude 

response. 

 

If high levels of noise are present in Is when calculating ΔI, false motion will be detected due 

to the noise introduced by the imaging sensor. To address this shortcoming, a modelling of 

the sensor noise profile is used as a thresholding method to determine if the absolute 

difference of Is and Il is due to motion in the scene, or noise in Is.  

 

Sensor noise modelling has been investigated, [86, 87, 88, and 89], where the noise profile 

of an image I, sampled by the imaging sensor’s A/D converter, is assumed to be composed 

of different sources of noise.  
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Assume that image data representing the actual scene without noise added to the image is 

defined as Ip, the analogue gain is defined as nag(q), which is characterised by a Gaussian 

distribution with standard deviation σa, fixed pattern noise is nfpn(x,y) [5], and photon shot 

noise nq(I) is described as a random process with a Poissonian distribution with a standard 

deviation of σq.  

 

Given the above, the noise of an image I, can be represented as in Equation 5.23. Thus the 

standard deviation for a sensor noise can be defined as in Equation 5.24, where Imax is the 

maximum digital value output of the imaging sensor 

 

𝐼(𝑥, 𝑦) =  𝐼𝑝(𝑥, 𝑦) + 𝑛𝑎𝑔(𝑞) + 𝑛𝑓𝑝𝑡(𝑥, 𝑦) + 𝑛𝑞 (𝐼𝑝(𝑥, 𝑦))             (5.23)[82] 

 

𝜎2 = 𝜎𝑎
2 + 𝜎𝑞

2  × 
𝐼𝑠(𝑥, 𝑦, 𝑞)

𝐼𝑚𝑎𝑥
                                            (5.24)[82] 

 

In order to calculate σ2 of a sensor, a series of images thought all exposures times of the 

image sensor is captured so that the total dynamic range of the sensor is covered. Then, 

these images are analysed by plotting the standard deviation versus intensity level of I, and 

a best-fit curve is used to determine the noise profile (np) of a sensor. Figure 5.3(a) shows 

the image used for calculating the noise profile, and Figure 5.3(b) illustrates how Equation 

5.24, the noise profile, can be determined experimentally. The red, green and blue dots 

represent noise variances for the corresponding RGGB pixels, measured throughout the 

whole range of intensities of a characterised imaging sensor [82]. 
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a)                                                                   b) 

Figure 5.3: a) Image captured for estimating the noise profile at ISO100. b) Plot of standard 

deviation vs. intensity calculated from the image captured. 

Once the noise characteristics of the imaging sensor are analysed, the imaging sensor’s noise 

profile is calculated using Equation (5.25) to determine if ΔI magnitude is due to noise or 

motion. 

 

∆𝐼𝑛𝑝(𝑥, 𝑦) = {
0 𝑖𝑓 ∆𝐼(𝑥, 𝑦) <

1

𝑛𝑝(∆𝐼(𝑥, 𝑦))

∆𝐼(𝑥, 𝑦) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                 

                                 (5.25) 

 

Once ΔInp is calculated, α(x,y) can be rewritten as in Equation (5.26) so that the non-matching 

areas from the multi-exposure images are taken into account during the fusing process as 

shown in Equation (5.27). It is noted that with this logic, motion detection will be handled 

by using short exposure data only, and thus, motion artefacts can be removed. The 

compromise of this method is that areas detected as motion will be noisier in Iwdr but no 

ghosting artefacts or discontinuities between the multi-exposure images will be visible. 

 

∝ (𝑥, 𝑦) = ∝ (𝑥, 𝑦) + ∆𝐼𝑛𝑝(𝑥, 𝑦)                                  (5.26) 

 

𝐼𝑤𝑑𝑟(𝑥, 𝑦) =  𝐼𝑠(𝑥, 𝑦) ∗∝ (𝑥, 𝑦) + (1−∝ (𝑥, 𝑦)) ∗ 𝐼𝑙(𝑥 + ∆ℎ, 𝑦 + ∆𝑣)      (5.27) 

 

The motion aware image fusion process proposed in this chapter is illustrated in Figure 5.4. 

Figures 5.4(a) and 5.4(b) show Il and Is respectively, where local motion of objects is created 

Chapter 2: Background Theory and Related Work 
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Figure 3 Sensor noise at ISO100, ISO400 and ISO800 

Further the precision of equation (2) can be illustrated by the scatter plot and the best fit graph 

illustrated in Figure 4:  

         

Figure 4: Sensor noise experimental data 

In figure 3, red, green and blue dots represent noise variances for the corresponding pixel 

colours, measured at different light intensities. The above graph is usually referred to as a 
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by a shaking hand in the scene. Figure 5.4(c) shows α calculated using Equation (5.19); in this 

figure, a colour bar at the right of the image is provided to indicate the blending weights 

between Is and Il. 1 means, a pixel is purely based on Is, 0 means the pixel is purely based on 

Il and all others values are a blend between Is and Il. At this point the motion detection logic 

is disabled. Figure 5.4(d) illustrates the absolute difference ΔI, which is used for detecting 

motion within the multi-exposure images. It is noted that ΔI clearly illustrates how due to 

noise in Is, blending regions produce false positive detections, when trying to identify 

motion.  Thus, it is required to use noise characteristic knowledge when trying to detect 

motion. Figure 5.4(e) depicts ΔI thresholded by the noise profile as in Equation 5.25. In Figure 

5.4(e), the colour bar is also provided to illustrate the noise regions where values of 1 

indicates noise in the image, and 0 a clear signal.  

 

Figure 5.4(f) shows the alpha blending mask and absolute difference after false motion 

detections due to noise are removed as in Equation 5.26. Figure 5.4(g) illustrates a crop of 

an image after the whole fusing process is performed with motion detection is disabled; red 

arrows have been drawn in (g) to illustrate the ghosting artefacts. Figure 5.4(h) illustrates 

the resulting image crop after the whole fusing process is performed with motion detection 

enabled.  
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a)                                                                 b) 

  

c)                                                                  d) 

  

e)                                                                  f) 

    

g)                                                                 h) 

Figure 5.4: Image fusion process. (a) and (b) Original set of multi-exposure images. (c) Result of the 

fusion rules alpha mask without motion detection logic enabled (d) Absolute difference prior the 

application of the noise profile. (e) Noise profile calculated on the absolute difference.  (f) Result of 

the fusion rules with motion detection logic enabled. (g) Output image crop of the image fusion 

method with motion detection disabled. (h) Output image crop of the image fusion method with 

motion detection enabled.  
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5.2.3 Dynamic range compression 

In order to be able to visualise the contents of the wide dynamic range image produced 

during the image fusion stage, a local histogram equalisation or local tone mapping 

technique is applied to Ihdr.  

 

The dynamic range compression algorithm used in this research is an algorithm from a 

commercial product called iridix©. Iridix core performs dynamic range compression or tone 

mapping of an input image based on a model of the human visual system. It is used in a 

camera pipeline to produce most natural images under a wide range of capture conditions, 

typically by revealing shadow detail which would otherwise be under-exposed in high 

contrast situations. The purpose of the iridix transform is to map the image content from an 

input source such that it remains fully visible on an output display, without loss of content. 

Iridix is specifically designed to preserve colour, sharpness and boost the contrast of the 

source image, and it is based on a space-variant or pixel-by-pixel processing type algorithm. 

The algorithms inside iridix are adaptive, meaning that a single set of parameters can be 

used to process any source image or any video sequence under different lighting conditions.  

 

The dynamic range compression algorithm is an important part of the evaluation of the 

system, though not the subject for the proposed research. The objectives for the inclusion 

of the dynamic range compression algorithm in this research are: the ability to compress the 

dynamic range of Ihdr so that shadow areas in Ihdr are boosted and therefore matched to the 

look of the corresponding areas in Il; the ability to represent highlighted areas of Ihdr 

matching the look of corresponding areas in Is; and the minimisation of any low spatial 

frequency artefacts.  

 

It is noted that in this research, the objectives of assessing wide dynamic range compression 

techniques are quite difficult to formalise and describe by using quantitative metrics. Thus 

such issues are not investigated assuming that the dynamic range compression algorithm 

serves its purpose. Hence, this work concentrates on the noise measures of the resulting 

image Ihdr, and the ability to compensate for global and local motion within the set of multi-
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exposure images in comparison to the work presented by Romanenko [83]. The results of 

the experiments are presented in the following section.  

 

5.3 Experiments, Results & Analysis 

In this section, experimental results are presented in order to demonstrate the performance 

of the propose method for creating HDR content and prove its ability to remove ghosting 

artefacts that are due to moving objects in the scene and camera shake.  

 

The proposed method was tested on an extended set of Bayer RAW images captured with 

cameras used for different applications such as: video conferencing, CCTV surveillance, 

digital photography (DSLR) and in mobile phones. Each of the videos captured consisted of 

multi-exposure frames obtained by using different exposure ratios. This allowed generating 

short and long exposures fames so that they could be processed by the proposed method to 

generate the HDR image outputs.  

 

In order to verify the performance of the proposed approach, the peak signal to noise ratio 

(PSNR) values were measured as a reference to evaluate the quality of the fusion process. 

Moreover, each of the test sets was visually examined for spatial artefacts such as ghosting 

and fusion discontinuities.   

 

In addition to the PSNR values measured, the proposed approach’s performance was also 

compared against the HDR method proposed in [83]. This comparison consisted of PSNR 

values measured in the outputs of the HDR methods, and subjective analysis for identifying 

ghosting artefacts and fusing discontinuities. 

 

5.3.1 Experiment setup 

In order to evaluate the performance of this research, the proposed method was placed 

inside an ISP simulator so that the results could be visualised in the gamma corrected RGB 

domain. The ISP modules used in conjunction with the proposed method included black level 
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correction, grey world white balance, dynamic range compression (iridix), bilinear demosaic, 

colour correction, and standard sRGB gamma correction. The simplified ISP used in the 

experiments is shown in Figure 5.5  
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Figure 5.5: ISP used for the experiments. 

Table 5.1 presents the characteristics of each of the imaging sensors used, and Table 5.2 

presents the parameter set in the proposed approach during the experiments conducted. 

The noise profile of each sensor was calculated as described in Section 5.2.3, and all other 

parameters of the proposed approach were experimentally found. It is noted that once these 

parameters were tuned for each of the imaging sensors, none of the parameters were 

modified, when testing in different scenes and lighting conditions. 

 

 Sensor model 

 OV8835 – used in 
mobile 
applications 

DSLR Sony NEX-5 AS3372- used in video 
conferencing and 
surveillance  

Resolution  8MP 13MP 2MP 

FPS 7.5FPS 7.5FPS 60FPS 

Data bits 10 12 12 

Pixel size 2.7μm 3.5μm 1.4μm 

Max signal to noise ratio 36.6dB 60+dB 59dB 

Table 5.1: Imaging sensor characteristics used in the experiments. 
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 Sensor model 

 OV8835 DSLR Sony NEX-5 AS3372  

Motion estimation:  Delta 100 pixels 100 pixels 100 pixels 

NP curve fitting formula a, 

b, and c coefficients: 

𝒏𝒑(𝒙) =

√𝒃 × 𝑰𝑺𝑶𝟐 + 𝒄 × 𝒙 × 𝑰𝑺𝑶  

a = 0.34 

b = 6.8× (10^-5) 

c = 1.2× (10^-2) 

a = 0.29  

b = 1.15× (10^-5) 

c = 1.00× (10^-2) 

a = 1 

b = 1.01× (10^-8) 

c = 2.18 × (10^-5) 

Stitching points:  thl = 0.85 

ths= 0.93 

thl = 0.85 

ths= 0.93 

thl = 0.85 

ths= 0.93 

Absolute difference (Δi) 

intensity threshold:  

Ith = 0.050 Ith = 0.050 Ith = 0.080 

Signal amplifier:  δ = 64 δ = 64 δ = 64 

Exposure ratio 8 and 16 8 and 16 8 and 16 

Table 5.2: Parameters of the proposed approach used in experiments. 

 

5.3.2 Results and analysis 

Experiments were carried out to evaluate the ability of the proposed method to produce 

artefact free HDR images. Figure 5.6 shows an example of one of the sets of multi-exposure 

images used in the experiments captured with the OV8835 [90] imaging sensor. In Figure 

5.6, all processes performed by the proposed method in order to generate HDR images are 

shown. The over and under exposed RAW Bayer images obtained with an exposure ratio of 

16 are shown in Figure 5.6(a) and (b). The intensity equalisation mask used during the global 

motion estimation process used for the over and under exposure images are shown in 

Figures 5.6 (c) and (d). Plots of the global motion estimation performed are shown in Figures 

5.6 (e) and (f). Figure 5.6 (g) shows the fusing mask with motion aware logic enabled, and 

Figure 5.6 (h) shows the final HDR image.  
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a)                                                                 b) 

  

c)                                                                 d) 

  

e)                                                                 f) 

 

g)                                                                 h) 

Figure 5.6: Step by step illustration of the HDR proposed method. a) and b) the over and under 

exposure RAW Bayer images. c) and d) The intensity equalisation mask. e) and f) the plots of the 

global motion estimation in the horizontal and vertical directions. g) Fusing mask with motion aware 

logic enabled. h) The final HDR image. 
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In the set of multi-exposure images shown in Figure 5.6, PSNR values were measured and it 

was possible to see the ability of the proposed method to extend the dynamic range of the 

output image from ≈35dB to ≈46dB, without showing visible artefacts due to camera shake 

or moving objects in the scene. This is better illustrated in Figure 5.7, where the ability of 

the proposed method to compensate for global and local motion estimation is shown.   

 

Figure 5.7 (a) shows the crop of the output image with global motion estimation and motion 

aware logic disabled, and Figure 5.7 (b) shows the output image with global motion 

estimation and motion aware logic enabled. In this comparison, it is possible to see the 

importance of having motion estimation compensation in HDR imaging. Discontinuities and 

artefacts are observed around the car and face areas in Figure 5.7 (a), whereas Figure 5.7 (b) 

does not show any of these artefacts. 

 

  

a) 

  

b) 

Figure 5.7: a) Crop of the output image with global motion estimation and motion aware logic 

disabled. b) Crop of the output image with global motion estimation and motion aware logic 

enabled. 
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In order to show the importance of HDR imaging, Figure 5.8 shows two examples of the 

scenario where dynamic range compression (DRC) is applied to the short exposure images. 

Note that if the noise floor level is not considered, the short exposure image with DRC 

applied represents the same dynamic range as the HDR image produced by the proposed 

method.  

 

As can be observed in Figure 5.8, if DRC is applied to the short exposure image, large 

amounts of noise in the shadow areas are revealed. Figures 5.8 (b) and (g) show the under 

exposed images, Figure 5.8 (c) and (h) are the short exposure images with DRC applied, and 

Figure 5.8 (a) and (f) shows the HDR image produced by the proposed method. Zoomed in 

crops of the short exposure images with DRC applied (Figure 5.8 (e), (j)) and HDR images 

(Figure 5.8 (d), (i)) are provided for better illustration of the ability of the proposed method 

to improve signal to noise ratio. 
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a)     b)     c) 

 

d)                                                                 e) 

   

f)     g)    h) 

 

i)                                                                j) 

Figure 5.8: PSNR values calculated from short exposure and fused images with DRC applied. 

43.04dB 32.09dB 

38.04dB 24.2dB 
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Another example of the proposed method is presented in Figure 5.9. In this case the images 

were captured with a DSLR camera, Sony NEX-5 [91], with the exposure ratio set to 8. It is 

observed how fast moving objects are best represented partially in a short exposure image, 

and partially in the long exposure image. This scenario is a common situation where fusion 

techniques fail to deal with object displacements, and therefore ghosting artefacts are 

produced. Figures 5.9 (a) and (b) show the over and under exposed images processed by the 

ISP for illustration purposes, Figure 5.9 (c) shows the fused image without motion 

compensation, Figure 5.9 (d) shows the fused image with motion compensation enabled, 

and Figure 5.9 (e) shows the zoomed in crops of (c) and (d). 

 

    

a)          b)         c)   d) 

  

e) 

Figure 5.9: Ability of the proposed method to compensate for motion. a) and b) shows the over and 

under exposed images. c) The fused image without motion compensation. d) The fused image with 

motion compensation enabled. e) Zoomed in crops of (c) and (d).  
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The proposed method was also tested in comparison to Romanenko’s HDR method [83], 

since it was proved that its fusing of multi-exposure images was very accurate, even though, 

memory and logic required were very high. Figure 5.10 – 5.13 show images produced by 

Romanenko’s HDR method and images produced by the proposed approach. This 

comparison is important since one of the aims of this research is to be able to produce as 

good results as Romanenko’s HDR method, but with lower logic and memory requirements 

so that it can be implemented in hardware for real time HDR processing. In Figure 5.10 – 

5.13 (a) the short and long exposure images are shown as a reference to the processed HDR 

images. Figure 5.10 – 5.13 (b) present the HDR image outputs from Romanenko’s HDR 

method, and Figure 5.10 – 5.13 (c) the HDR image outputs from the proposed approach.    

 

As it can be observed in Figure 5.10 – 5.13, the proposed method can produce similar results 

to Romanenko’s HDR method. This is confirmed by the PSNR values measured in all test sets 

processed with the two methods. PSNR values were measured in the short exposure image 

with DRC applied, long exposure image, HDR image produced by Romanenko’s HDR method 

and the proposed approach. The average of PSNR values measured over the whole set of 

multi-exposure images for each sensor are shown in table 5.3. 

  

 Sensor model 

 OV8835 Sony NEX-5 AS3372  

Long exposure 38dB 46dB 40dB 

Short exposure + DRC 23dB 33dB 28dB 

HDR output from [83] 36dB 45dB 41dB 

Propose approach HDR 

output 

35dB 42dB 40dB 

Table 5.3: Average PSNR values measured in all tests sets. 
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       a)    b)     c) 

Figure 5.10 Performance comparison of the proposed approach versus the HDR image method 

proposed in [83]. a) Multi-exposure images. b) HDR image output from [83]. c) HDR image output 

from the proposed approach. 

 

       a)    b)     c) 

Figure 5.11 Performance comparison of the proposed approach versus the HDR image method 

proposed in [83]. a) Multi-exposure images. b) HDR image output from [83]. c) HDR image output 

from the proposed approach. 
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       a)    b)     c) 

Figure 5.12: Performance comparison of the proposed approach versus the HDR image method 

proposed in [136]. a) Multi-exposure images. b) HDR image output from [136]. c) HDR image output 

from the proposed approach. 

 

         a)    b)     c) 

Figure 5.13: Performance comparison of the proposed approach versus the HDR image method 

proposed in [83]. a) Multi-exposure images. b) HDR image output from [83]. c) HDR image output 

from the proposed approach.  

According to the PSNR values measured, the proposed approach was able to match the 

performance of Romanenko’s HDR method. This is very valuable since the proposed 

approach does not require large amounts of memory storage, bandwidth, and logic for its 

implementation in hardware. 

 

The proposed HDR solution for video was implemented in hardware and incorporated to an 

ISP of a digital camera as described in Chapter 4. Figures 5.14 - 5.18 present frames of videos 
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captured with the proposed HDR method in an imaging lab at different lighting levels, and 

in real case scenarios in day light. In these figures, it is possible to observed that the 

proposed HDR algorithm can cope with moving objects within the scene and camera shake. 

 

The setup of the imaging lab is presented in Figure 5.14. The lab scene contains a saw tooth 

signal test chart [129] used for measuring dynamic range, a moving train, and objects within 

a box at 2 lx. While capturing the videos, the camera was handheld and the train was set to 

a constant speed. 

 

   

Figure 5.14:Lab setup for HDR video experiments 
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Figure 5.15: HDR scene in at 800 lx. 
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Figure 5.16: HDR scene at 5lx. 
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Figure 5.17: : HDR scene day light 
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Figure 5.18: HDR scene day light 
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The limitations of the proposed algorithm are similar to the proposed spatio-temporal 

algorithm [83]. That is, in order to detect motion of objects in a pair of images, the objects 

should be present in both scenes and should be captured in both images. This limitation sets 

a limit on the range of optimal exposure ratios usable when capturing multi-exposure 

images. In the experiments performed, an exposure ratio of 1:16 was the maximum 

optimum value before the proposed method failed to accurately compensate for motion. 

This is because if images are taken at very different exposure levels, dark objects may not 

have details captured in the short exposure image, and thus making the motion estimation 

process impossible. Another limitation of the proposed method was its inability to be able 

to compensate for large, hundreds of pixels, rotational displacements due to camera shake. 

 

5.4 Conclusions 

A multi-exposure image fusion algorithm suitable for practical implementation in hardware 

was proposed in this chapter. The proposed algorithm was able to perform fusion of images 

taken at different exposures so that the total dynamic range of an image captured with a 

limited dynamic range imaging sensor is increased. 

 

The proposed approach performs global motion estimation and correction to compensate 

for motion due to camera shake, followed by the fusing of the set of multi-exposure images, 

where in its logic, it compensates for objects moving within the scene. The combination of 

these two steps, global motion compensation in conjunction with the motion aware fusing 

technique, allows removing motion artefacts and ghosting due to camera shake and moving 

objects in the scene.  

 

The proposed algorithm proved to be efficient in different lighting conditions and scenes 

and was proven to work well with different sensors.  

 

After further analysing the results from the experiments performed, it was shown that the 

limitation of the proposed approach is its inability to be able to compensate for motion at 

exposure ratios bigger than 1:16. This problem can be solved if the fusion system was 
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extended to three-exposure image fusion instead of a two exposure image fusion exercise. 

In three-exposure image fusion system, exposure ratio between short to medium and 

medium to long exposures could be set to 1:16 and 1:16, and therefore extend the total 

exposure ratio to 1:256 to be able to capture 120dB of dynamic range. Unfortunately, 

imaging sensors capable of capturing RAW Bayer data at high frames per second are not 

widely available and thus, it was not possible to test this option. Another limitation found in 

this research, was the ability to compensate for large rotation displacements within the set 

of multi-exposure images. Thus future research should focus on proposing new HDR 

methods that include efficient motion estimation algorithms capable of compensating for 

rotational displacements in order to create HDR content in real time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Chapter 6  

A Novel Colour Management System 

for Image Signal Processors  

 

This chapter presents a novel colour management system within an ISP pipeline that 

encompasses the colour constancy problem and the reproduction of pleasing colours to 

enable digital camera devices to mimic the HVS’s colour constancy capabilities. 

 

6.1 Introduction 

Colour constancy can be defined as “the constancy of the perceived colours of surfaces 

under changes in the intensity and spectral composition of the illumination” [92]. The human 

visual system is colour constant to a large extent, but this is affected by the contents of the 

field of view, state of adaptation, intensity level of illumination and difference of the 

adapting chromaticity from different kinds of illumination conditions [92]. Colour constancy 

in digital photography, also known as automatic white balancing (AWB), refers to the ability 

of a digital camera to recognise and reproduce the colour of an object as perceived under 

some canonical illumination [99], such as white light with a flat spectrum, regardless of the 

illumination that is incident upon them. 

 

Digital cameras have to rely on fast colour balancing algorithms integrated into their ISP 

pipeline, to estimate the colour temperature of a scene illumination in terms of the camera 

sensor response. The main purpose of an AWB algorithm is to estimate the colour 

temperature of a scene to compensate for undesired colour casts, and allow other ISP’s 

pipeline algorithms to perform more accurately. However, since colour constancy algorithms 

have to calculate the colour temperature by processing only the digital pixel values, the 

calculation of temperature is ill posed. An AWB algorithm needs to accurately estimate 
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colour temperature given many possible illuminants and surface reflectances. Furthermore, 

an AWB module needs to be robust, run in real time with limited computational resources, 

and has to have a full understanding of the camera system. That is, the imaging sensor, 

optics, and modules of the ISP that runs before AWB have to be perfectly tuned so that 

colour statistics are as accurate as possible when estimating colour temperature of a scene 

[93].    

 

When dealing with the colour constancy problem in digital photography it is necessary to 

take into account the colour preference of end users. Pleasing or memory colours [94] may 

be preferred over the accurate reproduction of colours. Thus, the target is not to reproduce 

accurate representation of colours in an image, but to reproduce what the pleasing memory 

colours of the majority of the consumers are [94]. That is. colours in a processed image 

should be reproduced closer to human memory colours, and not as colours reproduced in a 

light box of a photo lab. Since preferred colour reproduction is required instead of an 

accurate representation of them, the problem of colour constancy can be limited to finding 

the chromaticity of illumination. Despite the aim of preferred colour reproduction, it is still 

important to be able to estimate the chromaticity of illumination accurately, i.e. neutral 

colours in the image should be 100% neutral grey. 

 

Determining preferred colours is a subjective task and it may be impossible to determine a 

method that will satisfy all viewers. For this reason, Arie Andries Kruithof proposed what is 

popularly named as, the Kruithof curve [95, 96]. In the Kruithof curve, the illuminance and 

colour temperature have a relationship to a preferred colour temperature given a scene with 

certain illuminance as shown in Figure 6.1 (a). Similar transition of colour temperature from 

orange/red to blue can be seen in the Planckian Locus chromaticity space as shown in Figure 

6.1 (b). Kruithof’s curve relationship holds because it is expected to have cool colour 

temperatures in very bright conditions, and warm colour temperatures in low light 

conditions. However, recent research papers have shown that the Kruithof's curve is not 

always useful. It seems to be due to Kruithof’s omission to consider the influence of activities 

to the preference of lighting condition [96]. However, this is a starting point for determining 

and comprising a margin of preferred colours when trying to achieve colour constancy and 

preferred colours within a single system. 
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a)     b) 

Figure 6.1: a) Kruithof curve [128]. b) The CIE 1931 x, y chromaticity space [127]. It is also shown the 

chromaticities of the black body locus (Planckian Locus) at various light temperatures, and lines of 

constants correlate to the colour temperature. 

The goals of this research are: 1) to evaluate and benchmark the ability of current state of 

the art colour constancy methods to estimate the colour temperature when they are used 

as an AWB module of an ISP pipeline, and 2) to propose a new ISP colour management 

system where colour constancy and pleasing colours can be achieved.  

 

Colour constancy algorithms have been proposed and proved to perform well as a post-

processing technique. However, from the literature reviewed, it seems like these methods 

have never been tested as a part of an ISP that works in the RAW Bayer domain, which has 

the colour channels R, Gr, Gb, and B. In addition, researchers seem to have overlooked the 

fact that the images used in their experiments had some kind of colour correction processing 

before they applied their methods. That is, static white, colour balancing, gamma correction, 

green equalise, black levels, which leads to a level of uncertainty of the proposed methods 

being able to correct colour casts on a balanced image, or actually estimate/compensate 

colour shifts due to different colour illuminants. Moreover, after analysing the image 

databases available in [105], which are the databases used by the previously proposed 

colour constancy approaches, none of them showed to have tested the methods to achieve 

colour constancy in challenging situations, also known in industry as “corner cases.” For 

instance scenes with: monotonic colours, green grass colour versus CWF lighting, opposite 
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colour objects’ surface reflectance to the light colour temperature in the scene, sunset, low 

light conditions, absence of grey, noisy images, mixed lighting, cloudy scenes, and scenes 

with a predominant colour in the scene.  

 

Another fact that researchers have overlooked when testing colour constancy methods is 

the dependency of other modules of the ISP’s pipeline that affects accurate colour 

reproduction. Colour constancy will be affected by sensor-to-sensor variation, and by the 

ISP modules such as: black level correction, green equalisation, vignetting correction (which 

is a major problem in mobile phone cameras) and chroma noise. Hence, depending where 

the AWB module sits in an ISP pipeline, other ISP modules could have an impact on the final 

reproduction of colours in the image.  

 

Most of the existing colour constancy methods used in digital cameras work in a 2-step 

operation. The first step is to estimate the illuminant, colour temperature, of the scene 

which is the focus of much research; the second step is to correct the image by either using 

the fixed diagonal transformation model based on von Krie’s coefficient rule [108] shown in 

Equation 6.1, or by a linear non-restrictive transformation that can deal with non-orthogonal 

camera sensitivity function such as colour filter arrays in the sensor [93] shown in Equation 

6.2. 

 

[𝑅′ 𝐺′ 𝐵′]𝑇 = [

Γ𝑅𝑅 0 0
0 Γ𝐺𝐺 0
0 0 Γ𝐵𝐵

] . [𝑅 𝐺 𝐵]𝑇                     (6.1) [99] 

 

[𝑅′ 𝐺′ 𝐵′]𝑇 = [

Γ𝑅𝑅 Γ𝑅𝐺 Γ𝑅𝐵
Γ𝐺𝑅 Γ𝐺𝐺 Γ𝐺𝐵
Γ𝐵𝑅 Γ𝐵𝐺 Γ𝐵𝐵

] . [𝑅 𝐺 𝐵]𝑇                     (6.2) [99] 

 

So far, most of the colour constancy algorithms and AWB methods proposed in the literature 

have not been able to demonstrate an understanding of the issue of preferred versus neutral 

colours rendering. This is understandable given the subjective nature of the problem, and 

thus the reason for not being able to identify a unique solution to the colour constancy 

problem.  
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In this research a novel colour management system is proposed within an ISP pipeline that 

encompasses the colour constancy problem and the reproduction of pleasing colours in a 

final image processed by the ISP. The proposed ISP based colour management system has 

three stages: 1) the AWB module, where colour temperature is estimated and corrected, 2) 

colour balancing for achieving colour constancy in non-orthogonal camera colour functions, 

and 3) a cooling-warming approach to achieve pleasing colours in the final image processed 

by the ISP.  

 

For clarity of presentation, this chapter is organised as follows: Section 6.2 provides a 

discussion of on the six colour constancy algorithms evaluated. Section 6.3 presents the 

proposed colour management system within an ISP pipeline. In Section 6.4, presents the 

experimental setup, and the experimental results obtained after testing the benchmark 

colour constancy methods described in Section 6.2 and the proposed novel colour constancy 

method presented in Section 6.3. Section 6.4 presents the ability of the proposed system to 

produce pleasant reproduction of colours based on Kruithof curve theory. To conclude this 

chapter, Section 6.5 presents the conclusion and future work. 

 

6.2 Review of Colour Constancy Approaches 

Within the context of research presented in this chapter only six of the fastest and most 

efficient colour constancy algorithms will be presented: Grey World (GW) [35], Probabilistic 

(Bayesian approach) [104], Max-RGB [98], Grey Edge 1st and 2nd order [101], Weighted Grey 

Edge [102], and Shades of Gray [100]. These algorithms estimate the R, G, and B components 

of the illumination vector e projected on the sensitivity of the camera’s sensor function Î = 

[Îr, Îg, Îb]t, and calculating and normalising the gain factor Γ for each colour channel as 

follows: 

 

Î =  
e

||e||
                                                                 (6.3)[99] 

 

Γ𝑖 = 
max (Î)

Î𝑖
, 𝑖 𝜖 {𝑅, 𝐺, 𝐵}                                    (6.4)[99] 
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The Grey-world is regarded as a simple algorithm on the basis of its implementation. It is 

commonly used as a benchmark algorithm for colour constancy, and is based on the 

assumption that the average reflectance of a scene as captured by the camera is grey. The 

grey world algorithm estimates the illumination vector e by calculating the mean of the R, 

G, and B channels (Equation 6.5), and normalising the vector e to obtain the R, G, and B 

components of Î using Equation 6.3. When the illumination is uniform over the field of view, 

the grey world algorithm is unbiased [99]. The illumination vector e is defined as: 

  

𝑒 =  [
∑𝑅

𝑛𝑚
,
∑𝐺

𝑛𝑚
,
∑𝐵

𝑛𝑚
 ]

𝑇

                                                (6.5)[99] 

 

Where R, G, and B represent each of the colour channels of the image, and nm is the height 

and width of the image.  

 

The Max-RGB approach to colour constancy is based on Land’s explanation [98] as a 

mechanism to achieve colour constancy in digital photography similar to the way that the 

human visual system does. Land proposed that the HVS achieves colour constancy by 

detecting the area of highest reflectance in the field of view separately for long (red), 

medium (green) or short (blue) wavelengths, which correspond to the three types of cones 

in human eyes. The area of highest reflectance is then normalised by the response of each 

cone by the highest value [98]. The estimation of the illuminant is similar to the Grey-world 

algorithm in Equation 6.5, except for the fact that it estimates the maximum instead of the 

mean to get maximum sensor responses for each channel (Equation 6.6), and normalising 

the vector e to obtain the R, G, and B components of Î using Equation 6.3. 

 

  𝑒 = [max(𝑅),max (𝐺),max(𝐵)]𝑇                                      (6.6)[99]  

 

The Max-RGB algorithm produces accurate results when the scene contains a white patch, 

which reflects the entire spectrum of light evenly, or when the maximal object reflectance 

is the same for the R, G, and B channels. In practice, one should take care and make sure 

that the chosen maximal values accurately represent reflectance information from the 

scene. That is, clipped or saturated pixels due to the camera’s limited dynamic range should 
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not be taken into consideration. It is usually a good practice to ignore pixels above a certain 

threshold (e.g. 95% of the camera’s dynamic range) [99]. 

 

Finlayson and Trezzi [153] showed that Grey-world and max-RGB are two different 

instantiations of a more general colour constancy algorithm based on the Minkowski norm. 

Their method is labelled as Shades of Gray and it is computed by calculating and normalising 

the Minkowski norm for each colour channel to form the estimated illumination vector. In 

their setting, the grey world algorithm is obtained by setting p = 1, while max-RGB is the 

result of p = ∞. Shades of gray, is estimated as shown in Equation 6.7, followed by 

normalising the vector e to obtain the R, G, and B components of Î using Equation 6.3. 

Finlayson and Trezzi concluded that using the Minkowski norm with p = 6 gave the best 

estimation results on their data set given [99].   

 

𝑒 = [(
∑𝑅𝑝

𝑛𝑚
)

1
𝑝

, (
∑𝐺𝑝

𝑛𝑚
)

1
𝑝

, (
∑𝐵𝑝

𝑛𝑚
)

1
𝑝

 ]

𝑇

                               (6.7)[99] 

 

R, G, and B represent each of the colour channels of the image, and nm is the height and 

width of the image. 

 

Another approach to colour constancy is the Grey Edge method [102]. It considers the 1st 

and 2nd order image derivatives, instead of using the image itself. The assumption in this 

method is based on the observation that the distribution of the derivatives of images forms 

an ellipsoid in the RGB space, of which the long axis coincides with the illumination vector. 

The Grey Edge method assumes that the average of the reflectance differences in a scene is 

achromatic. This method estimates the illumination vector e by first applying to the image a 

Gaussian filter with standard deviation σ to produce a Iσ scaled image (Equation 6.8), and 

then calculate Minkowski norm of each colour channel of the first order derivative of Iσ, as 

shown in Equation 6.9, and normalising the vector e to obtain the R, G, and B components 

of Î using Equation 6.3. 
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𝐼𝜎(𝑥, 𝑦) = 𝑒
(−(

(𝑥−𝑥0)
2

2𝜎𝑥
2 +

(𝑦−𝑦0)
2

2𝜎𝑦
2 ))

,   𝐼𝜎 𝜖 {𝑅, 𝐺, 𝐵}                      (6.8)[99] 

 

𝑒𝑖 = (∑∑(√(
𝜕

𝜕𝑥
𝐼𝜎𝑖)

2

+ (
𝜕

𝜕𝑦
𝐼𝜎𝑖)

2

)

𝑝

𝑦𝑥

)

1
𝑝

𝑝 =  {
1, 𝑔𝑟𝑒𝑦 𝑒𝑑𝑔𝑒
∞,max 𝑒𝑑𝑔𝑒

}               (6.9)[99] 

𝑒𝑖𝜖[𝑅, 𝐺, 𝐵] 

 

Another approach based on the use of distinct edge types is the Weighted Grey Edge [102]; 

this method improves the performance of edge-based colour constancy by computing a 

weighted average of the edges. Since such methods often assume that the scene is 

illuminated by a white light source, the automatic detection of such edges can become 

erroneous when the colour of the light source is different to white. The Weighted Grey Edge 

method is computed using an iterative photometric weighting scheme that sequentially 

estimates the colour of the light source and updates the computed edge weights. The 

foundation behind this approach is to fully exploit the information that is enclosed in the 

image, and simultaneously to increase the accuracy of the illuminant estimation and 

(specular) edge detection [102]. The Weighted Grey Edge method is computed using 

Equation 6.10, 6.11, and 6.3 to normalise e. w(f) is the weighting function and k is the value 

used to control the weighting. 

 

(∫|𝑤(𝑓)𝑘𝑓𝑟𝑔𝑏,𝑥(𝑥)|
𝑝
𝑑𝑥)

1
𝑝
= 𝑓𝑒𝑟𝑔𝑏                                (6.10)[99] 

 

𝑒 = [𝑓𝑒𝑟,𝑓𝑒𝑔, 𝑓𝑒𝑏]
T                                                   (6.11)[99] 

 

The Bayesian approach based framework provides a description on how to use all of the 

information about the illuminant constrained in the sensor response. Three probability 

distributions play key roles. These are the prior, the posterior, and the likelihood. The prior 

probability describes what is known about the parameters before observing the illuminant 

data, while the posterior probability describes what is known after observing the 

illumination data. The Bayesian approach estimates parameters described by the vector x, 
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then the prior information is the probability density p(x). The likelihood p(y|x) expresses the 

relation between the data y and the parameters x. The likelihood may be thought of as the 

rendering Equation expressed as a probability distribution. Given the prior p(x) and the 

likelihood p(y|x), the posterior rule, probability p(x|y) is computed by using Bayes’ theorem 

shown in Equation 6.12. 

 

𝑝(𝑥|𝑦) =  
𝑝(𝑦|𝑥)𝑝(𝑥)

𝑝(𝑦)
                                          (6.12)[113] 

 

Bayesian Colour Constancy Revisited [104] is one of the newest probabilistic approaches to 

colour constancy. This method is an improved version of the Bayesian approach from [103]. 

The Bayesian Colour Constancy Revisited approach models the observed image pixels with 

a probabilistic generative model, and decomposes them as the product of unknown surface 

reflectances with an unknown illuminant. Then, by using Bayes’ rule, it obtains a posterior 

for the illuminant, and from this, an estimate with the minimum risk. That is, the minimum 

expected chromaticity error. In order to estimate the illuminant, it calculates the likelihood 

of the observed Y image data for an illuminant L as follows: Let Y be an image pixel with 

three colour channels. The pixel value is assumed to the reflection of a single light source of 

a Lambertian surface with power Lrgb, and the proportion of light reflected Xrgb. Thus the 

model for a given pixel is Yrgb = lrgbXrgb, and, since it is assumed that the illumination 

reflectances are independent, then p(X,l) = p(X)p(L).  The reflectances p(x) are modelled by 

assuming exchangeability of reflectances. With this assumption, it is possible to define a set 

of probabilities over the reflectances histogram (n1,…,nk) in Y, where nk are the number of 

reflectances in the kth bin of the histogram. The prior illumination distribution p(L), is given 

by using the reflectance distribution of the Grey-world algorithm. In order to estimate the 

posterior, Equation 16 is used where η is an exponent that helps with cross validation. In 

[104] the value of η = 0.001. The posterior probability p(Y|L) is derived as follows: 

 

𝑝(𝑋) = ∝ 𝑓(𝑛1, … , 𝑛𝑘)                                            (6.13)[104] 

 

𝑓(𝑛1, … , 𝑛𝑘) =  ∏𝑚𝑘
𝑣𝑘

𝑘

                                          (6.14)[104] 
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𝑣𝑘 = 𝑛
tanh(𝜆𝑛𝑘)

∑ tanh(𝜆𝑛𝑠)𝑠
                                                      (6.15)[104] 

 

𝑝(𝑌|𝐿) =  ∫ (∏𝑝(𝑦(𝑟𝑔𝑏)|𝐿, 𝑥(𝑟𝑔𝑏))

𝑖

)
𝑥

𝑝(𝑋)𝑑𝑋                          (6.16)[104] 

 

= |𝐿−1|𝑛𝑝(𝑋 = 𝐿−1𝑌)                                                     (6.17)[104] 

 

𝑝(𝐿|𝑌) ∝  |𝐿−1|𝑛𝑝(𝑋 = 𝐿−1𝑌)𝑝(𝑌)                                      (6.18)[104] 

 

𝑝(𝐿|𝑌) ∝ 𝑝(𝑌|𝐿)𝜂𝑝(𝐿)                                                   (6.19)[104]  

 

6.3 Proposed ISP Colour Management System 

The proposed colour management system within an ISP pipeline encompasses three stages. 

First, the colour temperature of the illuminant is estimated (AWB module); then, a colour 

correction/balancing matrix is applied (CCM); followed by a cooling-warming process to 

achieve camera end-users preferred colours depending on the colour temperature of the 

scene. The diagram in Figure 6.2 shows how the proposed system fits into the pipeline of an 

ISP. The proposed approach is designed in such a way that it is robust enough to cope with 

sensor-to-sensor variation, on either mobile phones or industrial cameras, and at the same 

time flexible enough to be able to produce pleasant colours in images by following Kruithof 

curve theory, and also to exceed industry image quality standards.  

 

 

Figure 6.2: The integration of the proposed colour constancy method inside an ISP pipeline. 

The system works by estimating the colour temperature of the illuminant and compensating 

accordingly so that the image is 100% neutral under any type of illuminant. This is followed 
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by the calculation of the colour temperature in the AWB module; the image’s colours are 

balanced by the colour correction matrix (CCM) depending on the colour temperature 

estimated in the AWB module. After these two steps, colours in the image should be 

subjectively and objectively constant under any lighting condition. The last step of the 

system is to make the image more pleasant to camera users by adding a cooling-warming 

effect to the image depending on the colour temperature estimated in the AWB module. 

 

In order to estimate colour temperature, a new Bayesian method adapted from a machine 

learning technique to estimate the illuminant of a scene is proposed. As mentioned in 

section 6.1, the colour constancy problem is ill posed if the only information used to estimate 

colour temperature is the pixel intensity values of an image. For this reason, this system uses 

the luminance dimension as an extra piece of information when estimating colour 

temperature.  The luminance dimension is characterised by the relationship of the camera 

exposure value (EV) to brightness (lux) of a scene. This is because low colour temperatures 

are more likely to be present in low lightning conditions, and high colour temperatures are 

more likely to be present in very bright lighting conditions. 

 

In the following sections, a full description of the proposed approach is presented. 

 

6.3.1 Sensor characterisation  

In this stage, the behaviour of a camera system under different colour temperature lighting 

is characterised. A large set of illuminants ranging from 1800 kelvin (k) to 17000K, including 

cool white fluorescent (CWF) lighting are considered. The images used for the 

characterisation are taken under a control environment using professional equipment: 

photo lab light box, CIE standards colour temperature light bulbs, and a 24-ColourChecker 

Macbeth chart for colour measurements. 

 

The behaviour of a camera sensor is analysed by plotting the ratio of the colour channels red 

to green and blue to green from all illuminants captured. This allows knowing the Planckian 
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curve or response to colour temperatures of the sensor. This analysis is shown in Figure 

6.3(a).  

 

In order to estimate the colour matrices for the colour balancing stage, three lighting 

conditions are considered: incandescent (A), fluorescent (TL84), and daylight (D65). 

 

The final measurement taken for characterising the sensor is the relationship of EV to lux 

levels in the scene. The EV value is calculated as the product of exposure time, digital and 

analogue gains, and aperture. The lux levels are recorded by using a lux meter in the scene. 

The lux levels measured range is from 10 lux to 25000 lux, which is done by increasing the 

light intensity in the photo lab. Figure 6.3 (b) shows the EV to lux relationship.  

 

  

a)      b) 

Figure 6.3: SONY NEX-5 colour response. a) Characterisation of the Planckian locus curve. b) 

Relationship of EV values to Lux levels 

 

6.3.2  Colour temperature estimation 

The illumination of colour temperature estimation is a probabilistic data driven method, 

derived from localised MxN statistics zones in the image generated by an ISP. This method 

uses the concept of the constrained colour temperature curve, and it looks for various 

colours in the image by using negative and positive deviation with a Gaussian distribution 

along the characterised Planckian curve (Figure 6.4 (a)). Thus, the correct red and blue gains 
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of the sensor are confined to a small subset of all possible gains as shown in Figure 6.4 (b). 

The lower and upper limits of the curve can be set to the desired range of illuminants that 

the camera system should encounter. Negative and positive deviation along the Planckian 

curve also allows green channel variations because in reality the gains do not lie exactly on 

the curve as such, but near the curve. In order to follow a more comprehensive probabilistic 

approach, a machine learning classifier technique is used, the Naïve Bayes Classifier, to 

determining the probability of high or low temperature in the scene.  
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a) 

 

b) 

Figure 6.4:  a) Negative and positive deviations along the Planckian curve. b) Plot of valid (green) and 

non-valid (red) zones R:G, B:G ratios for estimation of colour temperature. 
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The Naïve Bayes algorithm is a classification algorithm based on Bayes rule that assumes the 

attributes X1… Xn are all conditionally independent of one another, given Y [106]. The value 

of this assumption is that it simplifies the representation of P(X|Y), and the problem of 

estimating probabilities from statistical data. 

 

The Naïve Bayes Classification theory is derived as follows: Let X = {X1, X2}, which leads to 

P(X|Y) = P(X1, X2|Y). From the general property of probabilities it can be rewritten P(X|Y) as 

P(X|Y) = P(X1| X2,Y )P(X2|Y), and by following the conditional independence of a random 

variable X, Y and Z, defined as: X is conditionally independent of Y given Z, if and only if the 

probability distribution governing X is independent of the value of Y given Z; then P(X|Y) can 

be rewritten as in Equation  6.20: 

 

𝑝(𝑋1…𝑋𝑛|𝑌) =  ∏𝑃(𝑋𝑖|𝑌)                                                            (6.20)

𝑛

𝑖=1

 

 

Assuming that Y is any discrete-valued variable, and the attributes X1… Xn are any discrete 

or real-valued attributes. Then, the desired classifier will output the probability distribution 

over the possible values of Y, for each new instance of X. The expression of the probability 

that Y will take on its Kth possible value, according to Bayes rule, and by the assumption the 

Xi are conditionally independent given Y is given in equation 6.21:  

 

𝑝(𝑌 = 𝑦𝑘|𝑋1…𝑋𝑛) =
𝑝(𝑌 = 𝑦𝑘)∏ 𝑝(𝑋𝑖|𝑌 = 𝑦𝑘)𝑖

∑ 𝑝(𝑌 = 𝑦𝑗)𝑗 ∏ 𝑝(𝑋𝑖|𝑌 = 𝑦𝑗)𝑖

                                        (6.21)  

 

Equation 6.21, the fundamental equation of the Naive Bayes Classifier, shows how to 

calculate the probability that Y will take on any given value, given the observed attribute 

values of Xnew={ X1,…,Xn} and given the distributions P(Y) and P(Xi|Y) estimated from the 

training data. In order to determine the most probable value of Y, the following classification 

rule given by equation 6.22 is introduced: 

 

𝑌 ← 𝑎𝑟𝑔𝑚𝑎𝑥𝑦𝑘
𝑝(𝑌 = 𝑦𝑘)∏ 𝑝(𝑋𝑖|𝑌 = 𝑦𝑘)𝑖

∑ 𝑝(𝑌 = 𝑦𝑗)𝑗 ∏ 𝑝(𝑋𝑖|𝑌 = 𝑦𝑗)𝑖

                                             (6.22)  
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Because the denominator does not depend on yk, equation 6.22 simplifies to: 

 

𝑌 ← 𝑎𝑟𝑔𝑚𝑎𝑥𝑦𝑘𝑃(𝑌 = 𝑦𝑘)∏𝑃(𝑋𝑖|𝑌 = 𝑦𝑘)

𝑖

                                         (6.23) 

 

Thus, in order to use the Naïve Bayes classifier to determine the probability of a scene being 

high or low temperature, the assumptions that high colour temperatures are only present 

at high brightness levels with low red gains in the image, and low colour temperatures are 

present in low light conditions with high red gains in the image is made. That is, a high 

temperature scene, or a low temperature scene depends on the red gain values in an image 

and lux levels attributes. 

 

To ensure that that the probability of an illuminant is correct, the Bayes Theorem is used in 

conjunction with a Naïve Bayes Classifier as follows. 

 

The class relationships of lux levels to high and low temperature, and red gains to high and 

low temperature are calculated by computing the mean μy, variance σy
2 of X = {lux, red gains} 

associated with class Y = {low temperature, high temperature}. The probability of Yi given 

some value v, the R:G gain for each statistic zone and lux value of the scene, is given by 

equation 6.24: 

 

𝑃(𝑋 = 𝑣|𝑌) =  
1

√2𝜋𝜎𝑦
2

𝑒
−
(𝑢𝜇𝑦)

2

2𝜎𝑦
2
                                                          (6.24) 

 

The Naïve Bayes classifier is calculated by getting the maximum posterior probability of the 

m number of Y classes and n number of X attributes as: 

 

𝑌𝑖𝑀𝑎𝑥 ← argmax𝑚  
∏ 𝑃(𝑌𝑖)𝑃(𝑋𝑗|𝑌𝑖)
𝑛
𝑗=1

∑ ∏ 𝑃(𝑌𝑖)𝑃(𝑋𝑗|𝑌𝑖)
𝑛
𝑗=1

𝑚
𝑖=1

                                       (6.25) 
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In order to satisfy the Bayes’ theorem, it is required to estimate the probability of the 

localised 1 to w, ISP statistics zones Z, defined as the Gaussian distribution drop-off style 

from the Planckian curve as: 

 

𝑝(𝑍1:𝑤) =  𝑒
−
(distance of 𝑍1:𝑤 from planckian curve)

2

deviationfrom planckian                                (6.26) 

 

By Using Bayes’ theorem, each of the statistical zones is weighted according to P(Z1:w) and 

P(YMax1:w).  

 

𝑃(Colour Temperature | 𝑍1:𝑤) =  𝑃(𝑍1:𝑤)𝑌𝑖𝑀𝑎𝑥1:𝑤                            (6.27) 

Hence, the illumination vector e is given by the sum over all probability weighted R:G, and 

B:G zones as: 

 

𝑒𝑖 =
∑ 𝑍𝑖
𝑤
𝑖=1 𝑃(colour temperature | 𝑍𝑖)

∑ 𝑃(colour temperature | 𝑍𝑖)
𝑤
𝑖=1

                                     (6.28) 

𝑒𝑖𝜖[𝑅/𝐺, 1, 𝐵/𝐺] 

 

The image can be corrected by composing the vector e with the gains calculated from 

Equation 6.28 and then normalising using Equation 6.3 and correcting the illuminant using 

equation 6.1. In order to estimate the colour temperature in Kelvin, the R/G, B/G gains will 

indicate the position in the characterised Planckian curve as in Figure 6.3 (a), the colour 

temperature of the scene 

 

6.3.3 Colour balancing driven by AWB 

Colour accuracy is an important but at the same time ambiguous image quality factor. 

Accurate colours may be critical in technical or medical photography, but less important in 

consumer photography, where many camera users prefer enhanced colour saturation, 

particularly in memory colours such as foliage, sky, skin, etc. Thus, this research puts the 

emphasis on that fact, accurate colours are not the same as pleasing colours. 
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Colour accuracy can be affected by Bayer colour filter arrays in the imaging sensor, signal 

processing, optical characteristics, and lighting conditions. Thus, in addition to making the 

image’s grey colours neutral by the AWB module, all spectral colours need to be 

compensated to achieve colour constancy under any illumination and camera 

characteristics. Achieving colour accuracy in all spectral colours, also known as colour 

correction matrix (CCM), can be accomplished by applying a 3x3 correction matrix to the 

image using equation 6.2, a linear non-restrictive transformation. 

 

The challenge of colour balancing an image by the CCM is to find the 9 coefficients that will 

produce the most accurate representation of colours. In order to estimate the 9 coefficients 

of the CCM, the colour response is measured by using the widely available 24-patch Macbeth 

ColourChecker under different illuminations. The CCM colour accuracy is obtained by 

minimising the colour ΔE*ab and ΔC* errors in the CIELAB (L*a*b*) colour space where L* is 

luminance, a* is colour on a green-red scale, and b* colour in a blue-yellow scale. ΔE*ab and 

ΔC* are the Euclidian distances between the L*a*b* values.  ΔE*ab and ΔC* errors are 

calculated as follows: 

 

∆𝐶∗ = √((𝑎2
∗ − 𝑎1

∗)2 + (𝑏2
∗ − 𝑏1

∗)2)                                   (6.29)[107] 

 

∆𝐸𝑎𝑏
∗ = √((𝐿2

∗ − 𝐿1
∗ )2 + (𝑎2

∗ − 𝑎1
∗)2 + (𝑏2

∗ − 𝑏1
∗)2)                   (6.30)[107] 

 

Note that the ΔC* value ignores both exposure and saturation error and only looks at the 

deviation in hue of the Macbeth colour patches from the ideal target. Thus, some colour 

error ΔC* may be acceptable since ideal colours are not necessarily right for consumer 

products, thus, some subjective judgment is needed when generating the CCM. In this 

research, a popular commercial image quality standard software named Imatest is used to 

generate the 3 CCMs, which are measured at incandescent, TL84, and D65 light colour 

temperatures. In order to generate the 3 CCMs, Imatest uses a mean squares error metric 

in an optimiser to reduce the ΔE*ab and ΔC* errors in the CCM [107]. The optimiser 

constraint is that the row and columns have to sum to 1. It was also used a patch weighting 

function to assign a higher or lower weight to different patches to avoid oversaturation, 
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colour clipping, or to improve the colour Δ* error. Figure 6.5 (a) shows an example of the 

Macbeth chart and in Figure 6.5 (b) the plot of the colour errors in CIELAB space. 

  

  

a)       b) 

Figure 6.5: a) 24-patch Macbeth chart. b) Plot of the colour errors in CIELAB space 

The reason for having three CCMs is because colours vary under different illuminations. 

Thus, if it is known what the colour temperature is, it is possible to apply the correct CCM to 

achieve colour accuracy under any illumination. The correction is done using equation 6.2, 

with the addition that the CCMs are alpha blended from CCMA to CCMTL84, and CCMTL84 to 

CCMD65 depending on the colour temperature of the scene, estimated in the AWB module.  

 

6.3.4 Cooling-warming factor 

The last step of the system is to make colours more pleasant to camera users by adding a 

cooling-warming effect to the image depending on the colour temperature estimated in the 

AWB module. To this point, the image processed should be colour balanced in all spectral 

and neutral colours, so that any extra colour shifts are performed in a controlled manner.  

 

In this research it was adopted Kruithof theory on pleasing colours which can be interpreted 

as: colours in an image appear to be bluer as colour temperature increases, and redder as 

colour temperatures decrease. The cooling-warming effect is applied using equation 6.31, 

where Rwc, Gwc, Bwc, are the cooling-warming factors calculated from a piecewise linear 
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equation depending on the colour temperature of the scene T, and ω a weighting factor 

applied to each of the colour channels. 

 

[𝑅′ 𝐺′ 𝐵′]𝑇 = [

1 + 𝑅𝑤𝑐𝜔𝑟 0 0
0 1 + 𝐺𝑤𝑐𝜔𝑔 0

0 0 1 + 𝐵𝑤𝑐𝜔𝑏

] . [𝑅 𝐺 𝐵]𝑇         (6.30) 

 

𝐶𝑤𝑐 𝜖 {𝑅𝑤𝑐𝐺𝑤𝑐𝐵𝑤𝑐} ← 𝐶𝑤𝑐 𝑓(𝑇) 

 

𝑓(𝑇) = {
−400000 𝑥 + 0.2 , 𝑇 < 5000
400000 𝑥 + 0.2 , 𝑇 ≥ 5000

 

 

𝑓(𝜔, 𝑇 ) = {
𝜔𝑟 =  1, 𝜔𝑔 = 0.33,𝜔𝑏 = 0, 𝑇 < 5000

𝜔𝑟 = 0,𝜔𝑔 = 0.33,𝜔𝑏 = 1 , 𝑇 ≥ 5000
                  (6.31) 

 

Since the above is a subjective matter, the f(T), and f(ω, T) could slightly change according 

to the manufactures’ preference, when characterising the canonical camera system. In this 

research, the tuning of the cooling-warming piecewise linear equation is estimated by 

visually matching the colours displayed in an EIZO ColorEdge calibrated monitor to the 

colours perceived by the human eye in the light box at different colour temperature 

illuminants. 

 

6.4 Evaluation of the Proposed Colour Constancy 

Method 

In this section, the experimental setup, and results obtained comparing the performances 

of the state-of-the-art colour constancy methods described in Section 6.2 and the proposed 

colour constancy method described in Section 6.3.2 are presented 

  

Each of the colour constancy methods previously described have been benchmarked in 

previous research, but not yet identified as a comprehensive solution to the problem at 

hand. It is believed this is because researchers have tested and developed colour constancy 
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methods that differ in purpose and functionality. Moreover, the ultimate aim in resolving 

the colour constancy problem in digital photography has not been yet well defined. For 

instance, is the aim to reproduce an image with pleasing memory colours, or to reproduce 

accurate colours as in a photo lab regardless of the illuminant in scene? Furthermore, how 

do the methods achieve colour constancy? Is it i) by removing the colour cast in already 

processed images as a post-processing technique that needs a previous knowledge set by 

humans, or, ii) by defining an automated approach for estimating/compensating the 

illuminant’s colour temperature inside an ISP, as a pre-processing technique? 

 

Authors believe that a further reason for why a solution to the colour constancy problem 

has not been yet identified, is because experiments in previous research have not been 

consistent. This may be due to the inability to accurately identify all image-processing 

algorithms that take palace inside commercial ISPs being used. For example, researchers 

have claimed that the images gathered for the experiments were in RAW format. However, 

a closer look revealed that the images were read back within the computer by using image-

processing software such as “Dcraw” to produce the corresponding RGB images [104, 111]. 

The type of software that read RAW files and convert them into RGB, undergo a computer 

simulation of a typical hardware ISP pipeline and thus all typical colour correction processes 

of an ISP such as static white/colour balancing CCM, gamma correction, black level 

correction, demosaicing, hot pixel elimination among other processes are applied according 

to the metadata imbedded in the RAW image file. Thus, the RAW images converted to RGB 

were not colour correction free and data was not linear. In other research, images were 

captured in RGB disabling the camera’s AWB module and setting it to manual outdoors white 

balance mode [99, 112]. Thus, the images gathered yet again were not in the linear form, 

and had colour corrections applied.  

 

Consequently, if the aim of a colour constancy method is to estimate/compensate colour 

shifts under any illuminant instead of removing colour casts from an already balanced image, 

the experiments performed in previous research had many uncontrolled factors that could 

have added uncertainty to the ability of the proposed methods to work as an ISP’s AWB 

module. All available databases that showed the above can be found in 

http://colorconstancy.com [105].  
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In order to illustrate the discrepancy of the inputs to the experiments performed in previous 

research, Figure 6.6 (a) shows an image captured in RAW Bayer format at 2600K without any 

colour correction applied (only demosaiced for illustration purposes); this would normally 

be the input to the AWB module in an ISP. However, when capturing the same image using 

an ISP with manual WB set to indoors-white balance, the RGB output image is colour 

corrected and presents an orange colour cast as shown in Figure 6.6 (c). Figure 6.6 (b) shows 

the same image obtained using the same ISP but with the AWB module enabled.  

 

Hence, it is important to define the key focus of the colour constancy method as either: a) 

remove colours casts from an already balanced image, or b) estimate and correct the 

illuminant colour shifts from an image coming straight from the imaging sensor. This 

research focuses on the approach defined under (b) above. 

 

In this research, it is believed that it is important that the images tested should not have any 

colour correction algorithm applied prior to AWB calculations. Otherwise, colours in the 

image will significantly change and thus the focus of the colour constancy method will not 

only be balancing neutral and spectral colours in a controlled environment, but also to 

achieve colour constancy in an uncontrolled environment. This is because of the lack of 

knowledge of how the colour correction processes were applied inside the ISP used, and 

consequently the data in the image may not be linearised again after gamma correction, and 

include compression artefacts.  
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a)    b)    c) 

Figure 6.6: Comparison of an image captured in different formats and white balance modes at 

2600K. a) Raw image without any colour correction applied and only demosaiced for illustration 

purposes. b) Image processed by an ISP with AWB module enabled. c) Image processed by an ISP 

with AWB module disabled and set to indoors manual white balance. 

 

6.4.1 Experiment setup 

In the research presented in this work, the colour constancy methods previously described 

in section 6.2, are placed and tested inside an ISP pipeline, where the estimation of 

illuminant is achieved in RAW Bayer format, and without any colour correction applied to 

the image, except for the subtraction of black levels offset of the Bayer sensor. The block 

diagram of the ISP pipeline used in the experiments to be conducted is shown in Figure 6.7. 

By using a generic, simplified, and a known ISP for testing colour constancy methods, it is 

possible to benchmark in a controlled environment the ability of the proposed methods to 

produce a 100% neutral image by estimating and correcting the illuminant’s colour 

temperature shifts inside an ISP pipeline. That is, the main function of an auto-white balance 

module of a typical camera system. 

 

 

Figure 6.7:  Simplified ISP pipeline used in experiments. 

In order to test the colour constancy methods, a camera characterisation is needed for 

knowing the black level offset of the Bayer sensor, and a CCM generation under D65 lighting. 
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The black level offset was obtained by capturing a black RAW image at analogue gain of 1. 

In order to estimate the black offset, the mean values of each of the four-colour channels 

were measured. The CCM under D65 lighting was generated as in section 6.3.3, the type of 

Gamma correction used was sRGB, and a bilinear demosaicing algorithm was used to convert 

RAW Bayer image to RGB. The simplified ISP was implemented using MATLAB and the source 

code [109] of the benchmark algorithms described in Section 6.2. 

 

The sensor characterisation was performed in three different camera systems: i) SONY NEX-

5, ii) Canon Power-shot G10, and iii) using an OmniVision OV8835 image sensor. In order to 

perform the experiments, a total of 1000 RAW images using the three camera systems 

mentioned above were captured. This database contains a substantial number of scenes 

with different properties such as: indoor and outdoor conditions, monotonic colours, green 

grass colour versus CWF lighting, opposite colour objects’ surface reflectance to the light 

colour temperature in the scene, sunset, low light conditions, absence of grey, noisy images, 

mixed lighting, cloudy scenes, and scenes with blue-sky.  

 

In order to obtain objective measurements, an Opteka18% Digital Grey Card, which has 

showed a high degree of spectral neutrality under varying lighting conditions [110] was 

placed in the scene. 

  

After processing all sets of images, the R, G, and B pixel values from the grey chart in the 

images were measured in order to estimate the mean, maximum, and standard deviation, 

of the R/G and B/G ratios. In addition to the metrics mention above, the deviation from 

neutral grey ΔEx was also calculated by estimating the Euclidian distance from the measured 

R/G, and B/G ratios to the reference white point, CR/G = 1, and CB/G = 1. ΔEx is defined as 

in equation 6.32.  

 

∆𝐸𝑥 = √
(𝐶𝑅/ 𝐺,𝑟𝑒𝑓 − 𝐶𝑅/ 𝐺,𝑥)

𝐶𝑅/ 𝐺,𝑟𝑒𝑓 

2

+
(𝐶𝐵/ 𝐺,𝑟𝑒𝑓 − 𝐶𝐵/ 𝐺,𝑥)

𝐶𝐵/ 𝐺,𝑟𝑒𝑓 

2

                        (6.32) 

 

By setting up this experiment, it was possible to benchmark the ability of colour the 

constancy methods to perform as an AWB module of an ISP. Note that for this experiment, 
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the CCM, and cooling-warming factor driven by AWB described in Section 6.3.3 and 6.3.4 

were disabled. At this point, the particular focus was aimed to know the methods’ 

robustness and ability to produce 100% neutral images under different illuminations. 

 

6.4.2 Experimental results  

Table 6.1 shows the mean, standard deviation, and maximum error of the R/G, B/G ratios, 

and ΔEx objective measurements obtained from the experiments. The mean value of the 

R/G, B/G ratios, and ΔEx shows the general behaviour of the methods to either, overestimate 

or underestimate the amount of red or blue gains in order to balance the image. The 

maximum indicates by how much the method overestimated or underestimated the colour 

temperature of the scene, and the standard deviation shows the variation of gains applied 

over the whole set of images tested. Ideal values for the measurements taken are if the R, 

B, and G values measured in the grey chart have the same intensity value. That is, R/G = B/G, 

which leads to a ΔEx = 0, and maximum error = 0.     
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 R:G  B:G  ΔEx  

Grey-Edge-

first order 

Mean 0.93 Mean 0.87 Mean 0.29 

Std 0.21 Std 0.30 Std 0.28 

Max 2.03 Max 2.18 Max 1.36 

       

Grey-Edge-

second order 

Mean 0.93 Mean 0.86 Mean 0.29 

Std 0.20 Std 0.30 Std 0.27 

Max 2.09 Max 1.92 Max 1.43 

       

Grey-World 

Mean 0.95 Mean 1.01 Mean 0.18 

Std 0.15 Std 0.17 Std 0.16 

Max 1.50 Max 1.72 Max 0.93 

       

Shades-of-

Grey 

Mean 0.93 Mean 0.89 Mean 0.24 

Std 0.18 Std 0.25 Std 0.24 

Max 1.96 Max 1.85 Max 1.33 

       

Weighted-

Grey-Edge 

Mean 1.08 Mean 1.37 Mean 0.81 

Std 0.31 Std 0.30 Std 0.36 

Max 4.33 Max 2.26 Max 3.38 

       

MaxRGB 

Mean 0.87 Mean 0.75 Mean 0.40 

Std 0.22 Std 0.33 Std 0.30 

Max 1.84 Max 2.36 Max 1.65 

       

Proposed 

Method 

Mean 1.00 Mean 1.00 Mean 0.13 

Std 0.10 Std 0.15 Std 0.14 

Max 1.73 Max 1.75 Max 0.90 

       

revBayesiancc 

Mean 0.93 Mean 0.48 Mean 0.65 

Std 0.25 Std 0.37 Std 0.31 

Max 2.77 Max 1.50 Max 2.06 

Table 6.1: Objective measurements obtained from the benchmarked colour constancy performance 

within an ISP. 

The plots of the objective measurements are shown in Figure 6.8. These plots clearly show 

the superiority of the proposed method in terms of robustness, Figure 6.8 (a) and (b)), and 

maximum gains errors in Figure 6.8 (c).  
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a) 

 

b) 

 

c) 

Figure 6.8: Plots analysis of objective measurements. a) Plot of the mean R:G, B:G, and ΔEx. b) Plot 

of the standard deviation of R:G, B:G, and ΔEx. c) Plot of the maximum error of the R:G, B:G, and ΔEx. 

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

Mean Error

Dex Mean

B:G Mean

R:G Mean

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4

Standard Deviation Error

Dex Std

B:G Std

R:G Std

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

Maximum Error

Dex Max

B:G Max

R:G Max



CHAPTER 6 A NOVEL COLOUR MANAGEMENT SYSTEM FOR IMAGE SIGNAL PROCESSORS 

103 

According to the data analysed, Grey-world based methods have a similar behaviour and are 

capable of balancing images fairly well in the presence of grey in the scene. However, these 

methods are very sensitive to saturated colours, full monotonic colours scenes, mix lighting, 

absence of grey, and opposite colour objects’ surface reflectance to the light colour 

temperature in the scene.  

 

In order to illustrate the accuracy of the proposed method and the importance of AWB 

algorithms to accurately balance an image, Figure 6.9(a) illustrates a colour checker image 

perfectly balanced, and as a reference, the same image is shown in figures 6.9(b - i) with ±5% 

offset in the red and blue channel.   

 

Similar to Figure 6.9, Figure 6.10(a) illustrates a colour checker image perfectly balanced, 

and as a reference, the same image is shown in figures 6.9(b - i) with ±10% offset in the red 

and blue channel.  

 

Figure 6.9 and Figure 6.10 illustrate the average performance of the colour constancy 

algorithms tested, where the mean of R:G and B:G ratios were between ±10% from the 

neutral grey. This kind of colour shift in images would not be acceptable in any industry 

standards. In contrast, the proposed algorithm R:G and B:G ratios mean values were 

between ±1%. This variation does not introduce visible colour casts as shown in Figure 6.11.  
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a)    b)    c) 

 

d)    e)    f) 

 

g)    h)    i) 

Figure 6.9: a) Original image, b) -5% offset in the red channel, c) +5% offset in the red channel,        

d) -5% offset in the blue channel, e) +5% offset in the blue channel, f)-5% offset in the red channel 

and +5% offset in the blue channel, g) +5% offset in the red channel and -5% offset in the blue 

channel, h) -5% offset in the red channel and -5% offset in the blue channel, i) +5% offset in the red 

channel and +5% offset in the blue channel 
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a)    b)    c) 

 

d)    e)    f) 

 

g)    h)    i) 

Figure 6.10: a) Original image, b) -10% offset in the red channel, c) +10% offset in the red channel,        

d) -10% offset in the blue channel, e) +10% offset in the blue channel, f)-10% offset in the red 

channel and +10% offset in the blue channel, g) +10% offset in the red channel and -10% offset in 

the blue channel, h) -10% offset in the red channel and -10% offset in the blue channel, i) +10% 

offset in the red channel and +10% offset in the blue channel 
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a)    b)    c) 

 

d)    e)    f) 

 

g)    h)    i) 

Figure 6.11: a) Original image, b) -1% offset in the red channel, c) +1% offset in the red channel,        

d) -1% offset in the blue channel, e) +1% offset in the blue channel, f)-1% offset in the red channel 

and +1% offset in the blue channel, g) +1% offset in the red channel and -1% offset in the blue 

channel, h) -1% offset in the red channel and -1% offset in the blue channel, i) +1% offset in the red 

channel and +1% offset in the blue channel 

Figures 6.12 – 6.18 show examples of failures produced by the colour constancy methods 

proposed in literature when they are tested in challenging situations. Figures 6.19 and 6.20 

show the ability of the proposed method to process the challenging scenes that made the 

other colour constancy methods fail. Note that the failure images in Figures 6.12 – 6.18 show 

images that are completely wrongly white balanced, with a significant colour cast. The aim 

in this research is not to assess the human preference in colour reproduction, thus, it is 

considered a fail case when the algorithms failed completely to white balance for different 

illuminants and different scenes.   
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Figure 6.12: Examples of failures of MaxRGB when they are tested in challenging situations. 

 

Figure 6.13: Examples of failures of Weighted Grey Edge when they are tested in challenging 

situations. 
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Figure 6.14: Examples of failures of Revisited Bayesian when they are tested in challenging 

situations. 

 

Figure 6.15: Examples of failures of Shades of Grey when they are tested in challenging situations. 
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Figure 6.16: Examples of failures of Grey-World when they are tested in challenging situations. 

 

Figure 6.17: Examples of failures of Grey-edge 1st order when they are tested in challenging 

situations. 
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Figure 6.18:  Examples of failures of Grey-edge 2nd order when they are tested in challenging 

situations.  
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Figure 6.19:  Examples of the ability of the proposed method to balance the challenging scenes that 

made the other colour constancy methods fail. 
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Figure 6.20:  Examples of the ability of the proposed method to balance the challenging scenes that 

made the other colour constancy methods fail. 
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According to the results obtained, the proposed approach to colour constancy outperformed 

all other algorithms in terms of robustness, accuracy, consistency to correctly white balance 

all images, as can be seen from the standard deviation, mean, and maximum error 

measurements.  

 

All the colour constancy methods evaluated had in common that none of them could 

accurately compensate in extreme, mixed lighting conditions. This is a known and perhaps a 

fundamental problem in all colour-balancing algorithms. In general there are few options a 

colour constancy algorithm could adopt in mixed lighting conditions: compensate towards 

one of the illuminants at the expense of an extreme colour cast in the other illuminant, or 

converge halfway the two illuminants white points and decide on a compromise. The above 

extreme scenes had an impact on the objective measurements since the grey points 

measured from the grey chart had a colour cast if the algorithm decided to compromise for 

the illuminants white points, or depended on the grey chart placement on the scene and on 

the illuminant that the colour constancy method converged. Figures 6.21 and 6.22 show 

results of all tested methods under this type of scene. 
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a)    b) 

  

c)     d) 

Figure 6.21:  Example of mix lighting scene, indoor (4000K CWF bulb) and outdoor sunset in 

shadow (7000 K) output of all colour constancy methods tested.  a) MaxRGB output. b) 

Weighted Grey Edge output. c) Revisited Bayesian output. 
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a)     b) 

  

c)     d) 

Figure 6.22:  Example of mix lighting scene, indoor (4000K CWF bulb) and outdoor sunset in shadow 

(7000 K) output of all colour constancy methods tested.   a) Grey-World output. b) Grey-edge 1st 

order output. c) Grey-edge 2nd order output. d) Proposed method output 

6.4.3 Results of the proposed system 

In Section 6.4, the ability of the proposed colour constancy method to act as an AWB method 

in an ISP and its superior performance when compared to other colour constancy methods 

previously proposed in literature were presented. This section demonstrates the ability of 

the proposed system to produce pleasant reproduction of colours based on Kruithof curve 

theory.  

 

In order to reproduce pleasant colours based on Kruithof curve theory, the image has to be 

white balanced so that the neutral colours in the image are 100% neutral. Then, by applying 

one of the non-diagonal CCMs according to the colour temperature estimated in the AWB 

module, the spectral colours of the image are corrected. At this point the image colours 

should be as if captured in a photo lab controlled environment, where the ΔEx, ΔE*ab and 
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ΔC* colour errors are low and consistent under any illuminant. Figure 6.23 shows examples 

of images processed by the simplified ISP, using the proposed AWB method and the 3-CCM 

blending method previously described in section 6.3.3. These images were captured in a light 

box at different colour temperatures ranging from 16000K to 2200K. It is possible to observe 

how colour constancy is achieved and how the ΔEx, ΔE*ab and ΔC* colour errors are very 

low and constant as summarised in table 6.2. 

 

 

 

Figure 6.23:  Example of images processed by the simplified ISP, using the proposed AWB method 

and the 3-CCM blending method proposed. The images were captured in a light box using light 

bulbs with colour temperatures ranging from 16000K (top-left) to 2200K (bottom-right). 
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 16000K D75 D65 D50 D40 TL84 D30 2800K 2200K 

Δex 0.02 0 0.01 0 0.1 0.02 0 0.003 0 

ΔE*ab 7.33 6.44 4.33 4.55 5.79 7.66 6.33 4.11 6.48 

ΔC* 6.77 4.66 3.54 4.23 6.77 9.21 8.32 5.66 8.44 

Table 6.2: Proposed system performance summary ΔEx, ΔE*ab and ΔC* colour errors obtained from 

the images captured in a light box using light bulbs with colour temperature ranging from 16000K to 

2200K. 

In Figure 6.24, it is illustrated how the Kruithof curve theory is applied to the colour checker 

images from Figure 6.23 with the cooling-warming effect as described in Section 6.3.4. 

Moreover, Figure 6.24 clearly shows how colours at high colour temperatures tend to have 

a blue cast, and low colour temperatures a redder/orangery colour cast. 

 

 

Figure 6.24:  Example of images processed by the simplified ISP, using the proposed AWB method, 

the 3-CCM blending method, and a cooling-warming effect according to Kruithof curve theory. The 

images were captured in a light box using light bulbs with colour temperature ranging from 16000K 

(top-left) to 2200K (bottom-right). 
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Examples of the images processed using the colour management system proposed, are 

shown in Figures 6.25 and 6.26, where the cooling effect is applied to scenes with higher 

colour temperatures, no effect to the middle range of the colour temperatures scenes, and 

the warming effect to the low colour temperature scenes. In practice, the cooling-warming 

factor effect allows camera manufactures to have a colour management control tool to 

produce a more natural and pleasant image.  

 

  

  

  

Figure 6.25:  Example of images processed by the simplified ISP, using the proposed colour 

management system. Where the cooling effect is applied to scenes with higher colour temperatures 

(top-left), no effect to the middle range of the colour temperatures scenes. 
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Figure 6.26:  Example of images processed by the simplified ISP, using the proposed colour 

management system. Where no cooling-warming effect is applied to scenes in middle range of the 

colour temperatures (top-left), and the warming effect applied to the low colour temperature 

scenes (bottom-right). 
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6.5 Conclusions and Future Work 

Colour accuracy is an important but at the same time ambiguous image quality factor. 

Accurate colours may be critical in technical or medical photography, but less important in 

consumer photography, where many camera users prefer images to be close to the real 

scene captured and with enhanced colour saturation particularly in “memory colours” such 

as foliage, sky, skin, etc. For this reason, in this research a colour management system that 

works inside an ISP and is able to compensate for different illuminants and at the same time 

reproduce pleasant colours was investigated and proposed.  

 

The proposed colour management system within an ISP pipeline encompasses three stages. 

First, the colour temperature of the illuminant is estimated (AWB module); secondly, a 

colour correction/balancing matrix is applied (CCM); and thirdly a cooling-warming effect is 

applied to achieve camera end-users preferred colours, and therefore, a solution to the 

colour constancy problem. The proposed approach was designed in such a way that it is 

robust enough to cope with sensor-to-sensor variations, accurate enough to pass industry 

image quality standards for mobile devices, industrial, security, video conferencing, and 

automotive cameras. Further the proposed approach is flexible enough to be able to 

produce pleasant colours in images by following Kruithof curve theory, which aim is to 

reproduce and mimic the human eye’s colour constancy.  

 

In order to verify the performance of the proposed AWB module a large RAW image 

database was captured using two different DSLR commercial cameras, and an image sensor 

commonly used in smart phones (i.e. OV8835). With this data, the proposed AWB method 

was benchmarked against the most known colour constancy methods in literature. The 

results of the experiment showed that proposed method outperformed all others in terms 

of accuracy and robustness. I.e. The proposed system proved to be able to balance neutral 

and spectral colours under all types of illuminants, and was able to handle challenging scenes 

such as: monotonic colours, green grass colour versus CWF lighting, opposite colour objects’ 

surface reflectance to the light colour temperature in the scene, sunset, low light conditions, 

absence of grey, noisy images, mixed lighting, cloudy scenes, and scenes with blue-sky 
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images. It is noted that all other colour constancy methods failed under these extreme 

circumstances.  

 

The database of images tested can be accessed at: 

https://drive.google.com/folderview?id=0B2xIm02tjf9kTTFZSTB4UXB2UDg&usp=sharing,  

 

After analysing the results from the experiments performed, it was clearly shown that all 

colour constancy methods, including the proposed, cannot 100% compensate images in 

mixed lighting situations without compromising the final colour in the image. Thus future 

research in colour constancy should focus on solving this problem.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://drive.google.com/folderview?id=0B2xIm02tjf9kTTFZSTB4UXB2UDg&usp=sharing


 

Chapter 7  

Colour Constancy in HDR Imaging 

 

This chapter proposes a solution to the colour constancy problem in HDR imaging. Generally, 

HDR imaging is composed of different illuminants that not only differ in their spectral 

characteristics, but also in their luminance levels. This observation is employed to segment 

images into areas lit by different illuminants and thus being able to achieve colour constancy, 

when different illuminants in the scene are captured by the camera system. 

 

7.1 Introduction 

HDR imaging has been attracting the attention of both photographers and researchers for a 

long time. However, it was not until recent times that the ever growing computational 

power, availability of microprocessors, and imaging technologies, have made HDR imaging 

a reality for consumer grade electronic devices. 

 

HDR imaging is a technique for improved recordings of scene radiances, whereas colour 

constancy is referred to as a variation of a camera's automatic white balance algorithm 

[123]. On closer inspection, luminance levels limit the range of light that imaging sensors 

and human retinas can detect; in the case of HDR imaging, it works well as it preserves the 

details in the scene's spatial contrast. However, human colour constancy depends on spatial 

comparisons that synthesise appearances from all the scene areas, something that cannot 

be achieved with spatially invariant colour constancy algorithms [114].  

 

Moreover, colour constancy is usually considered to be unrelated to HDR scene rendition. 

Unlike films or imaging sensors that have fixed spectral sensitivities, humans achieve colour 

constancy through variable spectral stimuli of colour reflectances. Many assume that retinal 
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cones adapt to changes in illuminations, so that appearances correlate with reflectances 

[114].  

 

As a difference to the human eye, most colour constancy algorithms assume that the 

spectral distribution of light is uniform across the image. Although this assumption works 

well in most cases and is widely used in commercial cameras, there exist common cases in 

which this assumption is violated. For example, a room illuminated by daylight coming from 

a window in combination with artificial light; scenes where some areas of the image are in-

shadow and some others are out-of-shadow areas; images taken at ambient light levels with 

the use of a flash; and two different artificial light sources illuminating an indoor room.  

 

HDR scenes lit by multiple illuminants, such as a room illuminated with artificial light and the 

sun shining through the window is an often-encountered real-life scenario that offers the 

opportunity for the HDR feature of a camera to show its relative advantages. However, since 

traditional colour constancy algorithms are spatially invariant and estimate a global white 

point of the scene, colour constancy algorithms are left with few options to adopt in mix 

lighting conditions: compensate towards one of the illuminants at the expense of an extreme 

colour cast in the other illuminant, or converge halfway the two illuminants’ white points 

and decide on a compromise.  

 

Colour constancy related research for HDR imaging can mainly be found in the 

psychophysical field [114, 115] or computer graphics related applications [29, 115, 120] and 

yet, there is only limited work contributing to the literature, which aims to resolve the colour 

constancy challenge when multi illuminants are present in a scene captured by a digital 

camera [119]. 

 

Figure 7.1 clearly shows an example of the colour constancy challenge when multiple 

illuminants are present in the scene [118]. 
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a)     b) 

Figure 7.1: a) White balance for the moonlit sky; b) White balance for the church [118].  

In digital imaging, illuminants with different colour temperatures are not only distinguished 

by their chromatic attributes or spectral power distribution, but also by the luminance levels 

as shown in Chapter 6, where the luminance of natural daylight can be a couple of 

magnitudes higher [9] than that of artificial lighting.  Thus, it is intuitive to realise that if 

multiple illuminants were to be included in the same scene, parts illuminated by different 

light sources would occupy different areas of the dynamic range of the scene. This can be 

further interpreted as the data captured at different intensities, or exposures if exposure 

bracketing is used. This leads to the assumption that luminance information can be analysed 

in order to determine the likelihood of different illuminants in the scene. 

 

The colour constancy problem when multiple illuminants are present in a scene can 

therefore be categorised as follows [121]: i) multiple illuminants at different luminance 

levels such as: day light from windows plus indoor lighting, in-shadow areas plus out-of-

shadow areas, and camera flash in combination of ambient light; and ii) multiple illuminants 

with same illuminance levels such as: two different light sources with similar luminance 

levels present in an indoor room. This research focuses on the problem defined under (i) 

above. 
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In this Chapter, a spatially variant colour constancy algorithm within an ISP pipeline to solve 

the colour constancy problem in HDR imaging with multiple illuminants or reflectances in 

scene, is proposed.  

 

For clarity of presentation, this chapter is organised as follows: Section 7.2 presents a 

detailed description of the proposed spatially variant colour constancy method within an ISP 

pipeline. In Section 7.3 the experimental setup and results obtained in this research are 

presented. Finally section 7.4 concludes by giving an insight to further work and possible 

improvements. 

 

7.2 Proposed Spatially Variant Colour Constancy 

Method 

As stated above, a spatially variant colour constancy algorithm is proposed within an ISP 

pipeline to solve the colour constancy problem in HDR imaging with multiple illuminants or 

reflectances. This approach incorporates the HDR solution presented in Chapter 6; a novel 

image segmentation process based on the image luminance levels, followed by colour 

temperature estimation of each the segmented areas in the scene by using the colour 

constancy method presented in Chapter 6, and a non-linear white balance correction 

method in order to compensate for the multiple illuminants in a scene.  

 

Figure 7.2 shows a block diagram of the proposed spatially variant colour constancy 

algorithm and how it would fit within an ISP. 

 

  

Figure 7.2: Diagram of the proposed colour constancy method inside an ISP pipeline 
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7.2.1 Illuminant segmentation 

Different illuminants not only differ by their chromatic attributes or spectral power 

distribution, but also in their luminance levels especially when natural daylight is compared 

against artificial light sources [122].  

 

The conditional probability model used in the Naïve Bayes Classifier in Chapter 6, which 

states: “high colour temperatures are only present at high brightness levels with low red 

gains in the image, and low colour temperatures are present in low light conditions with high 

red gains in the image”, is also used in the segmentation process in order to form decision 

rules that allow calculating the probability of an illuminant being in the scene with 

correspondence to its luminance levels.  

 

The first step of the image segmentation process is to calculate the cumulative histogram, 

cdfI, of an image, I, with L number of intensity levels so that an intensity cut-off threshold, 

Icut, can be estimated given an amount of black percentage pixels, blackprc, empirically 

selected. Icut is used in conjunction with a second threshold, darkth, to delimit the image 

signal below the sensor noise floor in order to create the segmentation mask, segI. This 

process is shown in Equations 7.1, 7.2, and 7.3, where x = {0,…, image rows}, and y = {0, … , 

image columns}.    

 

𝑐𝑑𝑓𝐼(𝑖) =  ∑𝑝(𝐼 = 𝑖) =
𝑛

𝑛𝑖
, 0 ≤ 𝑖 <  𝐿

𝑖

𝑗=0

                                         (7.1) 

 

𝐼𝑐𝑢𝑡 = argmin𝑖𝑛𝑑𝑒𝑥 (|𝑐𝑑𝑓𝐼 − (𝑏𝑙𝑎𝑐𝑘𝑝𝑟𝑐 × 𝑐𝑑𝑓𝐼(𝐿))|)                          (7.2) 

 

𝑠𝑒𝑔𝐼(𝑥, 𝑦) = ((𝐼(𝑥, 𝑦) ≤
𝐼𝑐𝑢𝑡
𝐿
) ∪ (𝐼(𝑥, 𝑦) > 𝑑𝑎𝑟𝑘𝑡ℎ))                       (7.3) 

 

Once the segmentation mask is calculated, the mean value, Iavg, of the pixels masked by segI 

is calculated using Equation 7.4. Then, by using Equation 7.5, the average value 

corresponding to the segmented dark pixels, Idk, is estimated.  
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𝐼𝑎𝑣𝑔(𝑥, 𝑦) = 𝐼(𝑥, 𝑦) × 𝑠𝑒𝑔𝐼(𝑥, 𝑦)                                             (7.4) 

 

𝐼𝑑𝑘 =
∑ ∑ 𝐼𝑎𝑣𝑔(𝑖, 𝑗)

𝑦
𝑗=0

𝑥
𝑖=0

∑ ∑ 𝑆𝑒𝑔𝐼(𝑖, 𝑗)
𝑦
𝑗=0

𝑥
𝑖=0

                                                   (7.5) 

 

The colour temperature estimation method proposed in Chapter 6 uses the rg, and bg ratios 

calculated by the ISP statistics module. Thus, in this method, it is not necessary to segment 

the image itself in order to calculate multiple illuminants; it is only necessary to segment the 

rg, bg ratios so that two statistical sets can be analysed to determine the probability of 

multiple illuminants in the scene.  

 

The ISP statistics module is modified to take as an input the rgbg coefficient, rgbgcoeff, 

calculated using Equation 7.6 and the RAW Bayer image, in order to generate two sets of 

statistics; one for the input image denoted by Z and another set for the input image times 

the rgbg coefficient denoted by Z’, as shown in Equations 7.7 and 7.8. 

 

𝑟𝑔𝑏𝑔𝑐𝑜𝑒𝑓𝑓 =
𝑏𝑙𝑎𝑐𝑘𝑝𝑟𝑐
𝐼𝑑𝑘

                                                            (7.6) 

 

𝑍(1,…,𝑛) = 𝐼𝑆𝑃𝑠𝑡𝑎𝑡𝑠(𝑅𝐴𝑊 𝑖𝑚𝑎𝑔𝑒 )                                          (7.7) 

 

𝑍′(1,…,𝑛) = 𝐼𝑆𝑃𝑠𝑡𝑎𝑡𝑠(𝑅𝐴𝑊 𝑖𝑚𝑎𝑔𝑒 × 𝑟𝑔𝑏𝑔𝑐𝑜𝑒𝑓𝑓)                             (7.8) 

 

Where ISPstats represents the ISP statistic module, which gathers the rg and bg ratios of each 

of the n number of zones. 

 

Figure 7.3 illustrates an example of the segmentation process performed on an image with 

multiple illuminants in the scene. Figure 7.3(a) shows the input RAW Bayer image. Figure 

7.3(b) shows cfdI and the estimated Idk threshold calculated from the input image, and 

Figure 7.3(c) shows a representation of the input image multiplied by rgbgcoeff. This example 

clearly shows how the ISP statistics module would calculate the two sets of statistics Z and 
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Z’, one set for the input image and another set for the input image with the segmentation 

coefficient rgbgcoeff applied. 

 

 

a)    b)    C) 

Figure 7.3: Illustration of the segmentation process. 

 

7.2.2 Colour temperature estimation 

The colour temperature estimation for multiple illuminants is performed through the 

method proposed in Chapter 6, equations 7.24 - 7.28 with a slight modification so that it 

uses two sets of ISP statistics, Z and Z’, to calculate the probability of multiple white points 

in the scene. This process is represented by the functions cte(Z) and cte(Z’) for compactness 

of equations 7.24 - 7.28, as shown in Equation 7.9 and 7.10. cte(Z) and cte(Z’) generate the 

rg and bg gain coefficients denoted by the vectors e and e’, which are later used in the colour 

correction stage.   

 

 𝑒 =  cte(𝑍),where 𝑒 = [𝑟𝑔, 1, 𝑏𝑔]𝑇                                  (7.9) 

 

𝑒′ =  cte(𝑍′),where 𝑒′ = [𝑟𝑔′, 1, 𝑏𝑔′]𝑇                            (7.10) 

 

Plots of the colour temperature estimation process are shown in Figure 7.4, which uses the 

Z and Z’ ISP statistics generated after the segmentation process shown in Figure 7.3. Figure 

7.4(a) is the plot generated by cte(Z), and Figure 7.4(b) the plot of cte(Z’). The plots of the 

ISP statistics, Z and Z’, shown in Figure 7.4 are coloured as follows: green dots are the 
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statistics considered by the cte to calculate the colour temperature; red dots are the 

statistics not considered by cte for calculations of colour temperature; blue dots show the 

characterised Planckian locus of the sensor, and the magenta coloured dot is the 

convergence point of cte, the illuminant detected by the algorithm.   
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a) 

 

b) 

Figure 7.4: Plots of cte(Z), and cte(Z’) a) Output colour temperature of cte(Z)= 5322K, b) Output 

colour temperature of cte(Z’) = 3041K. 
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Similar to the white balance correction process proposed in Chapter 6, the image is colour 

corrected by normalising e, and e’ , using equation 7.3, however, in this approach the 

illuminant vectors e, and e’ are treated differently when colour balancing the image. This 

process is described below. 

 

7.2.3 Colour correction  

In order to colour balance the image, the illuminant vector e is applied to the image using 

equation 7.1, followed by a generation of a piecewise linear equations (PWL) system based 

on intensity levels that allows correcting for the illuminant in vector e’.  

 

The generation of the piecewise linear equations, PWLR and PWLB is performed through 

equations 7.11-7.21. In this process the intensity levels considered are defined by L, where 

L = {0, … , 255} intensity levels.  

 

The first step of generating the PWL system of equations is to estimate the colour gain ratios 

from e to e’ so that the image can be colour balanced according to its intensity levels and 

white points estimated (Equation 7.11 and 7.12).  

 

𝑟𝑔 = 𝑒(1), 𝑟𝑔′ = 𝑒′(1), 𝑏𝑔 = 𝑒(3), 𝑏𝑔′ = 𝑒′(3)                           (7.11) 

 

𝑟𝑔𝑟𝑎𝑡𝑖𝑜 =
𝑟𝑔

𝑟𝑔′
, 𝑏𝑔𝑟𝑎𝑡𝑖𝑜 =

𝑏𝑔

𝑏𝑔′
                                           (7.12) 

 

Where rg, bg and rg’, bg’ represent the gains needed for colour balancing the image and 

rgratio and bgratio are the ratios rg to rg’ and bg to bg’. The ratios of the two white points and 

the rgbgcoeff are then used for denoting the knee points of the PWL system using equations 

7.13 and 7.14: 

 

𝑃𝑊𝐿𝑟𝑔(𝑖) =  {
𝑖 × 𝑟𝑔𝑟𝑎𝑡𝑖𝑜, 𝑖 ≤ (1/𝑟𝑔𝑏𝑔𝑐𝑜𝑒𝑓𝑓)

𝑖,                   𝑖 > (1/𝑟𝑔𝑏𝑔𝑐𝑜𝑒𝑓𝑓) 
                       (7.13) 
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𝑃𝑊𝐿𝑏𝑔(𝑖) =  {
𝑖 × 𝑏𝑔𝑟𝑎𝑡𝑖𝑜, 𝑖 ≤ (1/𝑟𝑔𝑏𝑔𝑐𝑜𝑒𝑓𝑓)

𝑖,                   𝑖 > (1/𝑟𝑔𝑏𝑔𝑐𝑜𝑒𝑓𝑓) 
                       (7.14) 

  

PWLrg and PWLbg, are the systems of equations of the rg and bg ratios based on the intensity 

level i, where i ∈ L. In order to have a continuous function so that the blending of the two 

white points is smooth, a blending area with coordinates x1, x2, yrg1, yrg2, ybg1, ybg2 is 

determined using equations 7.15-7.17:  

 

𝑥1 = (
1

𝑟𝑔𝑏𝑔𝑐𝑜𝑒𝑓𝑓
) × 0.75, 𝑥2 =  (

1

𝑟𝑔𝑏𝑔𝑐𝑜𝑒𝑓𝑓
) × 1.25                (7.15) 

 

𝑦𝑟𝑔1 = 𝑃𝑊𝐿𝑟𝑔(𝑥1), 𝑦𝑟𝑔2 =  𝑃𝑊𝐿𝑟𝑔(𝑥2)                            (7.16) 

 

𝑦𝑏𝑔1 = 𝑃𝑊𝐿𝑏𝑔(𝑥1), 𝑦𝑏𝑔2 =  𝑃𝑊𝐿𝑏𝑔(𝑥2)                            (7.17) 

 

Once x1, x2, yrg1, yrg2, ybg1, ybg2 are known, PWLrg and PWLbg are recalculated using 

equations 7.18 and 7.19 represented by SPWLrg and SPWLbg. The blending areas help 

removing extreme knee points in the PWL. However, in order to make sure the PWLs are 

continuous functions, a moving average filter is applied to SPWLrg and SPWLbg, as in 

equations 7.20 and 7.21, to obtain the final PWLR and PWLB, where M is the number of 

elements of the moving average filter. 

 

𝑆𝑃𝑊𝐿𝑟𝑔(𝑃𝑊𝐿𝑟𝑔(𝑖)) =  {
(
𝑦𝑟𝑔2 − 𝑦𝑟𝑔1

𝑥2 − 𝑥1
) × (𝑖 − 𝑥1) + 𝑦𝑟𝑔1, 𝑥1 ≥ 𝑖 ≤ 𝑥2

𝑖,                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                     
         (7.18) 

 

𝑆𝑃𝑊𝐿𝑏𝑔(𝑃𝑊𝐿𝑏𝑔(𝑖)) =  {
(
𝑦𝑟𝑔2 − 𝑦𝑟𝑔1

𝑥2 − 𝑥1
) × (𝑖 − 𝑥1) + 𝑦𝑏𝑔1, 𝑥1 ≥ 𝑖 ≤ 𝑥2

𝑖,                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                     
        (7.19) 

 

𝑃𝑊𝐿𝑅(𝑖) =
1

𝑀
∑ 𝑆𝑃𝑊𝐿𝑟𝑔

𝑀−1

𝑗=0

(𝑖 + 𝑗)                                     (7.20) 
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𝑃𝑊𝐿𝐵(𝑖) =
1

𝑀
∑ 𝑆𝑃𝑊𝐿𝑏𝑔

𝑀−1

𝑗=0

(𝑖 + 𝑗)                                     (7.21) 

 

To finalise the colour correction process, PWLR and PWLB to the red and blue colour channels 

of the already colour corrected image by the illuminant in vector e using equation 7.1.  

 

In order to illustrate the colour correction process, the examples shown in Figure 7.3 and 7.4 

are used as a reference to calculate the PWLs and output images displayed in Figure 7.5. 

Figure 7.5(a) shows the colour corrected image using the illuminant vector e, which 

represents the output image from the colour constancy proposed in Chapter 6. In this case, 

the multiple illuminants in the scene can be observed: the pillar on the left of the scene is 

illuminated by daylight, and the rest of the scene illuminated by artificial light. Figure 7.5(b) 

shows the same scene, but compensated toward the daylight illuminant, Figure 7.5(c) and 

(d) show the plots of PWLR and PWLB of this specific example, and Figure 7.5(d) shows the 

final image with the two illuminants properly estimated and corrected in the scene. 
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a)      b) 

 

c)     d) 

 

e) 

Figure 7.5: example of the colour correction process using the illuminant vectors e and e’. a) The 

colour corrected image using the illuminant vector e. Manually colour corrected toward the daylight 

illuminant. c) and d) show the plots of PWLR and PWLB calculated using the illuminant vector e’. e) 

Output image of the proposed colour correction process. 
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7.3 Experimental Results 

Experimental results are presented in this section in order to evaluate the performance of 

the proposed spatially variant colour constancy algorithm. Results of the experiments 

presented in Chapter 6 demostrated that the colour temperature estimation algorithm 

proposed in section 6.3.2, which is also used in this research, outperformed all previously 

proposed state-of-the-art colour constancy methods that could be used as the AWB module 

of an ISP. For this reason, the experiments performed within the context of this research do 

not focus on the performance comparison of the proposed algorithm to other colour 

constancy methods, but to test the capability of proposed method to be able to compensate 

high dynamic range scenes lit by multiple illuminants without introducing colour artefacts, 

or AWB failures due to the spatially variant colour temperature estimation method added 

to the colour constancy solution proposed in Chapter 6.  

 

The database gathered for the experiments presented in Chapter 6, was also used in this 

experiment in order to verify the performance of the proposed method in terms of 

robustness, repeatability, and accuracy to perfectly colour balance images captured by 

different imaging sensors. Moreover, for the purpose of evaluating the proposed spatially 

variant colour constancy algorithm, the database collected in Chapter 6 was extended so 

that it contained HDR scenes lit with multiple illuminants captured with OV8835, Sony Nex-

5, Canon G10, and AR0132AT [124] imaging sensors.  

 

For each of the four imaging sensors used, a camera characterisation was performed in order 

to know the black level offset of the Bayer sensor, the Planckian locus, and colour response. 

The black level offset was obtained by capturing a black RAW image at an analogue gain of 

1 and estimated by calculating the mean value of each of the four-colour channels. The 

Planckian locus curves were characterised by capturing a large set of illuminants ranging 

from 1800 kelvin (K) to 17000K, including cool white fluorescent (CWF) lighting under a 

control environment using professional equipment such as: photo lab light box, CIE 

standards colour temperature light bulbs, and a 24-ColourChecker Macbeth chart for colour 

measurements, and the CCMs were obtained as described in section 6.3.3. For completeness 

of the ISP simulator, the type of Gamma correction used was sRGB, and a bilinear 
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demosaicing algorithm was used to convert a RAW Bayer image to a RGB. The use of the 

HDR feature was only used when the scene required the multi-exposure technique proposed 

in Chapter 5 in order to extend the dynamic range of the image captured. 

 

Figure 7.6 shows the ISP simulation model diagram used for the above experiments. 

 

 

Figure 7.6: ISP pipeline used in experiments 

A summary of the objective results obtained by the experiments performed on the database 

collected in Chapter 6 is shown in table 7.1. These results show that the spatially variant 

feature added to the colour temperature estimation proposed in Chapter 6 did not have a 

negative impact on the robustness, repeatability, and accuracy of the method to perfectly 

colour balance images captured by different imaging sensors under different scenes and 

illuminants. 

 

 R:G  B:G  ΔEx  

Spatial invariant 
colour 

temperature 
estimation as in 

Chapter 6 

Mean 1.00 Mean 1.00 Mean 0.13 

Std 0.10 Std 0.15 Std 0.14 

Max 1.73 Max 1.75 Max 0.90 

       

Spatial variant 
colour 

temperature 
estimation 

Mean 1.00 Mean 1.00 Mean 0.126 

Std 0.10 Std 0.14 Std 0.13 

Max 1.43 Max 1.75 Max 0.870 

Table 7.1: Objective measurements obtained from the spatially invariant colour constancy method 

proposed in Chapter 6, and the proposed spatially variant colour temperature. 
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In order to show the ability of the proposed method to compensate for multiple illuminants 

at different luminance levels, Figure 7.7 presents a set of examples where the scenes 

captured represent the scenario where in-shadow areas plus out-of-shadow areas in the 

image have different colour response. Figure 7.8 presents another set of examples where 

the scenes captured represent the scenario where scenes are illuminated by daylight and 

artificial indoor lighting. 

 

Figure 7.7 – 7.13(a) shows images processed by the colour estimation method proposed in 

Chapter 6, and Figure 7.7 – 7.13(b) shows output images of the spatially variant colour 

constancy algorithm proposed in this chapter. In Figure 7.7 – 7.13(a) the in-shadow areas 

have a visible blue colour cast, even though the out-of-shadow areas are well colour 

balanced. In contrast to the images in Figure 7.7 – 7.13(a), images presented in Figure 7.7 – 

7.13(b) clearly show both in-shadow and out-of-shadow areas perfectly colour balanced 

without visible colour casts due to the multiple reflectances of the illuminant in the scene. 

The result of the proposed method improves the subjective image quality and makes high 

dynamic range images look natural and well colour balanced. 
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a)

 

b) 

 

Figure 7.7: Examples of a scene lit by multiple illuminants. a) Image output from the 

proposed colour estimation process in Chapter 6. b) Output image of the proposed 

spatially variant colour constancy algorithm. 
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a)

 

b) 

Figure 7.8: Examples of a scene lit by multiple illuminants. a) Image output from the 

proposed colour estimation process in Chapter 6. b) Output image of the proposed 

spatially variant colour constancy algorithm. 
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a)

 

b) 

Figure 7.9: Examples of a scene lit by multiple illuminants. a) Image output from the proposed 

colour estimation process in Chapter 6. b) Output image of the proposed spatially variant colour 

constancy algorithm. 
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a) 

 

b) 

Figure 7.10: Examples of a scene lit by multiple illuminants. a) Image output from the proposed 

colour estimation process in Chapter 6. b) Output image of the proposed spatially variant colour 

constancy algorithm. 
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a) 

 

b) 

Figure 7.11: Examples of a scene lit by multiple illuminants. a) Image output from the proposed 

colour estimation process in Chapter 6. b) Output image of the proposed spatially variant colour 

constancy algorithm. 
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a)

 

b) 

Figure 7.12: Examples of a scene lit by multiple illuminants. a) Image output from the proposed 

colour estimation process in Chapter 6. b) Output image of the proposed spatially variant colour 

constancy algorithm. 
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a)

 

b) 

Figure 7.13: Examples of a scene lit by multiple illuminants. a) Image output from the proposed 

colour estimation process in Chapter 6. b) Output image of the proposed spatially variant colour 

constancy algorithm. 

Images shown in Figure 7.14 – 7.19 represent the worst-case scenario of a colour constancy 

algorithm becasue the scenes are lit by opposite colour temperature illuminants with 

different spectral response. That is, some areas of the scenes are illuminated by daylight, 
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which has a colour temperature of 6500K with a blue colour cast, and other areas of the 

scenes are lit by indoor lighting, which has a colour temperature of 2800K with a red-yellow 

colour cast. Figure 7.14 – 7.19(a) shows images processed by the colour estimation method 

proposed in Chapter 6, and Figure 7.14 – 7.19(b) shows the output of the proposed spatially 

variant colour constancy algorithm. Similarly to the images shown in Figure 7.7 – 7.13, all 

images shown under (a) have visible colour casts due to the combination of multiple 

illuminants in the scene, whereas images shown under (b) are well colour balanced in the 

presence of multiple illuminants in the scene. 
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a)

 

b) 

Figure 7.14: Examples of a scene lit by multiple illuminants. a) Image output from the proposed 

colour estimation process in Chapter 6. b) Output image of the proposed spatially variant colour 

constancy algorithm. 
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a)

 

b) 

Figure 7.15: Examples of a scene lit by multiple illuminants. a) Image output from the proposed 

colour estimation process in Chapter 6. b) Output image of the proposed spatially variant colour 

constancy algorithm. 
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a)

 

b) 

Figure 7.16: Examples of a scene lit by multiple illuminants. a) Image output from the proposed 

colour estimation process in Chapter 6. b) Output image of the proposed spatially variant colour 

constancy algorithm. 

 



CHAPTER 7 COLOUR CONSTANCY IN HDR IMAGING 

149 

 

a) 

 

b) 

Figure 7.17: Examples of a scene lit by multiple illuminants. a) Image output from the proposed 

colour estimation process in Chapter 6. b) Output image of the proposed spatially variant colour 

constancy algorithm. 
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a) 

 

b) 

Figure 7.18: Examples of a scene lit by multiple illuminants. a) Image output from the proposed 

colour estimation process in Chapter 6. b) Output image of the proposed spatially variant colour 

constancy algorithm. 
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a) 

 

b) 

Figure 7.19: Examples of a scene lit by multiple illuminants. a) Image output from the proposed 

colour estimation process in Chapter 6. b) Output image of the proposed spatially variant colour 

constancy algorithm. 
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The limitation of the proposed algorithm is to colour balance areas of the image where 

multiple illuminants are mixed in the same region, and to fully colour balance transition 

areas of opposite colour temperatures illuminating the scene. Nonetheless this scenario is 

significantly improved in comparison to the spatially invariant colour constancy methods 

benchmarked in Chapter 6.  

 

7.4 Conclusions 

Different illuminants not only differ by their chromatic attributes or spectral power 

distribution, but also in their luminance levels. For this reason, a spatially variant colour 

constancy algorithm within an ISP pipeline to solve the colour constancy problem in HDR 

imaging with multiple illuminants or reflectances in the scene was proposed. The approach 

incorporates the HDR solution presented in Chapter 5; a novel image segmentation process 

based on the image luminance levels, followed by colour temperature estimation of each 

the segmented areas in the scene by using the colour constancy method presented in 

Chapter 6, and a non-linear white balance correction method in order to compensate for the 

multiple illuminants in a scene.  

 

The proposed algorithm proved to be efficient in different lighting conditions and scenes 

and was proven to work well with different sensors. Moreover, a summary of the objective 

results performed in the database collected in Chapter 6 showed that the spatially variance 

feature added to the colour temperature estimation proposed in Chapter 6 did not have a 

negative impact on the robustness, repeatability, and accuracy of the method to colour 

balance images captured by different imaging sensors under different scenes and 

illuminants. The result of the proposed method improves the subjective image quality and 

makes high dynamic range images look natural and well colour balanced. 

 

After further analysing the results from the experiments performed, it was shown that the 

limitation of the proposed approach is its inability to perfectly colour balance areas of the 

scene lit by multiple illuminants with the same luminance levels. Thus future research should 
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focus on proposing colour correction methods that could correct for multi illuminant 

spectrum crosstalk illuminating the same area of a scene. 

 



 

Chapter 8  

Conclusions and Future Work  

 

The main motivation to the research presented in this dissertation came from the 

observation that computer graphics, computer vision, and related digital imaging 

applications continue to demand more realistic and accurate imaging reproduction with high 

dynamic range scenes and colour constancy.  

 

For this reason, the research carried out and presented in this dissertation aimed to improve 

the overall image quality of images captured by digital cameras by extending the dynamic 

range, and achieving colour constancy. These contributory topics were presented in 

Chapters 5, 6, and 7. Moreover, since image quality in digital imaging completely depends 

on the lens, imaging sensor and on the ISP’s ability to produce high quality images, the novel 

image processing algorithms presented in this dissertation were intended so that all of them 

can be directly incorporated within an ISP to improve the overall image quality of a camera 

system. 

 

8.1 Conclusion 

The background theory and literature review presented in Chapters 2 and 3, introduced 

fundamental concepts and theories from different areas of mathematics, computing and 

engineering related to the human visual system, digital video and still photography. 

Moreover, these chapters provided an insight to the existing HDR imaging, and colour 

constancy solutions proposed in the literature. 

  

In summary, five novel image-processing algorithms were proposed in this dissertation. 

These algorithms focused on two different image quality related areas: i) HDR imaging, 

Chapter 5 and ii) colour constancy, Chapters 6 and 7. 
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I) HDR imaging:  

In Chapter 5, a new algorithm capable of compensating for camera shake and capable of 

producing HDR images and video content was proposed. This algorithm enabled users to 

create HDR content with a SDR camera without the aid of stabilising devices such as tripods. 

As a difference to HDR solutions proposed in the literature, which in their majority are only 

suitable for still HDR imaging capture, the proposed approach can produce video HDR 

content for real time imaging applications. This fact is very important since video 

applications such as CCTV or automotive cameras can highly benefit from HDR content 

reproduction.  

 

The HDR video solution presented in Chapter 5, is a multi-exposure image fusion algorithm 

suitable for practical implementation in hardware. The proposed approach was 

implemented as a pre-processing technique that works in RAW Bayer domain and can be 

incorporated within an ISP as described in Chapter 4. This novel method performed global 

motion estimation and correction to compensate for motion due to camera shake, followed 

by the image fusion process, where in its operational logic, compensated for objects moving 

within the scene. The combination of these two steps, global motion compensation in 

conjunction with the motion aware fusing technique, allowed removing motion artefacts 

and ghosting due to camera shake and moving objects in the scene. The proposed algorithm 

proved to be robust and efficient in different lighting conditions, scenes, and different 

imaging sensors allowing digital camera devices to be able to create HDR content in real 

time. 

 

III) Colour constancy  

A colour management system that works inside an ISP and is able to compensate for 

different illuminants and at the same time reproduce pleasant colours was proposed in 

Chapter 6. The proposed colour management system within an ISP pipeline encompassed 

three stages. First, the colour temperature of the illuminant was estimated (AWB module); 

secondly, a colour correction/balancing matrix was applied (CCM); and thirdly a cooling-

warming effect was applied to achieve camera end-users preferred colours, and therefore, 

a solution to the colour constancy problem.  
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The proposed approach was designed in such a way that it was robust enough to cope with 

sensor-to-sensor variations, accurate enough to pass industry image quality standards for 

mobile devices, industrial, security, video conferencing, and automotive cameras. 

Furthermore, the proposed approach was flexible enough to be able to produce pleasant 

colours by following Kruithof theory.  

 

In order to verify the performance of the proposed AWB module, a large database consisting 

of RAW Bayer images was captured using two different DSLR commercial cameras, and an 

image sensor commonly used in smart phones (OV8835). With this database, which has been 

made available for future research, the proposed AWB method was benchmarked against 

the most known colour constancy methods in the literature. The results of the experiment 

showed that proposed method outperformed all others in terms of accuracy and robustness.  

 

The database of RAW Bayer images has been published and can be accessed at: 

https://drive.google.com/folderview?id=0B2xIm02tjf9kTTFZSTB4UXB2UDg&usp=sharing 

 

The proposed system proved to be able to balance neutral and spectral colours under all 

types of illuminants, and was able to handle challenging scenes such as: monotonic colours, 

green grass colour versus CWF lighting, opposite colour objects’ surface reflectance to the 

light colour temperature in the scene, sunset, low light conditions, absence of grey, noisy 

images, mixed lighting, cloudy scenes, and scenes with blue-sky images. It is noted that all 

other colour constancy methods failed under these extreme circumstances.  

 

In Chapter 7, an extension of the proposed colour constancy method presented in Chapter 

6 was proposed to solve the problem of colour constancy in high dynamic range imaging. 

This approach incorporated the HDR solution presented in Chapter 5, a novel image 

segmentation process based on the image luminance levels, followed by colour temperature 

estimation of each the segmented area in the scene by using the colour constancy method 

presented in Chapter 6, and a novel non-linear white balance correction method in order to 

compensate for the multiple illuminants in the scene. The proposed algorithm proved to be 

efficient in different lighting conditions, scenes, and was proven to work well with different 

sensors. The objective results obtained through the experiments performed showed that 

https://drive.google.com/folderview?id=0B2xIm02tjf9kTTFZSTB4UXB2UDg&usp=sharing
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the spatially variant feature added to the colour temperature estimation method proposed 

in Chapter 6 did not have a negative impact on the robustness, repeatability, and accuracy 

of the method to achieve colour constancy under different scenes and illuminants. 

Moreover, the results of the unique high dynamic range and spatially variant colour 

constancy algorithm enabled digital camera devices to improve the final image quality within 

an ISP pipeline implemented in hardware.  

 

8.2 Future Work 

In the field of high dynamic range imaging, a pre-processing HDR solution for video HDR 

creation was presented in Chapter 5. After further analysing the results from the 

experiments performed, it was found that the limitation of the proposed approaches is their 

inability to compensate for motion at exposure ratios bigger than 1:16. This problem can be 

solved if the image fusion system was extended to three-exposure image fusion instead of a 

two-exposure image fusion exercise. In a three-exposure image fusion system, exposure 

ratio between short to medium and medium to long exposures could be set to 1:16 and 1:16, 

and therefore extend the dynamic range of a 12 bit digital camera to a theoretical 120dB. 

Unfortunately, imaging sensors capable of capturing RAW Bayer data are not widely 

available and thus, it was not possible to test this option. Another limitation found in this 

research, was the ability to compensate for large rotation displacements, within the set of 

multi-exposure images. Thus future research should focus on: 1) proposing new HDR 

methods that include efficient, hardware friendly motion estimation algorithms capable of 

compensating for rotational displacements in order to create HDR contend in real time; and 

2) improving the dynamic range imaging sensor technologies to avoid using multi-exposure 

techniques to extend the maximum dynamic range of a camera system. 

 

In order to achieve colour constancy in digital imaging, two solutions were presented in this 

thesis. Further analysis of the results from the experiments performed in Chapters 6 and 7 

showed that the limitation of the proposed colour constancy approach is its inability to 

perfectly colour balance areas of a scene lit by multiple illuminants with the same luminance 

levels, which up to date, any colour constancy method proposed in the literature or industry 
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have not been able to solve. Thus future research should focus on proposing a better imaging 

sensor spectral response, and colour correction methods that could correct for multi-

illuminant spectrum crosstalk illuminating the same area of a scene. 
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