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An LMS Style Variable Tap-Length
Algorithm for Structure Adaptation
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Abstract—Searching for the optimum tap-length that best bal-
ances the complexity and steady-state performance of an adap-
tive filter has attracted attention recently. Among existing algo-
rithms that can be found in the literature, two of which, namely the
segmented filter (SF) and gradient descent (GD) algorithms, are of
particular interest as they can search for the optimum tap-length
quickly. In this paper, at first, we carefully compare the SF and
GD algorithms and show that the two algorithms are equivalent in
performance under some constraints, but each has advantages/dis-
advanges relative to the other. Then, we propose an improved vari-
able tap-length algorithm using the concept of the pseudo frac-
tional tap-length (FT). Updating the tap-length with instantaneous
errors in a style similar to that used in the stochastic gradient [or
least mean squares (LMS)] algorithm, the proposed FT algorithm
not only retains the advantages from both the SF and the GD algo-
rithms but also has significantly less complexity than existing algo-
rithms. Both performance analysis and numerical simulations are
given to verify the new proposed algorithm.

Index Terms—Adaptive filters, filter length, tap-length variation.

I. INTRODUCTION

THE tap-length, or the number of the tap coefficients of a
linear filter, is an important parameter that significantly

influences the performance of a minimum mean squared error
(MMSE) adaptive filter. It has been known that adjusting the
filter length can improve convergence of the least mean square
(LMS) algorithm (e.g., [1], [2]). This approach, however, does
not attract much attention because the resulting convergence im-
provements are not very significant. Recently, the topic of the
length adaptation was reproposed, but from a structure adapta-
tion point of view, and will be investigated in this paper.

In principle, the MMSE is a monotonic nonincreasing func-
tion of the tap-length, but the decrease of the MMSE due to the
tap-length increase always becomes trivial when the tap-length
is long enough. Obviously, it is not suitable to have a “too” long
filter, as it not only unnecessarily increases the complexity but
also introduces more adaptation noise. Therefore, there exists
an optimum tap-length that best balances the steady-state per-
formance and complexity. In many applications, moreover, such
optimum tap-length may vary with time. For example, in a mul-
tiuser echo cancellation system, the length of the echo may keep
changing as users keep entering or leaving the system. In most
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designs, unfortunately, the tap-length is usually fixed at some
compromise value, implying that often, the filter is too long and
sometimes inadequate for the severity of conditions. Therefore,
it is desirable to derive algorithms that can automatically find
the optimum tap-length. This is how the term structure adapta-
tion is derived.

Among existing variable tap-length algorithms, three are
of particular interest in this paper as others either aim at im-
proving the convergence behavior (e.g., [1]–[3]) or can only
be implemented in a limited number of applications (e.g., [4]).
The first is called the Segmented Filter (SF) algorithm, which
was described in [5], where the filter is partitioned into several
segments, and the tap-length is adjusted by one segment being
either added to, or removed from, the filter according to the
difference of the output error levels from the last two segments.
In [6], a variable tap-length algorithm based on gradient descent
(GD) was proposed. Expressing the tap-length adaptation in
an explicit adaptation rule, the GD algorithm is more flexible
to implement than the SF algorithm. Recently, the optimum
tap-length has been defined quantitatively in [7] and [8], in
which a novel variable tap-length algorithm that can converge
to the optimum tap-length was also proposed. The proposed
algorithm, however, suffers from slow tap-length convergence
under some scenarios.

In this paper, in Section II, we will first describe two cost
functions that can be used to search for the optimum tap-length,
where the first arises directly from the optimum tap-length def-
inition in [7] and [8], and the second may give a biased so-
lution to the optimum tap-length but is more robust to imple-
ment. We will further point out that the algorithm proposed
in [7] and [8] is based on the first cost function, and both SF
and GD algorithms are based on the second cost function. In
Section III, we will thoroughly compare the SF and GD algo-
rithm to show that the two algorithms are equivalent under spe-
cific constraints, and each has advantages/disadvantages rela-
tive to the other. In Section IV, we will propose an improved
variable tap-length algorithm based on the second cost function.
Updating the tap-length with instantaneous errors in a manner
similar to LMS, the proposed algorithm not only retains the ad-
vantages from both the SF and GD algorithms without having
their drawbacks but also has significantly less complexity than
the existing algorithms. In Section V, numerical simulations will
be given to verify the analysis. Finally, Section VI will summa-
rize the paper and point out that the proposed algorithm may
also be used for channel order estimation.

The analysis and simulations in this paper are mainly based
on the LMS algorithm or its variants since they have the widest
applications. However, as will be pointed out later in this paper,
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the adaptation rules for the tap-vector and tap-length are decou-
pled, that is, the choice of one does not depend on the other.
Therefore, the results in this paper can be extended to other
linear adaptive algorithms such as the recursive least square
(RLS) algorithm.

II. OPTIMUM TAP-LENGTH

In [7] and [8], the optimum tap-length is defined as the
smallest integer that satisfies

for all (1)

where is the steady-state mean square error (MSE) when
the tap-length is , and is a small positive value that is pre-
determined according to system requirements. The steady-state
MSE, to which the adaptive algorithm converges, is basically
a convex function of , although there may exist suboptima
[7], [8]. Due to adaptation noise, the steady-state MSE is always
higher than the MMSE, and we may have some-
times, although the MMSE is a strict nonincreasing function of

. The suboptimum tap-length, which is also defined in [7] and
[8], equals an integer , which is smaller than but satisfies

. The width of the suboptimum is defined as
the number of successive suboptimum tap-lengths.

It is immediately clear from (1) that a cost function for
searching may be obtained as

(2)

which means that the minimum that satisfies ,
where is a positive integer. With the appropriate choice of ,
we can simultaneously have and

for . Therefore, if is larger than the maximum
width of the suboptimum, the solution of (2) can escape from
local minima and gives the optimum tap-length . In practice,

may not be chosen absolutely properly, but as was pointed out
in [8], when is large enough, all are within a narrow range
because the adaption noise is usually very small. Thus, with a
small , we can always make it insignificant for the difference
between the solution of (2) and the optimum tap-length defined
in (1). Therefore, in this paper, we will assume that the optimum
tap-length is equal to the solution of (2).

In [7] and [8], a variable tap-length algorithm based on the
cost function of (2) was proposed. Although it can converge
to the optimum tap-length in the mean, the proposed algorithm
suffers from slow convergence under some scenarios. This is
because, on average, the algorithm adjusts the tap-length by
comparing and , which are the steady-state MSEs
corresponding to the tap-length at time instant and ,
respectively. At the start (i.e., ), however, is not
available and must be initialized to some arbitrary value. If this
initialization is not appropriate, the tap-length adaptation may
be initially driven away from the optimum tap-length due to the
transient behavior of the tap-coefficient adaptation.

Below, we introduce an alternative cost function to circum-
vent the random initialization problem.

Assuming the tap-length is , and and are the corre-
sponding steady-state tap-vector and input-vector, respectively,
we define the segmented steady-state error as

(3)

where is the desired signal, ,
, and are vectors consisting of the first co-

efficients of and , respectively. We further define the
segmented steady-state MSE as . Ideally, we
always have , and the difference between them
becomes smaller as becomes larger. Owing to the adaptation
noise, however, this inequality may not hold, especially when

is large enough. Then, we may construct the following cost
function to search for the optimum tap-length:

(4)

To avoid confusion, (2) and (4) are called the cost function 1
and cost function 2, respectively, and the solutions to (2) and (4)
are denoted as and , respectively.

Without the adaptation noise, and become the
MMSEs corresponding to tap-length and , respec-
tively, and then, we have and ,
which means

(5)

where “ ” holds if and only if . Therefore, if we
let , the optimum tap-length from cost function 2 may
be overestimated, i.e., . On the other hand, if and

are known, we can have by choosing particular
values of and . In practice, however, and are a priori
unknown. Thus, cost function 2 generally gives a biased solution
to that of cost function 1 (i.e., ), but the difference is
normally not significant as both and are small.

The advantage of using cost function 2 is that it leads to
memoryless variable tap-length algorithms that require no infor-
mation about the steady-state MSE for the previous tap-length

. We will show in the next section that both the SF and
GD algorithms are based on cost function 2. Hence, the SF and
GD algorithms do not have the random initialization problem
and usually converge faster than the algorithm proposed in [7]
and [8]. In the following, we will only consider cost function 2.

III. COMPARISON BETWEEN SF AND GD ALGORITHMS

In the SF algorithm [5], the filter is divided into segments,
each with coefficients. The tap-length is given by .
An exponential smoothing window with forgetting factor is
used to track the so-called accumulated squared error (ASE) of
each segment

ASE (6)

where is the segment index and is obtained from (3)
with , which is the output error from the th segment
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at time instant . Suppose at time instant , there are seg-
ments. At instant , if ASE ASE , then

; else if ASE ASE ,
then , where .
It is clear that, in the average sense, the SF algorithm adjusts
the tap-length by comparing the segmented steady-state MSE
of and , which is obviously based on cost function 2,
where the threshold depends on the values of and .

Below, we show that the SF and GD algorithms are equivalent
in performance under specific constraints.

If we let , the tap-length adaptation rule for
the SF algorithm can be expressed as

sign ASE ASE (7)

where . However, from (6), we have

ASE ASE

(8)

where we use the approximation that

, which equals twice the output error from the
middle tap of the last segment, and and consist of
coefficients of the last segment of the input-vector and
tap-vector , respectively. Note that rounds the em-
braced value to the nearest integer. Substituting (8) into (7) gives
an equivalent tap-length adaptation rule for the SF algorithm:

sign (9)

On the other hand, with slight rearrangement, the adaptation
rule of the GD algorithm (see [6]) can be expressed as

sign (10)

where is the step-size parameter for tap-length adaptation,
is the size of the rectangular window used to obtained the

smoothed gradient, and both and are positive integers. Note
that (10) only applies at every samples.

It is clear that the only difference between (9) and (10) is
that the two approaches use different smoothing methods to es-
timate the gradient. However, the smoothing methods can be
replaced by each other in both algorithms. Therefore, if we let

for the SF algorithm and let for the
GD algorithm, the two algorithms become identical in terms of
performance.

The main advantage of the GD algorithm over the SF algo-
rithm is that the former can freely choose the step-size param-

eter of , whereas the latter must have , which implies
that the tap-length in the SF algorithm has to be changed by
each time. With this one more degree of freedom, the GD algo-
rithm is more flexible in handling local minima and can more
smoothly adjust the tap-length than its SF counterpart. More-
over, since it does not need to divide the filter, the GD algorithm
may be easier to implement than the SF algorithm.

Alternatively, with the same approximation as in (8), the
adaptation rule of (10) for the GD algorithm is equivalent to

sign ASE ASE (11)

Similar to (7), (11) implies that , with which
the cost function on which the GD algorithm is based becomes

(12)

It is clear by comparing (12) with (4) that the GD algorithm
may overestimate the optimum tap-length, which means unnec-
essarily greater complexity is imposed. Moreover, we observe
that the difference between and usually becomes
very small when . With inaccurate estimates of the
steady-state MSE, this may cause the tap-length “wandering”
in the range that is larger than . Thus, if the initial tap-length

is much larger than , or if the optimum tap-length de-
creases due to channel variation, it may take a long time for the
GD algorithm to converge. This problem is more serious when
the adaptation noise is low, which may be caused by choosing
a small step-size for the LMS algorithm, since then, and

are almost identical for . On the contrary, the SF
algorithm can overcome this problem by choosing the parame-
ters of and appropriately.

IV. FRACTIONAL TAP-LENGTH ALGORITHM

In this section, a new variable tap-length algorithm is first pro-
posed, followed by performance analysis of the proposed algo-
rithm. Finally, some discussions and comparisons are provided.

A. Algorithm

The “wandering” problem of the GD algorithm is similar
to that with the LMS algorithm when it is implemented using
fixed-point parameters and data. A classical solution is to im-
plement the leaky LMS algorithm where a leaky factor is in-
troduced in the adaptation rule [9]. Unfortunately, because the
value of the tap-length must be an integer, we cannot simply add
a small leaky factor to the GD adaptation rule of (10) or (11),
unless the leaky factor is an integer that, however, will be too
large for the length adaptation.

To overcome this problem, in this section, we will relax the
constraint that the tap-length must be an integer and introduce
a concept of pseudo fractional tap-length, where the “true” tap-
length is the integer part of the fractional tap-length. Then, we
can apply the leaky factor to the adaptation rule, which is sim-
ilar to (11), of the “fractional” tap-length. The true tap-length re-
mains unchanged until the “change” of the fractional tap-length
accumulates to some extent. The concept of the fractional tap-
length was first proposed in [7] and [8] but based on cost func-
tion 1.
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To be specific, we define as the pseudo fractional tap-
length, which can take positive real values, and construct the
following adaptation rule:

(13)

where both and are small positive numbers, and is the
leaky factor that satisfies . Initially, we have

. Then, the “true” tap-length is adjusted according
to

otherwise
(14)

where rounds the embraced value to the nearest integer.
To make sense of (13), we should ensure .

Thus, we may set . Then, it can be easily
verified that . In practice, the
minimum may be set at a higher value, depending on the
system requirements. Note that, theoretically, there is no upper
bound for the tap-length.

With the current tap-length , the tap coefficients are then
recursively updated by adaptive algorithms. As has been pointed
out in [7] and [8], the normalized LMS (NLMS) algorithm [9]
is more robust than the LMS algorithm in a variable tap-length
scenario. With moderately greater complexity, the NLMS algo-
rithm can automatically adjust the step-size parameter to keep
the system stable when the tap-length varies [9]. On the con-
trary, in the LMS algorithm, the stability condition that (see [9])

Tr
(15)

must be checked every time the tap-length changes, making it
inflexible to implement, where is the step-size parameter, and
Tr is the trace of the input correlation matrix . It is clear
that the adaptation rules for the tap-vector and tap-length are
decoupled since the choice of one does not depend on the other.

In this paper, the new proposed variable tap-length algorithm
is called the fractional tap-length (FT) algorithm.

B. Performance Analysis

Below, we analyze the convergence of the FT algorithm. As-
suming and are small enough, and taking expectations of
both sides of (13), we have

(16)
where , which is the average tap-length,

and . It is clear from (16) that

if and is larger than the width of the
suboptimum tap-length, keeps increasing until

(17)

On the other hand, if is very large, keeps decreasing
until

(18)

It is obvious from (17) and (18) that, as , if we let
, which is defined in (4) and the step-size parameter

, can converge to , which is the solution of cost
function 2. Generally, if , converges to within a
range of .

The second-order analysis of the tap-length adaption for the
FT algorithm is difficult, if not impossible, to obtain because

is a nonlinear function of the tap-length and segment
length . Generally, we should have to ensure
the stability of the FT algorithm. We will show in Section V
through numerical simulations that if the parameters are prop-
erly chosen, the FT algorithm can converges well in the mean
square. The detail of this topic, however, is left as an open ques-
tion for future research.

C. Discussion

As was shown above, the FT algorithm can converge the tap-
length to within the range of in the mean.
Obviously, the smaller the is, the higher the tap-length res-
olution we can obtain, but the slower the tap-length conver-
gence rate we may encounter. In practice, the value of should
be set according to the system requirements. In contrast, the
tap-length of the SF algorithm converges to a fixed range of

, whereas that of the GD algorithm to a bi-
ased range of , where , is the solution to
the cost function of (12), and . Moreover, like the
SF algorithm, the FT algorithm does not have the “wandering”
problem, due to the leaky factor . In general, the FT algorithm
can freely choose both the step-size and the parameters of
and , which have similar effects as and in the SF al-
gorithm. Thus, it retains all the advantages of the SF and GD
algorithms without their respective drawbacks.

We also observe that since the FT algorithm uses instanta-
neous errors rather than averaged errors for the length adapta-
tion, it has considerably less complexity than the SF and GD al-
gorithms and the algorithm proposed in [7] and [8]. Moreover,
unlike (9) and (10), the FT adaptation rule of (13) does not have
a “sign” operator, and thus, it has more freedom to handle the
tap-length adaptation. Obviously, these are another two advan-
tages of using the “fractional” tap-length. It is interesting to note
that the LMS algorithm has similar properties but for tap-vector
adaption. Thus, we call the proposed algorithm “LMS style”.

Finally, we point out that since the minimum tap-length of
the FT algorithm is , any optimum
tap-length below it cannot be differentiated. Further, we are
reminded that must be larger than the width of the subop-
timum tap-length for the length adaptation to escape from local
minima. Therefore, in some applications where the involved
system has a sparse impulse response and the width of the sub-
optimum length is long, it is necessary to adjust not only the
tap-length but the spacing of the taps as well (e.g., [10], [11]).
This topic is, however, beyond the scope of this paper. Obvi-
ously, the SF and GD algorithm also have this problem.

V. NUMERICAL SIMULATIONS AND DISCUSSIONS

Generally, different variable tap-length algorithms can be
rated according to their convergence rate and steady-state
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Fig. 1. Block diagram of the adaptive system modeling.

TABLE I
PARAMETERS FOR THE VARIABLE TAP-LENGTH ALGORITHMS

performance. From the structure adaptation point of view,
an ideal variable tap-length algorithm should converge fast
to the optimum tap-length with high accuracy and have the
tap-length remain unchanged after the optimum length is
reached. Extensive computer simulations have been performed
under different scenarios, all of which show that the new
proposed FT algorithm is superior to the existing algorithms in
all aspects mentioned above. In this section, as an example, we
will compare the FT algorithm with the SF and GD algorithms
in the application of adaptive system modeling.

A. Simulation Setup

The block diagram of adaptive system modeling is shown
in Fig. 1, where is the unknown channel, is the
adaptive filter, is the spectrum shaping filter, is white
Gaussian noise, is the input signal, is the additive white
Gaussian channel noise, and is the error signal.

We will consider two classes of the unknown systems in this
section, namely, “small scale” and “large scale” systems, which
will be tested in Sections V-B and C, respectively, where the
small scale system means it has much shorter optimum tap-
length than the large-scale system.

Unlike the simulations in [5] and [6], where white input sig-
nals were used, the input signal in this section is obtained by
passing white Gaussian noise through a spectral shaping filter
with a transfer function of . This
choice of shaping filter generates a highly colored input (with an
associated eigenvalue spread of 28.7) to create a “severe” sce-
nario in which the algorithms are tested [12, Sec. 6.4.1]. The
Gaussian noise added to the unknown system provides a signal-
noise-ratio (SNR) of 20 dB. In all simulations, the normalized
LMS (NLMS) algorithm is used for tap-vector adaptation.

For fair comparison, the rectangular window with size of
is used to obtain both the ASE in the SF algorithm and the

smoothed gradient in the GD algorithm. Unless otherwise spec-
ified, the parameters used in the tested variable tap-length algo-
rithms are summarized in Table I.

For clarity of exposition, all tap-length learning curves in this
section are obtained based on one typical simulation run, and all
MSE learning curves are averaged by passing through a rectan-
gular window with size of 50.

Fig. 2. Curves of the steady-state MSE with respect to the tap-length.

B. Small-Scale System

In this example, as a comparison, we use the same system
as that in [7] and [8]. To be specific, two unknown systems are
tested, each with transfer functions of and ,
respectively, where

(19)

The impulse response of is not truncated, and thus, any
special filter length has not been privileged. In this example,
the step-size of the NLMS algorithm is set as for all
experiments except in Fig. 3, where we set .

Fig. 2 shows the curves of the steady-state MSE , with
respect to the tap-length , for . It is clearly shown that
when , the optimum tap-length is around 15,
and the suboptimum tap-lengths are {7, 8}, but when

, the optimum tap-length is around 4, and no suboptimum
tap-lengths exist.

Fig. 3 shows the tap-length learning curves with different
initializations for the SF, GD, and FT algorithms, respectively.
In this experiment, to magnify the “wandering” effect of the
GD algorithm, we deliberately choose a small step-size of
0.05 for the NLMS algorithm to give a small adaptation noise.
The curve of the steady-state MSE with respect to tap-length
for , which is similar to that of Fig. 2, is not shown
here due to space constraints. As expected, the GD algorithm
overestimates the optimum tap-length, and the tap-length is
“wandering” in the high value areas, especially when the
initial tap-length . On the contrary, both SF and FT
algorithms converge quickly to around the optimum tap-length
for either or , but the FT algorithm has a
much smoother learning curve than the SF algorithm because
the former can freely choose the step-size parameter of . Note
that the leaning curve of the tap-length should be as smooth as
possible, especially after it reaches the steady state.

Fig. 4 shows the tap-length learning curve in a time varying
scenario, where for or ,
and for . The initial
tap-length . It is clearly shown that the
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Fig. 3. Learning curves of N(n), where W (z) = W (z) and the step-size
� for the NLMS algorithm is deliberately set as small as 0.05.

SF and FT algorithms have similar transient behavior, and as
expected, both converge significantly faster than the GD algo-
rithm, especially at , when the optimum tap-length is
decreased from 15 to 3. It is also observed that, at the begin-
ning, the learning curve of the GD algorithm has been trapped
in the suboptimum area for around 400 symbols before it finally
goes up, resulting in slow convergence initially. Although this
problem can be overcome by increasing the step-size , this phe-
nomenon indicates that the FT algorithm is more robust to the

Fig. 4. Learning curves of N(n), where W (z) = W (z) for n < 2000 or
n 4000, and W (z) = W (z) for 2000 n < 4000.

Fig. 5. MSE learning curves corresponding to Fig. 4.

local minima than the GD algorithm. On the other hand, the
GD algorithm has a smoother learning curve than the SF al-
gorithm, although the FT algorithm has the smoothest learning
curve of all. Moreover, it can be observed that both SF and GD
algorithms overestimate the optimum tap-length. Note that un-
like the GD algorithm, the SF can overcome the overestimation
problem by adjusting the values of parameters and , as
appropriate. Finally, as has been pointed out in Section IV-C,
since we have for the FT algo-
rithm, any optimum tap-length below this can not be differenti-
ated. Thus, we observe a straight line (with value of “6”) in the
FT learning curve when .

Fig. 5 shows the MSE learning curves corresponding to
Fig. 4. It is clearly shown that the steady-state performance
for all algorithms are similar because all algorithm can track
the optimum length variation, but their transient performances
may be rated as, from best to worst, the FT algorithm, the SF
algorithm, and the GD algorithm, corresponding to the transient
behaviors of the respective tap-length adaptation.
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Fig. 6. Learning curves of N(n) and the MSE, where all parameters are set
as in Table I, W (z) = W (z) for n < 5000 or n 10000, and W (z) =
W (z) for 5000 n < 10000

Fig. 7. MSE learning curves corresponding to Fig. 6.

C. Large-Scale System

In this example, we consider two unknown large scale sys-
tems, each with transfer functions of and ,
respectively, where

(20)

where and are chosen from a white Gaussian random se-
quence with mean zero and variance one. It is obvious that the
optimum tap-length for system and are 80 and
30, respectively. Both and are very “severe” arti-
ficial channels as the tails of their respective impulse responses
do not die down gradually but suddenly.

For all experiments in this example, the step-size of
the NLMS algorithm is set as 0.8, the initial tap-length

, and a time varying scenario is considered,

Fig. 8. Learning curves ofN(n), where we let � = 15 for the SF algorithm,
� = 15, and � = 10 for the GD algorithm, W (z) = W (z) for n < 5000
or n 10000, and W (z) = W (z) for 5000 n < 10000.

Fig. 9. MSE learning curves corresponding to Fig. 8.

where for or , and
for .

Figs. 6 and 7 show the learning curves of the tap-length and
MSE, respectively, for all three algorithms, where the param-
eters for all three algorithms are set as same as those for the
small-scale system, which are shown in Table I. It is clearly
shown that the FT algorithm can still track the channel variations
well, although it slightly overestimates the optimum tap-length.
However, neither the SF nor the GD algorithm works in this
experiment.

Figs. 8 and 9 show the tap-length and MSE learning curves,
respectively, for the SF and GD algorithms, where we let

for the SF algorithm, , and for the GD algo-
rithm, and other parameters remain unchanged. We can observe
that with these new parameter settings, the SF and GD algorithm
can track the channel variations. However, it is clearly shown by
comparing Figs. 6 and 8 that the FT algorithm has a much better
performance in tracking the tap-length variation than the other
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two, as the tap-lengths of the SF and GD algorithms fluctuate
drastically in the steady state.

In fact, to make the SF and GD algorithms work for such “se-
vere” large-scale systems, many parameter settings have been
tested. Unfortunately, only some of the settings perform well,
one of which is shown in Figs. 8 and 9. The results in this ex-
ample indicate that the FT can apply for a wide range of ap-
plications with a fixed setting of parameters. On the contrary,
the SF and GD algorithm may have to adjust their parameter
settings for different scenarios, which, however, contradicts the
basic idea of the structure adaptation, where the “parameters”
should adapt to environmental variations. Therefore, from this
point of view, the FT algorithm is more robust than the other
two.

VI. CONCLUSION

This paper first described two cost functions that can be used
to search for the optimum tap-length and then thoroughly com-
pared the SF and GD algorithms to show that each has advan-
tages/disadvantages relative to the other. Finally, an improved
variable tap-length algorithm using the concept of the fractional
tap-length was proposed. The proposed FT algorithm not only
has better performance but also has less complexity than the ex-
isting algorithms. This provides a significant advance toward the
practical implementation of flexible, structurally adaptive filters
for real-time application in a number of scenarios.

The tap-length adaptation also impacts the issue of channel
order estimation. It is clear the channel order is equal, or very
close, to the optimum tap-length defined in (1) when the ap-
plication of system modeling is considered, depending on how
the threshold is chosen. Although it may converge to a bi-
ased value of the optimum tap-length, the algorithm proposed
in this paper provides a fast and simple method to estimate, if
not accurately enough, the channel order. In contrast, most cur-
rent order estimate algorithms (e.g., [13] and [14]) require com-
plicated matrix manipulations and are difficult to implement in
real time.
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